1
|
Ma Y, Zhang W, Zhao Z, Lv J, Chen J, Yan X, Lin X, Zhang J, Wang B, Gao S, Xiao J, Yang G. Current views on mechanisms of the FLASH effect in cancer radiotherapy. Natl Sci Rev 2024; 11:nwae350. [PMID: 39479528 PMCID: PMC11523052 DOI: 10.1093/nsr/nwae350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 11/02/2024] Open
Abstract
FLASH radiotherapy (FLASH-RT) is a new modality of radiotherapy that delivers doses with ultra-high dose rates. The FLASH effect was defined as the ability of FLASH-RT to suppress tumor growth while sparing normal tissues. Although the FLASH effect has been proven to be valid in various models by different modalities of irradiation and clinical trials of FLASH-RT have achieved promising initial success, the exact underlying mechanism is still unclear. This article summarizes mainstream hypotheses of the FLASH effect at physicochemical and biological levels, including oxygen depletion and free radical reactions, nuclear and mitochondria damage, as well as immune response. These hypotheses contribute reasonable explanations to the FLASH effect and are interconnected according to the chronological order of the organism's response to ionizing radiation. By collating the existing consensus, evidence and hypotheses, this article provides a comprehensive overview of potential mechanisms of the FLASH effect and practical guidance for future investigation in the field of FLASH-RT.
Collapse
Affiliation(s)
- Yuqi Ma
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Wenkang Zhang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Ziming Zhao
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Jianfeng Lv
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Junyi Chen
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Xueqin Yan
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - XiaoJi Lin
- Oncology Discipline Group, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325003, China
| | - Junlong Zhang
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bingwu Wang
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Song Gao
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jie Xiao
- KIRI Precision Particle Therapy Flash Technologies Research Center, Guangzhou 510700, China
| | - Gen Yang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Fira AMR, Keta OD, Petković VD, Đorđević M, Petringa G, Fattori S, Catalano R, Cirrone GP, Cuttone G, Sakata D, Tran NH, Chatzipapas K, Incerti S, Petrović IM. In vitro validation of helium ion irradiations as a function of linear energy transfer in radioresistant human malignant cells. Int J Radiat Biol 2024; 100:1426-1437. [PMID: 39058324 DOI: 10.1080/09553002.2024.2373752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024]
Abstract
PURPOSE Based on considerable interest to enlarge the experimental database of radioresistant cells after their irradiation with helium ions, HTB140, MCF-7 and HTB177 human malignant cells are exposed to helium ion beams having different linear energy transfer (LET). MATERIALS AND METHODS The cells are irradiated along the widened 62 MeV/u helium ion Bragg peak, providing LET of 4.9, 9.8, 23.4 and 36.8 keV/µm. Numerical simulations with the Geant4 toolkit are used for the experimental design. Cell survival is evaluated and compared with reference γ-rays. DNA double strand breaks are assessed via γ-H2AX foci. RESULTS With the increase of LET, surviving fractions at 2 Gy decrease, while RBE (2 Gy, γ) gradually increase. For HTB140 cells, above the dose of 4 Gy, a slight saturation of survival is observed while the increase of RBE (2 Gy, γ) remains unaffected. With the increase of LET the increase of γ-H2AX foci is revealed at 0.5 h after irradiation. There is no significant difference in the number of foci between the cell lines for the same LET. From 0.5 to 24 h, the number of foci drops reaching its residual level. For each time point, there are small differences in DNA DSB among the three cell lines. CONCLUSION Analyses of data acquired for the three cell lines irradiated by helium ions, having different LET, reveal high elimination capacity and creation of a large number of DNA DSB with respect to γ-rays, and are between those reported for protons and carbon ions.
Collapse
Affiliation(s)
| | - Otilija D Keta
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Vladana D Petković
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Miloš Đorđević
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Giada Petringa
- Istituto Nazionale di Fisica Nucleare, LNS, Catania, Italy
| | - Serena Fattori
- Istituto Nazionale di Fisica Nucleare, LNS, Catania, Italy
| | | | | | | | | | - Ngoc Hoang Tran
- University of Bordeaux, CNRS, LP2I, UMR 5797, F-33170 Gradignan, France
| | | | - Sebastien Incerti
- University of Bordeaux, CNRS, LP2I, UMR 5797, F-33170 Gradignan, France
| | - Ivan M Petrović
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Yan O, Wang S, Wang Q, Wang X. FLASH Radiotherapy: Mechanisms of Biological Effects and the Therapeutic Potential in Cancer. Biomolecules 2024; 14:754. [PMID: 39062469 PMCID: PMC11275005 DOI: 10.3390/biom14070754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 07/28/2024] Open
Abstract
Radiotherapy is an important treatment for many unresectable advanced malignant tumors, and radiotherapy-associated inflammatory reactions to radiation and other toxic side effects are significant reasons which reduce the quality of life and survival of patients. FLASH-radiotherapy (FLASH-RT), a prominent topic in recent radiation therapy research, is an ultra-high dose rate treatment known for significantly reducing therapy time while effectively targeting tumors. This approach minimizes radiation side effects on at-risk organs and maximally protects surrounding healthy tissues. Despite decades of preclinical exploration and some notable achievements, the mechanisms behind FLASH effects remain debated. Standardization is still required for the type of FLASH-RT rays and dose patterns. This review addresses the current state of FLASH-RT research, summarizing the biological mechanisms behind the FLASH effect. Additionally, it examines the impact of FLASH-RT on immune cells, cytokines, and the tumor immune microenvironment. Lastly, this review will discuss beam characteristics, potential clinical applications, and the relevance and applicability of FLASH-RT in treating advanced cancers.
Collapse
Affiliation(s)
| | | | | | - Xin Wang
- Division of Abdominal Tumor Multimodality Treatment, Department of Radiation Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China; (O.Y.); (S.W.); (Q.W.)
| |
Collapse
|
4
|
McGarrigle JM, Long KR, Prezado Y. The FLASH effect-an evaluation of preclinical studies of ultra-high dose rate radiotherapy. Front Oncol 2024; 14:1340190. [PMID: 38711846 PMCID: PMC11071325 DOI: 10.3389/fonc.2024.1340190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/20/2024] [Indexed: 05/08/2024] Open
Abstract
FLASH radiotherapy (FLASH-RT) is a novel radiotherapy approach based on the use of ultra-high dose radiation to treat malignant cells. Although tumours can be reduced or eradicated using radiotherapy, toxicities induced by radiation can compromise healthy tissues. The FLASH effect is the observation that treatment delivered at an ultra-high dose rate is able to reduce adverse toxicities present at conventional dose rates. While this novel technique may provide a turning point for clinical practice, the exact mechanisms underlying the causes or influences of the FLASH effect are not fully understood. The study presented here uses data collected from 41 experimental investigations (published before March 2024) of the FLASH effect. Searchable databases were constructed to contain the outcomes of the various experiments in addition to values of beam parameters that may have a bearing on the FLASH effect. An in-depth review of the impact of the key beam parameters on the results of the experiments was carried out. Correlations between parameter values and experimental outcomes were studied. Pulse Dose Rate had positive correlations with almost all end points, suggesting viability of FLASH-RT as a new modality of radiotherapy. The collective results of this systematic review study suggest that beam parameter qualities from both FLASH and conventional radiotherapy can be valuable for tissue sparing and effective tumour treatment.
Collapse
Affiliation(s)
| | - Kenneth Richard Long
- Department of Physics, Imperial College London, London, United Kingdom
- Science and Technology Facilities Council (STFC), Rutherford Appleton Laboratory, Oxford, United Kingdom
| | - Yolanda Prezado
- Institut Curie, Universite Paris-Saclay, Centre national de la recherche scientifique (CNRS) UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France
- Universite Paris-Saclay, Centre national de la recherche scientifique (CNRS) UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France
| |
Collapse
|
5
|
Shiraishi Y, Matsuya Y, Fukunaga H. Possible mechanisms and simulation modeling of FLASH radiotherapy. Radiol Phys Technol 2024; 17:11-23. [PMID: 38184508 DOI: 10.1007/s12194-023-00770-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 01/08/2024]
Abstract
FLASH radiotherapy (FLASH-RT) has great potential to improve patient outcomes. It delivers radiation doses at an ultra-high dose rate (UHDR: ≥ 40 Gy/s) in a single instant or a few pulses. Much higher irradiation doses can be administered to tumors with FLASH-RT than with conventional dose rate (0.01-0.40 Gy/s) radiotherapy. UHDR irradiation can suppress toxicity in normal tissues while sustaining antitumor efficiency, which is referred to as the FLASH effect. However, the mechanisms underlying the effects of the FLASH remain unclear. To clarify these mechanisms, the development of simulation models that can contribute to treatment planning for FLASH-RT is still underway. Previous studies indicated that transient oxygen depletion or augmented reactions between secondary reactive species produced by irradiation may be involved in this process. To discuss the possible mechanisms of the FLASH effect and its clinical potential, we summarized the physicochemical, chemical, and biological perspectives as well as the development of simulation modeling for FLASH-RT.
Collapse
Affiliation(s)
- Yuta Shiraishi
- Graduate School of Health Sciences, Hokkaido University, N12 W5 Kita-Ku, Sapporo, Hokkaido, 060-0812, Japan
- Faculty of Health Sciences, Japan Healthcare University, 3-11-1-50 Tsukisamu-Higashi, Toyohira-Ku, Sapporo, Hokkaido, 062-0053, Japan
| | - Yusuke Matsuya
- Faculty of Health Sciences, Hokkaido University, N12 W5 Kita-Ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Hisanori Fukunaga
- Faculty of Health Sciences, Hokkaido University, N12 W5 Kita-Ku, Sapporo, Hokkaido, 060-0812, Japan.
| |
Collapse
|
6
|
Wang Z, Li W, Jiang Y, Tran TB, Cordova LE, Chung J, Kim M, Wondrak G, Erdrich J, Lu J. Sphingomyelin-derived nanovesicles for the delivery of the IDO1 inhibitor epacadostat enhance metastatic and post-surgical melanoma immunotherapy. Nat Commun 2023; 14:7235. [PMID: 37945606 PMCID: PMC10636136 DOI: 10.1038/s41467-023-43079-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Epacadostat (EPA), the most advanced IDO1 inhibitor, in combination with PD-1 checkpoint inhibitor, has failed in a recent Phase III clinical trial for treating metastatic melanoma. Here we report an EPA nanovesicle therapeutic platform (Epacasome) based on chemically attaching EPA to sphingomyelin via an oxime-ester bond highly responsive to hydrolase cleavage. Via clathrin-mediated endocytosis, Epacasome displays higher cellular uptake and enhances IDO1 inhibition and T cell proliferation compared to free EPA. Epacasome shows improved pharmacokinetics and tumour accumulation with efficient intratumoural drug release and deep tumour penetration. Additionally, it outperforms free EPA for anticancer efficacy, potentiating PD-1 blockade with boosted cytotoxic T lymphocytes (CTLs) and reduced regulatory T cells and myeloid-derived suppressor cells responses in a B16-F10 melanoma model in female mice. By co-encapsulating immunogenic dacarbazine, Epacasome further enhances anti-tumor effects and immune responses through the upregulation of NKG2D-mediated CTLs and natural killer cells responses particularly when combined with the PD-1 inhibitor in the late-stage metastatic B16-F10-Luc2 model in female mice. Furthermore, this combination prevents tumour recurrence and prolongs mouse survival in a clinically relevant, post-surgical melanoma model in female mice. Epacasome demonstrates potential to synergize with PD-1 blockade for improved response to melanoma immunotherapy.
Collapse
Affiliation(s)
- Zhiren Wang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Wenpan Li
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Yanhao Jiang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Tuyen Ba Tran
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Leyla Estrella Cordova
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Jinha Chung
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Minhyeok Kim
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Georg Wondrak
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
- NCI-designated University of Arizona Comprehensive Cancer Center, Tucson, AZ, 85721, USA
| | - Jennifer Erdrich
- Department of Surgery, Division of Surgical Oncology, The University of Arizona College of Medicine, Tucson, AZ, 85721, USA
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA.
- NCI-designated University of Arizona Comprehensive Cancer Center, Tucson, AZ, 85721, USA.
- BIO5 Institute, The University of Arizona, Tucson, AZ, 85721, USA.
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
7
|
Flannigan DJ, VandenBussche EJ. Pulsed-beam transmission electron microscopy and radiation damage. Micron 2023; 172:103501. [PMID: 37390662 DOI: 10.1016/j.micron.2023.103501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
We review the use of pulsed electron-beams in transmission electron microscopes (TEMs) for the purpose of mitigating specimen damage. We begin by placing the importance of TEMs with respect to materials characterization into proper context, and we provide a brief overview of established methods for reducing or eliminating the deleterious effects of beam-induced damage. We then introduce the concept of pulsed-beam TEM, and we briefly describe the basic methods and instrument configurations used to create so-called temporally structured electron beams. Following a brief overview of the use of high-dose-rate pulsed-electron beams in cancer radiation therapy, we review historical speculations and more recent compelling but mostly anecdotal findings of a pulsed-beam TEM damage effect. This is followed by an in-depth technical review of recent works seeking to establish cause-and-effect relationships, to conclusively uncover the presence of an effect, and to explore the practicality of the approach. These studies, in particular, provide the most compelling evidence to date that using a pulsed electron beam in the TEM is indeed a viable way to mitigate damage. Throughout, we point out current gaps in understanding, and we conclude with a brief perspective of current needs and future directions.
Collapse
Affiliation(s)
- David J Flannigan
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455, USA; Minnesota Institute for Ultrafast Science, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Elisah J VandenBussche
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455, USA; Minnesota Institute for Ultrafast Science, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
8
|
Atkinson J, Bezak E, Le H, Kempson I. The current status of FLASH particle therapy: a systematic review. Phys Eng Sci Med 2023; 46:529-560. [PMID: 37160539 DOI: 10.1007/s13246-023-01266-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
Particle therapies are becoming increasingly available clinically due to their beneficial energy deposition profile, sparing healthy tissues. This may be further promoted with ultra-high dose rates, termed FLASH. This review comprehensively summarises current knowledge based on studies relevant to proton- and carbon-FLASH therapy. As electron-FLASH literature presents important radiobiological findings that form the basis of proton and carbon-based FLASH studies, a summary of key electron-FLASH papers is also included. Preclinical data suggest three key mechanisms by which proton and carbon-FLASH are able to reduce normal tissue toxicities compared to conventional dose rates, with equipotent, or enhanced, tumour kill efficacy. However, a degree of caution is needed in clinically translating these findings as: most studies use transmission and do not conform the Bragg peak to tumour volume; mechanistic understanding is still in its infancy; stringent verification of dosimetry is rarely provided; biological assays are prone to limitations which need greater acknowledgement.
Collapse
Affiliation(s)
- Jake Atkinson
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Eva Bezak
- Cancer Research Institute, University of South Australia, Adelaide, South Australia, 5000, Australia
- Department of Physics, University of Adelaide, North Terrace, Adelaide, South Australia, 5000, Australia
| | - Hien Le
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, 5000, Australia
| | - Ivan Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia.
| |
Collapse
|
9
|
Giovannini D, De Angelis C, Astorino MD, Fratini E, Cisbani E, Bazzano G, Ampollini A, Piccinini M, Nichelatti E, Trinca E, Nenzi P, Mancuso M, Picardi L, Marino C, Ronsivalle C, Pazzaglia S. In Vivo Radiobiological Investigations with the TOP-IMPLART Proton Beam on a Medulloblastoma Mouse Model. Int J Mol Sci 2023; 24:ijms24098281. [PMID: 37175984 PMCID: PMC10179102 DOI: 10.3390/ijms24098281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Protons are now increasingly used to treat pediatric medulloblastoma (MB) patients. We designed and characterized a setup to deliver proton beams for in vivo radiobiology experiments at a TOP-IMPLART facility, a prototype of a proton-therapy linear accelerator developed at the ENEA Frascati Research Center, with the goal of assessing the feasibility of TOP-IMPLART for small animal proton therapy research. Mice bearing Sonic-Hedgehog (Shh)-dependent MB in the flank were irradiated with protons to test whether irradiation could be restricted to a specific depth in the tumor tissue and to compare apoptosis induced by the same dose of protons or photons. In addition, the brains of neonatal mice at postnatal day 5 (P5), representing a very small target, were irradiated with 6 Gy of protons with two different collimated Spread-Out Bragg Peaks (SOBPs). Apoptosis was visualized by immunohistochemistry for the apoptotic marker caspase-3-activated, and quantified by Western blot. Our findings proved that protons could be delivered to the upper part while sparing the deepest part of MB. In addition, a comparison of the effectiveness of protons and photons revealed a very similar increase in the expression of cleaved caspase-3. Finally, by using a very small target, the brain of P5-neonatal mice, we demonstrated that the proton irradiation field reached the desired depth in brain tissue. Using the TOP-IMPLART accelerator we established setup and procedures for proton irradiation, suitable for translational preclinical studies. This is the first example of in vivo experiments performed with a "full-linac" proton-therapy accelerator.
Collapse
Affiliation(s)
- Daniela Giovannini
- ENEA SSPT-TECS-TEB, Casaccia Research Center, Division of Health Protection Technology (TECS), Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Via Anguillarese 301, 00123 Rome, Italy
| | - Cinzia De Angelis
- Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161 Rome, Italy
| | - Maria Denise Astorino
- ENEA FSN-TECFIS-APAM, Frascati Research Center, Via Enrico Fermi 45, 00044 Frascati, Italy
| | - Emiliano Fratini
- ENEA SSPT-TECS-TEB, Casaccia Research Center, Division of Health Protection Technology (TECS), Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Via Anguillarese 301, 00123 Rome, Italy
| | - Evaristo Cisbani
- Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161 Rome, Italy
| | - Giulia Bazzano
- ENEA FSN-TECFIS-APAM, Frascati Research Center, Via Enrico Fermi 45, 00044 Frascati, Italy
| | - Alessandro Ampollini
- ENEA FSN-TECFIS-APAM, Frascati Research Center, Via Enrico Fermi 45, 00044 Frascati, Italy
| | - Massimo Piccinini
- ENEA FSN-TECFIS-MNF, Frascati Research Center, Via Enrico Fermi 45, 00044 Frascati, Italy
| | - Enrico Nichelatti
- ENEA FSN-TECFIS-MNF, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Emiliano Trinca
- ENEA FSN-TECFIS-APAM, Frascati Research Center, Via Enrico Fermi 45, 00044 Frascati, Italy
| | - Paolo Nenzi
- ENEA FSN-TECFIS-APAM, Frascati Research Center, Via Enrico Fermi 45, 00044 Frascati, Italy
| | - Mariateresa Mancuso
- ENEA SSPT-TECS-TEB, Casaccia Research Center, Division of Health Protection Technology (TECS), Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Via Anguillarese 301, 00123 Rome, Italy
| | - Luigi Picardi
- ENEA FSN-TECFIS-APAM, Frascati Research Center, Via Enrico Fermi 45, 00044 Frascati, Italy
| | - Carmela Marino
- ENEA SSPT-TECS-TEB, Casaccia Research Center, Division of Health Protection Technology (TECS), Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Via Anguillarese 301, 00123 Rome, Italy
| | - Concetta Ronsivalle
- ENEA FSN-TECFIS-APAM, Frascati Research Center, Via Enrico Fermi 45, 00044 Frascati, Italy
| | - Simonetta Pazzaglia
- ENEA SSPT-TECS-TEB, Casaccia Research Center, Division of Health Protection Technology (TECS), Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Via Anguillarese 301, 00123 Rome, Italy
| |
Collapse
|
10
|
Trotter J, Lin A. Advances in Proton Therapy for the Management of Head and Neck Tumors. Surg Oncol Clin N Am 2023; 32:587-598. [PMID: 37182994 DOI: 10.1016/j.soc.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Proton therapy (PBRT) is a form of external beam radiotherapy with several dosimetric advantages compared with conventional photon (x-ray) radiotherapy. Unlike x-rays, protons deposit most of their dose over a finite range, with no exit dose, in a pattern known as the Bragg peak. Clinically, this can be exploited to optimize dose to tumors while delivering a lower integral dose to normal tissues. However, the optimal role of PBRT is not as well-defined as advanced x-ray-based techniques such as intensity-modulated radiotherapy.
Collapse
|
11
|
José Santo R, Habraken SJM, Breedveld S, Hoogeman MS. Pencil-beam Delivery Pattern Optimization Increases Dose Rate for Stereotactic FLASH Proton Therapy. Int J Radiat Oncol Biol Phys 2023; 115:759-767. [PMID: 36057377 DOI: 10.1016/j.ijrobp.2022.08.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE FLASH dose rates >40 Gy/s are readily available in proton therapy (PT) with cyclotron-accelerated beams and pencil-beam scanning (PBS). The PBS delivery pattern will affect the local dose rate, as quantified by the PBS dose rate (PBS-DR), and therefore needs to be accounted for in FLASH-PT with PBS, but it is not yet clear how. Our aim was to optimize patient-specific scan patterns for stereotactic FLASH-PT of early-stage lung cancer and lung metastases, maximizing the volume irradiated with PBS-DR >40 Gy/s of the organs at risk voxels irradiated to >8 Gy (FLASH coverage). METHODS AND MATERIALS Plans to 54 Gy/3 fractions with 3 equiangular coplanar 244 MeV proton shoot-through transmission beams for 20 patients were optimized with in-house developed software. Planning target volume-based planning with a 5 mm margin was used. Planning target volume ranged from 4.4 to 84 cc. Scan-pattern optimization was performed with a Genetic Algorithm, run in parallel for 20 independent populations (islands). Mapped crossover, inversion, swap, and shift operators were applied to achieve (local) optimality on each island, with migration between them for global optimality. The cost function was chosen to maximize the FLASH coverage per beam at >8 Gy, >40 Gy/s, and 40 nA beam current. The optimized patterns were evaluated on FLASH coverage, PBS-DR distribution, and population PBS-DR-volume histograms, compared with standard line-by-line scanning. Robustness against beam current variation was investigated. RESULTS The optimized patterns have a snowflake-like structure, combined with outward swirling for larger targets. A population median FLASH coverage of 29.0% was obtained for optimized patterns compared with 6.9% for standard patterns, illustrating a significant increase in FLASH coverage for optimized patterns. For beam current variations of 5 nA, FLASH coverage varied between -6.1%-point and 2.2%-point for optimized patterns. CONCLUSIONS Significant improvements on the PBS-DR and, hence, on FLASH coverage and potential healthy-tissue sparing are obtained by sequential scan-pattern optimization. The optimizer is flexible and may be further fine-tuned, based on the exact conditions for FLASH.
Collapse
Affiliation(s)
- Rodrigo José Santo
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, The Netherlands; Instituto Superior Técnico, Department of Physics, Universidade de Lisboa, Lisbon, Portugal; Holland Proton Therapy Center, Department of Medical Physics & Informatics, Delft, The Netherlands
| | - Steven J M Habraken
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, The Netherlands; Holland Proton Therapy Center, Department of Medical Physics & Informatics, Delft, The Netherlands.
| | - Sebastiaan Breedveld
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, The Netherlands
| | - Mischa S Hoogeman
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, The Netherlands; Holland Proton Therapy Center, Department of Medical Physics & Informatics, Delft, The Netherlands
| |
Collapse
|
12
|
Thompson SJ, Prise KM, McMahon SJ. Investigating the potential contribution of inter-track interactions within ultra-high dose-rate proton therapy. Phys Med Biol 2023; 68. [PMID: 36731135 DOI: 10.1088/1361-6560/acb88a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/01/2023] [Indexed: 02/04/2023]
Abstract
Objective. Laser-accelerated protons offer an alternative delivery mechanism for proton therapy. This technique delivers dose-rates of ≥109Gy s-1, many orders of magnitude greater than used clinically. Such ultra-high dose-rates reduce delivery time to nanoseconds, equivalent to the lifetime of reactive chemical species within a biological medium. This leads to the possibility of inter-track interactions between successive protons within a pulse, potentially altering the yields of damaging radicals if they are in sufficient spatial proximity. This work investigates the temporal evolution of chemical species for a range of proton energies and doses to quantify the circumstances required for inter-track interactions, and determine any relevance within ultra-high dose-rate proton therapy.Approach. The TOPAS-nBio Monte Carlo toolkit was used to investigate possible inter-track interactions. Firstly, protons between 0.5 and 100 MeV were simulated to record the radial track dimensions throughout the chemical stage from 1 ps to 1μs. Using the track areas, the geometric probability of track overlap was calculated for various exposures and timescales. A sample of irradiations were then simulated in detail to compare any change in chemical yields for independently and instantaneously delivered tracks, and validate the analytic model.Main results. Track overlap for a clinical 2 Gy dose was negligible for biologically relevant timepoints for all energies. Overlap probability increased with time after irradiation, proton energy and dose, with a minimum 23 Gy dose required before significant track overlap occurred. Simulating chemical interactions confirmed these results with no change in radical yields seen up to 8 Gy for independently and instantaneously delivered tracks.Significance. These observations suggest that the spatial separation between incident protons is too large for physico-chemical inter-track interactions, regardless of the delivery time, indicating such interactions would not play a role in any potential changes in biological response between laser-accelerated and conventional proton therapy.
Collapse
Affiliation(s)
- Shannon J Thompson
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Kevin M Prise
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Stephen J McMahon
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
13
|
Lv Y, Lv Y, Wang Z, Lan T, Feng X, Chen H, Zhu J, Ma X, Du J, Hou G, Liao W, Yuan K, Wu H. FLASH radiotherapy: A promising new method for radiotherapy. Oncol Lett 2022; 24:419. [PMID: 36284652 PMCID: PMC9580247 DOI: 10.3892/ol.2022.13539] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/10/2022] [Indexed: 11/06/2022] Open
Abstract
Among the treatments for malignant tumors, radiotherapy is of great significance both as a main treatment and as an adjuvant treatment. Radiation therapy damages cancer cells with ionizing radiation, leading to their death. However, radiation-induced toxicity limits the dose delivered to the tumor, thereby constraining the control effect of radiotherapy on tumor growth. In addition, the delayed toxicity caused by radiotherapy significantly harms the physical and mental health of patients. FLASH-RT, an emerging class of radiotherapy, causes a phenomenon known as the 'FLASH effect', which delivers radiotherapy at an ultra-high dose rate with lower toxicity to normal tissue than conventional radiotherapy to achieve local tumor control. Although its mechanism remains to be fully elucidated, this modality constitutes a potential new approach to treating malignant tumors. In the present review, the current research progress of FLASH-RT and its various particular effects are described, including the status of research on FLASH-RT and its influencing factors. The hypothetic mechanism of action of FLASH-RT is also summarized, providing insight into future tumor treatments.
Collapse
Affiliation(s)
- Yinghao Lv
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Yue Lv
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Zhen Wang
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Tian Lan
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Xuping Feng
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Hao Chen
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Jiang Zhu
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Xiao Ma
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Jinpeng Du
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Guimin Hou
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Wenwei Liao
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Kefei Yuan
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Hong Wu
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
14
|
Li L, Yuan Y, Zuo Y. A review of the impact of FLASH radiotherapy on the central nervous system and glioma. RADIATION MEDICINE AND PROTECTION 2022. [DOI: 10.1016/j.radmp.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
15
|
Gao Y, Liu R, Chang C, Charyyev S, Zhou J, Bradley JD, Liu T, Yang X. A potential revolution in cancer treatment: A topical review of FLASH radiotherapy. J Appl Clin Med Phys 2022; 23:e13790. [PMID: 36168677 PMCID: PMC9588273 DOI: 10.1002/acm2.13790] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/08/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022] Open
Abstract
FLASH radiotherapy (RT) is a novel technique in which the ultrahigh dose rate (UHDR) (≥40 Gy/s) is delivered to the entire treatment volume. Recent outcomes of in vivo studies show that the UHDR RT has the potential to spare normal tissue without sacrificing tumor control. There is a growing interest in the application of FLASH RT, and the ultrahigh dose irradiation delivery has been achieved by a few experimental and modified linear accelerators. The underlying mechanism of FLASH effect is yet to be fully understood, but the oxygen depletion in normal tissue providing extra protection during FLASH irradiation is a hypothesis that attracts most attention currently. Monte Carlo simulation is playing an important role in FLASH, enabling the understanding of its dosimetry calculations and hardware design. More advanced Monte Carlo simulation tools are under development to fulfill the challenge of reproducing the radiolysis and radiobiology processes in FLASH irradiation. FLASH RT may become one of standard treatment modalities for tumor treatment in the future. This paper presents the history and status of FLASH RT studies with a focus on FLASH irradiation delivery modalities, underlying mechanism of FLASH effect, in vivo and vitro experiments, and simulation studies. Existing challenges and prospects of this novel technique are discussed in this manuscript.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Ruirui Liu
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Chih‐Wei Chang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Serdar Charyyev
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Jeffrey D. Bradley
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
16
|
Habraken S, Breedveld S, Groen J, Nuyttens J, Hoogeman M. Trade-off in healthy tissue sparing of FLASH and fractionation in stereotactic proton therapy of lung lesions with transmission beams. Radiother Oncol 2022; 175:231-237. [PMID: 35988773 DOI: 10.1016/j.radonc.2022.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 10/15/2022]
Abstract
PURPOSE AND OBJECTIVE Besides a dose-rate threshold of 40-100 Gy/s, the FLASH effect may require a dose >3.5-7 Gy. Even in hypofractioned treatments, with all beams delivered in each fraction (ABEF), most healthy tissue is irradiated to a lower fraction dose. This can be circumvented by single-beam-per-fraction (SBPF) delivery, with a loss of healthy tissue sparing by fractionation. We investigated the trade-off between FLASH and loss of fractionation in SBPF stereotactic proton therapy of lung cancer and determined break-even FLASH-enhancement ratios (FERs). MATERIALS AND METHODS Treatment plans for 12 patients were generated. GTV delineations were available and a 5 mm GTV-PTV margin was applied. Equiangular arrangements of 3, 5, 7, and 9 244 MeV proton transmission beams were used. To facilitate SBPF, the number of fractions was equal to the number of beams. Iso-effective fractionation schedules with a single field uniform dose prescription were used: D95%,PTV = 100%Dpres per beam. All plans were evaluated in terms of dose to lung and conformity of dose to target of FLASH-enhanced biologically equivalent dose (EQD2). RESULTS Compared to ABEF, SBPF resulted in a median increase of EQD2mean to healthy lung of 56%, 58%, 55% and 54% in plans with 3, 5, 7 and 9 fractions respectively and of 90%, 108%, 106% and 102% in V100% EQD2, quantifying conformity. This can be compensated for by FERs of at least 1.28, 1.32, 1.30 and 1.23 respectively for EQD2mean and 1.29, 1.18, 1.28 and 1.15 for V100%,EQD2. CONCLUSION A FLASH effect outweighing the loss of fractionation in SBPF may be achieved in stereotactic lung treatments. The trade-off with fractionation depends on the conditions under which the FLASH effect occurs. Better understanding of the underlying biology and the impact of delivery conditions is needed.
Collapse
Affiliation(s)
- Steven Habraken
- Erasmus University Medical Center, Department of Radiotherapy, Rotterdam, The Netherlands; Holland Proton Therapy Center, Department of Medical Physics & Informatics, Delft, The Netherlands.
| | - Sebastiaan Breedveld
- Erasmus University Medical Center, Department of Radiotherapy, Rotterdam, The Netherlands
| | - Jort Groen
- Erasmus University Medical Center, Department of Radiotherapy, Rotterdam, The Netherlands
| | - Joost Nuyttens
- Erasmus University Medical Center, Department of Radiotherapy, Rotterdam, The Netherlands; Holland Proton Therapy Center, Department Radiation Oncology, Delft, The Netherlands
| | - Mischa Hoogeman
- Erasmus University Medical Center, Department of Radiotherapy, Rotterdam, The Netherlands; Holland Proton Therapy Center, Department of Medical Physics & Informatics, Delft, The Netherlands
| |
Collapse
|
17
|
Rothwell B, Lowe M, Traneus E, Krieger M, Schuemann J. Treatment planning considerations for the development of FLASH proton therapy. Radiother Oncol 2022; 175:222-230. [PMID: 35963397 DOI: 10.1016/j.radonc.2022.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
Abstract
With increasing focus on the translation of the observed FLASH effect into clinical practice, this paper presents treatment planning considerations for its development using proton therapy. Potential requirements to induce a FLASH effect are discussed along with the properties of existing proton therapy delivery systems and the changes in planning and delivery approaches required to satisfy these prerequisites. For the exploration of treatment planning approaches for FLASH, developments in treatment planning systems are needed. Flexibility in adapting to new information will be important in such an evolving area. Variations in definitions, threshold values and assumptions can make it difficult to compare different published studies and to interpret previous studies in the context of new information. Together with the fact that much is left to be understood about the underlying mechanism behind the FLASH effect, a systematic and comprehensive approach to information storage is encouraged. Collecting and retaining more detailed information on planned and realised dose delivery as well as reporting the assumptions made in planning studies creates the potential for research to be revisited and re-evaluated in the light of future improvements in understanding. Forward thinking at the time of study development can help facilitate retrospective analysis. This, we hope, will increase the available evidence and accelerate the translation of the FLASH effect into clinical benefit.
Collapse
Affiliation(s)
- Bethany Rothwell
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.
| | - Matthew Lowe
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, United Kingdom; Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | | | - Miriam Krieger
- Varian Medical Systems Particle Therapy GmbH & Co. KG, Troisdorf, Germany
| | - Jan Schuemann
- Division of Physics, Dept. of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Wei S, Lin H, Shi C, Xiong W, Chen CC, Huang S, Press RH, Hasan S, Chhabra AM, Choi JI, Simone CB, Kang M. Use of single-energy proton pencil beam scanning Bragg peak for intensity-modulated proton therapy FLASH treatment planning in liver hypofractionated radiation therapy. Med Phys 2022; 49:6560-6574. [PMID: 35929404 DOI: 10.1002/mp.15894] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 06/09/2022] [Accepted: 07/20/2022] [Indexed: 11/11/2022] Open
Abstract
PURPOSE The transmission proton FLASH technique delivers high doses to the normal tissue distal to the target, which is less conformal compared to the Bragg peak technique. To investigate FLASH RT planning using single-energy Bragg peak beams with a similar beam arrangement as clinical intensity-modulated proton therapy (IMPT) in liver stereotactic body radiation therapy (SBRT) and to characterize the plan quality, dose sparing of organs-at-risk (OARs), and FLASH dose rate percentage. MATERIALS AND METHODS An in-house platform was developed to enable inverse IMPT-FLASH planning using single-energy Bragg peaks. A universal range shifter and range compensators were utilized to effectively align the Bragg peak to the distal edge of the target. Two different minimum MU settings of 400 and 800 MU/spot (Bragg-400MU and Bragg-800MU) plans were investigated on 10 consecutive hepatocellular carcinoma patients previously treated by IMPT-SBRT to evaluate the FLASH dose and dose rate coverage for OARs. The IMPT-FLASH using single-energy Bragg peaks delivered 50 Gy in 5 fractions with similar or identical beam arrangement to the clinical IMPT-SBRT plans. NRG GI003 dose constraint metrics were used. Three dose rate calculation methods, including average dose rate (ADR), dose threshold dose rate (DTDR), and dose-averaged dose rate (DADR), were all studied. RESULTS The novel spot map optimization can fulfill the inverse planning using single-energy Bragg peaks. All the Bragg peak FLASH plans achieved similar results for the liver-GTV Dmean and heart D0.5cc , compared to SBRT-IMPT. The Bragg-800MU plans resulted in 18.3% higher CTV D2cc compared with SBRT (p < 0.05), and no significant difference was found between Bragg-400MU and SBRT plans. For the CTV Dmax , SBRT plans resulted in 10.3% (p<0.01) less than Bragg-400MU plans and 16.6% (p<0.01) less than Bragg-800MU plans. The Bragg-800MU plans generally achieved higher ADR, DADR, and DTDR dose rates than Bragg-400MU plans, and DADR mostly led to the highest V40Gy/s compared to other dose rate calculation methods, whereas ADR led to the lowest. The lower dose rate portions in certain OARs are related to the lower dose deposited due to the farther distances from targets, especially in the penumbra of the beams. CONCLUSION Single-energy Bragg peak IMPT-FLASH plans eliminate the exit dose in normal tissues, maintaining comparable dose metrics to the conventional IMPT-SBRT plans while achieving a sufficient FLASH dose rate for liver cancers. This study demonstrates the feasibility of and sufficiently high dose rate when applying Bragg peak FLASH treatment for liver cancer hypofractionated FLASH therapy. The advancement of this novel method has the potential to optimize treatment for liver cancer patients. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shouyi Wei
- New York Proton Center, New York, NY, USA
| | - Haibo Lin
- New York Proton Center, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Impact of DNA Repair Kinetics and Dose Rate on RBE Predictions in the UNIVERSE. Int J Mol Sci 2022; 23:ijms23116268. [PMID: 35682947 PMCID: PMC9181644 DOI: 10.3390/ijms23116268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Accurate knowledge of the relative biological effectiveness (RBE) and its dependencies is crucial to support modern ion beam therapy and its further development. However, the influence of different dose rates of the reference radiation and ion beam are rarely considered. The ion beam RBE-model within our "UNIfied and VERSatile bio response Engine" (UNIVERSE) is extended by including DNA damage repair kinetics to investigate the impact of dose-rate effects on the predicted RBE. It was found that dose-rate effects increase with dose and biological effects saturate at high dose-rates, which is consistent with data- and model-based studies in the literature. In a comparison with RBE measurements from a high dose in-vivo study, the predictions of the presented modification were found to be improved in comparison to the previous version of UNIVERSE and existing clinical approaches that disregard dose-rate effects. Consequently, DNA repair kinetics and the different dose rates applied by the reference and ion beams might need to be considered in biophysical models to accurately predict the RBE. Additionally, this study marks an important step in the further development of UNIVERSE, extending its capabilities in giving theoretical guidance to support progress in ion beam therapy.
Collapse
|
20
|
Taylor E, Hill RP, Létourneau D. Modeling the impact of spatial oxygen heterogeneity on radiolytic oxygen depletion during FLASH radiotherapy. Phys Med Biol 2022; 67. [PMID: 35576920 DOI: 10.1088/1361-6560/ac702c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/16/2022] [Indexed: 12/12/2022]
Abstract
Purpose.It has been postulated that the delivery of radiotherapy at ultra-high dose rates ('FLASH') reduces normal tissue toxicities by depleting them of oxygen. The fraction of normal tissue and cancer cells surviving radiotherapy depends on dose and oxygen levels in an exponential manner and even a very small fraction of tissue at low oxygen levels can determine radiotherapy response. To quantify the differential impact of FLASH radiotherapy on normal and tumour tissues, the spatial heterogeneity of oxygenation in tissue should thus be accounted for.Methods.The effect of FLASH on radiation-induced normal and tumour tissue cell killing was studied by simulating oxygen diffusion, metabolism, and radiolytic oxygen depletion (ROD) over domains with simulated capillary architectures. To study the impact of heterogeneity, two architectural models were used: (1) randomly distributed capillaries and (2) capillaries forming a regular square lattice array. The resulting oxygen partial pressure distribution histograms were used to simulate normal and tumour tissue cell survival using the linear quadratic model of cell survival, modified to incorporate oxygen-enhancement ratio effects. The ratio ('dose modifying factors') of conventional low-dose-rate dose and FLASH dose at iso-cell survival was computed and compared with empirical iso-toxicity dose ratios.Results.Tumour cell survival was found to be increased by FLASH as compared to conventional radiotherapy, with a 0-1 order of magnitude increase for expected levels of tumour hypoxia, depending on the relative magnitudes of ROD and tissue oxygen metabolism. Interestingly, for the random capillary model, the impact of FLASH on well-oxygenated (normal) tissues was found to be much greater, with an estimated increase in cell survival by up to 10 orders of magnitude, even though reductions in mean tissue partial pressure were modest, less than ∼7 mmHg for the parameter values studied. The dose modifying factor for normal tissues was found to lie in the range 1.2-1.7 for a representative value of normal tissue oxygen metabolic rate, consistent with preclinical iso-toxicity results.Conclusions.The presence of very small nearly hypoxic regions in otherwise well-perfused normal tissues with high mean oxygen levels resulted in a greater proportional sparing of normal tissue than tumour cells during FLASH irradiation, possibly explaining empirical normal tissue sparing and iso-tumour control results.
Collapse
Affiliation(s)
- Edward Taylor
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Richard P Hill
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Létourneau
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Guo Z, Buonanno M, Harken A, Zhou G, Hei TK. Mitochondrial Damage Response and Fate of Normal Cells Exposed to FLASH Irradiation with Protons. Radiat Res 2022; 197:569-582. [PMID: 35290449 DOI: 10.1667/rade-21-00181.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/24/2022] [Indexed: 11/03/2022]
Abstract
Radiation therapy (RT) plays an important role in cancer treatment. The clinical efficacy of radiation therapy is, however, limited by normal tissue toxicity in areas surrounding the irradiated tumor. Compared to conventional radiation therapy (CONV-RT) in which doses are typically delivered at dose rates between 0.03-0.05 Gy/s, there is evidence that radiation delivered at dose rates of orders of magnitude higher (known as FLASH-RT), dramatically reduces the adverse side effects in normal tissues while achieving similar tumor control. The present study focused on normal cell response and tested the hypothesis that proton-FLASH irradiation preserves mitochondria function of normal cells through the induction of phosphorylated Drp1. Normal human lung fibroblasts (IMR90) were irradiated under ambient oxygen concentration (21%) with protons (LET = 10 keV/μm) delivered at dose rates of either 0.33 Gy/s or 100 Gy/s. Mitochondrial dynamics, functions, cell growth and changes in protein expression levels were investigated. Compared to lower dose-rate proton irradiation, FLASH-RT prevented mitochondria damage characterized by morphological changes, functional changes (membrane potential, mtDNA copy number and oxidative enzyme levels) and oxyradical production. After CONV-RT, the phosphorylated form of Dynamin-1-like protein (p-Drp1) underwent dephosphorylation and aggregated into the mitochondria resulting in mitochondria fission and subsequent cell death. In contrast, p-Drp1 protein level did not significantly change after delivery of similar FLASH doses. Compared with CONV irradiation, FLASH irradiation using protons induces minimal mitochondria damage; our results highlight a possible contribution of Drp1-mediated mitochondrial homeostasis in this potential novel cancer treatment modality.
Collapse
Affiliation(s)
- Ziyang Guo
- Center for Radiological Research, College of Physician and Surgeons, Columbia University Medical Center, New York, New York.,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Space Life Sciences, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China.,Department of Ultrasound Medicine, Peking University First Hospital, Beijing, China
| | - Manuela Buonanno
- Center for Radiological Research, College of Physician and Surgeons, Columbia University Medical Center, New York, New York
| | - Andrew Harken
- Center for Radiological Research, College of Physician and Surgeons, Columbia University Medical Center, New York, New York
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Space Life Sciences, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Tom K Hei
- Center for Radiological Research, College of Physician and Surgeons, Columbia University Medical Center, New York, New York
| |
Collapse
|
22
|
Friedl AA, Prise KM, Butterworth KT, Montay-Gruel P, Favaudon V. Radiobiology of the FLASH effect. Med Phys 2022; 49:1993-2013. [PMID: 34426981 DOI: 10.1002/mp.15184] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
Radiation exposures at ultrahigh dose rates (UHDRs) at several orders of magnitude greater than in current clinical radiotherapy (RT) have been shown to manifest differential radiobiological responses compared to conventional (CONV) dose rates. This has led to studies investigating the application of UHDR for therapeutic advantage (FLASH-RT) that have gained significant interest since the initial discovery in 2014 that demonstrated reduced lung toxicity with equivalent levels of tumor control compared with conventional dose-rate RT. Many subsequent studies have demonstrated the potential protective role of FLASH-RT in normal tissues, yet the underlying molecular and cellular mechanisms of the FLASH effect remain to be fully elucidated. Here, we summarize the current evidence of the FLASH effect and review FLASH-RT studies performed in preclinical models of normal tissue response. To critically examine the underlying biological mechanisms of responses to UHDR radiation exposures, we evaluate in vitro studies performed with normal and tumor cells. Differential responses to UHDR versus CONV irradiation recurrently involve reduced inflammatory processes and differential expression of pro- and anti-inflammatory genes. In addition, frequently reduced levels of DNA damage or misrepair products are seen after UHDR irradiation. So far, it is not clear what signal elicits these differential responses, but there are indications for involvement of reactive species. Different susceptibility to FLASH effects observed between normal and tumor cells may result from altered metabolic and detoxification pathways and/or repair pathways used by tumor cells. We summarize the current theories that may explain the FLASH effect and highlight important research questions that are key to a better mechanistic understanding and, thus, the future implementation of FLASH-RT in the clinic.
Collapse
Affiliation(s)
- Anna A Friedl
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Kevin M Prise
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Karl T Butterworth
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Pierre Montay-Gruel
- Department of Radiation Oncology, University of California at Irvine, Irvine, California, USA
| | - Vincent Favaudon
- Institut Curie, Inserm U 1021-CNRS UMR 3347, Université Paris-Saclay, PSL Research University, Centre Universitaire, Orsay, France
| |
Collapse
|
23
|
Abstract
FLASH radiotherapy is a novel technique that has been shown in numerous preclinical in vivo studies to have the potential to be the next important improvement in cancer treatment. However, the biological mechanisms responsible for the selective FLASH sparing effect of normal tissues are not yet known. An optimal translation of FLASH radiotherapy into the clinic would require a good understanding of the specific beam parameters that induces a FLASH effect, environmental conditions affecting the response, and the radiobiological mechanisms involved. Even though the FLASH effect has generally been considered as an in vivo effect, studies finding these answers would be difficult and ethically challenging to carry out solely in animals. Hence, suitable in vitro studies aimed towards finding these answers are needed. In this review, we describe and summarise several in vitro assays that have been used or could be used to finally elucidate the mechanisms behind the FLASH effect.
Collapse
|
24
|
Perstin A, Poirier Y, Sawant A, Tambasco M. Quantifying the DNA-damaging effects of FLASH irradiation with plasmid DNA. Int J Radiat Oncol Biol Phys 2022; 113:437-447. [PMID: 35124135 DOI: 10.1016/j.ijrobp.2022.01.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 11/15/2022]
Abstract
PURPOSE To investigate a plasmid DNA nicking assay approach for isolating and quantifying the DNA damaging effects of ultra-high dose rate (i.e., FLASH) irradiation relative to conventional dose rate irradiation. METHODS We constructed and irradiated phantoms containing plasmid DNA to nominal doses of 20 Gy and 30 Gy using 16 MeV electrons at conventional (0.167 Gy/s) and FLASH (46.6 Gy/s and 93.2 Gy/s) dose rates. We delivered conventional dose rates using a standard clinical Varian iX linac and FLASH dose rates (FDR) using a modified Varian 21EX C-series linac. We ran the irradiated DNA and controls (0 Gy) through an agarose gel electrophoresis procedure that sorted and localized the DNA into bands associated with single strand breaks (SSBs), double strand breaks (DSBs), and undamaged DNA. We quantitatively analyzed the gel images to compute the relative yields of SSBs and DSBs, and applied a mathematical model of plasmid DNA damage as a function of dose to compute relative biological effectiveness (RBE) of SSB and DSB (RBESSBandRBEDSB) damage for a given endpoint and FDR. RESULTS Both RBESSBandRBEDSB were less than unity with the FDR irradiations, indicating FLASH sparing. With regard to the more deleterious DNA DSB damage, RBEDSBs of FLASH beams at dose rates of 46.6 Gy/s and 93.2 Gy/s relative to the conventional 16 MeV beam dose rate were 0.54 ± 0.15 and 0.55 ± 0.17, respectively. CONCLUSION We have demonstrated the feasibility of using a DNA-based phantom to isolate and assess the FLASH sparing effect on DNA. We also found that FLASH irradiation causes less damage to DNA compared to a conventional dose rate. This result supports the notion that the protective effect of FLASH irradiation occurs at least partially via fundamental biochemical processes.
Collapse
Affiliation(s)
- Alan Perstin
- Physics Graduate Student, San Diego State University
| | - Yannick Poirier
- Assistant Professor, Oncology, Department of Radiation Oncology, University of Maryland
| | - Amit Sawant
- Professor and Vice Chair, Department of Radiation Oncology, University of Maryland
| | - Mauro Tambasco
- Associate Professor/Medical Physicist, Associate Program Director, Medical Physics Residency, Associate Director, Medical Physics , Department of Physics, San Diego State University.
| |
Collapse
|
25
|
A new platform for ultra-high dose rate radiobiological research using the BELLA PW laser proton beamline. Sci Rep 2022; 12:1484. [PMID: 35087083 PMCID: PMC8795353 DOI: 10.1038/s41598-022-05181-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/04/2022] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy is the current standard of care for more than 50% of all cancer patients. Improvements in radiotherapy (RT) technology have increased tumor targeting and normal tissue sparing. Radiations at ultra-high dose rates required for FLASH-RT effects have sparked interest in potentially providing additional differential therapeutic benefits. We present a new experimental platform that is the first one to deliver petawatt laser-driven proton pulses of 2 MeV energy at 0.2 Hz repetition rate by means of a compact, tunable active plasma lens beamline to biological samples. Cell monolayers grown over a 10 mm diameter field were exposed to clinically relevant proton doses ranging from 7 to 35 Gy at ultra-high instantaneous dose rates of 107 Gy/s. Dose-dependent cell survival measurements of human normal and tumor cells exposed to LD protons showed significantly higher cell survival of normal-cells compared to tumor-cells for total doses of 7 Gy and higher, which was not observed to the same extent for X-ray reference irradiations at clinical dose rates. These findings provide preliminary evidence that compact LD proton sources enable a new and promising platform for investigating the physical, chemical and biological mechanisms underlying the FLASH effect.
Collapse
|
26
|
Moon EJ, Petersson K, Oleina MM. The importance of hypoxia in radiotherapy for the immune response, metastatic potential and FLASH-RT. Int J Radiat Biol 2022; 98:439-451. [PMID: 34726575 PMCID: PMC7612434 DOI: 10.1080/09553002.2021.1988178] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Hypoxia (low oxygen) is a common feature of solid tumors that has been intensely studied for more than six decades. Here we review the importance of hypoxia to radiotherapy with a particular focus on the contribution of hypoxia to immune responses, metastatic potential and FLASH radiotherapy, active areas of research by leading women in the field. CONCLUSION Although hypoxia-driven metastasis and immunosuppression can negatively impact clinical outcome, understanding these processes can also provide tumor-specific vulnerabilities that may be therapeutically exploited. The different oxygen tensions present in tumors and normal tissues may underpin the beneficial FLASH sparing effect seen in normal tissue and represents a perfect example of advances in the field that can leverage tumor hypoxia to improve future radiotherapy treatments.
Collapse
Affiliation(s)
- Eui Jung Moon
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK,Equal Contribution and to whom correspondence should be addressed. ; :
| | - Kristoffer Petersson
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK,Radiation Physics, Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital, Sweden,Equal Contribution and to whom correspondence should be addressed. ; :
| | - Monica M. Oleina
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK,Equal Contribution and to whom correspondence should be addressed. ; :
| |
Collapse
|
27
|
Wang X, Luo H, Zheng X, Ge H. FLASH radiotherapy: Research process from basic experimentation to clinical application. PRECISION RADIATION ONCOLOGY 2021. [DOI: 10.1002/pro6.1140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Xiaohui Wang
- Department of Radiation Oncology Affiliated Cancer Hospital of Zhengzhou University Zhengzhou China
| | - Hui Luo
- Department of Radiation Oncology Affiliated Cancer Hospital of Zhengzhou University Zhengzhou China
| | - Xiaoli Zheng
- Department of Radiation Oncology Affiliated Cancer Hospital of Zhengzhou University Zhengzhou China
| | - Hong Ge
- Department of Radiation Oncology Affiliated Cancer Hospital of Zhengzhou University Zhengzhou China
| |
Collapse
|
28
|
Singers Sørensen B, Krzysztof Sitarz M, Ankjærgaard C, Johansen J, Andersen CE, Kanouta E, Overgaard C, Grau C, Poulsen P. In vivo validation and tissue sparing factor for acute damage of pencil beam scanning proton FLASH. Radiother Oncol 2021; 167:109-115. [PMID: 34953933 DOI: 10.1016/j.radonc.2021.12.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND PURPOSE Preclinical studies indicate a normal tissue sparing effect using ultra-high dose rate (FLASH) radiation with comparable tumor response. Most data so far are based on electron beams with limited utility for human treatments. This study validates the effect of proton FLASH delivered with pencil beam scanning (PBS) in a mouse leg model of acute skin damage and quantifies the normal tissue sparing factor, the FLASH factor, through full dose response curves. MATERIALS AND METHODS The right hind limb of CDF1 mice was irradiated with a single fraction of proton PBS in the entrance plateau of either a 244MeV conventional dose rate field or a 250MeV FLASH field. In total, 301 mice were irradiated in four separate experiments, with 7-21 mice per dose point. The endpoints were the level of acute moist desquamation to the skin of the foot within 25 days post irradiation. RESULTS The field duration and field dose rate were 61-107s and 0.35-0.40 Gy/s for conventional dose rate and 0.35-0.73s and 65-92 Gy/s for FLASH. Full dose response curves for five levels of acute skin damage for both conventional and FLASH dose rate revealed a distinct normal tissue sparing effect with FLASH: across all scoring levels, a 44-58% higher dose was required to give the same biological response with FLASH as compared to the conventional dose rate. CONCLUSIONS The normal tissue sparing effect of PBS proton FLASH was validated. The FLASH factor was quantified through full dose response curves.
Collapse
Affiliation(s)
- Brita Singers Sørensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark.
| | | | | | - Jacob Johansen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Eleni Kanouta
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Cathrine Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
| | - Cai Grau
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Per Poulsen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
29
|
Gao F, Yang Y, Zhu H, Wang J, Xiao D, Zhou Z, Dai T, Zhang Y, Feng G, Li J, Lin B, Xie G, Ke Q, Zhou K, Li P, Shen X, Wang H, Yan L, Lao C, Shan L, Li M, Lu Y, Chen M, Feng S, Zhao J, Wu D, Du X. First demonstration of the FLASH effect with ultrahigh dose rate high-energy X-rays. Radiother Oncol 2021; 166:44-50. [PMID: 34774651 DOI: 10.1016/j.radonc.2021.11.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/02/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE This study aimed to evaluate whether high-energy X-rays (HEXs) of the PARTER (platform for advanced radiotherapy research) platform built on CTFEL (Chengdu THz Free Electron Laser facility) can produce ultrahigh dose rate (FLASH) X-rays and trigger the FLASH effect. MATERIALS AND METHODS EBT3 radiochromic film and fast current transformer (FCT) devices were used to measure absolute dose and pulsed beam current of HEXs. Subcutaneous tumor-bearing mice and healthy mice were treated with sham, FLASH, and conventional dose rate radiotherapy (CONV), respectively to observe the tumor control efficiency and normal tissue damage. RESULTS The maximum dose rate of HEXs of PARTER was up to over 1000 Gy/s. Tumor-bearing mice experiment showed a good result on tumor control (p < 0.0001) and significant difference in survival curves (p < 0.005) among the three groups. In the thorax-irradiated healthy mice experiment, there was a significant difference (p = 0.038) in survival among the three groups, with the risk of death decreased by 81% in the FLASH group compared to that in the CONV group. The survival time of healthy mice irradiated in the abdomen in the FLASH group was undoubtedly higher (62.5% of mice were still alive when we stopped observation) than that in the CONV group (7 days). CONCLUSION This study confirmed that HEXs of the PARTER system can produce ultrahigh dose rate X-rays and trigger a FLASH effect, which provides a basis for future scientific research and clinical application of HEX in FLASH radiotherapy.
Collapse
Affiliation(s)
- Feng Gao
- Departmant of Oncology, Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Yiwei Yang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, China
| | - Hongyu Zhu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jianxin Wang
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, China
| | - Dexin Xiao
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, China
| | - Zheng Zhou
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, China
| | - Tangzhi Dai
- Departmant of Oncology, Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Yu Zhang
- Departmant of Oncology, Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Gang Feng
- Departmant of Oncology, Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Jie Li
- Departmant of Oncology, Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Binwei Lin
- Departmant of Oncology, Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Gang Xie
- Department of Pathology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Qi Ke
- Department of Pathology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Kui Zhou
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, China
| | - Peng Li
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, China
| | - Xuming Shen
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, China
| | - Hanbin Wang
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, China
| | - Longgang Yan
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, China
| | - Chenglong Lao
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, China
| | - Lijun Shan
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, China
| | - Ming Li
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, China
| | - Yanhua Lu
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, China
| | - Menxue Chen
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, China
| | - Song Feng
- School of Nuclear Science and Technology, University of South China, Hengyang, China
| | - Jianheng Zhao
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, China
| | - Dai Wu
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, China.
| | - Xiaobo Du
- Departmant of Oncology, Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China.
| |
Collapse
|
30
|
Diffenderfer ES, Sørensen BS, Mazal A, Carlson DJ. The current status of preclinical proton FLASH radiation and future directions. Med Phys 2021; 49:2039-2054. [PMID: 34644403 DOI: 10.1002/mp.15276] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 11/05/2022] Open
Abstract
We review the current status of proton FLASH experimental systems, including preclinical physical and biological results. Technological limitations on preclinical investigation of FLASH biological mechanisms and determination of clinically relevant parameters are discussed. A review of the biological data reveals no reproduced proton FLASH effect in vitro and a significant in vivo FLASH sparing effect of normal tissue toxicity observed with multiple proton FLASH irradiation systems. Importantly, multiple studies suggest little or no difference in tumor growth delay for proton FLASH when compared to conventional dose rate proton radiation. A discussion follows on future areas of development with a focus on the determination of the optimal parameters for maximizing the therapeutic ratio between tumor and normal tissue response and ultimately clinical translation of proton FLASH radiation.
Collapse
Affiliation(s)
- Eric S Diffenderfer
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brita S Sørensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark.,Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Alejandro Mazal
- Department of Medical Physics, Centro de Protonterapia Quironsalud, Madrid, Spain
| | - David J Carlson
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
31
|
Sampayan SE, Sampayan KC, Caporaso GJ, Chen YJ, Falabella S, Hawkins SA, Hearn J, Watson JA, Zentler JM. Megavolt bremsstrahlung measurements from linear induction accelerators demonstrate possible use as a FLASH radiotherapy source to reduce acute toxicity. Sci Rep 2021; 11:17104. [PMID: 34429440 PMCID: PMC8385032 DOI: 10.1038/s41598-021-95807-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/26/2021] [Indexed: 11/11/2022] Open
Abstract
Recent studies indicate better efficacy and healthy tissue sparing with high dose-rate FLASH radiotherapy (FLASH-RT) cancer treatment. This technique delivers a prompt high radiation dose rather than fractional doses over time. While some suggest thresholds of > 40 Gy s−1 with a maximal effect at > 100 Gy s−1, accumulated evidence shows that instantaneous dose-rate and irradiation time are critical. Mechanisms are still debated, but toxicity is minimized while inducing apoptosis in malignant tissue. Delivery technologies to date show that a capability gap exists with clinic scale, broad area, deep penetrating, high dose rate systems. Based on these trends, if FLASH-RT is adopted, it may become a dominant approach except in the least technologically advanced countries. The linear induction accelerator (LIA) developed for high instantaneous and high average dose-rate, species independent charged particle acceleration, has yet to be considered for this application. We review the status of LIA technology, explore the physics of bremsstrahlung-converter-target interactions and our work on stabilizing the electron beam. While the gradient of the LIA is low, we present our preliminary work to improve the gradient by an order of magnitude, presenting a point design for a multibeam FLASH-RT system using a single accelerator for application to conformal FLASH-RT.
Collapse
Affiliation(s)
- Stephen E Sampayan
- Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA, 94551, USA. .,Opcondys, Inc., 600 Commerce Court, Manteca, CA, 95336, USA.
| | | | - George J Caporaso
- Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA, 94551, USA
| | - Yu-Jiuan Chen
- Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA, 94551, USA
| | - Steve Falabella
- Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA, 94551, USA
| | - Steven A Hawkins
- Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA, 94551, USA
| | - Jason Hearn
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - James A Watson
- Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA, 94551, USA
| | - Jan-Mark Zentler
- Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA, 94551, USA
| |
Collapse
|
32
|
Suckert T, Nexhipi S, Dietrich A, Koch R, Kunz-Schughart LA, Bahn E, Beyreuther E. Models for Translational Proton Radiobiology-From Bench to Bedside and Back. Cancers (Basel) 2021; 13:4216. [PMID: 34439370 PMCID: PMC8395028 DOI: 10.3390/cancers13164216] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022] Open
Abstract
The number of proton therapy centers worldwide are increasing steadily, with more than two million cancer patients treated so far. Despite this development, pending questions on proton radiobiology still call for basic and translational preclinical research. Open issues are the on-going discussion on an energy-dependent varying proton RBE (relative biological effectiveness), a better characterization of normal tissue side effects and combination treatments with drugs originally developed for photon therapy. At the same time, novel possibilities arise, such as radioimmunotherapy, and new proton therapy schemata, such as FLASH irradiation and proton mini-beams. The study of those aspects demands for radiobiological models at different stages along the translational chain, allowing the investigation of mechanisms from the molecular level to whole organisms. Focusing on the challenges and specifics of proton research, this review summarizes the different available models, ranging from in vitro systems to animal studies of increasing complexity as well as complementing in silico approaches.
Collapse
Affiliation(s)
- Theresa Suckert
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sindi Nexhipi
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01309 Dresden, Germany
| | - Antje Dietrich
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Robin Koch
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (R.K.); (E.B.)
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Leoni A. Kunz-Schughart
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| | - Emanuel Bahn
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (R.K.); (E.B.)
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), Clinical Cooperation Unit Radiation Oncology, 69120 Heidelberg, Germany
| | - Elke Beyreuther
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Radiation Physics, 01328 Dresden, Germany
| |
Collapse
|
33
|
Khan S, Bassenne M, Wang J, Manjappa R, Melemenidis S, Breitkreutz DY, Maxim PG, Xing L, Loo BW, Pratx G. Multicellular Spheroids as In Vitro Models of Oxygen Depletion During FLASH Irradiation. Int J Radiat Oncol Biol Phys 2021; 110:833-844. [PMID: 33545301 DOI: 10.1016/j.ijrobp.2021.01.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 12/15/2020] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE The differential response of normal and tumor tissues to ultrahigh-dose-rate radiation (FLASH) has raised new hope for treating solid tumors but, to date, the mechanism remains elusive. One leading hypothesis is that FLASH radiochemically depletes oxygen from irradiated tissues faster than it is replenished through diffusion. The purpose of this study was to investigate these effects within hypoxic multicellular tumor spheroids through simulations and experiments. METHODS AND MATERIALS Physicobiological equations were derived to model (1) the diffusion and metabolism of oxygen within spheroids; (2) its depletion through reactions involving radiation-induced radicals; and (3) the increase in radioresistance of spheroids, modeled according to the classical oxygen enhancement ratio and linear-quadratic response. These predictions were then tested experimentally in A549 spheroids exposed to electron irradiation at conventional (0.075 Gy/s) or FLASH (90 Gy/s) dose rates. Clonogenic survival, cell viability, and spheroid growth were scored postradiation. Clonogenic survival of 2 other cell lines was also investigated. RESULTS The existence of a hypoxic core in unirradiated tumor spheroids is predicted by simulations and visualized by fluorescence microscopy. Upon FLASH irradiation, this hypoxic core transiently expands, engulfing a large number of well-oxygenated cells. In contrast, oxygen is steadily replenished during slower conventional irradiation. Experimentally, clonogenic survival was around 3-fold higher in FLASH-irradiated spheroids compared with conventional irradiation, but no significant difference was observed for well-oxygenated 2-dimensional cultured cells. This differential survival is consistent with the predictions of the computational model. FLASH irradiation of spheroids resulted in a dose-modifying factor of around 1.3 for doses above 10 Gy. CONCLUSIONS Tumor spheroids can be used as a model to study FLASH irradiation in vitro. The improved survival of tumor spheroids receiving FLASH radiation confirms that ultrafast radiochemical oxygen depletion and its slow replenishment are critical components of the FLASH effect.
Collapse
Affiliation(s)
- Syamantak Khan
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Maxime Bassenne
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Jinghui Wang
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Rakesh Manjappa
- Department of Radiation Oncology, Stanford University, Stanford, California
| | | | | | - Peter G Maxim
- Department of Radiation Oncology, Indiana University, Indianapolis, Indiana
| | - Lei Xing
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Guillem Pratx
- Department of Radiation Oncology, Stanford University, Stanford, California.
| |
Collapse
|
34
|
Cunningham S, McCauley S, Vairamani K, Speth J, Girdhani S, Abel E, Sharma RA, Perentesis JP, Wells SI, Mascia A, Sertorio M. FLASH Proton Pencil Beam Scanning Irradiation Minimizes Radiation-Induced Leg Contracture and Skin Toxicity in Mice. Cancers (Basel) 2021; 13:cancers13051012. [PMID: 33804336 PMCID: PMC7957631 DOI: 10.3390/cancers13051012] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Dose and efficacy of radiation therapy are limited by the toxicity to normal tissue adjacent to the treated tumor region. Recently, ultra-high dose rate radiotherapy (FLASH radiotherapy) has shown beneficial reduction of normal tissue damage while preserving similar tumor efficacy with electron, photon and scattered proton beam irradiation in preclinical models. Proton therapy is increasingly delivered by pencil beam scanning (PBS) technology, and we therefore set out to test PBS FLASH radiotherapy on normal tissue toxicity and tumor control in vivo in mouse using a clinical proton delivery system. This validation of the FLASH normal tissue-sparing hypothesis with a clinical delivery system provides supporting data for PBS FLASH radiotherapy and its potential role in improving radiotherapy outcomes. Abstract Ultra-high dose rate radiation has been reported to produce a more favorable toxicity and tumor control profile compared to conventional dose rates that are used for patient treatment. So far, the so-called FLASH effect has been validated for electron, photon and scattered proton beam, but not yet for proton pencil beam scanning (PBS). Because PBS is the state-of-the-art delivery modality for proton therapy and constitutes a wide and growing installation base, we determined the benefit of FLASH PBS on skin and soft tissue toxicity. Using a pencil beam scanning nozzle and the plateau region of a 250 MeV proton beam, a uniform physical dose of 35 Gy (toxicity study) or 15 Gy (tumor control study) was delivered to the right hind leg of mice at various dose rates: Sham, Conventional (Conv, 1 Gy/s), Flash60 (57 Gy/s) and Flash115 (115 Gy/s). Acute radiation effects were quantified by measurements of plasma and skin levels of TGF-β1 and skin toxicity scoring. Delayed irradiation response was defined by hind leg contracture as a surrogate of irradiation-induced skin and soft tissue toxicity and by plasma levels of 13 different cytokines (CXCL1, CXCL10, Eotaxin, IL1-beta, IL-6, MCP-1, Mip1alpha, TNF-alpha, TNF-beta, VEGF, G-CSF, GM-CSF and TGF- β1). Plasma and skin levels of TGF-β1, skin toxicity and leg contracture were all significantly decreased in FLASH compared to Conv groups of mice. FLASH and Conv PBS had similar efficacy with regards to growth control of MOC1 and MOC2 head and neck cancer cells transplanted into syngeneic, immunocompetent mice. These results demonstrate consistent delivery of FLASH PBS radiation from 1 to 115 Gy/s in a clinical gantry. Radiation response following delivery of 35 Gy indicates potential benefits of FLASH versus conventional PBS that are related to skin and soft tissue toxicity.
Collapse
Affiliation(s)
- Shannon Cunningham
- Cincinnati Children’s Hospital Medical Center, Division of Oncology, Cincinnati, OH 45229, USA; (S.C.); (S.M.); (K.V.); (J.P.P.); (S.I.W.)
| | - Shelby McCauley
- Cincinnati Children’s Hospital Medical Center, Division of Oncology, Cincinnati, OH 45229, USA; (S.C.); (S.M.); (K.V.); (J.P.P.); (S.I.W.)
| | - Kanimozhi Vairamani
- Cincinnati Children’s Hospital Medical Center, Division of Oncology, Cincinnati, OH 45229, USA; (S.C.); (S.M.); (K.V.); (J.P.P.); (S.I.W.)
| | - Joseph Speth
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; (J.S.); (A.M.)
| | - Swati Girdhani
- Varian Medical Systems, Inc., Palo Alto, CA 94304, USA; (S.G.); (E.A.); (R.A.S.)
| | - Eric Abel
- Varian Medical Systems, Inc., Palo Alto, CA 94304, USA; (S.G.); (E.A.); (R.A.S.)
| | - Ricky A. Sharma
- Varian Medical Systems, Inc., Palo Alto, CA 94304, USA; (S.G.); (E.A.); (R.A.S.)
| | - John P. Perentesis
- Cincinnati Children’s Hospital Medical Center, Division of Oncology, Cincinnati, OH 45229, USA; (S.C.); (S.M.); (K.V.); (J.P.P.); (S.I.W.)
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Susanne I. Wells
- Cincinnati Children’s Hospital Medical Center, Division of Oncology, Cincinnati, OH 45229, USA; (S.C.); (S.M.); (K.V.); (J.P.P.); (S.I.W.)
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Anthony Mascia
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; (J.S.); (A.M.)
| | - Mathieu Sertorio
- Cincinnati Children’s Hospital Medical Center, Division of Oncology, Cincinnati, OH 45229, USA; (S.C.); (S.M.); (K.V.); (J.P.P.); (S.I.W.)
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Correspondence:
| |
Collapse
|
35
|
Marcu LG, Bezak E, Peukert DD, Wilson P. Translational Research in FLASH Radiotherapy-From Radiobiological Mechanisms to In Vivo Results. Biomedicines 2021; 9:181. [PMID: 33670409 PMCID: PMC7918545 DOI: 10.3390/biomedicines9020181] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/18/2023] Open
Abstract
FLASH radiotherapy, or the administration of ultra-high dose rate radiotherapy, is a new radiation delivery method that aims to widen the therapeutic window in radiotherapy. Thus far, most in vitro and in vivo results show a real potential of FLASH to offer superior normal tissue sparing compared to conventionally delivered radiation. While there are several postulations behind the differential behaviour among normal and cancer cells under FLASH, the full spectra of radiobiological mechanisms are yet to be clarified. Currently the number of devices delivering FLASH dose rate is few and is mainly limited to experimental and modified linear accelerators. Nevertheless, FLASH research is increasing with new developments in all the main areas: radiobiology, technology and clinical research. This paper presents the current status of FLASH radiotherapy with the aforementioned aspects in mind, but also to highlight the existing challenges and future prospects to overcome them.
Collapse
Affiliation(s)
- Loredana G Marcu
- Faculty of Informatics & Science, Department of Physics, University of Oradea, 410087 Oradea, Romania
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Eva Bezak
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
- School of Physical Sciences, Department of Physics, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Dylan D Peukert
- School of Civil, Environmental & Mining Engineering, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
- STEM, University of South Australia, Adelaide, SA 5001, Australia
| | - Puthenparampil Wilson
- STEM, University of South Australia, Adelaide, SA 5001, Australia
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| |
Collapse
|
36
|
Esplen N, Mendonca MS, Bazalova-Carter M. Physics and biology of ultrahigh dose-rate (FLASH) radiotherapy: a topical review. Phys Med Biol 2020; 65:23TR03. [PMID: 32721941 DOI: 10.1088/1361-6560/abaa28] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ultrahigh dose-rate radiotherapy (RT), or 'FLASH' therapy, has gained significant momentum following various in vivo studies published since 2014 which have demonstrated a reduction in normal tissue toxicity and similar tumor control for FLASH-RT when compared with conventional dose-rate RT. Subsequent studies have sought to investigate the potential for FLASH normal tissue protection and the literature has been since been inundated with publications on FLASH therapies. Today, FLASH-RT is considered by some as having the potential to 'revolutionize radiotherapy'. FLASH-RT is considered by some as having the potential to 'revolutionize radiotherapy'. The goal of this review article is to present the current state of this intriguing RT technique and to review existing publications on FLASH-RT in terms of its physical and biological aspects. In the physics section, the current landscape of ultrahigh dose-rate radiation delivery and dosimetry is presented. Specifically, electron, photon and proton radiation sources capable of delivering ultrahigh dose-rates along with their beam delivery parameters are thoroughly discussed. Additionally, the benefits and drawbacks of radiation detectors suitable for dosimetry in FLASH-RT are presented. The biology section comprises a summary of pioneering in vitro ultrahigh dose-rate studies performed in the 1960s and early 1970s and continues with a summary of the recent literature investigating normal and tumor tissue responses in electron, photon and proton beams. The section is concluded with possible mechanistic explanations of the FLASH normal-tissue protection effect (FLASH effect). Finally, challenges associated with clinical translation of FLASH-RT and its future prospects are critically discussed; specifically, proposed treatment machines and publications on treatment planning for FLASH-RT are reviewed.
Collapse
Affiliation(s)
- Nolan Esplen
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
| | | | | |
Collapse
|
37
|
Zou W, Diffenderfer ES, Cengel KA, Kim MM, Avery S, Konzer J, Cai Y, Boisseu P, Ota K, Yin L, Wiersma R, Carlson DJ, Fan Y, Busch TM, Koumenis C, Lin A, Metz JM, Teo BK, Dong L. Current delivery limitations of proton PBS for FLASH. Radiother Oncol 2020; 155:212-218. [PMID: 33186682 DOI: 10.1016/j.radonc.2020.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 01/01/2023]
Abstract
PURPOSE Proton Pencil Beam Scanning (PBS) is an attractive solution to realize the advantageous normal tissue sparing elucidated from FLASH high dose rates. The mechanics of PBS spot delivery will impose limitations on the effective field dose rate for PBS. METHODS This study incorporates measurements from clinical and FLASH research beams on uniform single energy and the spread-out Bragg Peak PBS fields to extrapolate the PBS dose rate to high cyclotron beam currents 350, 500, and 800 nA. The impact of the effective field dose rate from cyclotron current, spot spacing, slew time and field size were studied. RESULTS When scanning magnet slew time and energy switching time are not considered, single energy effective field FLASH dose rate (≥40 Gy/s) can only be achieved with less than 4 × 4 cm2 fields when the cyclotron output current is above 500 nA. Slew time and energy switching time remain the limiting factors for achieving high effective dose rate of the field. The dose rate-time structures were obtained. The amount of the total dose delivered at the FLASH dose rate in single energy layer and volumetric field was also studied. CONCLUSION It is demonstrated that while it is difficult to achieve FLASH dose rate for a large field or in a volume, local FLASH delivery to certain percentage of the total dose is possible. With further understanding of the FLASH radiobiological mechanism, this study could provide guidance to adapt current clinical multi-field proton PBS delivery practice for FLASH proton radiotherapy.
Collapse
Affiliation(s)
- Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA.
| | - Eric S Diffenderfer
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Keith A Cengel
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Michele M Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Steve Avery
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Joshua Konzer
- IBA PT-Inc., PT Engineer-Beam Physics, Louvain-La-Neuve, Belgium
| | - Yongliang Cai
- IBA PT-Inc., PT Engineer-Beam Physics, Louvain-La-Neuve, Belgium
| | - Paul Boisseu
- Pyramid Technical Consultants, Systems Engineering, Boston, USA
| | - Kan Ota
- Pyramid Technical Consultants, Systems Engineering, Boston, USA
| | - Lingshu Yin
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Rodney Wiersma
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - David J Carlson
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Theresa M Busch
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Costas Koumenis
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Alexander Lin
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - James M Metz
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - BoonKeng K Teo
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| | - Lei Dong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
38
|
Ramos-Méndez J, Domínguez-Kondo N, Schuemann J, McNamara A, Moreno-Barbosa E, Faddegon B. LET-Dependent Intertrack Yields in Proton Irradiation at Ultra-High Dose Rates Relevant for FLASH Therapy. Radiat Res 2020; 194:351-362. [PMID: 32857855 PMCID: PMC7644138 DOI: 10.1667/rade-20-00084.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/13/2020] [Indexed: 01/01/2023]
Abstract
FLASH radiotherapy delivers a high dose (≥10 Gy) at a high rate (≥40 Gy/s). In this way, particles are delivered in pulses as short as a few nanoseconds. At that rate, intertrack reactions between chemical species produced within the same pulse may affect the heterogeneous chemistry stage of water radiolysis. This stochastic process suits the capabilities of the Monte Carlo method, which can model intertrack effects to aid in radiobiology research, including the design and interpretation of experiments. In this work, the TOPAS-nBio Monte Carlo track-structure code was expanded to allow simulations of intertrack effects in the chemical stage of water radiolysis. Simulation of the behavior of radiolytic yields over a long period of time (up to 50 s) was verified by simulating radiolysis in a Fricke dosimeter irradiated by 60Co γ rays. In addition, LET-dependent G values of protons delivered in single squared pulses of widths, 1 ns, 1 µs and 10 µs, were obtained and compared to simulations using no intertrack considerations. The Fricke simulation for the calculated G value of Fe3+ ion at 50 s was within 0.4% of the accepted value from ICRU Report 34. For LET-dependent G values at the end of the chemical stage, intertrack effects were significant at LET values below 2 keV/µm. Above 2 keV/µm the reaction kinetics remained limited locally within each track and thus, effects of intertrack reactions remained low. Therefore, when track structure simulations are used to investigate the biological damage of FLASH irradiation, these intertrack reactions should be considered. The TOPAS-nBio framework with the expansion to intertrack chemistry simulation provides a useful tool to assist in this task.
Collapse
Affiliation(s)
- J. Ramos-Méndez
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - N. Domínguez-Kondo
- Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - J. Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - A. McNamara
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - E. Moreno-Barbosa
- Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Bruce Faddegon
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| |
Collapse
|
39
|
FLASH Radiotherapy: Current Knowledge and Future Insights Using Proton-Beam Therapy. Int J Mol Sci 2020; 21:ijms21186492. [PMID: 32899466 PMCID: PMC7556020 DOI: 10.3390/ijms21186492] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/27/2022] Open
Abstract
FLASH radiotherapy is the delivery of ultra-high dose rate radiation several orders of magnitude higher than what is currently used in conventional clinical radiotherapy, and has the potential to revolutionize the future of cancer treatment. FLASH radiotherapy induces a phenomenon known as the FLASH effect, whereby the ultra-high dose rate radiation reduces the normal tissue toxicities commonly associated with conventional radiotherapy, while still maintaining local tumor control. The underlying mechanism(s) responsible for the FLASH effect are yet to be fully elucidated, but a prominent role for oxygen tension and reactive oxygen species production is the most current valid hypothesis. The FLASH effect has been confirmed in many studies in recent years, both in vitro and in vivo, with even the first patient with T-cell cutaneous lymphoma being treated using FLASH radiotherapy. However, most of the studies into FLASH radiotherapy have used electron beams that have low tissue penetration, which presents a limitation for translation into clinical practice. A promising alternate FLASH delivery method is via proton beam therapy, as the dose can be deposited deeper within the tissue. However, studies into FLASH protons are currently sparse. This review will summarize FLASH radiotherapy research conducted to date and the current theories explaining the FLASH effect, with an emphasis on the future potential for FLASH proton beam therapy.
Collapse
|
40
|
Mara E, Clausen M, Khachonkham S, Deycmar S, Pessy C, Dörr W, Kuess P, Georg D, Gruber S. Investigating the impact of alpha/beta and LET d on relative biological effectiveness in scanned proton beams: An in vitro study based on human cell lines. Med Phys 2020; 47:3691-3702. [PMID: 32347564 PMCID: PMC7496287 DOI: 10.1002/mp.14212] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 04/03/2020] [Accepted: 04/13/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE A relative biological effectiveness (RBE) of 1.1 is commonly used in clinical proton therapy, irrespective of tissue type and depth. This in vitro study was conducted to quantify the RBE of scanned protons as a function of the dose-averaged linear energy transfer (LETd ) and the sensitivity factor (α/ß)X . Additionally, three phenomenological models (McNamara, Rørvik, and Jones) and one mechanistic model (repair-misrepair-fixation, RMF) were applied to the experimentally derived data. METHODS Four human cell lines (FaDu, HaCat, Du145, SKMel) with differential (α/ß)X ratios were irradiated in a custom-designed irradiation setup with doses between 0 and 6 Gy at proximal, central, and distal positions of a 80 mm spread-out Bragg peak (SOBP) centered at 80 mm (setup A: proton energies 66.5-135.6 MeV) and 155 mm (setup B: proton energies 127.2-185.9 MeV) depth, respectively. LETd values at the respective cell positions were derived from Monte Carlo simulations performed with the treatment planning system (TPS, RayStation). Dosimetric measurements were conducted to verify dose homogeneity and dose delivery accuracy. RBE values were derived for doses that resulted in 90 % (RBE90 ) and 10 % (RBE10 ) of cell survival, and survival after a 0.5 Gy dose (RBE0.5Gy ), 2 Gy dose (RBE2Gy ), and 6 Gy dose (RBE6Gy ). RESULTS LETd values at sample positions were 1.9, 2.1, 2.5, 2.8, 4.1, and 4.5 keV/µm. For the cell lines with high (α/ß)X ratios (FaDu, HaCat), the LETd did not impact on the RBE. For low (α/ß)X cell lines (Du145, SKMel), LQ-derived survival curves indicated a clear correlation of LETd and RBE. RBE90 values up to 2.9 and RBE10 values between 1.4 and 1.8 were obtained. Model-derived RBE predictions slightly overestimated the RBE for the high (α/ß)X cell lines, although all models except the Jones model provided RBE values within the experimental uncertainty. For low (α/ß)X cell lines, no agreement was found between experiments and model predictions, that is, all models underestimated the measured RBE. CONCLUSIONS The sensitivity parameter (α/ß)X was observed to be a major influencing factor for the RBE of protons and its sensitivity toward LETd changes. RBE prediction models are applicable for high (α/ß)X cell lines but do not estimate RBE values with sufficient accuracy in low (α/ß)X cell lines.
Collapse
Affiliation(s)
- Elisabeth Mara
- Department of Radiation Oncology/Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria.,University of Applied Science, Wiener Neustadt, Austria
| | - Monika Clausen
- Department of Radiation Oncology/Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Suphalak Khachonkham
- Department of Radiation Oncology/Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria.,Division of Radiation Therapy, Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Simon Deycmar
- Laboratory of Applied Radiobiology, Department of Radiation Oncology, University Hospital Zürich, Zürich, Switzerland
| | - Clara Pessy
- Department of Radiation Oncology/Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Dörr
- Department of Radiation Oncology/Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Peter Kuess
- Department of Radiation Oncology/Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria.,EBG MedAustron GmbH, Wiener Neustadt, Austria
| | - Dietmar Georg
- Department of Radiation Oncology/Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria.,EBG MedAustron GmbH, Wiener Neustadt, Austria
| | - Sylvia Gruber
- Department of Radiation Oncology/Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria.,EBG MedAustron GmbH, Wiener Neustadt, Austria
| |
Collapse
|
41
|
Scholz M. State-of-the-Art and Future Prospects of Ion Beam Therapy: Physical and Radiobiological Aspects. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020. [DOI: 10.1109/trpms.2019.2935240] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Dombrowsky AC, Burger K, Porth AK, Stein M, Dierolf M, Günther B, Achterhold K, Gleich B, Feuchtinger A, Bartzsch S, Beyreuther E, Combs SE, Pfeiffer F, Wilkens JJ, Schmid TE. A proof of principle experiment for microbeam radiation therapy at the Munich compact light source. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:111-120. [PMID: 31655869 DOI: 10.1007/s00411-019-00816-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Microbeam radiation therapy (MRT), a preclinical form of spatially fractionated radiotherapy, uses an array of microbeams of hard synchrotron X-ray radiation. Recently, compact synchrotron X-ray sources got more attention as they provide essential prerequisites for the translation of MRT into clinics while overcoming the limited access to synchrotron facilities. At the Munich compact light source (MuCLS), one of these novel compact X-ray facilities, a proof of principle experiment was conducted applying MRT to a xenograft tumor mouse model. First, subcutaneous tumors derived from the established squamous carcinoma cell line FaDu were irradiated at a conventional X-ray tube using broadbeam geometry to determine a suitable dose range for the tumor growth delay. For irradiations at the MuCLS, FaDu tumors were irradiated with broadbeam and microbeam irradiation at integral doses of either 3 Gy or 5 Gy and tumor growth delay was measured. Microbeams had a width of 50 µm and a center-to-center distance of 350 µm with peak doses of either 21 Gy or 35 Gy. A dose rate of up to 5 Gy/min was delivered to the tumor. Both doses and modalities delayed the tumor growth compared to a sham-irradiated tumor. The irradiated area and microbeam pattern were verified by staining of the DNA double-strand break marker γH2AX. This study demonstrates for the first time that MRT can be successfully performed in vivo at compact inverse Compton sources.
Collapse
Affiliation(s)
- Annique C Dombrowsky
- Institute of Radiation Medicine, Helmholtz Zentrum München GmbH, 85764, Neuherberg, Germany
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Karin Burger
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
- Chair of Biomedical Physics, Department of Physics, Technical University of Munich, 85748, Garching, Germany
- Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Ann-Kristin Porth
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Marlon Stein
- Institute of Radiation Medicine, Helmholtz Zentrum München GmbH, 85764, Neuherberg, Germany
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Martin Dierolf
- Chair of Biomedical Physics, Department of Physics, Technical University of Munich, 85748, Garching, Germany
- Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Benedikt Günther
- Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Klaus Achterhold
- Chair of Biomedical Physics, Department of Physics, Technical University of Munich, 85748, Garching, Germany
- Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Bernhard Gleich
- Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München GmbH, 85764, Neuherberg, Germany
| | - Stefan Bartzsch
- Institute of Radiation Medicine, Helmholtz Zentrum München GmbH, 85764, Neuherberg, Germany
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Elke Beyreuther
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- OncoRay, National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Stephanie E Combs
- Institute of Radiation Medicine, Helmholtz Zentrum München GmbH, 85764, Neuherberg, Germany
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
- German Consortium for Translational Cancer Research, Deutsches Konsortium für Translationale Krebsforschung (dktk), Technical University Munich, 81675, Munich, Germany
| | - Franz Pfeiffer
- Chair of Biomedical Physics, Department of Physics, Technical University of Munich, 85748, Garching, Germany
- Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
- Department of Diagnostic and Interventional Radiobiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Jan J Wilkens
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
- Chair of Biomedical Physics, Department of Physics, Technical University of Munich, 85748, Garching, Germany
| | - Thomas E Schmid
- Institute of Radiation Medicine, Helmholtz Zentrum München GmbH, 85764, Neuherberg, Germany.
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany.
| |
Collapse
|
43
|
Mechanisms underlying FLASH radiotherapy, a novel way to enlarge the differential responses to ionizing radiation between normal and tumor tissues. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
44
|
Diffenderfer ES, Verginadis II, Kim MM, Shoniyozov K, Velalopoulou A, Goia D, Putt M, Hagan S, Avery S, Teo K, Zou W, Lin A, Swisher-McClure S, Koch C, Kennedy AR, Minn A, Maity A, Busch TM, Dong L, Koumenis C, Metz J, Cengel KA. Design, Implementation, and in Vivo Validation of a Novel Proton FLASH Radiation Therapy System. Int J Radiat Oncol Biol Phys 2020; 106:440-448. [PMID: 31928642 DOI: 10.1016/j.ijrobp.2019.10.049] [Citation(s) in RCA: 273] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 10/11/2019] [Accepted: 10/31/2019] [Indexed: 11/25/2022]
Abstract
PURPOSE Recent studies suggest that ultrahigh-dose-rate, "FLASH," electron radiation therapy (RT) decreases normal tissue damage while maintaining tumor response compared with conventional dose rate RT. Here, we describe a novel RT apparatus that delivers FLASH proton RT (PRT) using double scattered protons with computed tomography guidance and provide the first report of proton FLASH RT-mediated normal tissue radioprotection. METHODS AND MATERIALS Absolute dose was measured at multiple depths in solid water and validated against an absolute integral charge measurement using a Faraday cup. Real-time dose rate was obtained using a NaI detector to measure prompt gamma rays. The effect of FLASH versus standard dose rate PRT on tumors and normal tissues was measured using pancreatic flank tumors (MH641905) derived from the KPC autochthonous PanCa model in syngeneic C57BL/6J mice with analysis of fibrosis and stem cell repopulation in small intestine after abdominal irradiation. RESULTS The double scattering and collimation apparatus was dosimetrically validated with dose rates of 78 ± 9 Gy per second and 0.9 ± 0.08 Gy per second for the FLASH and standard PRT. Whole abdominal FLASH PRT at 15 Gy significantly reduced the loss of proliferating cells in intestinal crypts compared with standard PRT. Studies with local intestinal irradiation at 18 Gy revealed a reduction to near baseline levels of intestinal fibrosis for FLASH-PRT compared with standard PRT. Despite this difference, FLASH-PRT did not demonstrate tumor radioprotection in MH641905 pancreatic cancer flank tumors after 12 or 18 Gy irradiation. CONCLUSIONS We have designed and dosimetrically validated a FLASH-PRT system with accurate control of beam flux on a millisecond time scale and online monitoring of the integral and dose delivery time structure. Using this system, we found that FLASH-PRT decreases acute cell loss and late fibrosis after whole-abdomen and focal intestinal RT, whereas tumor growth inhibition is preserved between the 2 modalities.
Collapse
Affiliation(s)
- Eric S Diffenderfer
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ioannis I Verginadis
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michele M Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Khayrullo Shoniyozov
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anastasia Velalopoulou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Denisa Goia
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mary Putt
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sarah Hagan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen Avery
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kevin Teo
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alexander Lin
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Samuel Swisher-McClure
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cameron Koch
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ann R Kennedy
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andy Minn
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amit Maity
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Theresa M Busch
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lei Dong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Costas Koumenis
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - James Metz
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Keith A Cengel
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
45
|
Wilson JD, Hammond EM, Higgins GS, Petersson K. Ultra-High Dose Rate (FLASH) Radiotherapy: Silver Bullet or Fool's Gold? Front Oncol 2020; 9:1563. [PMID: 32010633 PMCID: PMC6979639 DOI: 10.3389/fonc.2019.01563] [Citation(s) in RCA: 255] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy is a cornerstone of both curative and palliative cancer care. However, radiotherapy is severely limited by radiation-induced toxicities. If these toxicities could be reduced, a greater dose of radiation could be given therefore facilitating a better tumor response. Initial pre-clinical studies have shown that irradiation at dose rates far exceeding those currently used in clinical contexts reduce radiation-induced toxicities whilst maintaining an equivalent tumor response. This is known as the FLASH effect. To date, a single patient has been subjected to FLASH radiotherapy for the treatment of subcutaneous T-cell lymphoma resulting in complete response and minimal toxicities. The mechanism responsible for reduced tissue toxicity following FLASH radiotherapy is yet to be elucidated, but the most prominent hypothesis so far proposed is that acute oxygen depletion occurs within the irradiated tissue. This review examines the tissue response to FLASH radiotherapy, critically evaluates the evidence supporting hypotheses surrounding the biological basis of the FLASH effect, and considers the potential for FLASH radiotherapy to be translated into clinical contexts.
Collapse
Affiliation(s)
- Joseph D. Wilson
- Department of Oncology, The Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Ester M. Hammond
- Department of Oncology, The Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Geoff S. Higgins
- Department of Oncology, The Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Kristoffer Petersson
- Department of Oncology, The Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
- Radiation Physics, Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
46
|
Al-Hallaq H, Cao M, Kruse J, Klein E. Cured in a FLASH: Reducing Normal Tissue Toxicities Using Ultra-High-Dose Rates. Int J Radiat Oncol Biol Phys 2019; 104:257-260. [PMID: 31047621 DOI: 10.1016/j.ijrobp.2019.01.093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 11/16/2022]
|
47
|
Colangelo NW, Azzam EI. The Importance and Clinical Implications of FLASH Ultra-High Dose-Rate Studies for Proton and Heavy Ion Radiotherapy. Radiat Res 2019; 193:1-4. [PMID: 31657670 DOI: 10.1667/rr15537.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The goal of radiation therapy is to provide the highest probability of tumor control while minimizing normal tissue toxicity. Recently, it has been discovered that ultra-high dose rates of ionizing radiation may preferentially spare normal tissue over tumor tissue. This effect, referred to as FLASH radiotherapy, has been observed in various animal models as well as, more recently, in a human patient. This effect may be related to the cell sparing found in vitro at ultra-high dose rates of photons and electrons dating back to the 1960s. Conditions representative of physiologic oxygen were found to be essential for this process to occur. However, there is no conclusive data on whether this effect occurs with protons, as all results to date have been in cells irradiated at ambient oxygen conditions. There have been no ultra-high dose-rate experiments with heavy ions, which would be relevant to the implementation of FLASH to carbon-ion therapy. These basic science results are critical in guiding this rapidly advancing field, since clinical particle therapy machines capable of FLASH dose rates have already been promoted for protons. To help ensure FLASH radiotherapy is reliable and maximally effective, the radiobiology must keep ahead of the clinical implementation to help guide it. In this context, in vitro and in vivo proton and heavy ion experiments involving FLASH dose rates need to be performed to evaluate not only short-term consequences, but also sequelae related to long-term health risks. Critical to these future studies is consideration of relevant oxygen tensions at the time of irradiation, as well as appropriate in silico modeling to assist in understanding the initial physicochemical events.
Collapse
Affiliation(s)
- Nicholas W Colangelo
- Rutgers Biomedical and Health Sciences, New Jersey Medical School, Department of Radiology, Newark, New Jersey
| | - Edouard I Azzam
- Rutgers Biomedical and Health Sciences, New Jersey Medical School, Department of Radiology, Newark, New Jersey
| |
Collapse
|
48
|
Karsch L, Beyreuther E, Eger Passos D, Pawelke J, Löck S. Analysing Tumour Growth Delay Data from Animal Irradiation Experiments with Deviations from the Prescribed Dose. Cancers (Basel) 2019; 11:cancers11091281. [PMID: 31480456 PMCID: PMC6769440 DOI: 10.3390/cancers11091281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/21/2019] [Accepted: 08/29/2019] [Indexed: 12/29/2022] Open
Abstract
The development of new radiotherapy technologies is a long-term process, which requires proof of the general concept. However, clinical requirements with respect to beam quality and controlled dose delivery may not yet be fulfilled. Exemplarily, the necessary radiobiological experiments with laser-accelerated electrons are challenged by fluctuating beam intensities. Based on tumour-growth data and dose values obtained in an in vivo trial comparing the biological efficacy of laser-driven and conventional clinical Linac electrons, different statistical approaches for analysis were compared. In addition to the classical averaging per dose point, which excludes animals with high dose deviations, multivariable linear regression, Cox regression and a Monte-Carlo-based approach were tested as alternatives that include all animals in statistical analysis. The four methods were compared based on experimental and simulated data. All applied statistical approaches revealed a comparable radiobiological efficacy of laser-driven and conventional Linac electrons, confirming the experimental conclusion. In the simulation study, significant differences in dose response were detected by all methods except for the conventional method, which showed the lowest power. Thereby, the alternative statistical approaches may allow for reducing the total number of required animals in future pre-clinical trials.
Collapse
Affiliation(s)
- Leonhard Karsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany.
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
| | - Elke Beyreuther
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, 01328 Dresden, Germany
| | - Doreen Eger Passos
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Jörg Pawelke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Steffen Löck
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01062 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
49
|
Asavei T, Bobeica M, Nastasa V, Manda G, Naftanaila F, Bratu O, Mischianu D, Cernaianu MO, Ghenuche P, Savu D, Stutman D, Tanaka KA, Radu M, Doria D, Vasos PR. Laser-driven radiation: Biomarkers for molecular imaging of high dose-rate effects. Med Phys 2019; 46:e726-e734. [PMID: 31357243 PMCID: PMC6899889 DOI: 10.1002/mp.13741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 04/11/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022] Open
Abstract
Recently developed short‐pulsed laser sources garner high dose‐rate beams such as energetic ions and electrons, x rays, and gamma rays. The biological effects of laser‐generated ion beams observed in recent studies are different from those triggered by radiation generated using classical accelerators or sources, and this difference can be used to develop new strategies for cancer radiotherapy. High‐power lasers can now deliver particles in doses of up to several Gy within nanoseconds. The fast interaction of laser‐generated particles with cells alters cell viability via distinct molecular pathways compared to traditional, prolonged radiation exposure. The emerging consensus of recent literature is that the differences are due to the timescales on which reactive molecules are generated and persist, in various forms. Suitable molecular markers have to be adopted to monitor radiation effects, addressing relevant endogenous molecules that are accessible for investigation by noninvasive procedures and enable translation to clinical imaging. High sensitivity has to be attained for imaging molecular biomarkers in cells and in vivo to follow radiation‐induced functional changes. Signal‐enhanced MRI biomarkers enriched with stable magnetic nuclear isotopes can be used to monitor radiation effects, as demonstrated recently by the use of dynamic nuclear polarization (DNP) for biomolecular observations in vivo. In this context, nanoparticles can also be used as radiation enhancers or biomarker carriers. The radiobiology‐relevant features of high dose‐rate secondary radiation generated using high‐power lasers and the importance of noninvasive biomarkers for real‐time monitoring the biological effects of radiation early on during radiation pulse sequences are discussed.
Collapse
Affiliation(s)
- Theodor Asavei
- Extreme Light Infrastructure - Nuclear Physics ELI-NP, "Horia Hulubei" National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, RO-077125, Bucharest-Magurele, Romania
| | - Mariana Bobeica
- Extreme Light Infrastructure - Nuclear Physics ELI-NP, "Horia Hulubei" National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, RO-077125, Bucharest-Magurele, Romania
| | - Viorel Nastasa
- Extreme Light Infrastructure - Nuclear Physics ELI-NP, "Horia Hulubei" National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, RO-077125, Bucharest-Magurele, Romania.,National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, RO-077125, Bucharest-Magurele, Romania
| | - Gina Manda
- Cellular and Molecular Medicine Department, "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei, Bucharest, 050096, Romania
| | - Florin Naftanaila
- Carol Davila University of Medicine and Pharmacy Bucharest, Dr Carol Davila Central Mil University Emergency Hospital, 88th Mircea Vulcanescu Str, Bucharest, Romania.,Amethyst Radiotherapy Clinic, Dr Odaii 42, Otopeni, Romania
| | - Ovidiu Bratu
- Carol Davila University of Medicine and Pharmacy Bucharest, Dr Carol Davila Central Mil University Emergency Hospital, 88th Mircea Vulcanescu Str, Bucharest, Romania
| | - Dan Mischianu
- Carol Davila University of Medicine and Pharmacy Bucharest, Dr Carol Davila Central Mil University Emergency Hospital, 88th Mircea Vulcanescu Str, Bucharest, Romania
| | - Mihail O Cernaianu
- Extreme Light Infrastructure - Nuclear Physics ELI-NP, "Horia Hulubei" National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, RO-077125, Bucharest-Magurele, Romania
| | - Petru Ghenuche
- Extreme Light Infrastructure - Nuclear Physics ELI-NP, "Horia Hulubei" National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, RO-077125, Bucharest-Magurele, Romania
| | - Diana Savu
- Department of Life and Environmental Physics, Horia Hulubei" National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, RO-077125, Bucharest-Magurele, Romania
| | - Dan Stutman
- Extreme Light Infrastructure - Nuclear Physics ELI-NP, "Horia Hulubei" National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, RO-077125, Bucharest-Magurele, Romania.,National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, RO-077125, Bucharest-Magurele, Romania.,Johns Hopkins University, 3400 N Charles St, Baltimore, Maryland, 21218, USA
| | - Kazuo A Tanaka
- Extreme Light Infrastructure - Nuclear Physics ELI-NP, "Horia Hulubei" National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, RO-077125, Bucharest-Magurele, Romania
| | - Mihai Radu
- Department of Life and Environmental Physics, Horia Hulubei" National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, RO-077125, Bucharest-Magurele, Romania
| | - Domenico Doria
- Extreme Light Infrastructure - Nuclear Physics ELI-NP, "Horia Hulubei" National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, RO-077125, Bucharest-Magurele, Romania.,Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, United Kingdom
| | - Paul R Vasos
- Extreme Light Infrastructure - Nuclear Physics ELI-NP, "Horia Hulubei" National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, RO-077125, Bucharest-Magurele, Romania.,Research Institute of the University of Bucharest (ICUB), 36-46 B-dul M. Kogalniceanu, RO-050107, Bucharest, Romania
| |
Collapse
|
50
|
Simulation of a radiobiology facility for the Centre for the Clinical Application of Particles. Phys Med 2019; 65:21-28. [PMID: 31430582 DOI: 10.1016/j.ejmp.2019.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 07/05/2019] [Accepted: 07/07/2019] [Indexed: 01/14/2023] Open
Abstract
The Centre for the Clinical Application of Particles' Laser-hybrid Accelerator for Radiobiological Applications (LhARA) facility is being studied and requires simulation of novel accelerator components (such as the Gabor lens capture system), detector simulation and simulation of the ion beam interaction with cells. The first stage of LhARA will provide protons up to 15 MeV for in vitro studies. The second stage of LhARA will use a fixed-field accelerator to increase the energy of the particles to allow in vivo studies with protons and in vitro studies with heavier ions. BDSIM, a Geant4 based accelerator simulation tool, has been used to perform particle tracking simulations to verify the beam optics design done by BeamOptics and these show good agreement. Design parameters were defined based on an EPOCH simulation of the laser source and a series of mono-energetic input beams were generated from this by BDSIM. The tracking results show the large angular spread of the input beam (0.2 rad) can be transported with a transmission of almost 100% whilst keeping divergence at the end station very low (<0.1 mrad). The legacy of LhARA will be the demonstration of technologies that could drive a step-change in the provision of proton and light ion therapy (i.e. a laser source coupled to a Gabor lens capture and a fixed-field accelerator), and a system capable of delivering a comprehensive set of experimental data that can be used to enhance the clinical application of proton and light ion therapy.
Collapse
|