1
|
Tavakol DN, Nash TR, Kim Y, Graney PL, Liberman M, Fleischer S, Lock RI, O'Donnell A, Andrews L, Ning D, Yeager K, Harken A, Deoli N, Amundson SA, Garty G, Leong KW, Brenner DJ, Vunjak‐Novakovic G. Modeling the Effects of Protracted Cosmic Radiation in a Human Organ-on-Chip Platform. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401415. [PMID: 38965824 PMCID: PMC11558103 DOI: 10.1002/advs.202401415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/18/2024] [Indexed: 07/06/2024]
Abstract
Galactic cosmic radiation (GCR) is one of the most serious risks posed to astronauts during missions to the Moon and Mars. Experimental models capable of recapitulating human physiology are critical to understanding the effects of radiation on human organs and developing radioprotective measures against space travel exposures. The effects of systemic radiation are studied using a multi-organ-on-a-chip (multi-OoC) platform containing engineered tissue models of human bone marrow (site of hematopoiesis and acute radiation damage), cardiac muscle (site of chronic radiation damage) and liver (site of metabolism), linked by vascular circulation with an endothelial barrier separating individual tissue chambers from the vascular perfusate. Following protracted neutron radiation, the most damaging radiation component in deep space, a greater deviation of tissue function is observed as compared to the same cumulative dose delivered acutely. Further, by characterizing engineered bone marrow (eBM)-derived immune cells in circulation, 58 unique genes specific to the effects of protracted neutron dosing are identified, as compared to acutely irradiated and healthy tissues. It propose that this bioengineered platform allows studies of human responses to extended radiation exposure in an "astronaut-on-a-chip" model that can inform measures for mitigating cosmic radiation injury.
Collapse
Affiliation(s)
| | - Trevor R. Nash
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
| | - Youngbin Kim
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
| | - Pamela L. Graney
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
| | - Martin Liberman
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
| | - Sharon Fleischer
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
| | - Roberta I. Lock
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
| | - Aaron O'Donnell
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
| | - Leah Andrews
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
| | - Derek Ning
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
| | - Keith Yeager
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
| | - Andrew Harken
- Center for Radiological ResearchColumbia UniversityNew YorkNY10032USA
| | - Naresh Deoli
- Center for Radiological ResearchColumbia UniversityNew YorkNY10032USA
| | - Sally A. Amundson
- Center for Radiological ResearchColumbia UniversityNew YorkNY10032USA
| | - Guy Garty
- Center for Radiological ResearchColumbia UniversityNew YorkNY10032USA
| | - Kam W. Leong
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10032USA
| | - David J. Brenner
- Center for Radiological ResearchColumbia UniversityNew YorkNY10032USA
| | - Gordana Vunjak‐Novakovic
- Department of Biomedical EngineeringDepartment of Medicine, and College of Dental MedicineColumbia UniversityNew YorkNY10032USA
| |
Collapse
|
2
|
Blakely WF, Port M, Ostheim P, Abend M. Radiation Research Society Journal-based Historical Review of the Use of Biomarkers for Radiation Dose and Injury Assessment: Acute Health Effects Predictions. Radiat Res 2024; 202:185-204. [PMID: 38936821 DOI: 10.1667/rade-24-00121.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
A multiple-parameter based approach using radiation-induced clinical signs and symptoms, hematology changes, cytogenetic chromosomal aberrations, and molecular biomarkers changes after radiation exposure is used for biodosimetry-based dose assessment. In the current article, relevant milestones from Radiation Research are documented that forms the basis of the current consensus approach for diagnostics after radiation exposure. For example, in 1962 the use of cytogenetic chromosomal aberration using the lymphocyte metaphase spread dicentric assay for biodosimetry applications was first published in Radiation Research. This assay is now complimented using other cytogenetic chromosomal aberration assays (i.e., chromosomal translocations, cytokinesis-blocked micronuclei, premature chromosome condensation, γ-H2AX foci, etc.). Changes in blood cell counts represent an early-phase biomarker for radiation exposures. Molecular biomarker changes have evolved to include panels of organ-specific plasma proteomic and blood-based gene expression biomarkers for radiation dose assessment. Maturation of these assays are shown by efforts for automated processing and scoring, development of point-of-care diagnostics devices, service laboratories inter-comparison exercises, and applications for dose and injury assessments in radiation accidents. An alternative and complementary approach has been advocated with the focus to de-emphasize "dose" and instead focus on predicting acute or delayed health effects. The same biomarkers used for dose estimation (e.g., lymphocyte counts) can be used to directly predict the later developing severity degree of acute health effects without performing dose estimation as an additional or intermediate step. This review illustrates contributing steps toward these developments published in Radiation Research.
Collapse
Affiliation(s)
- William F Blakely
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | | | - Michael Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
3
|
Li W, Gao G, Pan Y, Wang Z, Ruan J, Fan L, Shen Y, Wang H, Li M, Zhang P, Fang L, Fu J, Liu J. Integration of RNA-seq and ATAC-seq analyzes the effect of low dose neutron-γ radiation on gene expression of lymphocytes from oilfield logging workers. Front Chem 2023; 11:1269911. [PMID: 38099192 PMCID: PMC10720751 DOI: 10.3389/fchem.2023.1269911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023] Open
Abstract
Objective: Although radiation workers are exposed to much lower doses of neutron-γ rays than those suffered in nuclear explosions and accidents, it does not mean that their health is not affected by radiation. Lower doses of radiation do not always cause morphological aberrations in chromosomes, so more sophisticated tests must be sought to specific alterations in the exposed cells. Our goal was to characterize the specific gene expression in lymphocytes from logging workers who were continuously exposed to low doses of neutron-γ radiation. We hypothesized that the combination of cell type-specific transcriptomes and open chromatin profiles would identify lymphocyte-specific gene alterations induced by long-term radiation with low-dose neutron-γ-rays and discover new regulatory pathways and transcriptional regulatory elements. Methods: Lymphocytes were extracted from workers who have been occupationally exposed to neutron-γ and workers unexposed to radiation in the same company. mRNA-seq and ATAC-seq (Assay for Transposase-Accessible Chromatin with high-throughput sequencing) were performed, followed integrative analysis to identify specific gene regulatory regions induced by neutron-γ radiation. A qPCR assay was then performed to verify the downregulation of RNA coding for ribosomal proteins and flow cytometry was used to detect ribosomal protein expression and cell cycle alterations. Results: We identified transcripts that were specifically induced by neutron-γ radiation and discovered differential open chromatin regions that correlated with these gene activation patterns. Notably, we observed a downward trend in the expression of both differentially expressed genes and open chromatin peaks. Our most significant finding was that the differential peak upregulated in ATAC-seq, while the differential gene was downregulated in the ribosome pathway. We confirmed that neutron-γ radiation leads to transcriptional inhibition by analyzing the most enriched promoters, examining RPS18 and RPS27A expression by qPCR, and analyzing protein-protein interactions of the differential genes. Ribosomal protein expression and cell cycle were also affected by neutron-γ as detected by flow cytometry. Conclusion: We have comprehensively analyzed the genetic landscape of human lymphocytes based on chromatin accessibility and transcript levels, enabling the identification of novel neutron-γ induced signature genes not previously known. By comparing fine-mapping of open chromatin and RNA reads, we have determined that neutron-γ specifically leads to downregulation of genes in the ribosome pathway, with pseudogenes potentially playing a crucial role.
Collapse
Affiliation(s)
- Weiguo Li
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, Chinese Center for Disease Control and Prevention, National Institute for Radiological Protection, Beijing, China
| | - Gang Gao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, Chinese Center for Disease Control and Prevention, National Institute for Radiological Protection, Beijing, China
| | - Yan Pan
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, Chinese Center for Disease Control and Prevention, National Institute for Radiological Protection, Beijing, China
| | - Ziqiang Wang
- School of Biomedical Sciences, Shandong First Medical University, Jinan, Shandong, China
| | - Jianlei Ruan
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, Chinese Center for Disease Control and Prevention, National Institute for Radiological Protection, Beijing, China
| | - Li Fan
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, Chinese Center for Disease Control and Prevention, National Institute for Radiological Protection, Beijing, China
| | - Yingjie Shen
- Safety and Environmental Protection Department, Shengli Logging Company, Sinopec Jingwei Co., LTD., Dongying, Shandong, China
| | - Haiqing Wang
- Dongying Center for Disease Control and Prevention, Dongying, Shandong, China
| | - Mian Li
- School of Biomedical Sciences, Shandong First Medical University, Jinan, Shandong, China
| | - Pinhua Zhang
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, Chinese Center for Disease Control and Prevention, National Institute for Radiological Protection, Beijing, China
| | - Lianying Fang
- School of Preventive Medicine, Shandong First Medical University Institute of Radiation Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinghong Fu
- School of Preventive Medicine, Shandong First Medical University Institute of Radiation Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jianxiang Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, Chinese Center for Disease Control and Prevention, National Institute for Radiological Protection, Beijing, China
| |
Collapse
|
4
|
Tavakol DN, Nash TR, Kim Y, He S, Fleischer S, Graney PL, Brown JA, Liberman M, Tamargo M, Harken A, Ferrando AA, Amundson S, Garty G, Azizi E, Leong KW, Brenner DJ, Vunjak-Novakovic G. Modeling and countering the effects of cosmic radiation using bioengineered human tissues. Biomaterials 2023; 301:122267. [PMID: 37633022 PMCID: PMC10528250 DOI: 10.1016/j.biomaterials.2023.122267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/28/2023]
Abstract
Cosmic radiation is the most serious risk that will be encountered during the planned missions to the Moon and Mars. There is a compelling need to understand the effects, safety thresholds, and mechanisms of radiation damage in human tissues, in order to develop measures for radiation protection during extended space travel. As animal models fail to recapitulate the molecular changes in astronauts, engineered human tissues and "organs-on-chips" are valuable tools for studying effects of radiation in vitro. We have developed a bioengineered tissue platform for studying radiation damage in individualized settings. To demonstrate its utility, we determined the effects of radiation using engineered models of two human tissues known to be radiosensitive: engineered cardiac tissues (eCT, a target of chronic radiation damage) and engineered bone marrow (eBM, a target of acute radiation damage). We report the effects of high-dose neutrons, a proxy for simulated galactic cosmic rays, on the expression of key genes implicated in tissue responses to ionizing radiation, phenotypic and functional changes in both tissues, and proof-of-principle application of radioprotective agents. We further determined the extent of inflammatory, oxidative stress, and matrix remodeling gene expression changes, and found that these changes were associated with an early hypertrophic phenotype in eCT and myeloid skewing in eBM. We propose that individualized models of human tissues have potential to provide insights into the effects and mechanisms of radiation during deep-space missions and allow testing of radioprotective measures.
Collapse
Affiliation(s)
| | - Trevor R Nash
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Youngbin Kim
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Siyu He
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Sharon Fleischer
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Pamela L Graney
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Jessie A Brown
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Martin Liberman
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Manuel Tamargo
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Andrew Harken
- Center for Radiological Research, Columbia University, New York, NY 10032, USA
| | - Adolfo A Ferrando
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Sally Amundson
- Center for Radiological Research, Columbia University, New York, NY 10032, USA
| | - Guy Garty
- Center for Radiological Research, Columbia University, New York, NY 10032, USA
| | - Elham Azizi
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University, New York, NY 10032, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA; Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
5
|
Cai LH, Chen XY, Qian W, Liu CC, Yuan LJ, Zhang L, Nie C, Liu Z, Li Y, Li T, Liu MH. DDB2 and MDM2 genes are promising markers for radiation diagnosis and estimation of radiation dose independent of trauma and burns. Funct Integr Genomics 2023; 23:294. [PMID: 37688632 DOI: 10.1007/s10142-023-01222-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/11/2023]
Abstract
In the field of biodosimetry, the current accepted method for evaluating radiation dose fails to meet the need of rapid, large-scale screening, and most RNA marker-related studies of biodosimetry are concentrating on a single type of ray, while some other potential factors, such as trauma and burns, have not been covered. Microarray datasets that contain the data of human peripheral blood samples exposed to X-ray, neutron, and γ-ray radiation were obtained from the GEO database. Totally, 33 multi-type ray co-induced genes were obtained at first from the differentially expressed genes (DEGs) and key genes identified by weighted gene co-expression network analysis (WGCNA), and these genes were mainly enriched in DNA damage, cellular apoptosis, and p53 signaling pathway. Following transcriptome sequencing of blood samples from 11 healthy volunteers, 13 patients with severe burns, and 37 patients with severe trauma, 6635 trauma-related DEGs and 7703 burn-related DEGs were obtained. Through the exclusion method, a total of 12 radiation-specific genes independent of trauma and burns were identified. ROC curve analysis revealed that the DDB2 gene performed the best in diagnosis of all three types of ray radiation, while correlation analysis showed that the MDM2 gene was the best in assessment of radiation dose. The results of multiple-linear regression analysis indicated that such analysis could improve the accuracy in assessment of radiation dose. Moreover, the DDB2 and MDM2 genes remained effective in radiation diagnosis and assessment of radiation dose in an external dataset. In general, the study brings new insights into radiation biodosimetry.
Collapse
Affiliation(s)
- Ling-Hu Cai
- Department of Emergency Medicine, Southwest Hospital, Army Medical University, 30 Main Street, Gaotan Rock, Chongqing, 400038, People's Republic of China
| | - Xiang-Yu Chen
- Department of Emergency Medicine, Southwest Hospital, Army Medical University, 30 Main Street, Gaotan Rock, Chongqing, 400038, People's Republic of China
| | - Wei Qian
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Chuan-Chuan Liu
- Department of Emergency Medicine, Southwest Hospital, Army Medical University, 30 Main Street, Gaotan Rock, Chongqing, 400038, People's Republic of China
| | - Li-Jia Yuan
- Department of Emergency Medicine, Southwest Hospital, Army Medical University, 30 Main Street, Gaotan Rock, Chongqing, 400038, People's Republic of China
| | - Liang Zhang
- Department of Emergency Medicine, Southwest Hospital, Army Medical University, 30 Main Street, Gaotan Rock, Chongqing, 400038, People's Republic of China
| | - Chao Nie
- Department of Emergency Medicine, Southwest Hospital, Army Medical University, 30 Main Street, Gaotan Rock, Chongqing, 400038, People's Republic of China
| | - Zhen Liu
- Department of Emergency Medicine, Southwest Hospital, Army Medical University, 30 Main Street, Gaotan Rock, Chongqing, 400038, People's Republic of China
| | - Yue Li
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ming-Hua Liu
- Department of Emergency Medicine, Southwest Hospital, Army Medical University, 30 Main Street, Gaotan Rock, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
6
|
Broustas CG, Mukherjee S, Shuryak I, Taraboletti A, Angdisen J, Ake P, Fornace AJ, Amundson SA. Impact of GADD45A on Radiation Biodosimetry Using Mouse Peripheral Blood. Radiat Res 2023; 200:296-306. [PMID: 37421415 PMCID: PMC10559452 DOI: 10.1667/rade-23-00052.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/14/2023] [Indexed: 07/10/2023]
Abstract
High-dose-radiation exposure in a short period of time leads to radiation syndromes characterized by severe acute and delayed organ-specific injury accompanied by elevated organismal morbidity and mortality. Radiation biodosimetry based on gene expression analysis of peripheral blood is a valuable tool to detect exposure to radiation after a radiological/nuclear incident and obtain useful biological information that could predict tissue and organismal injury. However, confounding factors, including chronic inflammation, can potentially obscure the predictive power of the method. GADD45A (Growth arrest and DNA damage-inducible gene a) plays important roles in cell growth control, differentiation, DNA repair, and apoptosis. GADD45A-deficient mice develop an autoimmune disease, similar to human systemic lupus erythematosus, characterized by severe hematological disorders, kidney disease, and premature death. The goal of this study was to elucidate how pre-existing inflammation in mice, induced by GADD45A ablation, can affect radiation biodosimetry. We exposed wild-type and GADD45A knockout male C57BL/6J mice to 7 Gy of X rays and 24 h later RNA was isolated from whole blood and subjected to whole genome microarray and gene ontology analyses. Dose reconstruction analysis using a gene signature trained on gene expression data from irradiated wild-type male mice showed accurate reconstruction of either a 0 Gy or 7 Gy dose with root mean square error of ± 1.05 Gy (R^2 = 1.00) in GADD45A knockout mice. Gene ontology analysis revealed that irradiation of both wild-type and GADD45A-null mice led to a significant overrepresentation of pathways associated with morbidity and mortality, as well as organismal cell death. However, based on their z-score, these pathways were predicted to be more significantly overrepresented in GADD45A-null mice, implying that GADD45A deletion may exacerbate the deleterious effects of radiation on blood cells. Numerous immune cell functions and quantities were predicted to be underrepresented in both genotypes; however, differentially expressed genes from irradiated GADD45A knockout mice predicted an increased deterioration in the numbers of T lymphocytes, as well as myeloid cells, compared with wild-type mice. Furthermore, an overrepresentation of genes associated with radiation-induced hematological malignancies was associated with GADD45A knockout mice, whereas hematopoietic and progenitor cell functions were predicted to be downregulated in irradiated GADD45A knockout mice. In conclusion, despite the significant differences in gene expression between wild-type and GADD45A knockout mice, it is still feasible to identify a panel of genes that could accurately distinguish between irradiated and control mice, irrespective of pre-existing inflammation status.
Collapse
Affiliation(s)
- Constantinos G. Broustas
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sanjay Mukherjee
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alexandra Taraboletti
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jerry Angdisen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Pelagie Ake
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Albert J. Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Sally A. Amundson
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
7
|
Abend M, Ostheim P, Port M. Radiation-Induced Gene Expression Changes Used for Biodosimetry and Clinical Outcome Prediction: Challenges and Promises. Cytogenet Genome Res 2023; 163:223-230. [PMID: 37231879 DOI: 10.1159/000530947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
As the war in Ukraine progresses, the radiological and nuclear threat has never been as real as now. The formation of life-threatening acute radiation syndrome (ARS), in particular after the deployment of a nuclear weapon or an attack on a nuclear power station, must be considered realistic. ARS is caused by massive cell death, leading to functional organ deficits and, via systemic inflammatory responses, finally aggravates into multiple organ failure. As a deterministic effect, the severity of the disease dictates the clinical outcome. Hence, predicting ARS severity via biodosimetry or alternative approaches appears straightforward. Because the disease occurs delayed, therapy starting as early as possible has the most significant benefit. A clinically relevant diagnosis should be carried out within the diagnostic time window of about 3 days after exposure. Biodosimetry assays providing retrospective dose estimations within this time frame will support medical management decision-making. However, how closely can dose estimates be associated with the later developing ARS severity degrees when considering dose as one among other determinants of radiation exposure and cell death? From a clinical/triage point of view, ARS severity degrees can be further aggregated into unexposed, weakly diseased (no acute health effects expected), and strongly diseased patient groups, with the latter requiring hospitalization as well as an early and intensive treatment. Radiation-induced gene expression (GE) changes occur early after exposure and can be quickly quantified. GE can be used for biodosimetry purposes. Can GE be used to predict later developing ARS severity degrees and allocate individuals to the three clinically relevant groups as well?
Collapse
Affiliation(s)
- Michael Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | | | - Matthias Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
8
|
Broustas CG, Shuryak I, Duval AJ, Amundson SA. Effect of Age and Sex on Gene Expression-Based Radiation Biodosimetry Using Mouse Peripheral Blood. Cytogenet Genome Res 2023; 163:197-209. [PMID: 36928338 PMCID: PMC10585707 DOI: 10.1159/000530172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/03/2023] [Indexed: 03/18/2023] Open
Abstract
Blood-based gene expression profiles that can reconstruct radiation exposure are being developed as a practical approach to radiation biodosimetry. However, age and sex could potentially limit the accuracy of the approach. In this study, we determined the impact of age on the peripheral blood cell gene expression profile of female mice exposed to radiation and identified differences and similarities with a previously obtained transcriptomic signature of male mice. Young (2 months) and old (24 months) female mice were irradiated with 4 Gy X-rays, total RNA was isolated from blood 24 hours later and subjected to whole-genome microarray analysis. Dose reconstruction analyses using a gene signature trained on gene expression data from irradiated young male mice showed accurate reconstruction of 0 or 4 Gy doses with root mean square error of ±0.75 Gy (R2 = 0.90) in young female mice. Although dose reconstruction for irradiated old female mice was less accurate than young female mice, the deviation from the actual radiation dose was not statistically significant. Pathway analysis of differentially expressed genes revealed that after irradiation, apoptosis-related functions were overrepresented, whereas functions related to quantities of various immune cell subtypes were underrepresented, among differentially expressed genes from young female mice, but not older animals. Furthermore, young mice significantly upregulated genes involved in phagocytosis, a process that eliminates apoptotic cells and preserves tissue homeostasis. Both functions were also overrepresented in young, but not old, male mice following 4 Gy X-irradiation. Lastly, functions associated with neutrophil activation that is essential for killing invading pathogens and regulating the inflammatory response were predicted to be uniquely enriched in young but not old female mice. This work supports the concept that peripheral blood gene expression profiles can be identified in mice that accurately predict physical radiation dose exposure irrespective of age and sex.
Collapse
Affiliation(s)
- Constantinos G. Broustas
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Axel J. Duval
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Sally A. Amundson
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
9
|
Aryankalayil MJ, Bylicky MA, Martello S, Chopra S, Sproull M, May JM, Shankardass A, MacMillan L, Vanpouille-Box C, Dalo J, Scott KMK, Norman Coleman C. Microarray analysis identifies coding and non-coding RNA markers of liver injury in whole body irradiated mice. Sci Rep 2023; 13:200. [PMID: 36604457 PMCID: PMC9814510 DOI: 10.1038/s41598-022-26784-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
Radiation injury from medical, accidental, or intentional sources can induce acute and long-term hepatic dysregulation, fibrosis, and cancer. This long-term hepatic dysregulation decreases quality of life and may lead to death. Our goal in this study is to determine acute changes in biological pathways and discover potential RNA biomarkers predictive of radiation injury. We performed whole transcriptome microarray analysis of mouse liver tissue (C57BL/6 J) 48 h after whole-body irradiation with 1, 2, 4, 8, and 12 Gray to identify significant expression changes in mRNAs, lncRNAs, and miRNAs, We also validated changes in specific RNAs through qRT-PCR. We used Ingenuity Pathway Analysis (IPA) to identify pathways associated with gene expression changes. We observed significant dysregulation of multiple mRNAs across all doses. In contrast, miRNA dysregulation was observed upwards of 2 Gray. The most significantly upregulated mRNAs function as tumor suppressors: Cdkn1a, Phlda3, and Eda2r. The most significantly downregulated mRNAs were involved in hemoglobin synthesis, inflammation, and mitochondrial function including multiple members of Hbb and Hba. The most significantly upregulated miRNA included: miR-34a-5p, miR-3102-5p, and miR-3960, while miR-342-3p, miR-142a-3p, and miR-223-3p were most significantly downregulated. IPA predicted activation of cell cycle checkpoint control pathways and inhibition of pathways relevant to inflammation and erythropoietin. Clarifying expression of mRNA, miRNA and lncRNA at a short time point (48 h) offers insight into potential biomarkers, including radiation markers shared across organs and animal models. This information, once validated in human models, can aid in development of bio-dosimetry biomarkers, and furthers our understanding of acute pathway dysregulation.
Collapse
Affiliation(s)
- Molykutty J. Aryankalayil
- grid.48336.3a0000 0004 1936 8075Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD 20892 USA
| | - Michelle A. Bylicky
- grid.48336.3a0000 0004 1936 8075Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD 20892 USA
| | - Shannon Martello
- grid.48336.3a0000 0004 1936 8075Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD 20892 USA
| | - Sunita Chopra
- grid.48336.3a0000 0004 1936 8075Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD 20892 USA
| | - Mary Sproull
- grid.48336.3a0000 0004 1936 8075Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD 20892 USA
| | - Jared M. May
- grid.48336.3a0000 0004 1936 8075Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD 20892 USA
| | - Aman Shankardass
- grid.48336.3a0000 0004 1936 8075Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD 20892 USA
| | - Laurel MacMillan
- grid.420517.50000 0004 0490 0428Gryphon Scientific, Takoma Park, MD 20912 USA
| | - Claire Vanpouille-Box
- grid.5386.8000000041936877XDepartment of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065 USA
| | - Juan Dalo
- grid.48336.3a0000 0004 1936 8075Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD 20892 USA
| | - Kevin M. K. Scott
- grid.48336.3a0000 0004 1936 8075Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD 20892 USA
| | - C. Norman Coleman
- grid.48336.3a0000 0004 1936 8075Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD 20892 USA ,grid.48336.3a0000 0004 1936 8075Radiation Research Program, National Cancer Institute, National Institutes of Health, Rockville, MD 20850 USA
| |
Collapse
|
10
|
Sagkrioti E, Biz GM, Takan I, Asfa S, Nikitaki Z, Zanni V, Kars RH, Hellweg CE, Azzam EI, Logotheti S, Pavlopoulou A, Georgakilas AG. Radiation Type- and Dose-Specific Transcriptional Responses across Healthy and Diseased Mammalian Tissues. Antioxidants (Basel) 2022; 11:2286. [PMID: 36421472 PMCID: PMC9687520 DOI: 10.3390/antiox11112286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 08/30/2023] Open
Abstract
Ionizing radiation (IR) is a genuine genotoxic agent and a major modality in cancer treatment. IR disrupts DNA sequences and exerts mutagenic and/or cytotoxic properties that not only alter critical cellular functions but also impact tissues proximal and distal to the irradiated site. Unveiling the molecular events governing the diverse effects of IR at the cellular and organismal levels is relevant for both radiotherapy and radiation protection. Herein, we address changes in the expression of mammalian genes induced after the exposure of a wide range of tissues to various radiation types with distinct biophysical characteristics. First, we constructed a publicly available database, termed RadBioBase, which will be updated at regular intervals. RadBioBase includes comprehensive transcriptomes of mammalian cells across healthy and diseased tissues that respond to a range of radiation types and doses. Pertinent information was derived from a hybrid analysis based on stringent literature mining and transcriptomic studies. An integrative bioinformatics methodology, including functional enrichment analysis and machine learning techniques, was employed to unveil the characteristic biological pathways related to specific radiation types and their association with various diseases. We found that the effects of high linear energy transfer (LET) radiation on cell transcriptomes significantly differ from those caused by low LET and are consistent with immunomodulation, inflammation, oxidative stress responses and cell death. The transcriptome changes also depend on the dose since low doses up to 0.5 Gy are related with cytokine cascades, while higher doses with ROS metabolism. We additionally identified distinct gene signatures for different types of radiation. Overall, our data suggest that different radiation types and doses can trigger distinct trajectories of cell-intrinsic and cell-extrinsic pathways that hold promise to be manipulated toward improving radiotherapy efficiency and reducing systemic radiotoxicities.
Collapse
Affiliation(s)
- Eftychia Sagkrioti
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
- Biology Department, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece
| | - Gökay Mehmet Biz
- Department of Technical Programs, Izmir Vocational School, Dokuz Eylül University, Buca, Izmir 35380, Turkey
| | - Işıl Takan
- Izmir Biomedicine and Genome Center (IBG), Balcova, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, Izmir 35340, Turkey
| | - Seyedehsadaf Asfa
- Izmir Biomedicine and Genome Center (IBG), Balcova, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, Izmir 35340, Turkey
| | - Zacharenia Nikitaki
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Vassiliki Zanni
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Rumeysa Hanife Kars
- Department of Biomedical Engineering, Istanbul Medipol University, Istanbul 34810, Turkey
| | - Christine E. Hellweg
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology, Linder Höhe, D-51147 Köln, Germany
| | | | - Stella Logotheti
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center (IBG), Balcova, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, Izmir 35340, Turkey
| | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| |
Collapse
|
11
|
Langen B, Vorontsov E, Spetz J, Swanpalmer J, Sihlbom C, Helou K, Forssell-Aronsson E. Age and sex effects across the blood proteome after ionizing radiation exposure can bias biomarker screening and risk assessment. Sci Rep 2022; 12:7000. [PMID: 35487913 PMCID: PMC9055069 DOI: 10.1038/s41598-022-10271-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/01/2022] [Indexed: 11/12/2022] Open
Abstract
Molecular biomarkers of ionizing radiation (IR) exposure are a promising new tool in various disciplines: they can give necessary information for adaptive treatment planning in cancer radiotherapy, enable risk projection for radiation-induced survivorship diseases, or facilitate triage and intervention in radiation hazard events. However, radiation biomarker discovery has not yet resolved the most basic features of personalized medicine: age and sex. To overcome this critical bias in biomarker identification, we quantitated age and sex effects and assessed their relevance in the radiation response across the blood proteome. We used high-throughput mass spectrometry on blood plasma collected 24 h after 0.5 Gy total body irradiation (15 MV nominal photon energy) from male and female C57BL/6 N mice at juvenile (7-weeks-old) or adult (18-weeks-old) age. We also assessed sex and strain effects using juvenile male and female BALB/c nude mice. We showed that age and sex created significant effects in the proteomic response regarding both extent and functional quality of IR-induced responses. Furthermore, we found that age and sex effects appeared non-linear and were often end-point specific. Overall, age contributed more to differences in the proteomic response than sex, most notably in immune responses, oxidative stress, and apoptotic cell death. Interestingly, sex effects were pronounced for DNA damage and repair pathways and associated cellular outcome (pro-survival vs. pro-apoptotic). Only one protein (AHSP) was identified as a potential general biomarker candidate across age and sex, while GMNN, REG3B, and SNCA indicated some response similarity across age. This low yield advocated that unisex or uniage biomarker screening approaches are not feasible. In conclusion, age- and sex-specific screening approaches should be implemented as standard protocol to ensure robustness and diagnostic power of biomarker candidates. Bias-free molecular biomarkers are a necessary progression towards personalized medicine and integral for advanced adaptive cancer radiotherapy and risk assessment.
Collapse
Affiliation(s)
- Britta Langen
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Section of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Egor Vorontsov
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Spetz
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - John Swanpalmer
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Carina Sihlbom
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
12
|
Transcriptomics of Wet Skin Biopsies Predict Early Radiation-Induced Hematological Damage in a Mouse Model. Genes (Basel) 2022; 13:genes13030538. [PMID: 35328091 PMCID: PMC8952434 DOI: 10.3390/genes13030538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/28/2022] [Accepted: 03/16/2022] [Indexed: 12/04/2022] Open
Abstract
The lack of an easy and fast radiation-exposure testing method with a dosimetric ability complicates triage and treatment in response to a nuclear detonation, radioactive material release, or clandestine exposure. The potential of transcriptomics in radiation diagnosis and prognosis were assessed here using wet skin (blood/skin) biopsies obtained at hour 2 and days 4, 7, 21, and 28 from a mouse radiation model. Analysis of significantly differentially transcribed genes (SDTG; p ≤ 0.05 and FC ≥ 2) during the first post-exposure week identified the glycoprotein 6 (GP-VI) signaling, the dendritic cell maturation, and the intrinsic prothrombin activation pathways as the top modulated pathways with stable inactivation after lethal exposures (20 Gy) and intermittent activation after sublethal (1, 3, 6 Gy) exposure time points (TPs). Interestingly, these pathways were inactivated in the late TPs after sublethal exposure in concordance with a delayed deleterious effect. Modulated transcription of a variety of collagen types, laminin, and peptidase genes underlay the modulated functions of these hematologically important pathways. Several other SDTGs related to platelet and leukocyte development and functions were identified. These results outlined genetic determinants that were crucial to clinically documented radiation-induced hematological and skin damage with potential countermeasure applications.
Collapse
|
13
|
Abend M, Blakely WF, Ostheim P, Schuele S, Port M. Early molecular markers for retrospective biodosimetry and prediction of acute health effects. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:010503. [PMID: 34492641 DOI: 10.1088/1361-6498/ac2434] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Radiation-induced biological changes occurring within hours and days after irradiation can be potentially used for either exposure reconstruction (retrospective dosimetry) or the prediction of consecutively occurring acute or chronic health effects. The advantage of molecular protein or gene expression (GE) (mRNA) marker lies in their capability for early (1-3 days after irradiation), high-throughput and point-of-care diagnosis, required for the prediction of the acute radiation syndrome (ARS) in radiological or nuclear scenarios. These molecular marker in most cases respond differently regarding exposure characteristics such as e.g. radiation quality, dose, dose rate and most importantly over time. Changes over time are in particular challenging and demand certain strategies to deal with. With this review, we provide an overview and will focus on already identified and used mRNA GE and protein markers of the peripheral blood related to the ARS. These molecules are examined in light of 'ideal' characteristics of a biomarkers (e.g. easy accessible, early response, signal persistency) and the validation degree. Finally, we present strategies on the use of these markers considering challenges as their variation over time and future developments regarding e.g. origin of samples, point of care and high-throughput diagnosis.
Collapse
Affiliation(s)
- M Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - W F Blakely
- Armed Forces Radiobiology Research Institute, Bethesda, MD, United States of America
| | - P Ostheim
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - S Schuele
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
14
|
Abstract
PURPOSE This article will briefly review the origins and evolution of functional genomics, first describing the experimental technology, and then some of the approaches applied to data analysis and visualization. It will emphasize application of functional genomics to radiation biology, using examples from the author's work to illustrate several key types of analysis. It concludes with a look at non-coding RNA, alternative reading of the genome, and single-cell transcriptomics, some of the innovative areas that may help to shape future research in radiation biology and oncology. CONCLUSIONS Transcriptomic approaches have provided insight into many areas of radiation biology and medicine, and innovations in technology and data analysis approaches promise continued contributions to radiation science in the future.
Collapse
|
15
|
Macaeva E, Tabury K, Michaux A, Janssen A, Averbeck N, Moreels M, De Vos WH, Baatout S, Quintens R. High-LET Carbon and Iron Ions Elicit a Prolonged and Amplified p53 Signaling and Inflammatory Response Compared to low-LET X-Rays in Human Peripheral Blood Mononuclear Cells. Front Oncol 2021; 11:768493. [PMID: 34888245 PMCID: PMC8649625 DOI: 10.3389/fonc.2021.768493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/01/2021] [Indexed: 12/29/2022] Open
Abstract
Understanding the differences in biological response to photon and particle radiation is important for optimal exploitation of particle therapy for cancer patients, as well as for the adequate application of radiation protection measures for astronauts. To address this need, we compared the transcriptional profiles of isolated peripheral blood mononuclear cells 8 h after exposure to 1 Gy of X-rays, carbon ions or iron ions with those of non-irradiated cells using microarray technology. All genes that were found differentially expressed in response to either radiation type were up-regulated and predominantly controlled by p53. Quantitative PCR of selected genes revealed a significantly higher up-regulation 24 h after exposure to heavy ions as compared to X-rays, indicating their prolonged activation. This coincided with increased residual DNA damage as evidenced by quantitative γH2AX foci analysis. Furthermore, despite the converging p53 signature between radiation types, specific gene sets related to the immune response were significantly enriched in up-regulated genes following irradiation with heavy ions. In addition, irradiation, and in particular exposure to carbon ions, promoted transcript variation. Differences in basal and iron ion exposure-induced expression of DNA repair genes allowed the identification of a donor with distinct DNA repair profile. This suggests that gene signatures may serve as a sensitive indicator of individual DNA damage repair capacity. In conclusion, we have shown that photon and particle irradiation induce similar transcriptional pathways, albeit with variable amplitude and timing, but also elicit radiation type-specific responses that may have implications for cancer progression and treatment
Collapse
Affiliation(s)
- Ellina Macaeva
- Radiobiology Unit, Studiecentrum voor kernenergie - Centre d'étude de l'énergie nucléaire (SCK CEN), Mol, Belgium.,Department of Molecular Biotechnology, Ghent University, Ghent, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Kevin Tabury
- Radiobiology Unit, Studiecentrum voor kernenergie - Centre d'étude de l'énergie nucléaire (SCK CEN), Mol, Belgium.,Department of Biomedical Engineering, University of South Carolina, Columbia, SC, United States
| | - Arlette Michaux
- Radiobiology Unit, Studiecentrum voor kernenergie - Centre d'étude de l'énergie nucléaire (SCK CEN), Mol, Belgium
| | - Ann Janssen
- Radiobiology Unit, Studiecentrum voor kernenergie - Centre d'étude de l'énergie nucléaire (SCK CEN), Mol, Belgium
| | - Nicole Averbeck
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Marjan Moreels
- Radiobiology Unit, Studiecentrum voor kernenergie - Centre d'étude de l'énergie nucléaire (SCK CEN), Mol, Belgium
| | - Winnok H De Vos
- Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Studiecentrum voor kernenergie - Centre d'étude de l'énergie nucléaire (SCK CEN), Mol, Belgium.,Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Roel Quintens
- Radiobiology Unit, Studiecentrum voor kernenergie - Centre d'étude de l'énergie nucléaire (SCK CEN), Mol, Belgium
| |
Collapse
|
16
|
Laiakis EC, Canadell MP, Grilj V, Harken AD, Garty GY, Brenner DJ, Smilenov L, Fornace AJ. Small Molecule Responses to Sequential Irradiation with Neutrons and Photons for Biodosimetry Applications: An Initial Assessment. Radiat Res 2021; 196:468-477. [PMID: 33857313 PMCID: PMC9004252 DOI: 10.1667/rade-20-00032.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 09/18/2020] [Indexed: 11/03/2022]
Abstract
Mass casualty exposure scenarios from an improvised nuclear device are expected to be far more complex than simple photons. Based on the proximity to the explosion and potential shielding, a mixed field of neutrons and photons comprised of up to approximately 30% neutrons of the total dose is anticipated. This presents significant challenges for biodosimetry and for short-term and long-term medical treatment of exposed populations. In this study we employed untargeted metabolomic methods to develop a biosignature in urine and serum from C57BL/6 mice to address radiation quality issues. The signature was developed in males and applied to samples from female mice to identify potential sex differences. Thirteen urinary (primarily amino acids, vitamin products, nucleotides) and 18 serum biomarkers (primarily mitochondrial and fatty acid β oxidation intermediates) were selected and evaluated in samples from day 1 and day 7 postirradiation. Sham-irradiated groups (controls) were compared to an equitoxic dose (3 Gy X-ray equivalent) from X rays (1.2 Gy/min), neutrons (∼1 Gy/h), or neutrons-photons. Results showed a time-dependent increase in the efficiency of the signatures, with serum providing the highest levels of accuracy in distinguishing not only between exposed from non-exposed populations, but also between radiation quality (photon exposures vs. exposures with a neutron component) and in between neutron-photon exposures (5, 15 or 25% of neutrons in the total dose) for evaluating the neutron contribution. A group of metabolites known as acylcarnitines was only responsive in males, indicating the potential for different mechanisms of action in baseline levels and of neutron-photon responses between the two sexes. Our findings highlight the potential of metabolomics in developing biodosimetric methods to evaluate mixed exposures with high sensitivity and specificity.
Collapse
Affiliation(s)
- Evagelia C. Laiakis
- Department of Oncology, Lombardi Comprehensive Cancer
Center, Georgetown University, Washington, DC
- Department of Biochemistry and Molecular & Cellular
Biology, Georgetown University, Washington, DC
| | | | - Veljko Grilj
- Radiological Research Accelerator Facility, Columbia
University, Irvington, New York
| | - Andrew D. Harken
- Radiological Research Accelerator Facility, Columbia
University, Irvington, New York
| | - Guy Y. Garty
- Radiological Research Accelerator Facility, Columbia
University, Irvington, New York
| | - David J. Brenner
- Center for Radiological Research, Columbia University, New
York, New York
| | - Lubomir Smilenov
- Center for Radiological Research, Columbia University, New
York, New York
| | - Albert J. Fornace
- Department of Oncology, Lombardi Comprehensive Cancer
Center, Georgetown University, Washington, DC
- Department of Biochemistry and Molecular & Cellular
Biology, Georgetown University, Washington, DC
| |
Collapse
|
17
|
Ostheim P, Amundson SA, Badie C, Bazyka D, Evans AC, Ghandhi SA, Gomolka M, López Riego M, Rogan PK, Terbrueggen R, Woloschak GE, Zenhausern F, Kaatsch HL, Schüle S, Ullmann R, Port M, Abend M. Gene expression for biodosimetry and effect prediction purposes: promises, pitfalls and future directions - key session ConRad 2021. Int J Radiat Biol 2021; 98:843-854. [PMID: 34606416 PMCID: PMC11552548 DOI: 10.1080/09553002.2021.1987571] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 01/11/2023]
Abstract
PURPOSE In a nuclear or radiological event, an early diagnostic or prognostic tool is needed to distinguish unexposed from low- and highly exposed individuals with the latter requiring early and intensive medical care. Radiation-induced gene expression (GE) changes observed within hours and days after irradiation have shown potential to serve as biomarkers for either dose reconstruction (retrospective dosimetry) or the prediction of consecutively occurring acute or chronic health effects. The advantage of GE markers lies in their capability for early (1-3 days after irradiation), high-throughput, and point-of-care (POC) diagnosis required for the prediction of the acute radiation syndrome (ARS). CONCLUSIONS As a key session of the ConRad conference in 2021, experts from different institutions were invited to provide state-of-the-art information on a range of topics including: (1) Biodosimetry: What are the current efforts to enhance the applicability of this method to perform retrospective biodosimetry? (2) Effect prediction: Can we apply radiation-induced GE changes for prediction of acute health effects as an approach, complementary to and integrating retrospective dose estimation? (3) High-throughput and point-of-care diagnostics: What are the current developments to make the GE approach applicable as a high-throughput as well as a POC diagnostic platform? (4) Low level radiation: What is the lowest dose range where GE can be used for biodosimetry purposes? (5) Methodological considerations: Different aspects of radiation-induced GE related to more detailed analysis of exons, transcripts and next-generation sequencing (NGS) were reported.
Collapse
Affiliation(s)
- Patrick Ostheim
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - Sally A. Amundson
- Center for Radiological Research, Columbia University Irving Medical Center (CUIMC), New York, NY, USA
| | - Christophe Badie
- PHE CRCE, Chilton, Didcot, Oxford, UK
- Environmental Research Group within the School of Public Health, Faculty of Medicine at Imperial College of Science, Technology and Medicine, London, UK
| | - Dimitry Bazyka
- National Research Centre for Radiation Medicine, Kyiv, Ukraine
| | - Angela C. Evans
- Department of Radiation Oncology, University of California Davis, Sacramento, CA, USA
| | - Shanaz A. Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center (CUIMC), New York, NY, USA
| | - Maria Gomolka
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Milagrosa López Riego
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Peter K. Rogan
- Biochemistry, University of Western Ontario, London, Canada
- CytoGnomix Inc, London, Canada
| | | | - Gayle E. Woloschak
- Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Frederic Zenhausern
- Department of Basic Medical Sciences, College of Medicine, The University of Arizona, Phoenix, AZ, USA
- Center for Applied Nanobioscience and Medicine, University of Arizona, Phoenix, AZ, USA
| | - Hanns L. Kaatsch
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - Simone Schüle
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - Reinhard Ullmann
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Munich, Germany
| |
Collapse
|
18
|
Amundson SA. Transcriptomics for radiation biodosimetry: progress and challenges. Int J Radiat Biol 2021; 99:925-933. [PMID: 33970766 PMCID: PMC10026363 DOI: 10.1080/09553002.2021.1928784] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/08/2021] [Accepted: 04/19/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE Transcriptomic-based approaches are being developed to meet the needs for large-scale radiation dose and injury assessment and provide population triage following a radiological or nuclear event. This review provides background and definition of the need for new biodosimetry approaches, and summarizes the major advances in this field. It discusses some of the major model systems used in gene signature development, and highlights some of the remaining challenges, including individual variation in gene expression, potential confounding factors, and accounting for the complexity of realistic exposure scenarios. CONCLUSIONS Transcriptomic approaches show great promise for both dose reconstruction and for prediction of individual radiological injury. However, further work will be needed to ensure that gene expression signatures will be robust and appropriate for their intended use in radiological or nuclear emergencies.
Collapse
Affiliation(s)
- Sally A Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
19
|
Broustas CG, Duval AJ, Amundson SA. Impact of aging on gene expression response to x-ray irradiation using mouse blood. Sci Rep 2021; 11:10177. [PMID: 33986387 PMCID: PMC8119453 DOI: 10.1038/s41598-021-89682-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
As a radiation biodosimetry tool, gene expression profiling is being developed using mouse and human peripheral blood models. The impact of dose, dose-rate, and radiation quality has been studied with the goal of predicting radiological tissue injury. In this study, we determined the impact of aging on the gene expression profile of blood from mice exposed to radiation. Young (2 mo) and old (21 mo) male mice were irradiated with 4 Gy x-rays, total RNA was isolated from whole blood 24 h later, and subjected to whole genome microarray analysis. Pathway analysis of differentially expressed genes revealed young mice responded to x-ray exposure by significantly upregulating pathways involved in apoptosis and phagocytosis, a process that eliminates apoptotic cells and preserves tissue homeostasis. In contrast, the functional annotation of senescence was overrepresented among differentially expressed genes from irradiated old mice without enrichment of phagocytosis pathways. Pathways associated with hematologic malignancies were enriched in irradiated old mice compared with irradiated young mice. The fibroblast growth factor signaling pathway was underrepresented in older mice under basal conditions. Similarly, brain-related functions were underrepresented in unirradiated old mice. Thus, age-dependent gene expression differences should be considered when developing gene signatures for use in radiation biodosimetry.
Collapse
Affiliation(s)
- Constantinos G Broustas
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 630 W. 168th St., New York, NY, 10032, USA.
| | - Axel J Duval
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 630 W. 168th St., New York, NY, 10032, USA
| | - Sally A Amundson
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 630 W. 168th St., New York, NY, 10032, USA
| |
Collapse
|
20
|
Zhao L, He X, Shang Y, Bao C, Peng A, Lei X, Han P, Mi D, Sun Y. Identification of potential radiation-responsive biomarkers based on human orthologous genes with possible roles in DNA repair pathways by comparison between Arabidopsis thaliana and homo sapiens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 702:135076. [PMID: 31734608 DOI: 10.1016/j.scitotenv.2019.135076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Rapid and reliable ionization radiation (IR) exposure estimation has become increasingly important in environment due to the urgent requirement of medical evaluation and treatment in the event of nuclear accident emergency. Human DNA repair genes can be identified as important candidate biomarkers to assess IR exposure, while how to find the enough sensitive and specific biomarkers in the DNA repair networks is still challenged and not fully determined. The conserved features of DNA repair pathways may facilitate interdisciplinary studies that cross the traditional boundaries between animal and plant biology, with the aim of identifying undiscovered human DNA repair genes for potential radiation-responsive biomarkers. In this work, an in silico method of homologous comparison was performed to identify the human orthologues of A. thaliana DNA repair genes, and thereby to explore the sensitive and specific human radiation-responsive genes to evaluate the IR exposure levels. The results showed that a total of 16 putative candidate genes were involved in the human DNA repair pathways of homologous recombination (HR) and non-homologous end joining (NHEJ), and most of them were confirmed by previous experiments. Additionally, we analyzed the gene expression patterns of these 16 candidate genes in several human transcript microarray datasets with different IR treatments. The results indicated that most of the gene expression levels for these candidate genes were significantly changed under different radiation treatments. Based on these results, we integrated these putative human DNA repair genes into the DNA repair pathways to propose new insights of the HR and NHEJ pathways, which can also provide the potential targets for the development of radiation biomarkers. Notably, two putative DNA repair genes, named ERCC1 and ESCO2, were identified and were considered to be the sensitive and specific biomarkers in response to γ-ray exposures.
Collapse
Affiliation(s)
- Lei Zhao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
| | - Xinye He
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
| | - Yuxuan Shang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
| | - Chengyu Bao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
| | - Ailin Peng
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
| | - Xiaohua Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Pei Han
- Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, China
| | - Dong Mi
- College of Science, Dalian Maritime University, Dalian, Liaoning, China.
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China.
| |
Collapse
|
21
|
Ghandhi SA, Smilenov L, Shuryak I, Pujol-Canadell M, Amundson SA. Discordant gene responses to radiation in humans and mice and the role of hematopoietically humanized mice in the search for radiation biomarkers. Sci Rep 2019; 9:19434. [PMID: 31857640 PMCID: PMC6923394 DOI: 10.1038/s41598-019-55982-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022] Open
Abstract
The mouse (Mus musculus) is an extensively used model of human disease and responses to stresses such as ionizing radiation. As part of our work developing gene expression biomarkers of radiation exposure, dose, and injury, we have found many genes are either up-regulated (e.g. CDKN1A, MDM2, BBC3, and CCNG1) or down-regulated (e.g. TCF4 and MYC) in both species after irradiation at ~4 and 8 Gy. However, we have also found genes that are consistently up-regulated in humans and down-regulated in mice (e.g. DDB2, PCNA, GADD45A, SESN1, RRM2B, KCNN4, IFI30, and PTPRO). Here we test a hematopoietically humanized mouse as a potential in vivo model for biodosimetry studies, measuring the response of these 14 genes one day after irradiation at 2 and 4 Gy, and comparing it with that of human blood irradiated ex vivo, and blood from whole body irradiated mice. We found that human blood cells in the hematopoietically humanized mouse in vivo environment recapitulated the gene expression pattern expected from human cells, not the pattern seen from in vivo irradiated normal mice. The results of this study support the use of hematopoietically humanized mice as an in vivo model for screening of radiation response genes relevant to humans.
Collapse
Affiliation(s)
- Shanaz A Ghandhi
- Columbia University Irving Medical Center, 630 W 168th street, VC11-237, New York, NY, 10032, USA.
| | - Lubomir Smilenov
- Columbia University Irving Medical Center, 630 W 168th street, VC11-237, New York, NY, 10032, USA
| | - Igor Shuryak
- Columbia University Irving Medical Center, 630 W 168th street, VC11-237, New York, NY, 10032, USA
| | - Monica Pujol-Canadell
- Columbia University Irving Medical Center, 630 W 168th street, VC11-237, New York, NY, 10032, USA
| | - Sally A Amundson
- Columbia University Irving Medical Center, 630 W 168th street, VC11-237, New York, NY, 10032, USA
| |
Collapse
|
22
|
Ghandhi SA, Shuryak I, Morton SR, Amundson SA, Brenner DJ. New Approaches for Quantitative Reconstruction of Radiation Dose in Human Blood Cells. Sci Rep 2019; 9:18441. [PMID: 31804590 PMCID: PMC6895166 DOI: 10.1038/s41598-019-54967-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022] Open
Abstract
In the event of a nuclear attack or large-scale radiation event, there would be an urgent need for assessing the dose to which hundreds or thousands of individuals were exposed. Biodosimetry approaches are being developed to address this need, including transcriptomics. Studies have identified many genes with potential for biodosimetry, but, to date most have focused on classification of samples by exposure levels, rather than dose reconstruction. We report here a proof-of-principle study applying new methods to select radiation-responsive genes to generate quantitative, rather than categorical, radiation dose reconstructions based on a blood sample. We used a new normalization method to reduce effects of variability of signal intensity in unirradiated samples across studies; developed a quantitative dose-reconstruction method that is generally under-utilized compared to categorical methods; and combined these to determine a gene set as a reconstructor. Our dose-reconstruction biomarker was trained using two data sets and tested on two independent ones. It was able to reconstruct dose up to 4.5 Gy with root mean squared error (RMSE) of ± 0.35 Gy on a test dataset using the same platform, and up to 6.0 Gy with RMSE of ± 1.74 Gy on a test set using a different platform.
Collapse
Affiliation(s)
- Shanaz A Ghandhi
- Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY, 10032, USA.
| | - Igor Shuryak
- Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY, 10032, USA
| | - Shad R Morton
- Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY, 10032, USA
| | - Sally A Amundson
- Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY, 10032, USA
| | - David J Brenner
- Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY, 10032, USA
| |
Collapse
|
23
|
Mukherjee S, Grilj V, Broustas CG, Ghandhi SA, Harken AD, Garty G, Amundson SA. Human Transcriptomic Response to Mixed Neutron-Photon Exposures Relevant to an Improvised Nuclear Device. Radiat Res 2019; 192:189-199. [PMID: 31237816 PMCID: PMC7450517 DOI: 10.1667/rr15281.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In the possible event of a detonation of an improvised nuclear device (IND), the immediate radiation would consist of both photons (gamma rays) and neutrons. Since neutrons generally have a high relative biological effectiveness (RBE) for most physiological end points, it is important to understand the effect that neutrons would have on the biodosimetry methods that are being developed for medical triage purposes. We previously compared the transcriptomic response in human blood after neutron and photon irradiation. In this study, we analyzed the effect of mixed-field-neutron-photon radiation on gene expression responses in human peripheral blood, to elucidate the neutron contribution in the setting of a radiation exposure from an IND detonation. We used four combinations of mixed neutron-photon exposures, with increasing percentages of neutrons, to a cumulative dose of 3 Gy. The mixed-field exposures consisted of 0%, 5%, 15% and 25% of neutrons, where 0% corresponds to 3 Gy of pure X rays. A maximum neutron exposure, corresponding to 83% neutrons (0.75 Gy) was also used in the study. Increases were observed in both the number and expression level of genes, with increasing percentages of neutrons from 0% to 25% in the mixed-field exposures. Gene ontology analysis showed an overall predominance of TP53 signaling among upregulated genes across all exposures. Some TP53 regulated genes, such as EDA2R, GDF15 and VWCE, demonstrated increased expression with increasing neutron percentages in mixed-field exposures. Immune response, specifically natural-killer-cell mediated signaling, was the most significant biological process associated with downregulated genes. We observed significant suppression of T-cell-mediated signaling in mixed-field exposures, which was absent in the response to pure photons. In this first study investigating gene expression in human blood cells exposed to mixed neutron-photon fields similar to an actual IND explosion, we have identified a number of genes responding to the 3 Gy dose that showed increasing expression as the neutron percentage increased. Such genes may serve as better indicators of the expected biological damage than a report of total physical dose, and thus provide more relevant information for treating physicians.
Collapse
Affiliation(s)
- Sanjay Mukherjee
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032; and
| | - Veljko Grilj
- Radiological Research Accelerator Facility, Columbia University, Irvington, New York 10533
| | - Constantinos G. Broustas
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032; and
| | - Shanaz A. Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032; and
| | - Andrew D. Harken
- Radiological Research Accelerator Facility, Columbia University, Irvington, New York 10533
| | - Guy Garty
- Radiological Research Accelerator Facility, Columbia University, Irvington, New York 10533
| | - Sally A. Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032; and
| |
Collapse
|
24
|
Abstract
Purpose: Neutrons were an active field of radiobiology at the time of publication of the first issues of the International Journal of Radiation Biology in 1959. Three back-to-back papers published by Neary and his colleagues contain key elements of interest at the time. The present article aims to put these papers into context with the discovery of the neutron 27 years previously and then give a feel for how the field has progressed to the present day. It does not intend to provide a comprehensive review of this enormous field, but rather to provide selective summaries of main driving forces and developments. Conclusions: Neutron radiobiology has continued as a vigorous field of study throughout the past 84 years. Main driving forces have included concern for protection from the harmful effects of neutrons, exploitation and optimization for cancer therapy (fast beam therapy, brachytherapy and boron capture therapy), and scientific curiosity about the mechanisms of radiation action. Effort has fluctuated as the emphasis has shifted from time to time, but all three areas remain active today. Whatever the future holds for the various types of neutron therapy, the health protection aspects will remain with us permanently because of natural environmental exposure to neutrons as well as increased additional exposures from a variety of human activities.
Collapse
|
25
|
Ricciotti E, Sarantopoulou D, Grant GR, Sanzari JK, Krigsfeld GS, Kiliti AJ, Kennedy AR, Grosser T. Distinct vascular genomic response of proton and gamma radiation-A pilot investigation. PLoS One 2019; 14:e0207503. [PMID: 30742630 PMCID: PMC6370185 DOI: 10.1371/journal.pone.0207503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/15/2019] [Indexed: 12/16/2022] Open
Abstract
The cardiovascular biology of proton radiotherapy is not well understood. We aimed to compare the genomic dose-response to proton and gamma radiation of the mouse aorta to assess whether their vascular effects may diverge. We performed comparative RNA sequencing of the aorta following (4 hrs) total-body proton and gamma irradiation (0.5–200 cGy whole body dose, 10 dose levels) of conscious mice. A trend analysis identified genes that showed a dose response. While fewer genes were dose-responsive to proton than gamma radiation (29 vs. 194 genes; q-value ≤ 0.1), the magnitude of the effect was greater. Highly responsive genes were enriched for radiation response pathways (DNA damage, apoptosis, cellular stress and inflammation; p-value ≤ 0.01). Gamma, but not proton radiation induced additionally genes in vasculature specific pathways. Genes responsive to both radiation types showed almost perfectly superimposable dose-response relationships. Despite the activation of canonical radiation response pathways by both radiation types, we detected marked differences in the genomic response of the murine aorta. Models of cardiovascular risk based on photon radiation may not accurately predict the risk associated with proton radiation.
Collapse
Affiliation(s)
- Emanuela Ricciotti
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Dimitra Sarantopoulou
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gregory R. Grant
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jenine K. Sanzari
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gabriel S. Krigsfeld
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Amber J. Kiliti
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ann R. Kennedy
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Tilo Grosser
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
26
|
Yang X, Liu H, Jiang X, Jin C, Xu Z, Li T, Wang Z, Wang J. Cyclooxygenase‑2‑mediated upregulation of heme oxygenase 1 mitigates the toxicity of deuterium‑tritium fusion radiation. Int J Mol Med 2018; 42:1945-1954. [PMID: 30085341 PMCID: PMC6108879 DOI: 10.3892/ijmm.2018.3799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022] Open
Abstract
Utilizing the energy released from the nuclear fusion of deuterium with tritium (D-T) may be an important method of supplying energy in the future. The ionizing radiation emitted from nuclear fusion is a potential health risk to humans, including scientists who are currently performing nuclear fusion experiments and the employees of fusion nuclear plants, in the future. However, there have been few reports on the biological effects of fusion radiation. In the present study, using the High Intensity D-T Fusion Neutron Generator, the DNA damage and its regulation in normal human fibroblasts exposed to fusion radiation were investigated. Heme oxygenase 1 (HO-1), which is reported to induce anti-inflammatory activity, was upregulated in the irradiated cells. Pretreatment with the HO-1 inhibitor, protoporphyrin IX zinc (II), exacerbated double strand break formation following exposure to fusion radiation. The expression of cyclooxygenase-2 (COX-2) contributed to the upregulation of HO-1, as demonstrated by the result that its inhibitor, NS-398, inhibited the induction of HO-1 in irradiated cells. It was further clarified that the ataxia telangiectasia mutated DNA damage response was activated and it stimulated the phosphorylation of p38 mitogen-activated protein kinase, which was responsible for the upregulation of COX-2 and HO-1. These results provide novel information on fusion radiation-induced biological effects and potential targets for decreasing the associated health risks.
Collapse
Affiliation(s)
- Xiaoyao Yang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Key Laboratory of Neutronics and Radiation Safety, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Hui Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Key Laboratory of Neutronics and Radiation Safety, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Xu Jiang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Key Laboratory of Neutronics and Radiation Safety, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Chufeng Jin
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Key Laboratory of Neutronics and Radiation Safety, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Zhao Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Key Laboratory of Neutronics and Radiation Safety, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Taosheng Li
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Key Laboratory of Neutronics and Radiation Safety, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Zhigang Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Key Laboratory of Neutronics and Radiation Safety, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Jun Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Key Laboratory of Neutronics and Radiation Safety, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
27
|
Lacombe J, Sima C, Amundson SA, Zenhausern F. Candidate gene biodosimetry markers of exposure to external ionizing radiation in human blood: A systematic review. PLoS One 2018; 13:e0198851. [PMID: 29879226 PMCID: PMC5991767 DOI: 10.1371/journal.pone.0198851] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/25/2018] [Indexed: 12/22/2022] Open
Abstract
Purpose To compile a list of genes that have been reported to be affected by external ionizing radiation (IR) and to assess their performance as candidate biomarkers for individual human radiation dosimetry. Methods Eligible studies were identified through extensive searches of the online databases from 1978 to 2017. Original English-language publications of microarray studies assessing radiation-induced changes in gene expression levels in human blood after external IR were included. Genes identified in at least half of the selected studies were retained for bio-statistical analysis in order to evaluate their diagnostic ability. Results 24 studies met the criteria and were included in this study. Radiation-induced expression of 10,170 unique genes was identified and the 31 genes that have been identified in at least 50% of studies (12/24 studies) were selected for diagnostic power analysis. Twenty-seven genes showed a significant Spearman’s correlation with radiation dose. Individually, TNFSF4, FDXR, MYC, ZMAT3 and GADD45A provided the best discrimination of radiation dose < 2 Gy and dose ≥ 2 Gy according to according to their maximized Youden’s index (0.67, 0.55, 0.55, 0.55 and 0.53 respectively). Moreover, 12 combinations of three genes display an area under the Receiver Operating Curve (ROC) curve (AUC) = 1 reinforcing the concept of biomarker combinations instead of looking for an ideal and unique biomarker. Conclusion Gene expression is a promising approach for radiation dosimetry assessment. A list of robust candidate biomarkers has been identified from analysis of the studies published to date, confirming for example the potential of well-known genes such as FDXR and TNFSF4 or highlighting other promising gene such as ZMAT3. However, heterogeneity in protocols and analysis methods will require additional studies to confirm these results.
Collapse
Affiliation(s)
- Jerome Lacombe
- Center for Applied NanoBioscience and Medicine, University of Arizona, Phoenix, Arizona, United States of America
- * E-mail:
| | - Chao Sima
- Center for Bioinformatics and Genomic Systems Engineering, Texas A&M Engineering Experiment Station, College Station, TX, United States of America
| | - Sally A. Amundson
- Center for Radiological Research, Columbia University Medical Center, New York, NY, United States of America
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine, University of Arizona, Phoenix, Arizona, United States of America
- Honor Health Research Institute, Scottsdale, Arizona, United States of America
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| |
Collapse
|
28
|
Suresh Kumar MA, Laiakis EC, Ghandhi SA, Morton SR, Fornace AJ, Amundson SA. Gene Expression in Parp1 Deficient Mice Exposed to a Median Lethal Dose of Gamma Rays. Radiat Res 2018; 190:53-62. [PMID: 29746213 DOI: 10.1667/rr14990.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is a current interest in the development of biodosimetric methods for rapidly assessing radiation exposure in the wake of a large-scale radiological event. This work was initially focused on determining the exposure dose to an individual using biological indicators. Gene expression signatures show promise for biodosimetric application, but little is known about how these signatures might translate for the assessment of radiological injury in radiosensitive individuals, who comprise a significant proportion of the general population, and who would likely require treatment after exposure to lower doses. Using Parp1-/- mice as a model radiation-sensitive genotype, we have investigated the effect of this DNA repair deficiency on the gene expression response to radiation. Although Parp1 is known to play general roles in regulating transcription, the pattern of gene expression changes observed in Parp1-/- mice 24 h postirradiation to a LD50/30 was remarkably similar to that in wild-type mice after exposure to LD50/30. Similar levels of activation of both the p53 and NFκB radiation response pathways were indicated in both strains. In contrast, exposure of wild-type mice to a sublethal dose that was equal to the Parp1-/- LD50/30 resulted in a lower magnitude gene expression response. Thus, Parp1-/- mice displayed a heightened gene expression response to radiation, which was more similar to the wild-type response to an equitoxic dose than to an equal absorbed dose. Gene expression classifiers trained on the wild-type data correctly identified all wild-type samples as unexposed, exposed to a sublethal dose or exposed to an LD50/30. All unexposed samples from Parp1-/- mice were also correctly classified with the same gene set, and 80% of irradiated Parp1-/- samples were identified as exposed to an LD50/30. The results of this study suggest that, at least for some pathways that may influence radiosensitivity in humans, specific gene expression signatures have the potential to accurately detect the extent of radiological injury, rather than serving only as a surrogate of physical radiation dose.
Collapse
Affiliation(s)
- M A Suresh Kumar
- a Center for Radiological Research, Columbia University Medical Center, Columbia University, New York, New York
| | - Evagelia C Laiakis
- b Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC
| | - Shanaz A Ghandhi
- a Center for Radiological Research, Columbia University Medical Center, Columbia University, New York, New York
| | - Shad R Morton
- a Center for Radiological Research, Columbia University Medical Center, Columbia University, New York, New York
| | - Albert J Fornace
- b Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC
| | - Sally A Amundson
- a Center for Radiological Research, Columbia University Medical Center, Columbia University, New York, New York
| |
Collapse
|
29
|
Laiakis EC, Wang YW, Young EF, Harken AD, Xu Y, Smilenov L, Garty GY, Brenner DJ, Fornace AJ. Metabolic Dysregulation after Neutron Exposures Expected from an Improvised Nuclear Device. Radiat Res 2017; 188:21-34. [PMID: 28475424 PMCID: PMC5714588 DOI: 10.1667/rr14656.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The increased threat of terrorism across the globe has raised fears that certain groups will acquire and use radioactive materials to inflict maximum damage. In the event that an improvised nuclear device (IND) is detonated, a potentially large population of victims will require assessment for radiation exposure. While photons will contribute to a major portion of the dose, neutrons may be responsible for the severity of the biologic effects and cellular responses. We investigated differences in response between these two radiation types by using metabolomics and lipidomics to identify biomarkers in urine and blood of wild-type C57BL/6 male mice. Identification of metabolites was based on a 1 Gy dose of radiation. Compared to X rays, a neutron spectrum similar to that encountered in Hiroshima at 1-1.5 km from the epicenter induced a severe metabolic dysregulation, with perturbations in amino acid metabolism and fatty acid β-oxidation being the predominant ones. Urinary metabolites were able to discriminate between neutron and X rays on day 1 as well as day 7 postirradiation, while serum markers showed such discrimination only on day 1. Free fatty acids from omega-6 and omega-3 pathways were also decreased with 1 Gy of neutrons, implicating cell membrane dysfunction and impaired phospholipid metabolism, which should otherwise lead to release of those molecules in circulation. While a precise relative biological effectiveness value could not be calculated from this study, the results are consistent with other published studies showing higher levels of damage from neutrons, demonstrated here by increased metabolic dysregulation. Metabolomics can therefore aid in identifying global perturbations in blood and urine, and effectively distinguishing between neutron and photon exposures.
Collapse
Affiliation(s)
| | - Yi-Wen Wang
- Department of Infectious Diseases, The Scripps Research Institute, Jupiter, Florida
| | | | - Andrew D. Harken
- Radiological Research Accelerator Facility, Columbia University, Irvington, New York
| | - Yanping Xu
- Radiological Research Accelerator Facility, Columbia University, Irvington, New York
- Department of Physics, East Carolina University, Greenville, North Carolina
| | - Lubomir Smilenov
- Center for Radiological Research, Columbia University, New York, New York
| | - Guy Y. Garty
- Radiological Research Accelerator Facility, Columbia University, Irvington, New York
| | - David J. Brenner
- Center for Radiological Research, Columbia University, New York, New York
| | - Albert J. Fornace
- Department of Biochemistry and Molecular and Cellular Biology
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| |
Collapse
|