1
|
Archer J, Cunningham LJ, Juhász A, Jones S, Reed AL, Yeo SM, Mainga B, Chammudzi P, Kapira DR, Lally D, Namacha G, Makaula P, LaCourse JE, Kayuni SA, Webster BL, Musaya J, Stothard JR. Population genetics and molecular xenomonitoring of Biomphalaria freshwater snails along the southern shoreline of Lake Malawi, Malawi. Parasit Vectors 2024; 17:521. [PMID: 39696654 DOI: 10.1186/s13071-024-06546-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/18/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Intestinal schistosomiasis was confirmed endemic in Mangochi District, Malawi, in May of 2018 following an unexpected encounter with discreet populations of Biomphalaria spp. freshwater snails during routine malacological surveillance activities. Since then, only limited malacological surveillance of Biomphalaria has been carried out, and so the distribution of Biomphalaria populations in this area is currently unclear. Additionally, sites of active Schistosoma mansoni transmission in this area are also unknown. In the present study, through extensive malacological surveillance, we aimed to formally document the distribution of Biomphalaria in Mangochi District. We also aimed to identify active intestinal schistosomiasis transmission sites in this area through subjecting all collected Biomphalaria to a recently developed S. mansoni-specific molecular xenomonitoring PCR. METHODS Three malacological surveys were carried out along the southern shoreline of Lake Malawi, Mangochi District, Malawi, in November 2021, July 2022 and October/November 2022. All collected Biomphalaria were subjected to cercarial shedding analysis to identify active Schistosoma infections. Shed cercariae were then genotyped to species level using a standard multi-locus PCR and Sanger sequencing protocol. Following this, a subset of Biomphalaria from each collection site were also genotyped to species level using a standard PCR and Sanger sequencing protocol. All collected Biomphalaria were then subjected to a recently developed S. mansoni-specific molecular xenomonitoring PCR to identify infected, but non-shedding, Biomphalaria. RESULTS A total of 589 Biomphalaria were collected across all three surveys. One single Biomphalaria (0.17%) specimen was found to be actively shedding Schistosoma cercariae, which were molecularly confirmed as S. mansoni. All genotyped Biomphalaria (n = 42) were molecularly identified as B. pfeifferi. A further 19 Biomphalaria specimens, collected from four different surveillance sites, were found to be infected with S. mansoni through molecular xenomonitoring. Intestinal schistosomiasis transmission was therefore identified at four different foci in Mangochi District. CONCLUSIONS Our study highlights the importance of molecular approaches to investigate Biomphalaria populations and monitor Biomphalaria-associated intestinal schistosomiasis transmission in endemic areas. As such, the continued development and use of such approaches, in particular the development and use of molecular xenomonitoring assays that can be carried out in resource-poor schistosomiasis-endemic settings, is encouraged. The revision of ongoing schistosomiasis control programmes in Mangochi District, in line with WHO recommendations, is also encouraged.
Collapse
Affiliation(s)
- John Archer
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
- Wolfson Wellcome Biomedical Laboratories, Department of Zoology, Natural History Museum, Cromwell Road, London, UK.
| | - Lucas J Cunningham
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Alexandra Juhász
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Institute of Medical Microbiology, Semmelweis University, Budapest, 1089, Hungary
| | - Sam Jones
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Amber L Reed
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Shi Min Yeo
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - Bright Mainga
- Laboratory Department, Mangochi District Hospital, P.O. Box 42, Mangochi, Malawi
| | - Priscilla Chammudzi
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences (KUHeS), Blantyre, Malawi
| | - Donales R Kapira
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences (KUHeS), Blantyre, Malawi
| | - David Lally
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences (KUHeS), Blantyre, Malawi
| | - Gladys Namacha
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences (KUHeS), Blantyre, Malawi
| | - Peter Makaula
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
| | - James E LaCourse
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Sekeleghe A Kayuni
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences (KUHeS), Blantyre, Malawi
| | - Bonnie L Webster
- Wolfson Wellcome Biomedical Laboratories, Department of Zoology, Natural History Museum, Cromwell Road, London, UK
| | - Janelisa Musaya
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, Blantyre, Malawi
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences (KUHeS), Blantyre, Malawi
| | - J Russell Stothard
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| |
Collapse
|
2
|
Sukee T, Koehler AV, Webster BL, Gauci CG, Fogarty CE, Ponder WF, Gasser RB, Young ND. Mitochondrial genome of the fluke pond snail, Austropeplea cf. brazieri (Gastropoda: Lymnaeidae). Parasit Vectors 2024; 17:283. [PMID: 38956636 PMCID: PMC11218368 DOI: 10.1186/s13071-024-06358-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/15/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Lymnaeid snails of the genus Austropeplea are an important vector of the liver fluke (Fasciola hepatica), contributing to livestock production losses in Australia and New Zealand. However, the species status within Austropeplea is ambiguous due to heavy reliance on morphological analysis and a relative lack of genetic data. This study aimed to characterise the mitochondrial genome of A. cf. brazieri, an intermediate host of liver fluke in eastern Victoria. METHODS The mitochondrial genome was assembled and annotated from a combination of second- and third-generation sequencing data. For comparative purposes, we performed phylogenetic analyses of the concatenated nucleotide sequences of the mitochondrial protein-coding genes, cytochrome c oxidase subunit 1 and 16S genes. RESULTS The assembled mt genome was 13,757 base pairs and comprised 37 genes, including 13 protein-coding genes, 22 transfer RNA genes and 2 ribosomal RNA genes. The mt genome length, gene order and nucleotide compositions were similar to related species of lymnaeids. Phylogenetic analyses of the mt nucleotide sequences placed A. cf. brazieri within the same clade as Orientogalba ollula with strong statistical supports. Phylogenies of the cox1 and 16S mt sequences were constructed due to the wide availability of these sequences representing the lymnaeid taxa. As expected in both these phylogenies, A. cf. brazieri clustered with other Austropeplea sequences, but the nodal supports were low. CONCLUSIONS The representative mt genome of A. cf. brazieri should provide a useful resource for future molecular, epidemiology and parasitological studies of this socio-economically important lymnaeid species.
Collapse
Affiliation(s)
- Tanapan Sukee
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Victoria, Australia
| | - Anson V Koehler
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Victoria, Australia
| | | | - Charles G Gauci
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Victoria, Australia
| | - Conor E Fogarty
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Victoria, Australia
| | | | - Robin B Gasser
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Victoria, Australia
| | - Neil D Young
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
3
|
Pennance T, Calvelo J, Tennessen JA, Burd R, Cayton J, Bollmann SR, Blouin MS, Spaan JM, Hoffmann FG, Ogara G, Rawago F, Andiego K, Mulonga B, Odhiambo M, Loker ES, Laidemitt MR, Lu L, Iriarte A, Odiere MR, Steinauer ML. The genome and transcriptome of the snail Biomphalaria sudanica s.l.: immune gene diversification and highly polymorphic genomic regions in an important African vector of Schistosoma mansoni. BMC Genomics 2024; 25:192. [PMID: 38373909 PMCID: PMC10875847 DOI: 10.1186/s12864-024-10103-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/08/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Control and elimination of schistosomiasis is an arduous task, with current strategies proving inadequate to break transmission. Exploration of genetic approaches to interrupt Schistosoma mansoni transmission, the causative agent for human intestinal schistosomiasis in sub-Saharan Africa and South America, has led to genomic research of the snail vector hosts of the genus Biomphalaria. Few complete genomic resources exist, with African Biomphalaria species being particularly underrepresented despite this being where the majority of S. mansoni infections occur. Here we generate and annotate the first genome assembly of Biomphalaria sudanica sensu lato, a species responsible for S. mansoni transmission in lake and marsh habitats of the African Rift Valley. Supported by whole-genome diversity data among five inbred lines, we describe orthologs of immune-relevant gene regions in the South American vector B. glabrata and present a bioinformatic pipeline to identify candidate novel pathogen recognition receptors (PRRs). RESULTS De novo genome and transcriptome assembly of inbred B. sudanica originating from the shoreline of Lake Victoria (Kisumu, Kenya) resulted in a haploid genome size of ~ 944.2 Mb (6,728 fragments, N50 = 1.067 Mb), comprising 23,598 genes (BUSCO = 93.6% complete). The B. sudanica genome contains orthologues to all described immune genes/regions tied to protection against S. mansoni in B. glabrata, including the polymorphic transmembrane clusters (PTC1 and PTC2), RADres, and other loci. The B. sudanica PTC2 candidate immune genomic region contained many PRR-like genes across a much wider genomic region than has been shown in B. glabrata, as well as a large inversion between species. High levels of intra-species nucleotide diversity were seen in PTC2, as well as in regions linked to PTC1 and RADres orthologues. Immune related and putative PRR gene families were significantly over-represented in the sub-set of B. sudanica genes determined as hyperdiverse, including high extracellular diversity in transmembrane genes, which could be under pathogen-mediated balancing selection. However, no overall expansion in immunity related genes was seen in African compared to South American lineages. CONCLUSIONS The B. sudanica genome and analyses presented here will facilitate future research in vector immune defense mechanisms against pathogens. This genomic/transcriptomic resource provides necessary data for the future development of molecular snail vector control/surveillance tools, facilitating schistosome transmission interruption mechanisms in Africa.
Collapse
Affiliation(s)
- Tom Pennance
- College of Osteopathic Medicine of the Pacific - Northwest, Western University of Health Sciences, Lebanon, OR, USA.
| | - Javier Calvelo
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Facultad de Medicina, Instituto de Higiene, Universidad de La República, Montevideo, 11600, Uruguay
| | | | - Ryan Burd
- College of Osteopathic Medicine of the Pacific - Northwest, Western University of Health Sciences, Lebanon, OR, USA
| | - Jared Cayton
- College of Osteopathic Medicine of the Pacific - Northwest, Western University of Health Sciences, Lebanon, OR, USA
| | | | | | - Johannie M Spaan
- College of Osteopathic Medicine of the Pacific - Northwest, Western University of Health Sciences, Lebanon, OR, USA
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS, USA
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS, USA
| | - George Ogara
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), P. O. Box 1578-40100, Kisumu, Kenya
| | - Fredrick Rawago
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), P. O. Box 1578-40100, Kisumu, Kenya
| | - Kennedy Andiego
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), P. O. Box 1578-40100, Kisumu, Kenya
| | - Boaz Mulonga
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), P. O. Box 1578-40100, Kisumu, Kenya
| | - Meredith Odhiambo
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), P. O. Box 1578-40100, Kisumu, Kenya
| | - Eric S Loker
- Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Martina R Laidemitt
- Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Lijun Lu
- Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Andrés Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Facultad de Medicina, Instituto de Higiene, Universidad de La República, Montevideo, 11600, Uruguay
| | - Maurice R Odiere
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), P. O. Box 1578-40100, Kisumu, Kenya
| | - Michelle L Steinauer
- College of Osteopathic Medicine of the Pacific - Northwest, Western University of Health Sciences, Lebanon, OR, USA.
| |
Collapse
|
4
|
Tao K, Gao Y, Yin H, Liang Q, Yang Q, Yu X. Comparative Mitogenome Analyses of Fifteen Ramshorn Snails and Insights into the Phylogeny of Planorbidae (Gastropoda: Hygrophila). Int J Mol Sci 2024; 25:2279. [PMID: 38396956 PMCID: PMC10889216 DOI: 10.3390/ijms25042279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Ramshorn snails from the family Planorbidae are important freshwater snails due to their low trophic level, and some of them act as intermediate hosts for zoonotic trematodes. There are about 250 species from 40 genera of Planorbidae, but only 14 species from 5 genera (Anisus, Biomphalaria, Bulinus, Gyraulus, and Planorbella) have sequenced complete mitochondrial genomes (mitogenomes). In this study, we sequenced and assembled a high-quality mitogenome of a ramshorn snail, Polypylis sp. TS-2018, which represented the first mitogenome of the genus. The mitogenome of Polypylis sp. TS-2018 is 13,749 bp in length, which is shorter than that of most gastropods. It contains 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, and 2 ribosomal RNA (rRNA). We compared mitogenome characteristics, selection pressure, and gene rearrangement among all of the available mitogenomes of ramshorn snails. We found that the nonsynonymous and synonymous substitution rates (Ka/Ks) of most PCGs indicated purifying and negative selection, except for atp8 of Anisus, Biomphalaria, and Gyraulus, which indicated positive selection. We observed that transpositions and reverse transpositions occurred on 10 tRNAs and rrnS, which resulted in six gene arrangement types. We reconstructed the phylogenetic trees using the sequences of PCGs and rRNAs and strongly supported the monophyly of each genus, as well as three tribes in Planorbidae. Both the gene rearrangement and phylogenetic results suggested that Polypylis had a close relationship with Anisus and Gyraulus, while Bulinus was the sister group to all of the other genera. Our results provide useful data for further investigation of species identification, population genetics, and phylogenetics among ramshorn snails.
Collapse
Affiliation(s)
| | | | | | | | - Qianqian Yang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (K.T.); (Y.G.); (H.Y.); (Q.L.)
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (K.T.); (Y.G.); (H.Y.); (Q.L.)
| |
Collapse
|
5
|
Pennance T, Calvelo J, Tennessen JA, Burd R, Cayton J, Bollmann SR, Blouin MS, Spaan JM, Hoffmann FG, Ogara G, Rawago F, Andiego K, Mulonga B, Odhiambo M, Loker ES, Laidemitt MR, Lu L, Iriarte A, Odiere M, Steinauer ML. The genome and transcriptome of the snail Biomphalaria sudanica s.l.: Immune gene diversification and highly polymorphic genomic regions in an important African vector of Schistosoma mansoni. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565203. [PMID: 37961413 PMCID: PMC10635097 DOI: 10.1101/2023.11.01.565203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Control and elimination of schistosomiasis is an arduous task, with current strategies proving inadequate to break transmission. Exploration of genetic approaches to interrupt Schistosoma mansoni transmission, the causative agent for human intestinal schistosomiasis in sub-Saharan Africa and South America, has led to genomic research of the snail vector hosts of the genus Biomphalaria. Few complete genomic resources exist, with African Biomphalaria species being particularly underrepresented despite this being where the majority of S. mansoni infections occur. Here we generate and annotate the first genome assembly of Biomphalaria sudanica sensu lato, a species responsible for S. mansoni transmission in lake and marsh habitats of the African Rift Valley. Supported by whole-genome diversity data among five inbred lines, we describe orthologs of immune-relevant gene regions in the South American vector B. glabrata and present a bioinformatic pipeline to identify candidate novel pathogen recognition receptors (PRRs). Results De novo genome and transcriptome assembly of inbred B. sudanica originating from the shoreline of Lake Victoria (Kisumu, Kenya) resulted in a haploid genome size of ~944.2 Mb (6732 fragments, N50=1.067 Mb), comprising 23,598 genes (BUSCO=93.6% complete). The B. sudanica genome contains orthologues to all described immune genes/regions tied to protection against S. mansoni in B. glabrata. The B. sudanica PTC2 candidate immune genomic region contained many PRR-like genes across a much wider genomic region than has been shown in B. glabrata, as well as a large inversion between species. High levels of intra-species nucleotide diversity were seen in PTC2, as well as in regions linked to PTC1 and RADres orthologues. Immune related and putative PRR gene families were significantly over-represented in the sub-set of B. sudanica genes determined as hyperdiverse, including high extracellular diversity in transmembrane genes, which could be under pathogen-mediated balancing selection. However, no overall expansion in immunity related genes were seen in African compared to South American lineages. Conclusions The B. sudanica genome and analyses presented here will facilitate future research in vector immune defense mechanisms against pathogens. This genomic/transcriptomic resource provides necessary data for the future development of molecular snail vector control/surveillance tools, facilitating schistosome transmission interruption mechanisms in Africa.
Collapse
Affiliation(s)
- Tom Pennance
- College of Osteopathic Medicine of the Pacific – Northwest, Western University of Health Sciences, Lebanon OR, USA
| | - Javier Calvelo
- Laboratorio Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | | | - Ryan Burd
- College of Osteopathic Medicine of the Pacific – Northwest, Western University of Health Sciences, Lebanon OR, USA
| | - Jared Cayton
- College of Osteopathic Medicine of the Pacific – Northwest, Western University of Health Sciences, Lebanon OR, USA
| | | | | | - Johannie M. Spaan
- College of Osteopathic Medicine of the Pacific – Northwest, Western University of Health Sciences, Lebanon OR, USA
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS USA
| | - George Ogara
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), P. O. Box 1578-40100, Kisumu, Kenya
| | - Fredrick Rawago
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), P. O. Box 1578-40100, Kisumu, Kenya
| | - Kennedy Andiego
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), P. O. Box 1578-40100, Kisumu, Kenya
| | - Boaz Mulonga
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), P. O. Box 1578-40100, Kisumu, Kenya
| | - Meredith Odhiambo
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), P. O. Box 1578-40100, Kisumu, Kenya
| | - Eric S. Loker
- Department of Biology, Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico 87131, U.S.A
| | - Martina R. Laidemitt
- Department of Biology, Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico 87131, U.S.A
| | - Lijun Lu
- Department of Biology, Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico 87131, U.S.A
| | - Andrés Iriarte
- Laboratorio Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Maurice Odiere
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS USA
| | - Michelle L. Steinauer
- College of Osteopathic Medicine of the Pacific – Northwest, Western University of Health Sciences, Lebanon OR, USA
| |
Collapse
|
6
|
Abstract
The immune repertoires of mollusks beyond commercially important organisms such as the pacific oyster Crassostrea gigas or vectors for human pathogens like the bloodfluke planorb Biomphalaria glabrata are understudied. Despite being an important model for neural aging and the role of inflammation in neuropathic pain, the immune repertoire of Aplysia californica is poorly understood. Recent discovery of a neurotropic nidovirus in Aplysia has highlighted the need for a better understanding of the Aplysia immunome. To address this gap in the literature, the Aplysia reference genome was mined using InterProScan and OrthoFinder for putative immune genes. The Aplysia genome encodes orthologs of all critical components of the classical Toll-like receptor (TLR) signaling pathway. The presence of many more TLRs and TLR associated adapters than known from vertebrates suggest yet uncharacterized, novel TLR associated signaling pathways. Aplysia also retains many nucleotide receptors and antiviral effectors known to play a key role in viral defense in vertebrates. However, the absence of key antiviral signaling adapters MAVS and STING in the Aplysia genome suggests divergence from vertebrates and bivalves in these pathways. The resulting immune gene set of this in silico study provides a basis for interpretation of future immune studies in this important model organism.
Collapse
Affiliation(s)
- Nicholas S Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA.
| |
Collapse
|
7
|
Pennance T, Ame SM, Amour AK, Suleiman KR, Muhsin MA, Kabole F, Ali SM, Archer J, Allan F, Emery A, Rabone M, Knopp S, Rollinson D, Cable J, Webster BL. Transmission and diversity of Schistosoma haematobium and S. bovis and their freshwater intermediate snail hosts Bulinus globosus and B. nasutus in the Zanzibar Archipelago, United Republic of Tanzania. PLoS Negl Trop Dis 2022; 16:e0010585. [PMID: 35788199 PMCID: PMC9286283 DOI: 10.1371/journal.pntd.0010585] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/15/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Background The Zanzibar Archipelago (Pemba and Unguja islands) is targeted for the elimination of human urogenital schistosomiasis caused by infection with Schistosoma haematobium where the intermediate snail host is Bulinus globosus. Following multiple studies, it has remained unclear if B. nasutus (a snail species that occupies geographically distinct regions on the Archipelago) is involved in S. haematobium transmission on Zanzibar. Additionally, S. haematobium was thought to be the only Schistosoma species present on the Zanzibar Archipelago until the sympatric transmission of S. bovis, a parasite of ruminants, was recently identified. Here we re-assess the epidemiology of schistosomiasis on Pemba and Unguja together with the role and genetic diversity of the Bulinus spp. involved in transmission. Methodology/Principal findings Malacological and parasitological surveys were conducted between 2016 and 2019. In total, 11,116 Bulinus spp. snails were collected from 65 of 112 freshwater bodies surveyed. Bulinus species identification were determined using mitochondrial cox1 sequences for a representative subset of collected Bulinus (n = 504) and together with archived museum specimens (n = 6), 433 B. globosus and 77 B. nasutus were identified. Phylogenetic analysis of cox1 haplotypes revealed three distinct populations of B. globosus, two with an overlapping distribution on Pemba and one on Unguja. For B. nasutus, only a single clade with matching haplotypes was observed across the islands and included reference sequences from Kenya. Schistosoma haematobium cercariae (n = 158) were identified from 12 infected B. globosus and one B. nasutus collected between 2016 and 2019 in Pemba, and cercariae originating from 69 Bulinus spp. archived in museum collections. Schistosoma bovis cercariae (n = 21) were identified from seven additional B. globosus collected between 2016 and 2019 in Pemba. By analysing a partial mitochondrial cox1 region and the nuclear ITS (1–5.8S-2) rDNA region of Schistosoma cercariae, we identified 18 S. haematobium and three S. bovis haplotypes representing populations associated with mainland Africa and the Indian Ocean Islands (Zanzibar, Madagascar, Mauritius and Mafia). Conclusions/Significance The individual B. nasutus on Pemba infected with S. haematobium demonstrates that B. nasutus could also play a role in the local transmission of S. haematobium. We provide preliminary evidence that intraspecific variability of S. haematobium on Pemba may increase the transmission potential of S. haematobium locally due to the expanded intermediate host range, and that the presence of S. bovis complicates the environmental surveillance of schistosome infections. Schistosomiasis is a snail-borne neglected tropical disease caused by parasitic blood flukes of the genus Schistosoma. Human urogenital schistosomiasis is targeted for elimination on the Zanzibar Archipelago, United Republic of Tanzania, with multiple interventions being implemented to curtail transmission of the parasite to humans on the islands since 2012. Environmental surveillance for schistosomiasis transmission by collecting intermediate host snails, checking snails for Schistosoma infection, and preserving collected snails and Schistosoma parasites offers the possibility for molecular analyses to investigate the evolutionary/genetic relationships of both snails and parasites. Schistosome transmission on Zanzibar was believed to involve a single schistosome species (Schistosoma haematobium) transmitted via a single intermediate host species (Bulinus globosus). However, our findings demonstrate the locally established presence of S. bovis, responsible for bovine intestinal schistosomiasis, and an extended intermediate host compatibility of S. haematobium with the snail B. nasutus on Pemba. Increased parasite diversity and intermediate host species compatibility may increase the transmission of Schistosoma species on Zanzibar and stretch resources for public health interventions with the need for Schistosoma species specific surveillance.
Collapse
Affiliation(s)
- Tom Pennance
- Department of Science, Natural History Museum, London, United Kingdom
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific–Northwest, Western University of Health Sciences, Lebanon, Oregon, United States of America
- * E-mail:
| | - Shaali Makame Ame
- Public Health Laboratory-Ivo de Carneri, Pemba, United Republic of Tanzania
| | - Amour Khamis Amour
- Public Health Laboratory-Ivo de Carneri, Pemba, United Republic of Tanzania
| | | | - Mtumweni Ali Muhsin
- Neglected Diseases Program, Ministry of Health Zanzibar, United Republic of Tanzania
| | - Fatma Kabole
- Neglected Diseases Program, Ministry of Health Zanzibar, United Republic of Tanzania
| | - Said Mohammed Ali
- Public Health Laboratory-Ivo de Carneri, Pemba, United Republic of Tanzania
| | - John Archer
- Department of Science, Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
| | - Fiona Allan
- Department of Science, Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
- The Scottish Oceans Institute, Gatty Marine Laboratory, University of St Andrews, East Sands, St Andrews, United Kingdom
| | - Aidan Emery
- Department of Science, Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
| | - Muriel Rabone
- Department of Science, Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
| | - Stefanie Knopp
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - David Rollinson
- Department of Science, Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
| | - Joanne Cable
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Bonnie L. Webster
- Department of Science, Natural History Museum, London, United Kingdom
- London Centre for Neglected Tropical Disease Research, London, United Kingdom
| |
Collapse
|
8
|
Comparative mitogenomics of freshwater snails of the genus Bulinus, obligatory vectors of Schistosoma haematobium, causative agent of human urogenital schistosomiasis. Sci Rep 2022; 12:5357. [PMID: 35354876 PMCID: PMC8967911 DOI: 10.1038/s41598-022-09305-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 03/10/2022] [Indexed: 02/05/2023] Open
Abstract
AbstractAmong the snail genera most responsible for vectoring human-infecting schistosomes, Bulinus, Biomphalaria, and Oncomelania, the former is in many respects the most important. Bulinid snails host the most common human blood fluke, Schistosoma haematobium, responsible for approximately two-thirds of the estimated 237 million cases of schistosomiasis. They also support transmission of schistosomes to millions of domestic and wild animals. Nonetheless, our basic knowledge of the 37 Bulinus species remains incomplete, especially with respect to genome information, even including mitogenome sequences. We determined complete mitogenome sequences for Bulinus truncatus, B. nasutus, and B. ugandae, and three representatives of B. globosus from eastern, central, and western Kenya. A difference of the location of tRNA-Asp was found between mitogenomes from the three species of the Bulinus africanus group and B. truncatus. Phylogenetic analysis using partial cox1 sequences suggests that B. globosus is a complex comprised of multiple species. We also highlight the status of B. ugandae as a distinct species with unusual interactions with the S. haematobium group parasites deserving of additional investigation. We provide sequence data for potential development of genetic markers for specific or intraspecific Bulinus studies, help elucidate the relationships among Bulinus species, and suggest ways in which mitogenomes may help understand the complex interactions between Schistosoma and Bulinus snails and their relatives.
Collapse
|
9
|
Young ND, Kinkar L, Stroehlein AJ, Korhonen PK, Stothard JR, Rollinson D, Gasser RB. Mitochondrial genome of Bulinus truncatus (Gastropoda: Lymnaeoidea): Implications for snail systematics and schistosome epidemiology. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 1:100017. [PMID: 35284876 PMCID: PMC8906109 DOI: 10.1016/j.crpvbd.2021.100017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 11/29/2022]
Abstract
Many freshwater snails of the genus Bulinus act as intermediate hosts in the life-cycles of schistosomes in Africa and adjacent regions. Currently, 37 species of Bulinus representing four groups are recognised. The mitochondrial cytochrome c oxidase subunit 1 (cox1) gene has shown utility for identifying and differentiating Bulinus species and groups, but taxonomic relationships based on genetic data are not entirely consistent with those inferred using morphological and biological features. To underpin future systematic studies of members of the genus, we characterised here the mitochondrial genome of Bulinus truncatus (from a defined laboratory strain) using a combined second- and third-generation sequencing and informatics approach, enabling taxonomic comparisons with other planorbid snails for which mitochondrial (mt) genomes were available. Analyses showed consistency in gene order and length among mitochondrial genomes of representative planorbid snails, with the lowest and highest nucleotide diversities being in the cytochrome c oxidase and nicotinamide dehydrogenase subunit genes, respectively. This first mt genome for a representative of the genus Bulinus should provide a useful resource for future investigations of the systematics, population genetics, epidemiology and/or ecology of Bulinus and related snails. The sequencing and informatic workflow employed here should find broad applicability to a range of other snail intermediate hosts of parasitic trematodes.
Collapse
Affiliation(s)
- Neil D Young
- Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Liina Kinkar
- Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Andreas J Stroehlein
- Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Pasi K Korhonen
- Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - J Russell Stothard
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - David Rollinson
- Department of Life Sciences, Natural History Museum, London, UK.,London Centre for Neglected Tropical Disease Research, London, UK
| | - Robin B Gasser
- Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
10
|
Karmeinski D, Meusemann K, Goodheart JA, Schroedl M, Martynov A, Korshunova T, Wägele H, Donath A. Transcriptomics provides a robust framework for the relationships of the major clades of cladobranch sea slugs (Mollusca, Gastropoda, Heterobranchia), but fails to resolve the position of the enigmatic genus Embletonia. BMC Ecol Evol 2021; 21:226. [PMID: 34963462 PMCID: PMC8895541 DOI: 10.1186/s12862-021-01944-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/23/2021] [Indexed: 11/24/2022] Open
Abstract
Background The soft-bodied cladobranch sea slugs represent roughly half of the biodiversity of marine nudibranch molluscs on the planet. Despite their global distribution from shallow waters to the deep sea, from tropical into polar seas, and their important role in marine ecosystems and for humans (as targets for drug discovery), the evolutionary history of cladobranch sea slugs is not yet fully understood. Results To enlarge the current knowledge on the phylogenetic relationships, we generated new transcriptome data for 19 species of cladobranch sea slugs and two additional outgroup taxa (Berthella plumula and Polycera quadrilineata). We complemented our taxon sampling with previously published transcriptome data, resulting in a final data set covering 56 species from all but one accepted cladobranch superfamilies. We assembled all transcriptomes using six different assemblers, selecting those assemblies that provided the largest amount of potentially phylogenetically informative sites. Quality-driven compilation of data sets resulted in four different supermatrices: two with full coverage of genes per species (446 and 335 single-copy protein-coding genes, respectively) and two with a less stringent coverage (667 genes with 98.9% partition coverage and 1767 genes with 86% partition coverage, respectively). We used these supermatrices to infer statistically robust maximum-likelihood trees. All analyses, irrespective of the data set, indicate maximal statistical support for all major splits and phylogenetic relationships at the family level. Besides the questionable position of Noumeaella rubrofasciata, rendering the Facelinidae as polyphyletic, the only notable discordance between the inferred trees is the position of Embletonia pulchra. Extensive testing using Four-cluster Likelihood Mapping, Approximately Unbiased tests, and Quartet Scores revealed that its position is not due to any informative phylogenetic signal, but caused by confounding signal. Conclusions Our data matrices and the inferred trees can serve as a solid foundation for future work on the taxonomy and evolutionary history of Cladobranchia. The placement of E. pulchra, however, proves challenging, even with large data sets and various optimization strategies. Moreover, quartet mapping results show that confounding signal present in the data is sufficient to explain the inferred position of E. pulchra, again leaving its phylogenetic position as an enigma. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01944-0.
Collapse
Affiliation(s)
- Dario Karmeinski
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change/ZFMK, Museum Koenig, Adenauerallee 160, 53113, Bonn, Germany
| | - Karen Meusemann
- Leibniz Institute for the Analysis of Biodiversity Change/ZFMK, Museum Koenig, Adenauerallee 160, 53113, Bonn, Germany.,Australian National Insect Collection, National Research Collections Australia, Commonwealth Scientific and Industrial Research Organisation (CSIRO), National Facilities and Collections, Clunies Ross Street, Acton, Canberra, ACT, 2601, Australia
| | - Jessica A Goodheart
- Scripps Institution of Oceanography, University of California, La Jolla, San Diego, CA, 92037, USA
| | - Michael Schroedl
- SNSB-Bavarian State Collection of Zoology, Münchhausenstr. 21, 81247, Munich, Germany.,GeoBioCenter LMU und Biozentrum, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Alexander Martynov
- Zoological Museum of the Moscow State University, Bolshaya Nikitskaya Str. 6, 125009, Moscow, Russia
| | - Tatiana Korshunova
- Koltzov Institute of Developmental Biology, Vavilova Str. 26, 119334, Moscow, Russia
| | - Heike Wägele
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change/ZFMK, Museum Koenig, Adenauerallee 160, 53113, Bonn, Germany
| | - Alexander Donath
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change/ZFMK, Museum Koenig, Adenauerallee 160, 53113, Bonn, Germany.
| |
Collapse
|
11
|
Ghiselli F, Gomes-Dos-Santos A, Adema CM, Lopes-Lima M, Sharbrough J, Boore JL. Molluscan mitochondrial genomes break the rules. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200159. [PMID: 33813887 DOI: 10.1098/rstb.2020.0159] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The first animal mitochondrial genomes to be sequenced were of several vertebrates and model organisms, and the consistency of genomic features found has led to a 'textbook description'. However, a more broad phylogenetic sampling of complete animal mitochondrial genomes has found many cases where these features do not exist, and the phylum Mollusca is especially replete with these exceptions. The characterization of full mollusc mitogenomes required considerable effort involving challenging molecular biology, but has created an enormous catalogue of surprising deviations from that textbook description, including wide variation in size, radical genome rearrangements, gene duplications and losses, the introduction of novel genes, and a complex system of inheritance dubbed 'doubly uniparental inheritance'. Here, we review the extraordinary variation in architecture, molecular functioning and intergenerational transmission of molluscan mitochondrial genomes. Such features represent a great potential for the discovery of biological history, processes and functions that are novel for animal mitochondrial genomes. This provides a model system for studying the evolution and the manifold roles that mitochondria play in organismal physiology, and many ways that the study of mitochondrial genomes are useful for phylogeny and population biology. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.
Collapse
Affiliation(s)
- Fabrizio Ghiselli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy
| | - André Gomes-Dos-Santos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, and Department of Biology, Faculty of Sciences, University of Porto, Portugal
| | - Coen M Adema
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, USA
| | - Manuel Lopes-Lima
- CIBIO/InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
| | - Joel Sharbrough
- Department of Biology, Colorado State University, Fort Collins, USA
| | - Jeffrey L Boore
- Providence St Joseph Health and the Institute for Systems Biology, Seattle, USA
| |
Collapse
|
12
|
Adema CM. Sticky problems: extraction of nucleic acids from molluscs. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200162. [PMID: 33813891 DOI: 10.1098/rstb.2020.0162] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Traditional molecular methods and omics-techniques across molluscan taxonomy increasingly inform biology of Mollusca. Recovery of DNA and RNA for such studies is challenged by common biological properties of the highly diverse molluscs. Molluscan biomineralization, adhesive structures and mucus involve polyphenolic proteins and mucopolysaccharides that hinder DNA extraction or copurify to inhibit enzyme-catalysed molecular procedures. DNA extraction methods that employ the detergent hexadecyltrimethylammoniumbromide (CTAB) to remove these contaminants importantly facilitate molecular-level study of molluscs. Molluscan pigments may stain DNA samples and interfere with spectrophotometry, necessitating gel electrophoresis or fluorometry for accurate quantification. RNA can reliably be extracted but the 'hidden break' in 28S rRNA of molluscs (like most protostomes) causes 18S and 28S rRNA fragments to co-migrate electrophoretically. This challenges the standard quality control based on the ratio of 18S and 28S rRNA, developed for deuterostome animals. High-AT content in molluscan rRNA prevents the effective purification of polyadenylated mRNA. Awareness of these matters aids the continuous expansion of molecular malacology, enabling work also with museum specimens and next-generation sequencing, with the latter imposing unprecedented demands on DNA quality. Alternative methods to extract nucleic acids from molluscs are available from literature and, importantly, from communications with others who study the molecular biology of molluscs. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.
Collapse
Affiliation(s)
- Coen M Adema
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87112, USA
| |
Collapse
|
13
|
Pennance T, Allan F, Emery A, Rabone M, Cable J, Garba AD, Hamidou AA, Webster JP, Rollinson D, Webster BL. Interactions between Schistosoma haematobium group species and their Bulinus spp. intermediate hosts along the Niger River Valley. Parasit Vectors 2020; 13:268. [PMID: 32448268 PMCID: PMC7247258 DOI: 10.1186/s13071-020-04136-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/14/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Urogenital schistosomiasis, caused by infection with Schistosoma haematobium, is endemic in Niger but complicated by the presence of Schistosoma bovis, Schistosoma curassoni and S. haematobium group hybrids along with various Bulinus snail intermediate host species. Establishing the schistosomes and snails involved in transmission aids disease surveillance whilst providing insights into snail-schistosome interactions/compatibilities and biology. METHODS Infected Bulinus spp. were collected from 16 villages north and south of the Niamey region, Niger, between 2011 and 2015. From each Bulinus spp., 20-52 cercariae shed were analysed using microsatellite markers and a subset identified using the mitochondrial (mt) cox1 and nuclear ITS1 + 2 and 18S DNA regions. Infected Bulinus spp. were identified using both morphological and molecular analysis (partial mt cox1 region). RESULTS A total of 87 infected Bulinus from 24 sites were found, 29 were molecularly confirmed as B. truncatus, three as B. forskalii and four as B. globosus. The remaining samples were morphologically identified as B. truncatus (n = 49) and B. forskalii (n = 2). The microsatellite analysis of 1124 cercariae revealed 186 cercarial multilocus genotypes (MLGs). Identical cercarial genotypes were frequently (60%) identified from the same snail (clonal populations from a single miracidia); however, several (40%) of the snails had cercariae of different genotypes (2-10 MLG's) indicating multiple miracidial infections. Fifty-seven of the B. truncatus and all of the B. forskalii and B. globosus were shedding the Bovid schistosome S. bovis. The other B. truncatus were shedding the human schistosomes, S. haematobium (n = 6) and the S. haematobium group hybrids (n = 13). Two B. truncatus had co-infections with S. haematobium and S. haematobium group hybrids whilst no co-infections with S. bovis were observed. CONCLUSIONS This study has advanced our understanding of human and bovid schistosomiasis transmission in the Niger River Valley region. Human Schistosoma species/forms (S. haematobium and S. haematobium hybrids) were found transmitted only in five villages whereas those causing veterinary schistosomiasis (S. bovis), were found in most villages. Bulinus truncatus was most abundant, transmitting all Schistosoma species, while the less abundant B. forskalii and B. globosus, only transmitted S. bovis. Our data suggest that species-specific biological traits may exist in relation to co-infections, snail-schistosome compatibility and intramolluscan schistosome development.
Collapse
Affiliation(s)
- Tom Pennance
- Department of Life Sciences, Natural History Museum, Cromwell Road, South Kensington, London, SW7 5BD UK
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX UK
- London Centre for Neglected Tropical Disease Research, Imperial College London, School of Public Health, Norfolk Pl, Paddington, London, W2 1PG UK
| | - Fiona Allan
- Department of Life Sciences, Natural History Museum, Cromwell Road, South Kensington, London, SW7 5BD UK
- London Centre for Neglected Tropical Disease Research, Imperial College London, School of Public Health, Norfolk Pl, Paddington, London, W2 1PG UK
| | - Aidan Emery
- Department of Life Sciences, Natural History Museum, Cromwell Road, South Kensington, London, SW7 5BD UK
- London Centre for Neglected Tropical Disease Research, Imperial College London, School of Public Health, Norfolk Pl, Paddington, London, W2 1PG UK
| | - Muriel Rabone
- Department of Life Sciences, Natural History Museum, Cromwell Road, South Kensington, London, SW7 5BD UK
- London Centre for Neglected Tropical Disease Research, Imperial College London, School of Public Health, Norfolk Pl, Paddington, London, W2 1PG UK
| | - Jo Cable
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX UK
| | - Amadou Djirmay Garba
- Réseau International Schistosomoses, Environnement, Aménagement et Lutte (RISEAL-Niger), 333, Avenue des Zarmakoye, B.P. 13724 Niamey, Niger
- World Health Organization, Geneva, Switzerland
| | - Amina Amadou Hamidou
- Réseau International Schistosomoses, Environnement, Aménagement et Lutte (RISEAL-Niger), 333, Avenue des Zarmakoye, B.P. 13724 Niamey, Niger
| | - Joanne P. Webster
- London Centre for Neglected Tropical Disease Research, Imperial College London, School of Public Health, Norfolk Pl, Paddington, London, W2 1PG UK
- Department of Pathology and Pathogen Biology, Centre for Emerging, Endemic and Exotic Diseases (CEEED), Royal Veterinary College, University of London, Hertfordshire, AL9 7TA UK
| | - David Rollinson
- Department of Life Sciences, Natural History Museum, Cromwell Road, South Kensington, London, SW7 5BD UK
- London Centre for Neglected Tropical Disease Research, Imperial College London, School of Public Health, Norfolk Pl, Paddington, London, W2 1PG UK
| | - Bonnie L. Webster
- Department of Life Sciences, Natural History Museum, Cromwell Road, South Kensington, London, SW7 5BD UK
- London Centre for Neglected Tropical Disease Research, Imperial College London, School of Public Health, Norfolk Pl, Paddington, London, W2 1PG UK
| |
Collapse
|
14
|
Klein AH, Ballard KR, Storey KB, Motti CA, Zhao M, Cummins SF. Multi-omics investigations within the Phylum Mollusca, Class Gastropoda: from ecological application to breakthrough phylogenomic studies. Brief Funct Genomics 2020; 18:377-394. [PMID: 31609407 DOI: 10.1093/bfgp/elz017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/06/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022] Open
Abstract
Gastropods are the largest and most diverse class of mollusc and include species that are well studied within the areas of taxonomy, aquaculture, biomineralization, ecology, microbiome and health. Gastropod research has been expanding since the mid-2000s, largely due to large-scale data integration from next-generation sequencing and mass spectrometry in which transcripts, proteins and metabolites can be readily explored systematically. Correspondingly, the huge data added a great deal of complexity for data organization, visualization and interpretation. Here, we reviewed the recent advances involving gastropod omics ('gastropodomics') research from hundreds of publications and online genomics databases. By summarizing the current publicly available data, we present an insight for the design of useful data integrating tools and strategies for comparative omics studies in the future. Additionally, we discuss the future of omics applications in aquaculture, natural pharmaceutical biodiscovery and pest management, as well as to monitor the impact of environmental stressors.
Collapse
Affiliation(s)
- Anne H Klein
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Kaylene R Ballard
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Kenneth B Storey
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, ON, Canada K1S 5B6
| | - Cherie A Motti
- Australian Institute of Marine Science (AIMS), Cape Ferguson, Townsville Queensland 4810, Australia
| | - Min Zhao
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Scott F Cummins
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| |
Collapse
|
15
|
Schultz JH, Bansbach LM, Bremmer JA, Dimmler KE, Forde QA, Gagliano EM, Glenn EM, Greengrass CM, Hayes JP, Kraus AL, Larsen LI, Lucero E, McClendon MT, Mercer HL, Mims KC, Patel KN, Patsalis FI, Peterson DE, Platero JM, Rizvi MM, Serna KI, Steele TE, Turner NL, Bu L, Lu L, Adema CM. The mitochondrial genome of the planorbid snail Planorbella duryi. MITOCHONDRIAL DNA PART B-RESOURCES 2018; 3:972-973. [PMID: 33474384 PMCID: PMC7800533 DOI: 10.1080/23802359.2018.1503939] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The complete mitochondrial genome of a freshwater planorbid snail, Planorbella duryi (Mollusca, Gastropoda) was recovered from de novo assembly of genomic sequences generated with the Illumina NextSeq500 platform. The P. duryi mitogenome (14,217 base pairs) is AT rich (72.69%) and comprises 13 protein-coding genes, two ribosomal subunit genes, and 22 transfer RNAs. The gene order is identical to that of Biomphalaria glabrata and other snail species in the family Planorbidae. This is the first full characterization of a mitochondrial genome of the genus Planorbella.
Collapse
Affiliation(s)
| | - Lauren M Bansbach
- Department of Biology, 1 University of New Mexico, Albuquerque, NM, USA
| | - Jarrett A Bremmer
- Department of Biology, 1 University of New Mexico, Albuquerque, NM, USA
| | - Kirsten E Dimmler
- Department of Biology, 1 University of New Mexico, Albuquerque, NM, USA
| | - Quinn A Forde
- Department of Biology, 1 University of New Mexico, Albuquerque, NM, USA
| | - Elisa M Gagliano
- Department of Biology, 1 University of New Mexico, Albuquerque, NM, USA
| | - Elizabeth M Glenn
- Department of Biology, 1 University of New Mexico, Albuquerque, NM, USA
| | | | - Joe P Hayes
- Department of Biology, 1 University of New Mexico, Albuquerque, NM, USA
| | - Aurora L Kraus
- Department of Biology, 1 University of New Mexico, Albuquerque, NM, USA
| | - Lewis I Larsen
- Department of Biology, 1 University of New Mexico, Albuquerque, NM, USA
| | - Erin Lucero
- Department of Biology, 1 University of New Mexico, Albuquerque, NM, USA
| | | | - Heather L Mercer
- Department of Biology, 1 University of New Mexico, Albuquerque, NM, USA
| | - Karen C Mims
- Department of Biology, 1 University of New Mexico, Albuquerque, NM, USA
| | - Kajal N Patel
- Department of Biology, 1 University of New Mexico, Albuquerque, NM, USA
| | - Fotios I Patsalis
- Department of Biology, 1 University of New Mexico, Albuquerque, NM, USA
| | - Dianne E Peterson
- Department of Biology, 1 University of New Mexico, Albuquerque, NM, USA
| | - Jarrod M Platero
- Department of Biology, 1 University of New Mexico, Albuquerque, NM, USA
| | - Mohammed M Rizvi
- Department of Biology, 1 University of New Mexico, Albuquerque, NM, USA
| | - Kassandra I Serna
- Department of Biology, 1 University of New Mexico, Albuquerque, NM, USA
| | - Tyler E Steele
- Department of Biology, 1 University of New Mexico, Albuquerque, NM, USA
| | - Nicholas L Turner
- Department of Biology, 1 University of New Mexico, Albuquerque, NM, USA
| | - Lijing Bu
- Department of Biology, 1 University of New Mexico, Albuquerque, NM, USA
| | - Lijun Lu
- Department of Biology, 1 University of New Mexico, Albuquerque, NM, USA
| | - Coen M Adema
- Department of Biology, 1 University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
16
|
Zhang SM, Bu L, Laidemitt MR, Lu L, Mutuku MW, Mkoji GM, Loker ES. Complete mitochondrial and rDNA complex sequences of important vector species of Biomphalaria, obligatory hosts of the human-infecting blood fluke, Schistosoma mansoni. Sci Rep 2018; 8:7341. [PMID: 29743617 PMCID: PMC5943310 DOI: 10.1038/s41598-018-25463-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/16/2018] [Indexed: 01/24/2023] Open
Abstract
Using high throughput Illumina sequencing technology, we determined complete sequences for the mitochondrial genome (mitogenome) and nuclear ribosomal DNA (rDNA) complex for three African freshwater snail taxa within the genus Biomphalaria, B. pfeifferi, B. sudanica and B. choanomphala, and for two laboratory strains of B. glabrata originating from the Neotropics. Biomphalaria snails are obligate vectors of the blood fluke Schistosoma mansoni, a major etiologic agent of human intestinal schistosomiasis. Our data show that mitogenomes from African and Neotropical Biomphalaria are highly conserved. With respect to rDNA, the two internal transcribed spacers (ITS1 and 2) were found to be highly variable whereas the three ribosomal RNA genes (28S, 5.8S and 18S rRNA) exhibited no or very limited variation. Our analyses reveal that the two taxa inhabiting Lake Victoria, B. sudanica and B. choanomphala, are very similar to one another relative to the similarity either shows to B. pfeifferi or B. glabrata. This new sequence information may prove useful for developing new markers for snail identification, environmental detection/monitoring purposes or for tracking epidemiology and snail dependencies of S. mansoni in endemic areas. It also provides new information pertinent to still unresolved questions in Biomphalaria systematics and nomenclature.
Collapse
Affiliation(s)
- Si-Ming Zhang
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerqu, NM, 87131, USA.
| | - Lijing Bu
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerqu, NM, 87131, USA
| | - Martina R Laidemitt
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerqu, NM, 87131, USA
| | - Lijun Lu
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerqu, NM, 87131, USA
| | - Martin W Mutuku
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute (KEMRI), P.O Box, 54840-00200, Nairobi, Kenya
| | - Gerald M Mkoji
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute (KEMRI), P.O Box, 54840-00200, Nairobi, Kenya
| | - Eric S Loker
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerqu, NM, 87131, USA.,Parasitology Division, Museum of Southwestern Biology, University of New Mexico, Albuquerque, 87131, USA
| |
Collapse
|
17
|
Wang JG, Zhang D, Jakovlić I, Wang WM. Sequencing of the complete mitochondrial genomes of eight freshwater snail species exposes pervasive paraphyly within the Viviparidae family (Caenogastropoda). PLoS One 2017; 12:e0181699. [PMID: 28742843 PMCID: PMC5526530 DOI: 10.1371/journal.pone.0181699] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/04/2017] [Indexed: 11/21/2022] Open
Abstract
Phylogenetic relationships among snails (Caenogastropoda) are still unresolved, and many taxonomic categories remain non-monophyletic. Paraphyly has been reported within a large family of freshwater snails, Viviparidae, where the taxonomic status of several species remains questionable. As many endemic Chinese viviparid species have become endangered during the last few decades, this presents a major obstacle for conservation efforts. Mitochondrial genomes (mitogenomes) carry a large amount of data, so they can often provide a much higher resolution for phylogenetic analyses in comparison to the traditionally used molecular markers. To help resolve their phylogenetic relationships, the complete mitogenomes of eight Chinese viviparid snails, Viviparus chui, Cipangopaludina chinensis, C. ussuriensis, C. dianchiensis (endangered), Margarya melanioides (endangered), M. monodi (critically endangered), Bellamya quadrata and B. aeruginosa, were sequenced and compared to almost all of the available caenogastropod mitogenomes. Viviparidae possess the largest mitogenomes (16 392 to 18 544 bp), exhibit the highest A+T bias (72.5% on average), and some exhibit unique gene orders (a rearrangement of the standard MYCWQGE box), among the Caenogastropoda. Apart from the Vermetidae family and Cerithioidea superfamily, which possessed unique gene orders, the remaining studied caenogastropod mitogenomes exhibited highly conserved gene order, with minimal variations. Maximum likelihood and Bayesian inference analyses, used to reconstruct the phylogenetic relationships among 49 almost complete (all 37 genes) caenogastropod mitogenomes, produced almost identical tree topologies. Viviparidae were divided into three clades: a) Margarya and Cipangopaludina (except C. ussuriensis), b) Bellamya and C. ussuriensis, c) Viviparus chui. Our results present evidence that some Cipangopaludina species (dianchiensis and cathayensis) should be renamed into the senior genus Margarya. The phylogenetic resolution obtained in this study is insufficient to fully resolve the relationships within the 'b' clade, but if C. chinensis proves to be a valid representative of the genus, C. ussuriensis may have to be reassigned a different genus (possibly Bellamya, or even a new genus). Non-monophyly also remains pervasive among the higher (above the family-level) Caenogastropod taxonomic classes. Gene order distance matrix produced a different phylogenetic signal from the nucleotide sequences, which indicates a limited usability of this approach for inferring caenogastropod phylogenies. As phenotypic homoplasy appears to be widespread among some viviparid genera, in order to effectively protect the rapidly diminishing endemic Viviparid populations in China, further detailed molecular phylogenetic studies are urgently needed to resolve the taxonomic status of several species.
Collapse
Affiliation(s)
- Ju-Guang Wang
- Key Lab of Freshwater Animal Breeding of the Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, PR China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, PR China
| | - Dong Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Ivan Jakovlić
- Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan, PR China
| | - Wei-Min Wang
- Key Lab of Freshwater Animal Breeding of the Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, PR China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, PR China
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, China
| |
Collapse
|
18
|
Groenenberg DSJ, Harl J, Duijm E, Gittenberger E. The complete mitogenome of Orcula dolium (Draparnaud, 1801); ultra-deep sequencing from a single long-range PCR using the Ion-Torrent PGM. Hereditas 2017; 154:7. [PMID: 28396619 PMCID: PMC5379511 DOI: 10.1186/s41065-017-0028-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/23/2017] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND With the increasing capacity of present-day next-generation sequencers the field of mitogenomics is rapidly changing. Enrichment of the mitochondrial fraction, is no longer necessary for obtaining mitogenomic data. Despite the benefits, shotgun sequencing approaches also have disadvantages. They do not guarantee obtaining the complete mitogenome, generally require larger amounts of input DNA and coverage is low compared to sequencing with enrichment strategies. If the mitogenome could be amplified in a single amplification, additional time and costs for sample preparation might outweigh these disadvantages. RESULTS A sequence of the complete mitochondrial genome of the pupilloid landsnail Orcula dolium is presented. The mitogenome was amplified in a single long-range (LR) PCR and sequenced on an Ion Torrent PGM (Life Technologies). The length is 14,063 nt and the average depth of coverage is 1112 X. This is the first published mitogenome for a member of the family Orculidae. It has the typical metazoan makeup of 13 protein coding genes (PCGs), 2 ribosomal RNAs (12S and 16S) and 22 transfer RNAs (tRNAs). Orcula is positioned between Pupilla and the Vertiginidae as the sister-group of Gastrocopta and Vertigo, together. An ancestral gene order reconstruction shows that Orthurethra in contrast to other Stylommatophora, have tRNA-H before tRNA-G and that the gene order in the 'non-achatinoid' clade is identical to that of closely related non-stylommatophoran taxa. CONCLUSIONS We show it is feasible to ultra-deep sequence a mitogenome from a single LR-PCR. This approach is particularly relevant to studies that have low concentrations of input DNA. It results in a more efficient use of NGS capacity (only the targeted fraction is sequenced) and is an effective selection against nuclear mitochondrial inserts (NUMTS). In contrast to previous studies based in particular on 28S, our results indicate that phylogeny reconstructions based on complete mitogenomes might be more suitable to resolve deep relationships within Stylommatophora. Ancestral gene order reconstructions reveal rearrangements that characterize systematic groups.
Collapse
Affiliation(s)
| | - J. Harl
- Central Research Laboratories, Museum of Natural History Vienna, Vienna, Austria
- Department of Biology, Shinshu University, Matsumoto, Japan
| | - E. Duijm
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands
| | - E. Gittenberger
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands
| |
Collapse
|
19
|
Williams ST, Foster PG, Hughes C, Harper EM, Taylor JD, Littlewood DTJ, Dyal P, Hopkins KP, Briscoe AG. Curious bivalves: Systematic utility and unusual properties of anomalodesmatan mitochondrial genomes. Mol Phylogenet Evol 2017; 110:60-72. [PMID: 28274686 DOI: 10.1016/j.ympev.2017.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/26/2017] [Accepted: 03/02/2017] [Indexed: 11/29/2022]
Abstract
Mitogenomic trees for Bivalvia have proved problematic in the past, but several highly divergent lineages were missing from these analyses and increased representation of these groups may yet improve resolution. Here, we add seven new sequences from the Anomalodesmata and one unidentified semelid species (Bryopa lata, Euciroa cf. queenslandica, Laternula elliptica, Laternula truncata, Lyonsia norwegica, Myadora brevis, Tropidomya abbreviata, "Abra" sp.). We show that relationships in a mitogenomic tree for the Class are improved by the addition of seven anomalodesmatans from this highly divergent clade, but are still not completely consistent with relationships recovered in studies of nuclear genes. We suggest that some anomalous relationships (for instance the non-monophyly of Bivalvia) may be partially explained by compositional heterogeneity in the mitogenome and suggest that the addition of more taxa may help resolve both this effect and possible instances of long branch attraction. We also identify several curious features about anomalodesmatan mitogenomes. For example, many protein-coding gene boundaries are poorly defined in marine bivalves, but particularly so in anomalodesmatans, primarily due to non-conserved boundary sequences. The use of transcriptomic and genomic data together enabled better definition of gene boundaries, the identification of possible pseudogenes and suggests that most genes are translated monocistronically, which contrasts with many other studies. We also identified a possible case of gene duplication of ND5 in Myadora brevis (Myochamidae). Mitogenome size in the Anomalodesmata ranges from very small compact molecules, with the smallest for Laternula elliptica (Laternulidae) only 14,622bp, to Bryopa lata (Clavagellidae) which is at least 31,969bp long and may be >40,000bp. Finally, sampled species show a high degree of sequence divergence and variable gene order, although intraspecific variation in Laternula elliptica is very low.
Collapse
Affiliation(s)
- S T Williams
- Natural History Museum, Cromwell Rd, London SW7 5BD, United Kingdom.
| | - P G Foster
- Natural History Museum, Cromwell Rd, London SW7 5BD, United Kingdom
| | - C Hughes
- Natural History Museum, Cromwell Rd, London SW7 5BD, United Kingdom
| | - E M Harper
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom
| | - J D Taylor
- Natural History Museum, Cromwell Rd, London SW7 5BD, United Kingdom
| | - D T J Littlewood
- Natural History Museum, Cromwell Rd, London SW7 5BD, United Kingdom
| | - P Dyal
- Natural History Museum, Cromwell Rd, London SW7 5BD, United Kingdom
| | - K P Hopkins
- Natural History Museum, Cromwell Rd, London SW7 5BD, United Kingdom; Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, United Kingdom(1)
| | - A G Briscoe
- Natural History Museum, Cromwell Rd, London SW7 5BD, United Kingdom
| |
Collapse
|
20
|
Dheilly NM, Adema C, Raftos DA, Gourbal B, Grunau C, Du Pasquier L. No more non-model species: the promise of next generation sequencing for comparative immunology. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:56-66. [PMID: 24508980 PMCID: PMC4096995 DOI: 10.1016/j.dci.2014.01.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 05/21/2023]
Abstract
Next generation sequencing (NGS) allows for the rapid, comprehensive and cost effective analysis of entire genomes and transcriptomes. NGS provides approaches for immune response gene discovery, profiling gene expression over the course of parasitosis, studying mechanisms of diversification of immune receptors and investigating the role of epigenetic mechanisms in regulating immune gene expression and/or diversification. NGS will allow meaningful comparisons to be made between organisms from different taxa in an effort to understand the selection of diverse strategies for host defence under different environmental pathogen pressures. At the same time, it will reveal the shared and unique components of the immunological toolkit and basic functional aspects that are essential for immune defence throughout the living world. In this review, we argue that NGS will revolutionize our understanding of immune responses throughout the animal kingdom because the depth of information it provides will circumvent the need to concentrate on a few "model" species.
Collapse
Affiliation(s)
- Nolwenn M Dheilly
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan F-66860, France; Université de Perpignan Via Domitia, Perpignan F-66860, France.
| | - Coen Adema
- Center for Evolutionary and Theoretical Immunology, Biology Department, University of New Mexico, Albuquerque, NM 87131, USA
| | - David A Raftos
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Benjamin Gourbal
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan F-66860, France; Université de Perpignan Via Domitia, Perpignan F-66860, France
| | - Christoph Grunau
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan F-66860, France; Université de Perpignan Via Domitia, Perpignan F-66860, France
| | - Louis Du Pasquier
- University of Basel, Institute of Zoology and Evolutionary Biology, Basel, Switzerland
| |
Collapse
|
21
|
Nolan JR, Bergthorsson U, Adema CM. Physella acuta: atypical mitochondrial gene order among panpulmonates (Gastropoda). ACTA ACUST UNITED AC 2014; 80:388-399. [PMID: 25368439 PMCID: PMC4214460 DOI: 10.1093/mollus/eyu025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 03/14/2014] [Indexed: 11/12/2022]
Abstract
Mitochondrial (mt) sequences are frequently used for phylogenetic reconstruction and for identification of species of molluscs. This study expands the phylogenetic range of Hygrophila (Panpulmonata) for which such sequence data are available by characterizing the full mt genome of the invasive freshwater snail Physella acuta (Physidae). The mt genome sequences of two P. acuta isolates from Stubblefield Lake, New Mexico, USA, differed in length (14,490 vs 14,314 bp) and showed 11.49% sequence divergence, whereas ITS1 and ITS2 sequences from the nuclear genome differed by 1.75%. The mt gene order of P. acuta (cox1, P, nad6, nad5, nad1, D, F, cox2, Y, W, nad4L, C, Q, atp6, R, E, rrnS, M, T, cox3, I, nad2, K, V, rrnL, L1, A, cytb, G, H, L2, atp8, N, nad2, S1, S2, nad4) differs considerably from the relatively conserved gene order within Panpulmonata. Phylogenetic trees show that the 13 protein-encoding mt gene sequences (equivalent codons) of P. acuta group according to gastropod phylogeny, yet branch lengths and dN/dS ratios for P. acuta indicate elevated amino acid substitutions relative to other gastropods. This study indicates that mt sequences of P. acuta are phylogenetically informative despite a considerable intraspecific divergence and the atypical gene order in its mt genome.
Collapse
Affiliation(s)
- Journey R Nolan
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology MSC03 2020 , University of New Mexico , 1 University Blvd NE, Albuquerque, NM 87131 , USA
| | - Ulfar Bergthorsson
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology MSC03 2020 , University of New Mexico , 1 University Blvd NE, Albuquerque, NM 87131 , USA
| | - Coen M Adema
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology MSC03 2020 , University of New Mexico , 1 University Blvd NE, Albuquerque, NM 87131 , USA
| |
Collapse
|
22
|
Pante E, Rohfritsch A, Becquet V, Belkhir K, Bierne N, Garcia P. SNP detection from de novo transcriptome sequencing in the bivalve Macoma balthica: marker development for evolutionary studies. PLoS One 2012; 7:e52302. [PMID: 23300636 PMCID: PMC3530552 DOI: 10.1371/journal.pone.0052302] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/16/2012] [Indexed: 11/28/2022] Open
Abstract
Hybrid zones are noteworthy systems for the study of environmental adaptation to fast-changing environments, as they constitute reservoirs of polymorphism and are key to the maintenance of biodiversity. They can move in relation to climate fluctuations, as temperature can affect both selection and migration, or remain trapped by environmental and physical barriers. There is therefore a very strong incentive to study the dynamics of hybrid zones subjected to climate variations. The infaunal bivalve Macoma balthica emerges as a noteworthy model species, as divergent lineages hybridize, and its native NE Atlantic range is currently contracting to the North. To investigate the dynamics and functioning of hybrid zones in M. balthica, we developed new molecular markers by sequencing the collective transcriptome of 30 individuals. Ten individuals were pooled for each of the three populations sampled at the margins of two hybrid zones. A single 454 run generated 277 Mb from which 17K SNPs were detected. SNP density averaged 1 polymorphic site every 14 to 19 bases, for mitochondrial and nuclear loci, respectively. An scan detected high genetic divergence among several hundred SNPs, some of them involved in energetic metabolism, cellular respiration and physiological stress. The high population differentiation, recorded for nuclear-encoded ATP synthase and NADH dehydrogenase as well as most mitochondrial loci, suggests cytonuclear genetic incompatibilities. Results from this study will help pave the way to a high-resolution study of hybrid zone dynamics in M. balthica, and the relative importance of endogenous and exogenous barriers to gene flow in this system.
Collapse
Affiliation(s)
- Eric Pante
- Littoral, Environnement et Sociétés Joint Research Unit 7266 Centre national de la recherche scientifique, Université de La Rochelle, La Rochelle, France.
| | | | | | | | | | | |
Collapse
|
23
|
Liu GH, Wang SY, Huang WY, Zhao GH, Wei SJ, Song HQ, Xu MJ, Lin RQ, Zhou DH, Zhu XQ. The complete mitochondrial genome of Galba pervia (Gastropoda: Mollusca), an intermediate host snail of Fasciola spp. PLoS One 2012; 7:e42172. [PMID: 22844544 PMCID: PMC3406003 DOI: 10.1371/journal.pone.0042172] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 07/04/2012] [Indexed: 11/26/2022] Open
Abstract
Complete mitochondrial (mt) genomes and the gene rearrangements are increasingly used as molecular markers for investigating phylogenetic relationships. Contributing to the complete mt genomes of Gastropoda, especially Pulmonata, we determined the mt genome of the freshwater snail Galba pervia, which is an important intermediate host for Fasciola spp. in China. The complete mt genome of G. pervia is 13,768 bp in length. Its genome is circular, and consists of 37 genes, including 13 genes for proteins, 2 genes for rRNA, 22 genes for tRNA. The mt gene order of G. pervia showed novel arrangement (tRNA-His, tRNA-Gly and tRNA-Tyr change positions and directions) when compared with mt genomes of Pulmonata species sequenced to date, indicating divergence among different species within the Pulmonata. A total of 3655 amino acids were deduced to encode 13 protein genes. The most frequently used amino acid is Leu (15.05%), followed by Phe (11.24%), Ser (10.76%) and IIe (8.346%). Phylogenetic analyses using the concatenated amino acid sequences of the 13 protein-coding genes, with three different computational algorithms (maximum parsimony, maximum likelihood and Bayesian analysis), all revealed that the families Lymnaeidae and Planorbidae are closely related two snail families, consistent with previous classifications based on morphological and molecular studies. The complete mt genome sequence of G. pervia showed a novel gene arrangement and it represents the first sequenced high quality mt genome of the family Lymnaeidae. These novel mtDNA data provide additional genetic markers for studying the epidemiology, population genetics and phylogeographics of freshwater snails, as well as for understanding interplay between the intermediate snail hosts and the intra-mollusca stages of Fasciola spp..
Collapse
Affiliation(s)
- Guo-Hua Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, China
| | - Shu-Yan Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
- College of Animal Science and Technology, Guangxi Univesity, Nanning, Guangxi Zhuang Nationality Autonomous Region, China
| | - Wei-Yi Huang
- College of Animal Science and Technology, Guangxi Univesity, Nanning, Guangxi Zhuang Nationality Autonomous Region, China
| | - Guang-Hui Zhao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi Province, China
| | - Shu-Jun Wei
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hui-Qun Song
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Min-Jun Xu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Rui-Qing Lin
- Laboratory of Parasitology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Dong-Hui Zhou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, China
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan Province, China
- * E-mail:
| |
Collapse
|
24
|
Groenenberg DSJ, Pirovano W, Gittenberger E, Schilthuizen M. The complete mitogenome of Cylindrus obtusus (Helicidae, Ariantinae) using Illumina next generation sequencing. BMC Genomics 2012; 13:114. [PMID: 22448618 PMCID: PMC3474148 DOI: 10.1186/1471-2164-13-114] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 03/26/2012] [Indexed: 12/04/2022] Open
Abstract
Background This study describes how the complete mitogenome of a terrestrial snail, Cylindrus obtusus (Draparnaud, 1805) was sequenced without PCRs from a collection specimen that had been in 70% ethanol for 8 years. The mitogenome was obtained with Illumina GAIIx shot gun sequencing. Although the used specimen was collected relatively recently and kept in a DNA-friendly preservative (not formalin as frequently used with old museum specimens), we believe that the exclusion of PCRs as facilitated by NGS (Next Generation Sequencing) removes a great obstacle in DNA sequencing of collection specimens. A brief comparison is made between our Illumina GAIIx approach and a similar study that made use of the Roche 454-FLX platform. Results The mtDNA sequence of C. obtusus is 14,610 bases in length (about 0.5 kb larger than other stylommatophoran mitogenomes reported hitherto) and contains the 37 genes (13 protein coding genes, two rRNAs and 22 tRNAs) typical for metazoans. Except for a swap between the position of tRNA-Pro and tRNA-Ala, the gene arrangement of C. obtusus is identical to that reported for Cepaea nemoralis. The 'aberrant' rearrangement of tRNA-Thr and COIII compared to that of other Sigmurethra (and the majority of gastropods), is not unique for C. nemoralis (subfamily Helicinae), but is also shown to occur in C. obtusus (subfamily Ariantinae) and might be a synapomorphy for the family Helicidae. Conclusions Natural history collections potentially harbor a wealth of information for the field of evolutionary genetics, but it can be difficult to amplify DNA from such specimens (due to DNA degradation for instance). Because NGS techniques do not rely on primer-directed amplification (PCR) and allow DNA to be fragmented (DNA gets sheared during library preparation), NGS could be a valuable tool for retrieving DNA sequence data from such specimens. A comparison between Illumina GAIIx and the Roche 454 platform suggests that the former might be more suited for de novo sequencing of mitogenomes.
Collapse
Affiliation(s)
- Dick S J Groenenberg
- Netherlands Centre for Biodiversity Naturalis, PO Box 9517, Leiden RA 2300, The Netherlands.
| | | | | | | |
Collapse
|
25
|
White TR, Conrad MM, Tseng R, Balayan S, Golding R, de Frias Martins AM, Dayrat BA. Ten new complete mitochondrial genomes of pulmonates (Mollusca: Gastropoda) and their impact on phylogenetic relationships. BMC Evol Biol 2011; 11:295. [PMID: 21985526 PMCID: PMC3198971 DOI: 10.1186/1471-2148-11-295] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 10/10/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reconstructing the higher relationships of pulmonate gastropods has been difficult. The use of morphology is problematic due to high homoplasy. Molecular studies have suffered from low taxon sampling. Forty-eight complete mitochondrial genomes are available for gastropods, ten of which are pulmonates. Here are presented the new complete mitochondrial genomes of the ten following species of pulmonates: Salinator rhamphidia (Amphiboloidea); Auriculinella bidentata, Myosotella myosotis, Ovatella vulcani, and Pedipes pedipes (Ellobiidae); Peronia peronii (Onchidiidae); Siphonaria gigas (Siphonariidae); Succinea putris (Stylommatophora); Trimusculus reticulatus (Trimusculidae); and Rhopalocaulis grandidieri (Veronicellidae). Also, 94 new pulmonate-specific primers across the entire mitochondrial genome are provided, which were designed for amplifying entire mitochondrial genomes through short reactions and closing gaps after shotgun sequencing. RESULTS The structural features of the 10 new mitochondrial genomes are provided. All genomes share similar gene orders. Phylogenetic analyses were performed including the 10 new genomes and 17 genomes from Genbank (outgroups, opisthobranchs, and other pulmonates). Bayesian Inference and Maximum Likelihood analyses, based on the concatenated amino-acid sequences of the 13 protein-coding genes, produced the same topology. The pulmonates are paraphyletic and basal to the opisthobranchs that are monophyletic at the tip of the tree. Siphonaria, traditionally regarded as a basal pulmonate, is nested within opisthobranchs. Pyramidella, traditionally regarded as a basal (non-euthyneuran) heterobranch, is nested within pulmonates. Several hypotheses are rejected, such as the Systellommatophora, Geophila, and Eupulmonata. The Ellobiidae is polyphyletic, but the false limpet Trimusculus reticulatus is closely related to some ellobiids. CONCLUSIONS Despite recent efforts for increasing the taxon sampling in euthyneuran (opisthobranchs and pulmonates) molecular phylogenies, several of the deeper nodes are still uncertain, because of low support values as well as some incongruence between analyses based on complete mitochondrial genomes and those based on individual genes (18S, 28S, 16S, CO1). Additional complete genomes are needed for pulmonates (especially for Williamia, Otina, and Smeagol), as well as basal heterobranchs closely related to euthyneurans. Increasing the number of markers for gastropod (and more broadly mollusk) phylogenetics also is necessary in order to resolve some of the deeper nodes -although clearly not an easy task. Step by step, however, new relationships are being unveiled, such as the close relationships between the false limpet Trimusculus and ellobiids, the nesting of pyramidelloids within pulmonates, and the close relationships of Siphonaria to sacoglossan opisthobranchs. The additional genomes presented here show that some species share an identical mitochondrial gene order due to convergence.
Collapse
Affiliation(s)
- Tracy R White
- School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA 95343, USA
| | - Michele M Conrad
- School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA 95343, USA
| | - Roger Tseng
- School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA 95343, USA
| | - Shaina Balayan
- School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA 95343, USA
| | | | - António Manuel de Frias Martins
- CIBIO-Açores, Center for Biodiversity and Genetic Resources, Department of Biology, University of the Azores, 9501-801 Ponta Delgada, São Miguel, Azores, Portugal
| | - Benoît A Dayrat
- School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA 95343, USA
| |
Collapse
|
26
|
Fingerprint of Biomphalaria arabica, the intermediate host of Schistosoma mansoni in Saudi Arabia, using RAPD-PCR. Gene 2011; 485:69-72. [PMID: 21722714 DOI: 10.1016/j.gene.2011.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 05/28/2011] [Accepted: 06/07/2011] [Indexed: 11/20/2022]
Abstract
In the time schistosomisis control programs are implemented in many countries, schistosomiasis continues to spread throughout the world. Among these control strategies is the vector control. Within this context, analysis of the genetic variability of the intermediate host snails is important because it allows identification of specific sequences of the genome of this mollusk related to determine their fingerprint. We investigated Biomphalaria arabica, which is found in Saudi Arabia, the intermediate host of Schistosoma mansoni infection. Genetic fingerprint was studied by RAPD-PCR using our own different random primers as well as published primers. The electrophoretic patterns resulting from amplification showed specific polymorphic markers of B. arabica. This information will be helpful in the identification of the snails and demonstrating that RAPD-PCR is an appropriate and efficient methodological approach for establishment of genetic barcode development.
Collapse
|
27
|
Yuan Y, Li Q, Kong L, Yu H. The complete mitochondrial genome of the grand jackknife clam, Solen grandis (Bivalvia: Solenidae): a novel gene order and unusual non-coding region. Mol Biol Rep 2011; 39:1287-92. [PMID: 21598108 DOI: 10.1007/s11033-011-0861-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 05/12/2011] [Indexed: 01/22/2023]
Abstract
Molluscs in general, and bivalves in particular, exhibit an extraordinary degree of mitochondrial gene order variation when compared with other metazoans. The complete mitochondrial genome of Solen grandis (Bivalvia: Solenidae) was determined using long-PCR and genome walking techniques. The entire mitochondrial genome sequence of S. grandis is 16,784 bp in length, and contains 36 genes including 12 protein-coding genes (atp8 is absent), 2 ribosomal RNAs, and 22 tRNAs. All genes are encoded on the same strand. Compared with other species, it bears a novel gene order. Besides these, we find a peculiar non-coding region of 435 bp with a microsatellite-like (TA)(12) element, poly-structures and many hairpin structures. In contrast to the available heterodont mitochondrial genomes from GenBank, the complete mtDNA of S. grandis has the shortest cox3 gene, and the longest atp6, nad4, nad5 genes.
Collapse
Affiliation(s)
- Yang Yuan
- Fisheries College, Ocean University of China, Qingdao, China
| | | | | | | |
Collapse
|
28
|
Klimov PB, Knowles LL. Repeated parallel evolution of minimal rRNAs revealed from detailed comparative analysis. ACTA ACUST UNITED AC 2011; 102:283-93. [PMID: 21422103 DOI: 10.1093/jhered/esr005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The concept of a minimal ribosomal RNA-containing ribosome, a structure with a minimal set of elements capable of providing protein biosynthesis, is essential for understanding this fundamental cellular process. Nematodes and trypanosomes have minimal mitochondrial rRNAs and detailed reconstructions of their secondary structures indicate that certain conserved helices have been lost in these taxa. In contrast, several recent studies on acariform mites have argued that minimal rRNAs may evolve via shortening of secondary structure elements but not the loss of these elements as shown for trypanosomes and nematodes. Based on extensive structural analysis of chelicerate arthropods, we demonstrate that extremely short rRNAs of acariform mites share certain structural modifications with nematodes and trypanosomes: loss of helices of the GTPase region and divergence in the evolutionarily conserved connecting loop between helices H1648 and H1764 of the large subunit rRNA. These highly concerted parallel modifications indicate that minimal rRNAs were generated under the strong selection that favored or tolerated reductions of helices in particular locations while maintaining the functionality of the rRNA molecules throughout evolution. We also discuss potential evolution of minimal rRNAs and atypical transfer RNAs.
Collapse
Affiliation(s)
- Pavel B Klimov
- University of Michigan, Museum of Zoology, 1109 Geddes Avenue, Ann Arbor, MI 48109-1079, USA.
| | | |
Collapse
|
29
|
Kennedy AJ, Vasudevan R, Pappas DD, Weiss CA, Hendrix SH, Baney RH. Efficacy of non-toxic surfaces to reduce bioadhesion in terrestrial gastropods. PEST MANAGEMENT SCIENCE 2011; 67:318-327. [PMID: 21308957 DOI: 10.1002/ps.2068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 08/13/2010] [Accepted: 09/13/2010] [Indexed: 05/30/2023]
Abstract
BACKGROUND Invasive species are described as the greatest threat to biodiversity, after habitat destruction and climate change, potentially imposing economic impacts and indigenous species impairment. Commonly applied chemical controls present the potential for legacy contamination and non-target organism injury. This study investigated the effects of different substrates and novel topographical surfaces on the behavioral and mechanical associations of the terrestrial gastropod Otala lactea. RESULTS The gastropod preferentially aestivated on rough glass (61% increase, P < 0.01) relative to smooth glass but avoided a cross-patterned surface tessellation on silicone (82% reduction, P < 0.01) relative to smooth silicone. Significant deviations in turning behavior were found on the cross-patterned topographical surface and hydrophobic Teflon surfaces. The strongest correlation with gastropod adhesion strength to surfaces was found for surface elastic modulus (R = 0.88, P = 0.03), followed by hydrophobicity (R = - 0.71, P = 0.14), but no relationship with roughness (P = 0.36). CONCLUSION Preliminary data suggest surface roughness controlled aestivation behavior while elastic modulus (surface flexibility) controlled adhesion strength. In spite of greater adhesion to high-modulus materials, surface modulus was not a statistically significant controlling factor on gastropod aestivation preference. Understanding and exploiting the behavioral and mechanistic cues that organisms use while attaching to surfaces may lead to more environmentally benign control approaches.
Collapse
Affiliation(s)
- Alan J Kennedy
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Jannotti-Passos LK, Ruiz JC, Caldeira RL, Murta SMF, Coelho PMZ, Carvalho OS. Phylogenetic analysis of Biomphalaria tenagophila (Orbigny, 1835) (Mollusca: Gastropoda). Mem Inst Oswaldo Cruz 2011; 105:504-11. [PMID: 20721500 DOI: 10.1590/s0074-02762010000400027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 12/18/2009] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial DNA of Biomphalaria tenagophila, a mollusc intermediate host of Schistosoma mansoni in Brazil, was sequenced and characterised. The genome size found for B. tenagophila was 13,722 bp and contained 13 messenger RNAs, 22 transfer RNAs (tRNA) and two ribosomal RNAs (rRNA). In addition to sequencing, the mitochondrial DNA (mtDNA) genome organization of B. tenagophila was analysed based on its content and localization of both coding and non-coding regions, regions of gene overlap and tRNA nucleotide sequences. Sequences of protein, rRNA 12S and rRNA 16S nucleotides as well as gene organization were compared between B. tenagophila and Biomphalaria glabrata, as the latter is the most important S. mansoni intermediate host in Brazil. Differences between such species were observed regarding rRNA composition. The complete sequence of the B. tenagophila mitochondrial genome was deposited in GenBank (accession EF433576). Furthermore, phylogenetic relationships were estimated among 28 mollusc species, which had their complete mitochondrial genome deposited in GenBank, using the neighbour-joining method, maximum parsimony and maximum likelihood bootstrap. B. tenagophila was positioned at a branch close to B. glabrata and Pulmonata molluscs, collectively comprising a paraphyletic group, contrary to Opistobranchia, which was positioned at a single branch and constituted a monophyletic group.
Collapse
Affiliation(s)
- Liana K Jannotti-Passos
- Moluscário Lobato Paraense, Instituto de Pesquisas René Rachou-Fiocruz, Av. Augusto de Lima 1715, 30190-001 Belo Horizonte, MG, Brasil.
| | | | | | | | | | | |
Collapse
|
31
|
Ren J, Liu X, Jiang F, Guo X, Liu B. Unusual conservation of mitochondrial gene order in Crassostrea oysters: evidence for recent speciation in Asia. BMC Evol Biol 2010; 10:394. [PMID: 21189147 PMCID: PMC3040558 DOI: 10.1186/1471-2148-10-394] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 12/28/2010] [Indexed: 11/18/2022] Open
Abstract
Background Oysters are morphologically plastic and hence difficult subjects for taxonomic and evolutionary studies. It is long been suspected, based on the extraordinary species diversity observed, that Asia Pacific is the epicenter of oyster speciation. To understand the species diversity and its evolutionary history, we collected five Crassostrea species from Asia and sequenced their complete mitochondrial (mt) genomes in addition to two newly released Asian oysters (C. iredalei and Saccostrea mordax) for a comprehensive analysis. Results The six Asian Crassostrea mt genomes ranged from 18,226 to 22,446 bp in size, and all coded for 39 genes (12 proteins, 2 rRNAs and 25 tRNAs) on the same strand. Their genomes contained a split of the rrnL gene and duplication of trnM, trnK and trnQ genes. They shared the same gene order that differed from an Atlantic sister species by as many as nine tRNA changes (6 transpositions and 3 duplications) and even differed significantly from S. mordax in protein-coding genes. Phylogenetic analysis indicates that the six Asian Crassostrea species emerged between 3 and 43 Myr ago, while the Atlantic species evolved 83 Myr ago. Conclusions The complete conservation of gene order in the six Asian Crassostrea species over 43 Myr is highly unusual given the remarkable rate of rearrangements in their sister species and other bivalves. It provides strong evidence for the recent speciation of the six Crassostrea species in Asia. It further indicates that changes in mt gene order may not be strictly a function of time but subject to other constraints that are presently not well understood.
Collapse
Affiliation(s)
- Jianfeng Ren
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | | | | | | | | |
Collapse
|
32
|
Feldmeyer B, Hoffmeier K, Pfenninger M. The complete mitochondrial genome of Radix balthica (Pulmonata, Basommatophora), obtained by low coverage shot gun next generation sequencing. Mol Phylogenet Evol 2010; 57:1329-33. [PMID: 20875865 DOI: 10.1016/j.ympev.2010.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 09/14/2010] [Accepted: 09/20/2010] [Indexed: 02/05/2023]
Abstract
A 454-FLX low-coverage sequencing approach was used to assemble the mitochondrial genome of Radix balthica. The mtDNA sequence is 13,993 nt long and contains 37 genes (13 protein coding genes, two rRNAs and 22 tRNAs). Four genes, the 12S RNA and seven tRNAs are transcribed in reverse order. The sequence is AT rich (71.3%), similar to other basommatophoran species. Comparison with the most closely related mt genomes available (Biomphalaria glabrata and Biomphalaria tenagophila) revealed identical gene orders except for five tRNAs. Next generation sequencing proved to be a fast and easy method for sequencing an entire mitochondrial genome.
Collapse
Affiliation(s)
- B Feldmeyer
- Biodiversity and Climate Research Center (BiK-F), Siesmayerstr. 70A, 60323 Frankfurt am Main, Germany.
| | | | | |
Collapse
|
33
|
Liu L, Mondal MMH, Idris MA, Lokman HS, Rajapakse PRVJ, Satrija F, Diaz JL, Upatham ES, Attwood SW. The phylogeography of Indoplanorbis exustus (Gastropoda: Planorbidae) in Asia. Parasit Vectors 2010; 3:57. [PMID: 20602771 PMCID: PMC2914737 DOI: 10.1186/1756-3305-3-57] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 07/05/2010] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The freshwater snail Indoplanorbis exustus is found across India, Southeast Asia, central Asia (Afghanistan), Arabia and Africa. Indoplanorbis is of economic importance in that it is responsible for the transmission of several species of the genus Schistosoma which infect cattle and cause reduced livestock productivity. The snail is also of medical importance as a source of cercarial dermatitis among rural workers, particularly in India. In spite of its long history and wide geographical range, it is thought that Indoplanorbis includes only a single species. The aims of the present study were to date the radiation of Indoplanorbis across Asia so that the factors involved in its dispersal in the region could be tested, to reveal potential historical biogeographical events shaping the phylogeny of the snail, and to look for signs that I. exustus might be polyphyletic. RESULTS The results indicated a radiation beginning in the late Miocene with a divergence of an ancestral bulinine lineage into Assam and peninsular India clades. A Southeast Asian clade diverged from the peninsular India clade late-Pliocene; this clade then radiated at a much more rapid pace to colonize all of the sampled range of Indoplanorbis in the mid-Pleistocene. CONCLUSIONS The phylogenetic depth of divergences between the Indian clades and Southeast Asian clades, together with habitat and parasitological differences suggest that I. exustus may comprise more than one species. The timescale estimated for the radiation suggests that the dispersal to Arabia and to Southeast Asia was facilitated by palaeogeographical events and climate change, and did not require human involvement. Further samples from Afghanistan, Africa and western India are required to refine the phylogeographical hypothesis and to include the African Recent dispersal.
Collapse
Affiliation(s)
- Liang Liu
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Mohammed MH Mondal
- Department of Parasitology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mohamed A Idris
- Department of Microbiology and Immunology, College of Medicine, Sultan Qaboos University, Oman
| | - Hakim S Lokman
- Infectious Diseases Research Centre, IMR, Jalan Pahang, 50588 Kuala Lumpur, Malaysia
| | - PRV Jayanthe Rajapakse
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Fadjar Satrija
- Department of Animal Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, Bogor Agricultural University (IPB), Jl. Agathis-Kampus IPB Darmaga, Bogor 16680, Indonesia
| | - Jose L Diaz
- Veterinary Inspection Board, Vitas, Tondo, Metro Manila, Philippines
| | - E Suchart Upatham
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Medical Science, Faculty of Science, Burapha University, Bangsaen, Chonburi, Thailand
| | - Stephen W Attwood
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
- Department of Zoology, The Natural History Museum, London, UK
| |
Collapse
|
34
|
Ki JS, Lee YM, Jung SO, Horiguchi T, Cho HS, Lee JS. Mitochondrial genome of Thais clavigera (Mollusca: Gastropoda): affirmation of the conserved, ancestral gene pattern within the mollusks. Mol Phylogenet Evol 2009; 54:1016-20. [PMID: 20004731 DOI: 10.1016/j.ympev.2009.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 10/28/2009] [Accepted: 12/03/2009] [Indexed: 10/20/2022]
Abstract
Class Gastropoda includes a large number of described species, many with extensively rearranged mitochondrial genomes. We sequenced the mitogenome of the rock shell, Thais clavigera (Gastropoda: Muricidae), an intertidal snail, using long PCR with primers designed on the basis of expressed sequence tags. The mitogenome of T. clavigera consists of 2 rRNAs, 22 tRNAs, and 13 protein-coding genes, but no control region. Structural comparisons revealed that the order Sorbeoconcha, including T. clavigera, have nearly identical mitochondrial gene patterns. However, they have an inversion between a tRNA(Phe)-tRNA(Glu) cluster that comprises 21 genes, but most of the remaining structure is similar to the putative mollusk ground pattern. These findings will provide a better insight into mitochondrial gene rearrangement over the course of gastropod evolution.
Collapse
Affiliation(s)
- Jang-Seu Ki
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 110-743, South Korea
| | | | | | | | | | | |
Collapse
|
35
|
Ren J, Shen X, Jiang F, Liu B. The Mitochondrial Genomes of Two Scallops, Argopecten irradians and Chlamys farreri (Mollusca: Bivalvia): The Most Highly Rearranged Gene Order in the Family Pectinidae. J Mol Evol 2009; 70:57-68. [DOI: 10.1007/s00239-009-9308-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 11/23/2009] [Indexed: 11/30/2022]
|
36
|
Ren J, Shen X, Sun M, Jiang F, Yu Y, Chi Z, Liu B. The complete mitochondrial genome of the clamMeretrix petechialis(Mollusca: Bivalvia: Veneridae). ACTA ACUST UNITED AC 2009; 20:78-87. [DOI: 10.1080/19401730902964425] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Biomphalaria glabrata transcriptome: cDNA microarray profiling identifies resistant- and susceptible-specific gene expression in haemocytes from snail strains exposed to Schistosoma mansoni. BMC Genomics 2008; 9:634. [PMID: 19114004 PMCID: PMC2631019 DOI: 10.1186/1471-2164-9-634] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 12/29/2008] [Indexed: 01/18/2023] Open
Abstract
Background Biomphalaria glabrata is an intermediate snail host for Schistosoma mansoni, one of the important schistosomes infecting man. B. glabrata/S. mansoni provides a useful model system for investigating the intimate interactions between host and parasite. Examining differential gene expression between S. mansoni-exposed schistosome-resistant and susceptible snail lines will identify genes and pathways that may be involved in snail defences. Results We have developed a 2053 element cDNA microarray for B. glabrata containing clones from ORESTES (Open Reading frame ESTs) libraries, suppression subtractive hybridization (SSH) libraries and clones identified in previous expression studies. Snail haemocyte RNA, extracted from parasite-challenged resistant and susceptible snails, 2 to 24 h post-exposure to S. mansoni, was hybridized to the custom made cDNA microarray and 98 differentially expressed genes or gene clusters were identified, 94 resistant-associated and 4 susceptible-associated. Quantitative PCR analysis verified the cDNA microarray results for representative transcripts. Differentially expressed genes were annotated and clustered using gene ontology (GO) terminology and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis. 61% of the identified differentially expressed genes have no known function including the 4 susceptible strain-specific transcripts. Resistant strain-specific expression of genes implicated in innate immunity of invertebrates was identified, including hydrolytic enzymes such as cathepsin L, a cysteine proteinase involved in lysis of phagocytosed particles; metabolic enzymes such as ornithine decarboxylase, the rate-limiting enzyme in the production of polyamines, important in inflammation and infection processes, as well as scavenging damaging free radicals produced during production of reactive oxygen species; stress response genes such as HSP70; proteins involved in signalling, such as importin 7 and copine 1, cytoplasmic intermediate filament (IF) protein and transcription enzymes such as elongation factor 1α and EF-2. Conclusion Production of the first cDNA microarray for profiling gene expression in B. glabrata provides a foundation for expanding our understanding of pathways and genes involved in the snail internal defence system (IDS). We demonstrate resistant strain-specific expression of genes potentially associated with the snail IDS, ranging from signalling and inflammation responses through to lysis of proteinacous products (encapsulated sporocysts or phagocytosed parasite components) and processing/degradation of these targeted products by ubiquitination.
Collapse
|
38
|
Odoemelam E, Raghavan N, Miller A, Bridger JM, Knight M. Revised karyotyping and gene mapping of the Biomphalaria glabrata embryonic (Bge) cell line. Int J Parasitol 2008; 39:675-81. [PMID: 19133265 DOI: 10.1016/j.ijpara.2008.11.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 11/03/2008] [Accepted: 11/19/2008] [Indexed: 10/21/2022]
Abstract
The fresh water snail Biomphalaria glabrata (2n=36) belongs to the taxonomic class Gastropoda (family Planorbidae) and is integral to the spread of the human parasitic disease schistosomiasis. The importance of this mollusc is such that it has been selected as a model molluscan organism for whole genome sequencing. In order to understand the structure and organisation of the B. glabrata's genome it is important that gene mapping studies are established. Thus, we have studied the genomes of two B. glabrata embryonic (Bge) cell line isolates 1 and 2 grown in separate laboratories, but both derived from Eder L. Hansen's original culture from the 1970s. This cell line continues to be an important tool and model system for schistosomiasis and B. glabrata. Using these cell line isolates, we have investigated the genome content and established a revised karyotype based on chromosome size and centromere position for these cells. Unlike the original karyotype (2n=36) established for the cell line, our investigations now show the existence of extensive aneuploidy in both cell line isolates to the extent that the total complement of chromosomes in both greatly exceeds the original cell line's diploid number of 36 chromosomes. The isolates, designated Bge 1 and 2, had modal chromosome complements of 64 and 67, respectively (calculated from 50 metaphases). We found that the aneuploidy was most pronounced, for both isolates, amongst chromosomes of medium metacentric morphology. We also report, to our knowledge for the first time using Bge cells, the mapping of single-copy genes peroxiredoxin (BgPrx4) and P-element induced wimpy testis (piwi) onto Bge chromosomes. These B. glabrata genes were mapped onto pairs of homologous chromosomes using fluorescence in situ hybridization (FISH). Thus, we have now established a FISH mapping technique that can eventually be utilized for physical mapping of the snail genome.
Collapse
Affiliation(s)
- Edwin Odoemelam
- Laboratory of Nuclear and Genomic Health, Centre for Cell and Chromosome Biology, Biosciences, School of Health Sciences and Social Care, Brunel University, West London UB8 3PH, UK
| | | | | | | | | |
Collapse
|
39
|
Hanelt B, Lun CM, Adema CM. Comparative ORESTES-sampling of transcriptomes of immune-challenged Biomphalaria glabrata snails. J Invertebr Pathol 2008; 99:192-203. [PMID: 18590737 DOI: 10.1016/j.jip.2008.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 05/28/2008] [Accepted: 06/03/2008] [Indexed: 10/22/2022]
Abstract
The snail Biomphalaria glabrata (Gastropoda, Mollusca) is an important intermediate host for the human parasite Schistosoma mansoni (Digenea, Trematoda). Anti-pathogen responses of B. glabrata were studied towards a better understanding of snail immunity and host-parasite compatibility. Open reading frame ESTs (ORESTES) were sampled from different transcriptomes of M line strain B. glabrata, 12h post-challenge with Escherichia coli (Gram-negative), Micrococcus luteus (Gram-positive) bacteria or compatible S. mansoni, and controls. The resulting 3123 ORESTES represented 2129 unique sequences (373 clusters, 1756 singletons). Of these, 175 (8.1%) were putative defense factors, including lectins, antimicrobial peptides and components of various immune-effector systems. Comparison of biological processes (GO-terms) within different transcriptomes indicated that B. glabrata increased oxygen transport and metal binding in reaction to all challenges. Comprehensive comparisons of transcriptomes revealed that responses of B. glabrata against bacteria were similar to each other and differed from the ineffective response to S. mansoni. Furthermore, the response to S. mansoni infection was less comprehensive than that to bacteria. Many novel (unknown) sequences were recovered in association with particular challenges. B. glabrata possesses multi-faceted, potent immune defenses. This agrees with the notion that S. mansoni is capable of immune-evasion and prevents effective host defense responses in order to survive in B. glabrata. Future analysis of the numerous unknown sequences recovered from challenged snails may reveal novel immune factors and provide increased understanding of immunity of B. glabrata in relation to parasite-host compatibility.
Collapse
Affiliation(s)
- Ben Hanelt
- Center for Evolutionary and Theoretical Immunology, Department of Biology, MSC03 2020, University of New Mexico, 269 Castetter Hall, Albuquerque, NM 87131, USA.
| | | | | |
Collapse
|
40
|
Grande C, Templado J, Zardoya R. Evolution of gastropod mitochondrial genome arrangements. BMC Evol Biol 2008; 8:61. [PMID: 18302768 PMCID: PMC2291457 DOI: 10.1186/1471-2148-8-61] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 02/26/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gastropod mitochondrial genomes exhibit an unusually great variety of gene orders compared to other metazoan mitochondrial genome such as e.g those of vertebrates. Hence, gastropod mitochondrial genomes constitute a good model system to study patterns, rates, and mechanisms of mitochondrial genome rearrangement. However, this kind of evolutionary comparative analysis requires a robust phylogenetic framework of the group under study, which has been elusive so far for gastropods in spite of the efforts carried out during the last two decades. Here, we report the complete nucleotide sequence of five mitochondrial genomes of gastropods (Pyramidella dolabrata, Ascobulla fragilis, Siphonaria pectinata, Onchidella celtica, and Myosotella myosotis), and we analyze them together with another ten complete mitochondrial genomes of gastropods currently available in molecular databases in order to reconstruct the phylogenetic relationships among the main lineages of gastropods. RESULTS Comparative analyses with other mollusk mitochondrial genomes allowed us to describe molecular features and general trends in the evolution of mitochondrial genome organization in gastropods. Phylogenetic reconstruction with commonly used methods of phylogenetic inference (ME, MP, ML, BI) arrived at a single topology, which was used to reconstruct the evolution of mitochondrial gene rearrangements in the group. CONCLUSION Four main lineages were identified within gastropods: Caenogastropoda, Vetigastropoda, Patellogastropoda, and Heterobranchia. Caenogastropoda and Vetigastropoda are sister taxa, as well as, Patellogastropoda and Heterobranchia. This result rejects the validity of the derived clade Apogastropoda (Caenogastropoda + Heterobranchia). The position of Patellogastropoda remains unclear likely due to long-branch attraction biases. Within Heterobranchia, the most heterogeneous group of gastropods, neither Euthyneura (because of the inclusion of P. dolabrata) nor Pulmonata (polyphyletic) nor Opisthobranchia (because of the inclusion S. pectinata) were recovered as monophyletic groups. The gene order of the Vetigastropoda might represent the ancestral mitochondrial gene order for Gastropoda and we propose that at least three major rearrangements have taken place in the evolution of gastropods: one in the ancestor of Caenogastropoda, another in the ancestor of Patellogastropoda, and one more in the ancestor of Heterobranchia.
Collapse
Affiliation(s)
- Cristina Grande
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal, 2, 28006, Madrid, Spain
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - José Templado
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal, 2, 28006, Madrid, Spain
| | - Rafael Zardoya
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal, 2, 28006, Madrid, Spain
| |
Collapse
|
41
|
Adema CM, Luo MZ, Hanelt B, Hertel LA, Marshall JJ, Zhang SM, DeJong RJ, Kim HR, Kudrna D, Wing RA, Soderlund C, Knight M, Lewis FA, Caldeira RL, Jannotti-Passos LK, Carvalho ODS, Loker ES. A bacterial artificial chromosome library for Biomphalaria glabrata, intermediate snail host of Schistosoma mansoni. Mem Inst Oswaldo Cruz 2008; 101 Suppl 1:167-77. [PMID: 17308766 DOI: 10.1590/s0074-02762006000900027] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Accepted: 06/25/2006] [Indexed: 01/08/2023] Open
Abstract
To provide a novel resource for analysis of the genome of Biomphalaria glabrata, members of the international Biomphalaria glabrata Genome Initiative (http://biology.unm.edu/biomphalaria-genome.html), working with the Arizona Genomics Institute (AGI) and supported by the National Human Genome Research Institute (NHGRI), produced a high quality bacterial artificial chromosome (BAC) library. The BB02 strain B. glabrata, a field isolate (Belo Horizonte, Minas Gerais, Brasil) that is susceptible to several strains of Schistosoma mansoni, was selfed for two generations to reduce haplotype diversity in the offspring. High molecular weight DNA was isolated from ovotestes of 40 snails, partially digested with HindIII, and ligated into pAGIBAC1 vector. The resulting B. glabrata BAC library (BG_BBa) consists of 61824 clones (136.3 kb average insert size) and provides 9.05 x coverage of the 931 Mb genome. Probing with single/low copy number genes from B. glabrata and fingerprinting of selected BAC clones indicated that the BAC library sufficiently represents the gene complement. BAC end sequence data (514 reads, 299860 nt) indicated that the genome of B. glabrata contains ~ 63% AT, and disclosed several novel genes, transposable elements, and groups of high frequency sequence elements. This BG_BBa BAC library, available from AGI at cost to the research community, gains in relevance because BB02 strain B. glabrata is targeted whole genome sequencing by NHGRI.
Collapse
Affiliation(s)
- Coen M Adema
- Department of Biology, University of New Mexico, Albuquerque, NM, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hyman IT, Ho SY, Jermiin LS. Molecular phylogeny of Australian Helicarionidae, Euconulidae and related groups (Gastropoda: Pulmonata: Stylommatophora) based on mitochondrial DNA. Mol Phylogenet Evol 2007; 45:792-812. [DOI: 10.1016/j.ympev.2007.08.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 07/27/2007] [Accepted: 08/07/2007] [Indexed: 10/22/2022]
|
43
|
Smith DR, Snyder M. Complete mitochondrial DNA sequence of the scallop Placopecten magellanicus: evidence of transposition leading to an uncharacteristically large mitochondrial genome. J Mol Evol 2007; 65:380-91. [PMID: 17922075 DOI: 10.1007/s00239-007-9016-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2006] [Accepted: 07/06/2007] [Indexed: 10/22/2022]
Abstract
Complete sequence determination of the mitochondrial (mt) genome of the sea scallop Placopecten magellanicus reveals a molecule radically different from that of the standard metazoan. With a minimum length of 30,680 nucleotides (nt; with one copy of a 1.4 kilobase (kb) repeat) and a maximum of 40,725 nt, it is the longest reported metazoan mitochondrial DNA (mtDNA). More than 50% of the genome is noncoding (NC), consisting of dispersed, imperfectly repeated sequences that are associated with tRNAs or tRNA-like structures. Although the genes for atp8 and two tRNAs were not discovered, the genome still has the potential for encoding 46 genes (the additional genes are all tRNAs), 9 of which encode tRNAs for methionine. The coding portions appear to be evolving at a rate consistent with other members of the pectinid clade. When the NC regions containing "dispersed repeat families" are examined in detail, we reach the conclusion that transposition involving tRNAs or tRNA-like structures is occurring and is responsible for the large size and abundance of noncoding DNA in the molecule. The rarity of enlarged mt genomes in the face of a demonstration that they can exist suggests that a small, compact organization is an actively maintained feature of metazoan mtDNA.
Collapse
Affiliation(s)
- David R Smith
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| | | |
Collapse
|
44
|
Bandyopadhyay PK, Stevenson BJ, Cady MT, Olivera BM, Wolstenholme DR. Complete mitochondrial DNA sequence of a Conoidean gastropod, Lophiotoma (Xenuroturris) cerithiformis: gene order and gastropod phylogeny. Toxicon 2006; 48:29-43. [PMID: 16806344 DOI: 10.1016/j.toxicon.2006.04.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 04/13/2006] [Indexed: 11/22/2022]
Abstract
We have determined the first complete nucleotide sequence of the mitochondrial genome of a venomous mollusc, the Conoidean gastropod, Lophiotoma (Xenuroturris) cerithiformis. It is 15,380 nucleotide pairs (ntp) and encodes 13 proteins, two ribosomal RNAs and 22 tRNAs of the mitochondrion's own protein synthesizing system. The protein mRNAs, ribosomal RNAs and 13 of the tRNAs are transcribed from the same strand, the remaining tRNAs from the other strand. The longest segment of unassigned sequence is 139 ntp and includes a 82 ntp segment that is a perfect inverted repeat sequence of 37 ntp separated by 8 nt. The gene arrangement of L. cerithiformis mtDNA shows remarkable similarity to the gene arrangements of mtDNAs of the vetigastropod Haliotis rubra, the polyplacophoran Katharina tunicata and the cephalopod Octopus vulgaris, but differs dramatically from the gene arrangements found in the mtDNAs of pulmonate and opisthobranch gastropods, as well as mtDNAs of bivalves and scaphopods. A single sixteen gene inversion that distinguishes L. cerithiformis mtDNA from mtDNAs of H. rubra, K. tunicata and O. vulgaris is shared by mtDNA of a littorinomorph gastropod Littorina saxitalis, suggesting a close relationship of conoidean and littorinomorph gastropods.
Collapse
Affiliation(s)
- Pradip K Bandyopadhyay
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|
45
|
Raghavan N, Knight M. The snail (Biomphalaria glabrata) genome project. Trends Parasitol 2006; 22:148-51. [PMID: 16497557 DOI: 10.1016/j.pt.2006.02.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 01/09/2006] [Accepted: 02/09/2006] [Indexed: 11/20/2022]
Abstract
In 2001, ideas for a snail genome project were discussed at the American Society of Parasitologists meeting (New Mexico) and a snail genome consortium was subsequently established (the first consortium meeting was held in 2005). A proposal for sequencing the snail genome was submitted to the National Human Genome Research Institute, and Biomphalaria glabrata was prioritized as a non-mammalian sequencing target in 2004. The sequencing of the genome of this medically important snail is now underway.
Collapse
Affiliation(s)
- Nithya Raghavan
- Biomedical Research Institute, 12111 Parklawn Drive, Rockville, MD 20852, USA
| | | |
Collapse
|
46
|
Maynard BT, Kerr LJ, McKiernan JM, Jansen ES, Hanna PJ. Mitochondrial DNA sequence and gene organization in the [corrected] Australian blacklip [corrected] abalone Haliotis rubra (leach). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2005; 7:645-58. [PMID: 16206015 DOI: 10.1007/s10126-005-0013-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2005] [Accepted: 04/07/2005] [Indexed: 05/04/2023]
Abstract
The complete mitochondrial DNA of the blacklip abalone Haliotis rubra (Gastropoda: Mollusca) was cloned and 16,907 base pairs were sequenced. The sequence represents an estimated 99.85% of the mitochondrial genome, and contains 2 ribosomal RNA, 22 transfer RNA, and 13 protein-coding genes found in other metazoan mtDNA. An AT tandem repeat and a possible C-rich domain within the putative control region could not be fully sequenced. The H. rubra mtDNA gene order is novel for mollusks, separated from the black chiton Katharina tunicata by the individual translocations of 3 tRNAs. Compared with other mtDNA regions, sequences from the ATP8, NAD2, NAD4L, NAD6, and 12S rRNA genes, as well as the control region, are the most variable among representatives from Mollusca, Arthropoda, and Rhynchonelliformea, with similar mtDNA arrangements to H. rubra. These sequences are being evaluated as genetic markers within commercially important Haliotis species, and some applications and considerations for their use are discussed.
Collapse
Affiliation(s)
- Ben T Maynard
- School of Biological & Chemical Sciences, Deakin University, Geelong, VIC 3217, Australia
| | | | | | | | | |
Collapse
|
47
|
Knudsen B, Kohn AB, Nahir B, McFadden CS, Moroz LL. Complete DNA sequence of the mitochondrial genome of the sea-slug, Aplysia californica: conservation of the gene order in Euthyneura. Mol Phylogenet Evol 2005; 38:459-69. [PMID: 16230032 DOI: 10.1016/j.ympev.2005.08.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 08/08/2005] [Accepted: 08/27/2005] [Indexed: 11/28/2022]
Abstract
We have sequenced and characterized the complete mitochondrial genome of the sea slug, Aplysia californica, an important model organism in experimental biology and a representative of Anaspidea (Opisthobranchia, Gastropoda). The mitochondrial genome of Aplysia is in the small end of the observed sizes of animal mitochondrial genomes (14,117 bp, NCBI Accession No. NC_005827). The Aplysia genome, like most other mitochondrial genomes, encodes genes for 2 ribosomal subunit RNAs (small and large rRNAs), 22 tRNAs, and 13 protein subunits (cytochrome c oxidase subunits 1-3, cytochrome b apoenzyme, ATP synthase subunits 6 and 8, and NADH dehydrogenase subunits 1-6 and 4L). The gene order is virtually identical between opisthobranchs and pulmonates, with the majority of differences arising from tRNA translocations. In contrast, the gene order from representatives of basal gastropods and other molluscan classes is significantly different from opisthobranchs and pulmonates. The Aplysia genome was compared to all other published molluscan mitochondrial genomes and phylogenetic analyses were carried out using a concatenated protein alignment. Phylogenetic analyses using maximum likelihood based analyses of the well aligned regions of the protein sequences support both monophyly of Euthyneura (a group including both the pulmonates and opisthobranchs) and Opisthobranchia (as a more derived group). The Aplysia mitochondrial genome sequenced here will serve as an important platform in both comparative and neurobiological studies using this model organism.
Collapse
Affiliation(s)
- Bjarne Knudsen
- Department of Zoology, University of Florida, 223 Bartram Hall, Gainesville, 32611, USA
| | | | | | | | | |
Collapse
|
48
|
Mizi A, Zouros E, Moschonas N, Rodakis GC. The Complete Maternal and Paternal Mitochondrial Genomes of the Mediterranean Mussel Mytilus galloprovincialis: Implications for the Doubly Uniparental Inheritance Mode of mtDNA. Mol Biol Evol 2005; 22:952-67. [PMID: 15647523 DOI: 10.1093/molbev/msi079] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The maternal (F) and paternal (M) mitochondrial genomes of the mussel Mytilus galloprovincialis have diverged by about 20% in nucleotide sequence but retained identical gene content and gene arrangement and similar nucleotide composition and codon usage bias. Both lack the ATPase8 subunit gene, have two tRNAs for methionine and a longer open-reading frame for cox3 than seen in other mollusks. Between the F and M genomes, tRNAs are most conserved followed by rRNAs and protein-coding genes, even though the degree of divergence varies considerably among the latter. Divergence at nad3 is exceptionally low most likely because this gene includes the origin of transcription of the lagging strand (O(L)). Noncoding regions are the least conserved with the notable exception of the central domain of the main control region and a segment of another noncoding region immediately following nad3. The amino acid divergence (14%) of the two genomes is smaller than in two other pairs of conspecific genomes that are available in GenBank, that of the clam Venerupis philippinarum (34%) and of the fresh water mussel Inversidens japanensis (50%), suggesting that doubly uniparental inheritance of mtDNA emerged at different times in the three species or that there has been a relatively recent replacement of the male genome by the female in the Mytilus line. The latter hypothesis is supported from phylogenetic and population studies of Mytilidae. That the M genome contains a full complement of genes with no premature termination codons argues against it being a selfish element that rides with the sperm. It is shorter than the F by 118 bp, which apparently cannot account for the postulated replicative advantage of this genome over the F in male gonads. The high similarity of the two genomes explains why the F genome may assume the role of the M genome, but it does not exclude the possibility that for this to happen some M-specific sequences must be transferred on to the F genome by means of recombination. If such sequences exist they would most likely be located in noncoding regions.
Collapse
Affiliation(s)
- Athanasia Mizi
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, Greece
| | | | | | | |
Collapse
|
49
|
Lotfy WM, DeJong RJ, Black BS, Loker ES. Specific identification of Egyptian Biomphalaria species and possible hybrids using the polymerase chain reaction based on nuclear and mitochondrial loci. Mol Cell Probes 2004; 19:21-5. [PMID: 15652216 DOI: 10.1016/j.mcp.2004.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Revised: 08/05/2004] [Accepted: 08/06/2004] [Indexed: 12/01/2022]
Abstract
The snail historically implicated in the transmission of Schistosoma mansoni in Egypt is Biomphalaria alexandrina. The problem of schistosomiasis in Egypt has been complicated in recent years by the introduction of Biomphalaria glabrata, which has been reported to hybridize with B. alexandrina. Both introduced and hybrid snails also pose a threat with respect to S. mansoni transmission. As morphological differentiation of these snails is difficult, using three DNA loci, nuclear ITS1 and ITS2, and mitochondrial ND1, PCR-based assays were developed to identify these species and possible hybrids. The assays are rapid, reproducible, sensitive and specific. This technique may be used in field surveys to study the distribution of the two species of intermediate host and their putative hybrids in Egypt.
Collapse
Affiliation(s)
- Wael M Lotfy
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | | | | | | |
Collapse
|
50
|
Jennings RM, Halanych KM. Mitochondrial Genomes of Clymenella torquata (Maldanidae) and Riftia pachyptila (Siboglinidae): Evidence for Conserved Gene Order in Annelida. Mol Biol Evol 2004; 22:210-22. [PMID: 15483328 DOI: 10.1093/molbev/msi008] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Mitochondrial genomes are useful tools for inferring evolutionary history. However, many taxa are poorly represented by available data. Thus, to further understand the phylogenetic potential of complete mitochondrial genome sequence data in Annelida (segmented worms), we examined the complete mitochondrial sequence for Clymenella torquata (Maldanidae) and an estimated 80% of the sequence of Riftia pachyptila (Siboglinidae). These genomes have remarkably similar gene orders to previously published annelid genomes, suggesting that gene order is conserved across annelids. This result is interesting, given the high variation seen in the closely related Mollusca and Brachiopoda. Phylogenetic analyses of DNA sequence, amino acid sequence, and gene order all support the recent hypothesis that Sipuncula and Annelida are closely related. Our findings suggest that gene order data is of limited utility in annelids but that sequence data holds promise. Additionally, these genomes show AT bias (approximately 66%) and codon usage biases but have a typical gene complement for bilaterian mitochondrial genomes.
Collapse
Affiliation(s)
- Robert M Jennings
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | | |
Collapse
|