1
|
Blakely WF, Port M, Ostheim P, Abend M. Radiation Research Society Journal-based Historical Review of the Use of Biomarkers for Radiation Dose and Injury Assessment: Acute Health Effects Predictions. Radiat Res 2024; 202:185-204. [PMID: 38936821 DOI: 10.1667/rade-24-00121.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
A multiple-parameter based approach using radiation-induced clinical signs and symptoms, hematology changes, cytogenetic chromosomal aberrations, and molecular biomarkers changes after radiation exposure is used for biodosimetry-based dose assessment. In the current article, relevant milestones from Radiation Research are documented that forms the basis of the current consensus approach for diagnostics after radiation exposure. For example, in 1962 the use of cytogenetic chromosomal aberration using the lymphocyte metaphase spread dicentric assay for biodosimetry applications was first published in Radiation Research. This assay is now complimented using other cytogenetic chromosomal aberration assays (i.e., chromosomal translocations, cytokinesis-blocked micronuclei, premature chromosome condensation, γ-H2AX foci, etc.). Changes in blood cell counts represent an early-phase biomarker for radiation exposures. Molecular biomarker changes have evolved to include panels of organ-specific plasma proteomic and blood-based gene expression biomarkers for radiation dose assessment. Maturation of these assays are shown by efforts for automated processing and scoring, development of point-of-care diagnostics devices, service laboratories inter-comparison exercises, and applications for dose and injury assessments in radiation accidents. An alternative and complementary approach has been advocated with the focus to de-emphasize "dose" and instead focus on predicting acute or delayed health effects. The same biomarkers used for dose estimation (e.g., lymphocyte counts) can be used to directly predict the later developing severity degree of acute health effects without performing dose estimation as an additional or intermediate step. This review illustrates contributing steps toward these developments published in Radiation Research.
Collapse
Affiliation(s)
- William F Blakely
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | | | - Michael Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
2
|
Sioen S, D'Hondt L, Van Houte F, Demuynck R, Bacher K, De Wagter C, Vral A, Vanderstraeten B, Krysko DV, Baeyens A. Peripheral blood lymphocytes differ in DNA damage response after exposure to X-rays with different physical properties. Int J Radiat Biol 2024; 100:236-247. [PMID: 37819795 DOI: 10.1080/09553002.2023.2261525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/08/2023] [Indexed: 10/13/2023]
Abstract
Introduction: In radiology, low X-ray energies (<140 keV) are used to obtain an optimal image while in radiotherapy, higher X-ray energies (MeV) are used to eradicate tumor tissue. In radiation research, both these X-ray energies being used to extrapolate in vitro research to clinical practice. However, the energy deposition of X-rays depends on their energy spectrum, which might lead to changes in biological response. Therefore, this study compared the DNA damage response (DDR) in peripheral blood lymphocytes (PBLs) exposed to X-rays with varying beam quality, mean photon energy (MPE) and dose rate.Methods: The DDR was evaluated in peripheral blood lymphocytes (PBLs) by the ɣ-H2AX foci assay, the cytokinesis-block micronucleus assay and an SYTOX-based cell death assay, combined with specific cell death inhibitors. Cell cultures were irradiated with a 220 kV X-ray research cabinet (SARRP, X-Strahl) or a 6 MV X-ray linear accelerator (Elekta Synergy). Three main physical parameters were investigated: beam quality (V), MPE (eV) and dose rate (Gy/min). Additional copper (Cu) filtration caused variation in the MPE (78 keV, 94 keV, 118 keV) at SARRP; dose rates were varied by adjusting tube current for 220 kV X-rays (0.33-3 Gy/min) or water-phantom depth in the 6 MV set-up (3-6 Gy/min).Results: The induction of chromosomal damage and initial (30 min) DNA double-stranded breaks (DSBs) were significantly higher for 220 kV X-rays compared to 6 MV X-rays, while cell death induction was similar. Specific cell death inhibitors for apoptosis, necroptosis and ferroptosis were not capable of blocking cell death after irradiation using low or high-energy X-rays. Additional Cu filtration increased the MPE, which significantly decreased the amount of chromosomal damage and DSBs. Within the tested ranges no specific effects of dose rate variation were observed.Conclusion: The DDR in PBLs is influenced by the beam quality and MPE. This study reinforces the need for consideration and inclusion of all physical parameters in radiation-related studies.
Collapse
Affiliation(s)
- Simon Sioen
- Radiobiology group, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Louise D'Hondt
- Radiobiology group, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Fien Van Houte
- Radiobiology group, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Robin Demuynck
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Klaus Bacher
- Medical Physics Group, Department of Human Structure and Repair, Gent, Belgium
| | - Carlos De Wagter
- Medical Physics Group, Department of Human Structure and Repair, Gent, Belgium
- Department of Radiotherapy-Oncology, Ghent University Hospital, Gent, Belgium
| | - Anne Vral
- Radiobiology group, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Barbara Vanderstraeten
- Medical Physics Group, Department of Human Structure and Repair, Gent, Belgium
- Department of Radiotherapy-Oncology, Ghent University Hospital, Gent, Belgium
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Ans Baeyens
- Radiobiology group, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
3
|
Hirose K, Sato M, Ichise K, Aoki M. Dose Rate Effect on Cell Survival in BNCT. Curr Issues Mol Biol 2023; 45:6986-6994. [PMID: 37754225 PMCID: PMC10530115 DOI: 10.3390/cimb45090441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
The output constancy of the accelerator used for boron neutron capture therapy (BNCT) is essential to ensuring anti-tumor efficacy and safety. BNCT as currently practiced requires a wide variety of beam quality assessments to ensure that RBE dose errors are maintained within 5%. However, the necessity of maintaining a constant beam dose rate has not been fully discussed. We therefore clarified the effect of different physical dose rates of the accelerator BNCT on biological effects. SAS and A172 cells exposed to 10B-boronophenylalanine were irradiated using a neutron beam (normal operating current, 100 μA) at the Aomori Quantum Science Center. Thermal neutron flux was attenuated to 50.0 ± 0.96% under 50 μA irradiation compared to that under 100 μA irradiation. Cells were given physical doses of 1.67 and 3.36 Gy at 30 and 60 mC, respectively, and survival was significantly increased after 50 μA irradiation for both cell types (p = 0.0052 for SAS; p = 0.046 for A172, for 60 mC). Differences in accelerator BNCT beam dose rates have non-negligible effects on biological effects. Dose rate fluctuations and differences should not be easily permitted to obtain consistent biological effects.
Collapse
Affiliation(s)
- Katsumi Hirose
- Department of Radiation Oncology, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki 036-8562, Japan; (M.S.); (K.I.); (M.A.)
- Southern Tohoku BNCT Research Center, 7-10 Yatsuyamada, Koriyama 963-8052, Japan
| | - Mariko Sato
- Department of Radiation Oncology, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki 036-8562, Japan; (M.S.); (K.I.); (M.A.)
- Southern Tohoku BNCT Research Center, 7-10 Yatsuyamada, Koriyama 963-8052, Japan
| | - Koji Ichise
- Department of Radiation Oncology, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki 036-8562, Japan; (M.S.); (K.I.); (M.A.)
- Osaka Heavy-Ion Therapy Center, 3-1-10 Otemae, Chuo-ku, Osaka 540-0008, Japan
| | - Masahiko Aoki
- Department of Radiation Oncology, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki 036-8562, Japan; (M.S.); (K.I.); (M.A.)
| |
Collapse
|
4
|
Ou X, You J, Liang B, Li X, Zhou J, Wen F, Wang J, Dong Z, Zhang Y. Prognostic Factors Analysis of Metastatic Recurrence in Cervical Carcinoma Patients Treated with Definitive Radiotherapy: A Retrospective Study Using Mixture Cure Model. Cancers (Basel) 2023; 15:2913. [PMID: 37296875 PMCID: PMC10252127 DOI: 10.3390/cancers15112913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
OBJECTIVES This study aims to identify prognostic factors associated with metastatic recurrence-free survival of cervical carcinoma (CC) patients treated with radical radiotherapy and assess the cure probability of radical radiotherapy from metastatic recurrence. METHODS Data were from 446 cervical carcinoma patients with radical radiotherapy for an average follow up of 3.96 years. We applied a mixture cure model to investigate the association between metastatic recurrence and prognostic factors and the association between noncure probability and factors, respectively. A nonparametric test of cure probability under the framework of a mixture cure model was used to examine the significance of cure probability of the definitive radiotherapy treatment. Propensity-score-matched (PSM) pairs were generated to reduce bias in subgroup analysis. RESULTS Patients in advanced stages (p = 0.005) and those with worse treatment responses in the 3rd month (p = 0.004) had higher metastatic recurrence rates. Nonparametric tests of the cure probability showed that 3-year cure probability from metastatic recurrence was significantly larger than 0, and 5-year cure probability was significantly larger than 0.7 but no larger than 0.8. The empirical cure probability by mixture cure model was 79.2% (95% CI: 78.6-79.9%) for the entire study population, and the overall median metastatic recurrence time for uncured patients (patients susceptible to metastatic recurrence) was 1.60 (95% CI: 1.51-1.69) years. Locally advanced/advanced stage was a risk factor but non-significant against the cure probability (OR = 1.078, p = 0.088). The interaction of age and activity of radioactive source were statistically significant in the incidence model (OR = 0.839, p = 0.025). In subgroup analysis, compared with high activity of radioactive source (HARS), low activity of radioactive source (LARS) significantly contributed to a 16.1% higher cure probability for patients greater than 53 years old, while cure probability was 12.2% lower for the younger patients. CONCLUSIONS There was statistically significant evidence in the data showing the existence of a large amount of patients cured by the definitive radiotherapy treatment. HARS is a protective factor against metastatic recurrence for uncured patients, and young patients tend to benefit more than the elderly from the HARS treatment.
Collapse
Affiliation(s)
- Xiaxian Ou
- Department of Biostatistics, School of Public Health, Peking University, Beijing 100191, China; (X.O.); (J.Z.); (J.W.)
| | - Jing You
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China; (J.Y.); (X.L.); (Z.D.); (Y.Z.)
| | - Baosheng Liang
- Department of Biostatistics, School of Public Health, Peking University, Beijing 100191, China; (X.O.); (J.Z.); (J.W.)
| | - Xiaofan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China; (J.Y.); (X.L.); (Z.D.); (Y.Z.)
| | - Jiangjie Zhou
- Department of Biostatistics, School of Public Health, Peking University, Beijing 100191, China; (X.O.); (J.Z.); (J.W.)
| | - Fengyu Wen
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China;
| | - Jingyuan Wang
- Department of Biostatistics, School of Public Health, Peking University, Beijing 100191, China; (X.O.); (J.Z.); (J.W.)
| | - Zhengkun Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China; (J.Y.); (X.L.); (Z.D.); (Y.Z.)
| | - Yibao Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China; (J.Y.); (X.L.); (Z.D.); (Y.Z.)
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China;
| |
Collapse
|
5
|
Suzuki K, Imaoka T, Tomita M, Sasatani M, Doi K, Tanaka S, Kai M, Yamada Y, Kakinuma S. Molecular and cellular basis of the dose-rate-dependent adverse effects of radiation exposure in animal models. Part II: Hematopoietic system, lung and liver. JOURNAL OF RADIATION RESEARCH 2023; 64:228-249. [PMID: 36773331 PMCID: PMC10036110 DOI: 10.1093/jrr/rrad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 10/04/2022] [Indexed: 06/18/2023]
Abstract
While epidemiological data have greatly contributed to the estimation of the dose and dose-rate effectiveness factor (DDREF) for human populations, studies using animal models have made significant contributions to provide quantitative data with mechanistic insights. The current article aims at compiling the animal studies, specific to rodents, with reference to the dose-rate effects of cancer development. This review focuses specifically on the results that explain the biological mechanisms underlying dose-rate effects and their potential involvement in radiation-induced carcinogenic processes. Since the adverse outcome pathway (AOP) concept together with the key events holds promise for improving the estimation of radiation risk at low doses and low dose-rates, the review intends to scrutinize dose-rate dependency of the key events in animal models and to consider novel key events involved in the dose-rate effects, which enables identification of important underlying mechanisms for linking animal experimental and human epidemiological studies in a unified manner.
Collapse
Affiliation(s)
- Keiji Suzuki
- Corresponding author, Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan. Tel:+81-95-819-7116; Fax:+81-95-819-7117; E-mail:
| | | | | | | | - Kazutaka Doi
- Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Satoshi Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Michiaki Kai
- Nippon Bunri University, 1727-162 Ichiki, Oita, Oita 870-0397, Japan
| | - Yutaka Yamada
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
6
|
Zhang Q, Yang L, Gao H, Kuang X, Xiao H, Yang C, Cheng Y, Zhang L, Guo X, Zhong Y, Li M. APE1 promotes non-homologous end joining by initiating DNA double-strand break formation and decreasing ubiquitination of artemis following oxidative genotoxic stress. J Transl Med 2023; 21:183. [PMID: 36894994 PMCID: PMC9997026 DOI: 10.1186/s12967-023-04022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Apurinic/apyrimidinic endonuclease 1 (APE1) imparts radio-resistance by repairing isolated lesions via the base excision repair (BER) pathway, but whether and how it is involved in the formation and/or repair of DSBs remains mostly unknown. METHODS Immunoblotting, fluorescent immunostaining, and the Comet assay were used to investigate the effect of APE1 on temporal DSB formation. Chromatin extraction, 53BP1 foci and co-immunoprecipitation, and rescue assays were used to evaluate non-homologous end joining (NHEJ) repair and APE1 effects. Colony formation, micronuclei measurements, flow cytometry, and xenograft models were used to examine the effect of APE1 expression on survival and synergistic lethality. Immunohistochemistry was used to detect APE1 and Artemis expression in cervical tumor tissues. RESULTS APE1 is upregulated in cervical tumor tissue compared to paired peri-tumor, and elevated APE1 expression is associated with radio-resistance. APE1 mediates resistance to oxidative genotoxic stress by activating NHEJ repair. APE1, via its endonuclease activity, initiates clustered lesion conversion to DSBs (within 1 h), promoting the activation of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a key kinase in the DNA damage response (DDR) and NHEJ pathway. APE1 then participates in NHEJ repair directly by interacting with DNA- PKcs. Additionally, APE1 promotes NHEJ activity by decreasing the ubiquitination and degradation of Artemis, a nuclease with a critical role in the NHEJ pathway. Overall, APE1 deficiency leads to DSB accumulation at a late phase following oxidative stress (after 24 h), which also triggers activation of Ataxia-telangiectasia mutated (ATM), another key kinase of the DDR. Inhibition of ATM activity significantly promotes synergistic lethality with oxidative stress in APE1-deficient cells and tumors. CONCLUSION APE1 promotes NHEJ repair by temporally regulating DBS formation and repair following oxidative stress. This knowledge provides new insights into the design of combinatorial therapies and indicates the timing of administration and maintenance of DDR inhibitors for overcoming radio-resistance.
Collapse
Affiliation(s)
- Qin Zhang
- Cancer Center of Daping Hospital, Army Medical University, Chongqing, 400000, China
| | - Lujie Yang
- Cancer Center of Daping Hospital, Army Medical University, Chongqing, 400000, China
| | - Han Gao
- Cancer Center of Daping Hospital, Army Medical University, Chongqing, 400000, China
| | - Xunjie Kuang
- Cancer Center of Daping Hospital, Army Medical University, Chongqing, 400000, China
| | - He Xiao
- Cancer Center of Daping Hospital, Army Medical University, Chongqing, 400000, China
| | - Chen Yang
- Cancer Center of Daping Hospital, Army Medical University, Chongqing, 400000, China
| | - Yi Cheng
- Cancer Center of Daping Hospital, Army Medical University, Chongqing, 400000, China
| | - Lei Zhang
- Cancer Center of Daping Hospital, Army Medical University, Chongqing, 400000, China
| | - Xin Guo
- Cancer Center of Daping Hospital, Army Medical University, Chongqing, 400000, China
| | - Yong Zhong
- Cancer Center of Daping Hospital, Army Medical University, Chongqing, 400000, China
| | - Mengxia Li
- Cancer Center of Daping Hospital, Army Medical University, Chongqing, 400000, China.
| |
Collapse
|
7
|
Lee Y, Wang Q, Seong KM, Turner HC. High-Throughput γ-H2AX Assay Using Imaging Flow Cytometry. Methods Mol Biol 2023; 2635:123-134. [PMID: 37074660 DOI: 10.1007/978-1-0716-3020-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The γ-H2AX assay is a sensitive and reliable method to evaluate radiation-induced DNA double-strand breaks. The conventional γ-H2AX assay detects individual nuclear foci manually, but is labor-intensive and time-consuming, and hence unsuitable for high-throughput screening in cases of large-scale radiation accidents. We have developed a high-throughput γ-H2AX assay using imaging flow cytometry. This method comprises (1) sample preparation from small volumes of blood in the Matrix™ 96-tube format, (2) automated image acquisition of cells stained with immunofluorescence-labeled γ-H2AX using ImageStream®X, and (3) quantification of γ-H2AX levels and batch processing using the Image Data Exploration and Analysis Software (IDEAS®). This enables the rapid analysis of γ-H2AX levels in several thousand of cells from a small volume of blood with accurate and reliable quantitative measurements for γ-H2AX foci and mean fluorescence levels. This high-throughput γ-H2AX assay could be a useful tool not only for radiation biodosimetry in mass casualty events, but also for large-scale molecular epidemiological studies and individualized radiotherapy.
Collapse
Affiliation(s)
- Younghyun Lee
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Republic of Korea
| | - Qi Wang
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
- Radiation Oncology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ki Moon Seong
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Helen C Turner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
8
|
Lowe D, Roy L, Tabocchini MA, Rühm W, Wakeford R, Woloschak GE, Laurier D. Radiation dose rate effects: what is new and what is needed? RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:507-543. [PMID: 36241855 PMCID: PMC9630203 DOI: 10.1007/s00411-022-00996-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/13/2022] [Indexed: 05/04/2023]
Abstract
Despite decades of research to understand the biological effects of ionising radiation, there is still much uncertainty over the role of dose rate. Motivated by a virtual workshop on the "Effects of spatial and temporal variation in dose delivery" organised in November 2020 by the Multidisciplinary Low Dose Initiative (MELODI), here, we review studies to date exploring dose rate effects, highlighting significant findings, recent advances and to provide perspective and recommendations for requirements and direction of future work. A comprehensive range of studies is considered, including molecular, cellular, animal, and human studies, with a focus on low linear-energy-transfer radiation exposure. Limits and advantages of each type of study are discussed, and a focus is made on future research needs.
Collapse
Affiliation(s)
- Donna Lowe
- UK Health Security Agency, CRCE Chilton, Didcot, OX11 0RQ, Oxfordshire, UK
| | - Laurence Roy
- Institut de Radioprotection Et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| | - Maria Antonella Tabocchini
- Istituto Nazionale i Fisica Nucleare, Sezione i Roma, Rome, Italy
- Istituto Superiore Di Sanità, Rome, Italy
| | - Werner Rühm
- Institute of Radiation Medicine, Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Gayle E Woloschak
- Department of Radiation Oncology, Northwestern University School of Medicine, Chicago, IL, USA.
| | - Dominique Laurier
- Institut de Radioprotection Et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| |
Collapse
|
9
|
Cho E, Allemang A, Audebert M, Chauhan V, Dertinger S, Hendriks G, Luijten M, Marchetti F, Minocherhomji S, Pfuhler S, Roberts DJ, Trenz K, Yauk CL. AOP report: Development of an adverse outcome pathway for oxidative DNA damage leading to mutations and chromosomal aberrations. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:118-134. [PMID: 35315142 PMCID: PMC9322445 DOI: 10.1002/em.22479] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/18/2022] [Indexed: 05/22/2023]
Abstract
The Genetic Toxicology Technical Committee (GTTC) of the Health and Environmental Sciences Institute (HESI) is developing adverse outcome pathways (AOPs) that describe modes of action leading to potentially heritable genomic damage. The goal was to enhance the use of mechanistic information in genotoxicity assessment by building empirical support for the relationships between relevant molecular initiating events (MIEs) and regulatory endpoints in genetic toxicology. Herein, we present an AOP network that links oxidative DNA damage to two adverse outcomes (AOs): mutations and chromosomal aberrations. We collected empirical evidence from the literature to evaluate the key event relationships between the MIE and the AOs, and assessed the weight of evidence using the modified Bradford-Hill criteria for causality. Oxidative DNA damage is constantly induced and repaired in cells given the ubiquitous presence of reactive oxygen species and free radicals. However, xenobiotic exposures may increase damage above baseline levels through a variety of mechanisms and overwhelm DNA repair and endogenous antioxidant capacity. Unrepaired oxidative DNA base damage can lead to base substitutions during replication and, along with repair intermediates, can also cause DNA strand breaks that can lead to mutations and chromosomal aberrations if not repaired adequately. This AOP network identifies knowledge gaps that could be filled by targeted studies designed to better define the quantitative relationships between key events, which could be leveraged for quantitative chemical safety assessment. We anticipate that this AOP network will provide the building blocks for additional genotoxicity-associated AOPs and aid in designing novel integrated testing approaches for genotoxicity.
Collapse
Affiliation(s)
- Eunnara Cho
- Environmental Health Science and Research BureauHealth CanadaOttawaOntarioCanada
- Department of BiologyCarleton UniversityOttawaOntarioCanada
| | | | | | - Vinita Chauhan
- Consumer and Clinical Radiation Protection BureauHealth CanadaOttawaOntarioCanada
| | | | | | - Mirjam Luijten
- Centre for Health ProtectionNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - Francesco Marchetti
- Environmental Health Science and Research BureauHealth CanadaOttawaOntarioCanada
- Department of BiologyCarleton UniversityOttawaOntarioCanada
| | - Sheroy Minocherhomji
- Amgen Research, Translational Safety and Bioanalytical SciencesAmgen Inc.Thousand OaksCaliforniaUSA
| | | | | | | | - Carole L. Yauk
- Environmental Health Science and Research BureauHealth CanadaOttawaOntarioCanada
- Department of BiologyCarleton UniversityOttawaOntarioCanada
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| |
Collapse
|
10
|
A comprehensive analysis of the relationship between dose-rate and biological effects in pre-clinical and clinical studies, from brachytherapy to flattening filter-free radiation therapy and FLASH irradiation. Int J Radiat Oncol Biol Phys 2022; 113:985-995. [DOI: 10.1016/j.ijrobp.2022.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 01/16/2023]
|
11
|
Panek A, Miszczyk J. ATM and RAD51 Repair Pathways in Human Lymphocytes Irradiated with 70 MeV Therapeutic Proton Beam. Radiat Res 2021; 197:396-402. [PMID: 34958667 DOI: 10.1667/rade-21-00109.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 11/17/2021] [Indexed: 11/03/2022]
Abstract
The repair of radiation-induced DNA damage is a key factor differentiating patients in terms of the therapeutic efficacy and toxicity to surrounding normal tissue. Proton energy substantially determines the types of cancers that can be treated. The present work investigated the DNA double-strand break repair systems, represented by phosphorylated ATM and Rad51. The status of proton therapy energy used to treat major types of cancer is summarized. Here, human lymphocytes from eight healthy donors (male and female) were irradiated with a spread-out Bragg peak using a therapeutic 70 MeV proton beam or with reference X rays. For both types of radiation, the kinetics of pATM and Rad51 repair protein activation (0-24 h) were estimated as determinants of homologous and non-homologous double-strand break repair. Additionally, γ-H2AX was used as the gold standard marker of double-strand breaks. Our results showed that at 30 min postirradiation there was significantly greater accumulation of γ-H2AX (0.6-fold), pATM (2.0-fold), and Rad51 (0.6-fold) in the proton-irradiated cells compared with the X-ray-treated cells. At 24 h post irradiation, for both types of radiation and all investigated proteins, the foci number was still significantly higher when compared with control. Furthermore, the mean value of pATM and Rad51 repair effectiveness was higher in cells exposed to protons than in cells exposed to X rays; however, the difference was significant only for pATM. The largest inter-individual differences in the repair capabilities were noted for Rad51. The association between the frequency of repair protein foci and the frequency of lymphocyte viability at 1 h post irradiation showed a positive correlation for protons but a negative correlation for X rays. These findings indicate that the accumulation of radiation-induced repair protein foci after proton versus X-ray irradiation differs between patients, consequently affecting the cellular responses to particle therapy and conventional radiation therapy.
Collapse
Affiliation(s)
- Agnieszka Panek
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31-342 Krakow, Poland
| | - Justyna Miszczyk
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31-342 Krakow, Poland
| |
Collapse
|
12
|
H2A.X Phosphorylation in Oxidative Stress and Risk Assessment in Plasma Medicine. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2060986. [PMID: 34938381 PMCID: PMC8687853 DOI: 10.1155/2021/2060986] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022]
Abstract
At serine139-phosphorylated gamma histone H2A.X (γH2A.X) has been established over the decades as sensitive evidence of radiation-induced DNA damage, especially DNA double-strand breaks (DSBs) in radiation biology. Therefore, γH2A.X has been considered a suitable marker for biomedical applications and a general indicator of direct DNA damage with other therapeutic agents, such as cold physical plasma. Medical plasma technology generates a partially ionized gas releasing a plethora of reactive oxygen and nitrogen species (ROS) simultaneously that have been used for therapeutic purposes such as wound healing and cancer treatment. The quantification of γH2A.X as a surrogate parameter of direct DNA damage has often been used to assess genotoxicity in plasma-treated cells, whereas no sustainable mutagenic potential of the medical plasma treatment could be identified despite H2A.X phosphorylation. However, phosphorylated H2A.X occurs during apoptosis, which is associated with exposure to cold plasma and ROS. This review summarizes the current understanding of γH2A.X induction and function in oxidative stress in general and plasma medicine in particular. Due to the progress towards understanding the mechanisms of H2A.X phosphorylation in the absence of DSB and ROS, observations of γH2A.X in medical fields should be carefully interpreted.
Collapse
|
13
|
Evarista Arellano-García M, Torres-Bugarín O, Roxana García-García M, García-Flores D, Toledano-Magaña Y, Sofia Sanabria-Mora C, Castro-Gamboa S, Carlos García-Ramos J. Genomic Instability and Cyto-Genotoxic Damage in Animal Species. Vet Med Sci 2021. [DOI: 10.5772/intechopen.99685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Genomic instability is a condition that may be associated with carcinogenesis and/or physiological disorders when genetic lesions are not repaired. Besides, wild, captive, and domesticated vertebrates are exposed to xenobiotics, leading to health disorders due to cytogenotoxicity. This chapter provides an overview of tests to assess cytogenotoxicity based on micronuclei (MNi) formation. Bone marrow micronuclei test (BmMNt), peripheral blood erythrocyte micronuclei test (PBMNt), and lymphocyte cytokinesis blocking micronuclei assay (CBMN) are discussed. The most illustrative studies of these techniques applied in different vertebrates of veterinary interest are described. The values of spontaneous basal micronuclei in captive, experimental, and farm animals (rodents, hamsters, pigs, goats, cattle, horses, fish) are summarized. In addition, a flow cytometry technique is presented to reduce the time taken to record MNi and other cellular abnormalities. Flow cytometry is helpful to analyze some indicators of genomic instability, such as cell death processes and stages (necrosis, apoptosis) and to efficiently evaluate some biomarkers of genotoxicity like MNi in BmMNt, PBMNt, and CBMN. The intention is to provide veterinary professionals with techniques to assess and interpret cytogenotoxicity biomarkers to anticipate therapeutic management in animals at risk of carcinogenesis or other degenerative diseases.
Collapse
|
14
|
Wang Q, Lee Y, Pujol-Canadell M, Perrier JR, Smilenov L, Harken A, Garty G, Brenner DJ, Ponnaiya B, Turner HC. Cytogenetic Damage of Human Lymphocytes in Humanized Mice Exposed to Neutrons and X Rays 24 h After Exposure. Cytogenet Genome Res 2021; 161:352-361. [PMID: 34488220 PMCID: PMC8455411 DOI: 10.1159/000516529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/02/2021] [Indexed: 11/19/2022] Open
Abstract
Detonation of an improvised nuclear device highlights the need to understand the risk of mixed radiation exposure as prompt radiation exposure could produce significant neutron and gamma exposures. Although the neutron component may be a relatively small percentage of the total absorbed dose, the large relative biological effectiveness (RBE) can induce larger biological DNA damage and cell killing. The objective of this study was to use a hematopoietically humanized mouse model to measure chromosomal DNA damage in human lymphocytes 24 h after in vivo exposure to neutrons (0.3 Gy) and X rays (1 Gy). The human dicentric and cytokinesis-block micronucleus assays were performed to measure chromosomal aberrations in human lymphocytes in vivo from the blood and spleen, respectively. The mBAND assay based on fluorescent in situ hybridization labeling was used to detect neutron-induced chromosome 1 inversions in the blood lymphocytes of the neutron-irradiated mice. Cytogenetics endpoints, dicentrics and micronuclei showed that there was no significant difference in yields between the 2 irradiation types at the doses tested, indicating that neutron-induced chromosomal DNA damage in vivo was more biologically effective (RBE ∼3.3) compared to X rays. The mBAND assay, which is considered a specific biomarker of high-LET neutron exposure, confirmed the presence of clustered DNA damage in the neutron-irradiated mice but not in the X-irradiated mice, 24 h after exposure.
Collapse
Affiliation(s)
- Qi Wang
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY), USA
| | - Younghyun Lee
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY), USA
| | - Monica Pujol-Canadell
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY), USA
| | - Jay R. Perrier
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY), USA
| | - Lubomir Smilenov
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY), USA
| | - Andrew Harken
- Radiological Research Accelerator Facility, Columbia University, Irvington, (NY), USA
| | - Guy Garty
- Radiological Research Accelerator Facility, Columbia University, Irvington, (NY), USA
| | - David J. Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY), USA
| | - Brian Ponnaiya
- Radiological Research Accelerator Facility, Columbia University, Irvington, (NY), USA
| | - Helen C. Turner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, (NY), USA
| |
Collapse
|
15
|
Transportation container for pre-processing cytogenetic assays in radiation accidents. Sci Rep 2021; 11:10398. [PMID: 34001964 PMCID: PMC8129553 DOI: 10.1038/s41598-021-89832-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
We report a shipping container that enables a disruptive logistics for cytogenetic biodosimetry for radiation countermeasures through pre-processing cell culture during transportation. The container showed precise temperature control (< 0.01 °C) with uniform sample temperature (< 0.1 °C) to meet the biodosimetry assay requirements. Using an existing insulated shipping box and long shelf life alkaline batteries makes it ideal for national stockpile. Dose curve of cytogenetic biodosimetry assay using the shipping container showed clear dose response and high linear correlation with the control dose curve using a laboratory incubator (Pearson’s correlation coefficient: 0.992). The container’s ability of pre-processing biological samples during transportation could have a significant impact on radiation countermeasure, as well as potential impacts in other applications such as biobanking, novel molecular or cell-based assays or therapies.
Collapse
|
16
|
Shuryak I, Ghandhi SA, Turner HC, Weber W, Melo D, Amundson SA, Brenner DJ. Dose and Dose-Rate Effects in a Mouse Model of Internal Exposure from 137Cs. Part 2: Integration of Gamma-H2AX and Gene Expression Biomarkers for Retrospective Radiation Biodosimetry. Radiat Res 2020; 196:491-500. [PMID: 33064820 PMCID: PMC8944909 DOI: 10.1667/rade-20-00042.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/13/2020] [Indexed: 11/03/2022]
Abstract
Inhalation and ingestion of 137Cs and other long-lived radionuclides can occur after large-scale accidental or malicious radioactive contamination incidents, resulting in a complex temporal pattern of radiation dose/dose rate, influenced by radionuclide pharmacokinetics and chemical properties. High-throughput radiation biodosimetry techniques for such internal exposure are needed to assess potential risks of short-term toxicity and delayed effects (e.g., carcinogenesis) for exposed individuals. Previously, we used γ-H2AX to reconstruct injected 137Cs activity in experimentally-exposed mice, and converted activity values into radiation doses based on time since injection and 137Cs-elimination kinetics. In the current study, we sought to assess the feasibility and possible advantages of combining γ-H2AX with transcriptomics to improve 137Cs activity reconstructions. We selected five genes (Atf5, Hist2h2aa2, Olfr358, Psrc1, Hist2h2ac) with strong statistically-significant Spearman's correlations with injected activity and stable expression over time after 137Cs injection. The geometric mean of log-transformed signals of these five genes, combined with γ-H2AX fluorescence, were used as predictors in a nonlinear model for reconstructing injected 137Cs activity. The coefficient of determination (R2) comparing actual and reconstructed activities was 0.91 and root mean squared error (RMSE) was 0.95 MBq. These metrics remained stable when the model was fitted to a randomly-selected half of the data and tested on the other half, repeated 100 times. Model performance was significantly better when compared to our previous analysis using γ-H2AX alone, and when compared to an analysis where genes are used without γ-H2AX, suggesting that integrating γ-H2AX with gene expression provides an important advantage. Our findings show a proof of principle that integration of radiation-responsive biomarkers from different fields is promising for radiation biodosimetry of internal emitters.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| | - Shanaz A. Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| | - Helen C. Turner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| | - Waylon Weber
- Lovelace Biomedical, Albuquerque, New Mexico, 87108
| | | | - Sally A. Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| | - David J. Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| |
Collapse
|
17
|
Kawahara D, Nakano H, Saito A, Ozawa S, Nagata Y. Dose compensation based on biological effectiveness due to interruption time for photon radiation therapy. Br J Radiol 2020; 93:20200125. [PMID: 32356450 DOI: 10.1259/bjr.20200125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To evaluate the biological effectiveness of dose associated with interruption time; and propose the dose compensation method based on biological effectiveness when an interruption occurs during photon radiation therapy. METHODS The lineal energy distribution for human salivary gland tumor was calculated by Monte Carlo simulation using a photon beam. The biological dose (Dbio) was estimated using the microdosimetric kinetic model. The dose compensating factor with the physical dose for the difference of the Dbio with and without interruption (Δ) was derived. The interruption time (τ) was varied to 0.1, 0.2, 0.3, 0.4, 0.5, 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 75, and 120 min. The dose per fraction and dose rate varied from 2 to 8 Gy and 0.1 to 24 Gy/min, respectively. RESULTS The maximum Δ with 1 Gy/min occurred when the interruption occurred at half the dose. The Δ with 1 Gy/min at half of the dose was over 3% for τ >= 20 min for 2 Gy, τ = 10 min for 5 Gy, and τ = 10 min for 8 Gy. The maximum difference of the Δ due to the dose rate was within 3% for 2 and 5 Gy, and achieving values of 4.0% for 8 Gy. The dose compensating factor was larger with a high dose per fraction and high-dose rate beams. CONCLUSION A loss of biological effectiveness occurs due to interruption. Our proposal method could correct for the unexpected decrease of the biological effectiveness caused by interruption time. ADVANCES IN KNOWLEDGE For photon radiotherapy, the interruption causes the sublethal damage repair. The current study proposed the dose compensation method for the decrease of the biological effect by the interruption.
Collapse
Affiliation(s)
- Daisuke Kawahara
- Department of Radiation Oncology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Hiroshima 734-8551, Japan
| | - Hisashi Nakano
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, Niigata, Niigata, 951-8122, Japan
| | - Akito Saito
- Department of Radiation Oncology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Hiroshima 734-8551, Japan
| | - Shuichi Ozawa
- Department of Radiation Oncology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Hiroshima 734-8551, Japan.,Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, 732-0057, Japan
| | - Yasushi Nagata
- Department of Radiation Oncology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Hiroshima 734-8551, Japan.,Department of Radiation Oncology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, 755-0046, Japan
| |
Collapse
|
18
|
Wang Q, Pujol-Canadell M, Taveras M, Garty G, Perrier J, Bueno-Beti C, Shuryak I, Brenner DJ, Turner HC. DNA damage response in peripheral mouse blood leukocytes in vivo after variable, low-dose rate exposure. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:89-98. [PMID: 31897603 PMCID: PMC7441378 DOI: 10.1007/s00411-019-00825-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/08/2019] [Indexed: 05/03/2023]
Abstract
Environmental contamination and ingestion of the radionuclide Cesium-137 (137Cs) is a large concern in fallout from a nuclear reactor accident or improvised nuclear device, and highlights the need to develop biological assays for low-dose rate, internal emitter radiation. To mimic low-dose rates attributable to fallout, we have developed a VAriable Dose-rate External 137Cs irradiatoR (VADER), which can provide arbitrarily varying and progressive low-dose rate irradiations in the range of 0.1-1.2 Gy/day, while circumventing the complexities of dealing with radioactively contaminated biomaterials. We investigated the kinetics of mouse peripheral leukocytes DNA damage response in vivo after variable, low-dose rate 137Cs exposure. C57BL/6 mice were placed in the VADER over 7 days with total accumulated dose up to 2.7 Gy. Peripheral blood response including the leukocyte depletion, apoptosis as well as its signal protein p53 and DNA repair biomarker γ-H2AX was measured. The results illustrated that blood leukocyte numbers had significantly dropped by day 7. P53 levels peaked at day 2 (total dose = 0.91 Gy) and then declined; whereas, γ-H2AX fluorescence intensity (MFI) and foci number generally increased with accumulated dose and peaked at day 5 (total dose = 2.08 Gy). ROC curve analysis for γ-H2AX provided a good discrimination of accumulated dose < 2 Gy and ≥ 2 Gy, highlighting the potential of γ-H2AX MFI as a biomarker for dosimetry in a protracted, environmental exposure scenario.
Collapse
Affiliation(s)
- Qi Wang
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - Monica Pujol-Canadell
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Maria Taveras
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Guy Garty
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jay Perrier
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Carlos Bueno-Beti
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Helen C Turner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| |
Collapse
|
19
|
The Impact of Dose Rate on DNA Double-Strand Break Formation and Repair in Human Lymphocytes Exposed to Fast Neutron Irradiation. Int J Mol Sci 2019; 20:ijms20215350. [PMID: 31661782 PMCID: PMC6862539 DOI: 10.3390/ijms20215350] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/16/2019] [Accepted: 10/19/2019] [Indexed: 12/12/2022] Open
Abstract
The lack of information on how biological systems respond to low-dose and low dose-rate exposures makes it difficult to accurately assess the carcinogenic risks. This is of critical importance to space radiation, which remains a serious concern for long-term manned space exploration. In this study, the γ-H2AX foci assay was used to follow DNA double-strand break (DSB) induction and repair following exposure to neutron irradiation, which is produced as secondary radiation in the space environment. Human lymphocytes were exposed to high dose-rate (HDR: 0.400 Gy/min) and low dose-rate (LDR: 0.015 Gy/min) p(66)/Be(40) neutrons. DNA DSB induction was investigated 30 min post exposure to neutron doses ranging from 0.125 to 2 Gy. Repair kinetics was studied at different time points after a 1 Gy neutron dose. Our results indicated that γ-H2AX foci formation was 40% higher at HDR exposure compared to LDR exposure. The maximum γ-H2AX foci levels decreased gradually to 1.65 ± 0.64 foci/cell (LDR) and 1.29 ± 0.45 (HDR) at 24 h postirradiation, remaining significantly higher than background levels. This illustrates a significant effect of dose rate on neutron-induced DNA damage. While no significant difference was observed in residual DNA damage after 24 h, the DSB repair half-life of LDR exposure was slower than that of HDR exposure. The results give a first indication that the dose rate should be taken into account for cancer risk estimations related to neutrons.
Collapse
|
20
|
Elbakrawy EM, Hill MA, Kadhim MA. Radiation-induced Chromosome Instability: The Role of Dose and Dose Rate. Genome Integr 2019; 10:3. [PMID: 31897286 PMCID: PMC6862263 DOI: 10.4103/genint.genint_5_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Nontargeted effects include radiation-induced genomic instability (RIGI) which is observed in the progeny of cells exposed to ionizing radiation and can be manifested in different ways, including chromosomal instability and micronucleus (MN) formation. Since genomic instability is commonly observed in tumors and has a role in tumor progression, RIGI has the potential of being an important mechanism for radiation-induced cancer. The work presented explores the role of dose and dose rate on RIGI, determined using a MN assay, in normal primary human fibroblast (HF19) cells exposed to either 0.1 Gy or 1 Gy of X-rays delivered either as an acute (0.42 Gy/min) or protracted (0.0031 Gy/min) exposure. While the expected increase in MN was observed following the first mitosis of the irradiated cells compared to unirradiated controls, the results also demonstrate a significant increase in MN yields in the progeny of these cells at 10 and 20 population doublings following irradiation. Minimal difference was observed between the two doses used (0.1 and 1 Gy) and the dose rates (acute and protracted). Therefore, these nontargeted effects have the potential to be important for the low-dose and dose-rate exposure. The results also show an enhancement of the cellular levels of reactive oxygen species after 20 population doublings, which suggests that ionising radiation (IR) could potentially perturb the homeostasis of oxidative stress and so modify the background rate of endogenous DNA damage induction. In conclusion, the investigations have demonstrated that normal primary human fibroblast (HF19) cells are susceptible to the induction of early DNA damage and RIGI, not only after a high dose and high dose rate exposure to low linear energy transfer, but also following low dose, low dose rate exposures. The results suggest that the mechanism of radiation induced RIGI in HF19 cells can be correlated with the induction of reactive oxygen species levels following exposure to 0.1 and 1 Gy low-dose rate and high-dose rate x-ray irradiation.
Collapse
Affiliation(s)
- Eman Mohammed Elbakrawy
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, England, UK.,Department of Radiation Physics, National Center for Radiation Research and Technology, Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Mark A Hill
- Department of Oncology, Gray Laboratories, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, England, UK
| | - Munira A Kadhim
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, England, UK
| |
Collapse
|
21
|
Lee Y, Wang Q, Shuryak I, Brenner DJ, Turner HC. Development of a high-throughput γ-H2AX assay based on imaging flow cytometry. Radiat Oncol 2019; 14:150. [PMID: 31438980 PMCID: PMC6704696 DOI: 10.1186/s13014-019-1344-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/23/2019] [Indexed: 11/30/2022] Open
Abstract
Background Measurement of γ-H2AX foci levels in cells provides a sensitive and reliable method for quantitation of the radiation-induced DNA damage response. The objective of the present study was to develop a rapid, high-throughput γ-H2AX assay based on imaging flow cytometry (IFC) using the ImageStream®X Mk II (ISX) platform to evaluate DNA double strand break (DSB) repair kinetics in human peripheral blood cells after exposure to ionizing irradiation. Methods The γ-H2AX protocol was developed and optimized for small volumes (100 μL) of human blood in Matrix™ 96-tube format. Blood cell lymphocytes were identified and captured by ISX INSPIRE™ software and analyzed by Data Exploration and Analysis Software. Results Dose- and time-dependent γ-H2AX levels corresponding to radiation exposure were measured at various time points over 24 h using the IFC system. γ-H2AX fluorescence intensity at 1 h after exposure, increased linearly with increasing radiation dose (R2 = 0.98) for the four human donors tested, whereas the dose response for the mean number of γ-H2AX foci/cell was not as robust (R2 = 0.81). Radiation-induced γ-H2AX levels rapidly increased within 30 min and reached a maximum by ~ 1 h, after which time there was fast decline by 6 h, followed by a much slower rate of disappearance up to 24 h. A mathematical approach for quantifying DNA repair kinetics using the rate of γ-H2AX decay (decay constant, Kdec), and yield of residual unrepaired breaks (Fres) demonstrated differences in individual repair capacity between the healthy donors. Conclusions The results indicate that the IFC-based γ-H2AX protocol may provide a practical and high-throughput platform for measurements of individual global DNA DSB repair capacity which can facilitate precision medicine by predicting individual radiosensitivity and risk of developing adverse effects related to radiotherapy treatment. Electronic supplementary material The online version of this article (10.1186/s13014-019-1344-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Younghyun Lee
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th St, New York, NY, 10032, USA. .,Present Address: Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea.
| | - Qi Wang
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th St, New York, NY, 10032, USA
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th St, New York, NY, 10032, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th St, New York, NY, 10032, USA
| | - Helen C Turner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th St, New York, NY, 10032, USA
| |
Collapse
|
22
|
Barnard SGR, McCarron R, Moquet J, Quinlan R, Ainsbury E. Inverse dose-rate effect of ionising radiation on residual 53BP1 foci in the eye lens. Sci Rep 2019; 9:10418. [PMID: 31320710 PMCID: PMC6639373 DOI: 10.1038/s41598-019-46893-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 07/02/2019] [Indexed: 12/25/2022] Open
Abstract
The influence of dose rate on radiation cataractogenesis has yet to be extensively studied. One recent epidemiological investigation suggested that protracted radiation exposure increases radiation-induced cataract risk: cumulative doses of radiation mostly <100 mGy received by US radiologic technologists over 5 years were associated with an increased excess hazard ratio for cataract development. However, there are few mechanistic studies to support and explain such observations. Low-dose radiation-induced DNA damage in the epithelial cells of the eye lens (LECs) has been proposed as a possible contributor to cataract formation and thus visual impairment. Here, 53BP1 foci was used as a marker of DNA damage. Unexpectedly, the number of 53BP1 foci that persisted in the mouse lens samples after γ-radiation exposure increased with decreasing dose-rate at 4 and 24 h. The C57BL/6 mice were exposed to 0.5, 1 and 2 Gy ƴ-radiation at 0.063 and 0.3 Gy/min and also 0.5 Gy at 0.014 Gy/min. This contrasts the data we obtained for peripheral blood lymphocytes collected from the same animal groups, which showed the expected reduction of residual 53BP1 foci with reducing dose-rate. These findings highlight the likely importance of dose-rate in low-dose cataract formation and, furthermore, represent the first evidence that LECs process radiation damage differently to blood lymphocytes.
Collapse
Affiliation(s)
- Stephen G R Barnard
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon, UK.
- Durham University, Department of Biosciences, Durham, UK.
| | - Roisin McCarron
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon, UK
| | - Jayne Moquet
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon, UK
| | - Roy Quinlan
- Durham University, Department of Biosciences, Durham, UK.
| | - Elizabeth Ainsbury
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon, UK
| |
Collapse
|
23
|
Turner HC, Lee Y, Weber W, Melo D, Kowell A, Ghandhi SA, Amundson SA, Brenner DJ, Shuryak I. Effect of dose and dose rate on temporal γ-H2AX kinetics in mouse blood and spleen mononuclear cells in vivo following Cesium-137 administration. BMC Mol Cell Biol 2019; 20:13. [PMID: 31138230 PMCID: PMC6540459 DOI: 10.1186/s12860-019-0195-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/13/2019] [Indexed: 11/21/2022] Open
Abstract
Background Cesium-137 (137Cs) is one of the major and most clinically relevant radionuclides of concern in a radiological dispersal device, “dirty bomb” scenario as well as in nuclear accidents and detonations. In this exposure scenario, a significant amount of soluble radionuclide(s) may be dispersed into the atmosphere as a component of fallout. The objectives of the present study were to investigate the effect of protracted 137Cs radionuclide exposures on DNA damage in mouse blood and spleen mononuclear cells (MNCs) in vivo using the γ-H2AX biomarker, and to develop a mathematical formalism for these processes. Results C57BL/6 mice were injected with a range of 137CsCl activities (5.74, 6.66, 7.65 and 9.28 MBq) to achieve total-body committed doses of ~ 4 Gy at Days 3, 5, 7, and 14. Close to 50% of 137Cs was excreted by day 5, leading to a slower rate of decay for the remaining time of the study; 137Cs excretion kinetics were independent of activity level within the tested range, and the absorbed radiation dose was determined by injected activity and time after injection. Measurements of γ-H2AX fluorescence in blood and spleen MNCs at each time point were used to develop a new biodosimetric mathematical formalism to estimate injected activity based on γ-H2AX fluorescence and time after injection. The formalism performed reasonably well on blood data at 2–5 days after injection: Pearson and Spearman’s correlation coefficients between actual and predicted activity values were 0.857 (p = 0.00659) and 0.929 (p = 0.00223), respectively. Conclusions Despite the complicated nature of the studied biological system and the time-dependent changes in radiation dose and dose rate due to radionuclide excretion and other processes, we have used the γ-H2AX repair kinetics to develop a mathematical formalism, which can relatively accurately predict injected 137Cs activity 2–5 days after initial exposure. To determine the assay’s usefulness to predict retrospective absorbed dose for medical triage, further studies are required to validate the sensitivity and accuracy of the γ-H2AX response after protracted exposures. Electronic supplementary material The online version of this article (10.1186/s12860-019-0195-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Helen C Turner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA.
| | - Younghyun Lee
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Waylon Weber
- Lovelace Biomedical, Albuquerque, NM, 87108, USA
| | | | - Aimee Kowell
- Lovelace Biomedical, Albuquerque, NM, 87108, USA
| | - Shanaz A Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Sally A Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| |
Collapse
|
24
|
Meng Y, Yang F, Long W, Xu W. Radioprotective Activity and Preliminary Mechanisms of N-oxalyl-d-phenylalanine (NOFD) In Vitro. Int J Mol Sci 2018; 20:ijms20010037. [PMID: 30577677 PMCID: PMC6337673 DOI: 10.3390/ijms20010037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 12/22/2022] Open
Abstract
The radiation-induced damage to the human body is primarily caused by excessive reactive oxygen species (ROS) production after irradiation. Therefore, the removal of the increase of ROS caused by ionizing radiation (IR) has been the focus of research on radiation damage protective agents. Hypoxia inducible factor (HIF) is a transcription factor in human and plays an important role in regulating the body metabolism. Factor inhibiting HIF (FIH) is an endogenous inhibitor factor of HIF protein under normoxia conditions. It has been shown that the high expression of HIF protein has a certain repair effect on radiation-induced intestinal injury and hematopoietic system damage in mice; however, it is not clear about the effect of HIF on the level of ROS after radiation. In this study, the role of N-oxalyl-d-phenylalanine (NOFD), an FIH inhibitor, for its effect on alleviating ROS level is investigated in the cells. Our results indicate that pretreatment with NOFD can mitigate ROS level and alleviate IR-induced DNA damage and apoptosis in vitro. Therefore, HIF can be used as a target on scavengers. Furthermore, in order to explore the relevant mechanism, we also test the expression of relevant HIF downstream genes in the cells, finding that Notch-2 gene is more sensitive to NOFD treatment. This experiment result is used to support the subsequent mechanism experiments.
Collapse
Affiliation(s)
- Yuanyuan Meng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China.
| | - Fujun Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China.
| | - Wei Long
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China.
| | - Wenqing Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China.
| |
Collapse
|
25
|
Candidate protein markers for radiation biodosimetry in the hematopoietically humanized mouse model. Sci Rep 2018; 8:13557. [PMID: 30202043 PMCID: PMC6131502 DOI: 10.1038/s41598-018-31740-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/23/2018] [Indexed: 12/20/2022] Open
Abstract
After a radiological incident, there is an urgent need for fast and reliable bioassays to identify radiation-exposed individuals within the first week post exposure. This study aimed to identify candidate radiation-responsive protein biomarkers in human lymphocytes in vivo using humanized NOD scid gamma (Hu-NSG) mouse model. Three days after X-irradiation (0–2 Gy, 88 cGy/min), human CD45+ lymphocytes were collected from the Hu-NSG mouse spleen and quantitative changes in the proteome of the human lymphocytes were analysed by mass spectrometry. Forty-six proteins were differentially expressed in response to radiation exposure. FDXR, BAX, DDB2 and ACTN1 proteins were shown to have dose-dependent response with a fold change greater than 2. When these proteins were used to estimate radiation dose by linear regression, the combination of FDXR, ACTN1 and DDB2 showed the lowest mean absolute errors (≤0.13 Gy) and highest coefficients of determination (R2 = 0.96). Biomarker validation studies were performed in human lymphocytes 3 days after irradiation in vivo and in vitro. In conclusion, this is the first study to identify radiation-induced human protein signatures in vivo using the humanized mouse model and develop a protein panel which could be used for the rapid assessment of absorbed dose 3 days after radiation exposure.
Collapse
|
26
|
Graupner A, Eide DM, Brede DA, Ellender M, Lindbo Hansen E, Oughton DH, Bouffler SD, Brunborg G, Olsen AK. Genotoxic effects of high dose rate X-ray and low dose rate gamma radiation in Apc Min/+ mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:560-569. [PMID: 28856770 PMCID: PMC5656900 DOI: 10.1002/em.22121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 07/01/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
Risk estimates for radiation-induced cancer in humans are based on epidemiological data largely drawn from the Japanese atomic bomb survivor studies, which received an acute high dose rate (HDR) ionising radiation. Limited knowledge exists about the effects of chronic low dose rate (LDR) exposure, particularly with respect to the application of the dose and dose rate effectiveness factor. As part of a study to investigate the development of colon cancer following chronic LDR vs. acute HDR radiation, this study presents the results of genotoxic effects in blood of exposed mice. CBAB6 F1 Apc+/+ (wild type) and ApcMin/+ mice were chronically exposed to estimated whole body absorbed doses of 1.7 or 3.2 Gy 60 Co-γ-rays at a LDR (2.2 mGy h-1 ) or acutely exposed to 2.6 Gy HDR X-rays (1.3 Gy min-1 ). Genotoxic endpoints assessed in blood included chromosomal damage (flow cytometry based micronuclei (MN) assay), mutation analyses (Pig-a gene mutation assay), and levels of DNA lesions (Comet assay, single-strand breaks (ssb), alkali labile sites (als), oxidized DNA bases). Ionising radiation (ca. 3 Gy) induced genotoxic effects dependent on the dose rate. Chromosomal aberrations (MN assay) increased 3- and 10-fold after chronic LDR and acute HDR, respectively. Phenotypic mutation frequencies as well as DNA lesions (ssb/als) were modulated after acute HDR but not after chronic LDR. The ApcMin/+ genotype did not influence the outcome in any of the investigated endpoints. The results herein will add to the scant data available on genotoxic effects following chronic LDR of ionising radiation. Environ. Mol. Mutagen. 58:560-569, 2017. © 2017 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- Anne Graupner
- Department of Molecular BiologyNorwegian Institute of Public HealthOslo0403Norway
- Centre for Environmental Radioactivity (CoE CERAD)Ås 1432Norway
| | - Dag M. Eide
- Centre for Environmental Radioactivity (CoE CERAD)Ås 1432Norway
- Department of Toxicology and Risk AssessmentNorwegian Institute of Public HealthOslo0403Norway
| | - Dag A. Brede
- Centre for Environmental Radioactivity (CoE CERAD)Ås 1432Norway
- Department of Environmental SciencesNorwegian University of Life SciencesÅs 1432Norway
| | - Michele Ellender
- Radiation Effects DepartmentCentre for Radiation, Chemical and Environmental Hazards, Public Health EnglandChiltonDidcotOX11 0RQEngland
| | - Elisabeth Lindbo Hansen
- Centre for Environmental Radioactivity (CoE CERAD)Ås 1432Norway
- Department of ResearchNorwegian Radiation Protection AuthorityØsterås1361Norway
| | - Deborah H. Oughton
- Centre for Environmental Radioactivity (CoE CERAD)Ås 1432Norway
- Department of Environmental SciencesNorwegian University of Life SciencesÅs 1432Norway
| | - Simon D. Bouffler
- Radiation Effects DepartmentCentre for Radiation, Chemical and Environmental Hazards, Public Health EnglandChiltonDidcotOX11 0RQEngland
| | - Gunnar Brunborg
- Department of Molecular BiologyNorwegian Institute of Public HealthOslo0403Norway
- Centre for Environmental Radioactivity (CoE CERAD)Ås 1432Norway
| | - Ann Karin Olsen
- Department of Molecular BiologyNorwegian Institute of Public HealthOslo0403Norway
- Centre for Environmental Radioactivity (CoE CERAD)Ås 1432Norway
| |
Collapse
|
27
|
Zhang YR, Li YY, Wang JY, Wang HW, Wang HN, Kang XM, Xu WQ. Synthesis and Characterization of a Rosmarinic Acid Derivative that Targets Mitochondria and Protects against Radiation-Induced Damage In Vitro. Radiat Res 2017; 188:264-275. [PMID: 28657498 DOI: 10.1667/rr14590.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Mitochondrial dysfunction plays an important role in gamma-radiation-induced mediating oxidative stress. Scavenging radiation-induced reactive oxygen species (ROS) can help mitochondria to maintain their physiological function. Rosmarinic acid is a polyphenol antioxidant that can scavenge radiation-induced ROS, but the structure prevents it from accumulating in mitochondria. In this study, we designed and synthesized a novel rosmarinic acid derivative (Mito-RA) that could use the mitochondrial membrane potential to enter the organelle and scavenge ROS. The DCFH-DA assay revealed that Mito-RA was more effective than rosmarinic acid at scavenging ROS. DNA double-strand breaks, chromosomal aberration, micronucleus and comet assays demonstrated the ability of Mito-RA to protect against radiation-induced oxidative stress in vitro. These findings demonstrate the potential of Mito-RA as an antioxidant, which can penetrate mitochondria, scavenge ROS and protect cells against radiation-induced oxidative damage.
Collapse
Affiliation(s)
- Yu-Rui Zhang
- a Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Yuan-Yuan Li
- a Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Jun-Ying Wang
- b Department of Physics, School of Sciences and Tianjin Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Hua-Wei Wang
- a Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Hua-Nan Wang
- a Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Xiao-Meng Kang
- a Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Wen-Qing Xu
- a Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
28
|
Potentiation of doxorubicin efficacy in hepatocellular carcinoma by the DNA repair inhibitor DT01 in preclinical models. Eur Radiol 2017; 27:4435-4444. [DOI: 10.1007/s00330-017-4792-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/11/2017] [Accepted: 03/06/2017] [Indexed: 12/15/2022]
|
29
|
Garty G, Xu Y, Elliston C, Marino SA, Randers-Pehrson G, Brenner DJ. Mice and the A-Bomb: Irradiation Systems for Realistic Exposure Scenarios. Radiat Res 2017; 187:465-475. [PMID: 28211757 DOI: 10.1667/rr008cc.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Validation of biodosimetry assays is normally performed with acute exposures to uniform external photon fields. Realistically, exposure to a radiological dispersal device or reactor leak will include exposure to low dose rates and likely exposure to ingested radionuclides. An improvised nuclear device will likely include a significant neutron component in addition to a mixture of high- and low-dose-rate photons and ingested radionuclides. We present here several novel irradiation systems developed at the Center for High Throughput Minimally Invasive Radiation Biodosimetry to provide more realistic exposures for testing of novel biodosimetric assays. These irradiators provide a wide range of dose rates (from Gy/s to Gy/week) as well as mixed neutron/photon fields mimicking an improvised nuclear device.
Collapse
Affiliation(s)
- Guy Garty
- a Radiological Research Accelerator Facility, Columbia University, Irvington, New York 10533; and
| | - Yanping Xu
- a Radiological Research Accelerator Facility, Columbia University, Irvington, New York 10533; and
| | - Carl Elliston
- b Center for Radiological Research, Columbia University, New York, New York 10032
| | - Stephen A Marino
- a Radiological Research Accelerator Facility, Columbia University, Irvington, New York 10533; and
| | - Gerhard Randers-Pehrson
- a Radiological Research Accelerator Facility, Columbia University, Irvington, New York 10533; and
| | - David J Brenner
- b Center for Radiological Research, Columbia University, New York, New York 10032
| |
Collapse
|
30
|
Lu T, Zhang Y, Wong M, Feiveson A, Gaza R, Stoffle N, Wang H, Wilson B, Rohde L, Stodieck L, Karouia F, Wu H. Detection of DNA damage by space radiation in human fibroblasts flown on the International Space Station. LIFE SCIENCES IN SPACE RESEARCH 2017; 12:24-31. [PMID: 28212705 DOI: 10.1016/j.lssr.2016.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/23/2016] [Accepted: 12/23/2016] [Indexed: 06/06/2023]
Abstract
Although charged particles in space have been detected with radiation detectors on board spacecraft since the discovery of the Van Allen Belts, reports on the effects of direct exposure to space radiation in biological systems have been limited. Measurement of biological effects of space radiation is challenging due to the low dose and low dose rate nature of the radiation environment, and due to the difficulty in distinguishing the radiation effects from microgravity and other space environmental factors. In astronauts, only a few changes, such as increased chromosome aberrations in their lymphocytes and early onset of cataracts, are attributed primarily to their exposure to space radiation. In this study, cultured human fibroblasts were flown on the International Space Station (ISS). Cells were kept at 37°C in space for 14 days before being fixed for analysis of DNA damage with the γ-H2AX assay. The 3-dimensional γ-H2AX foci were captured with a laser confocal microscope. Quantitative analysis revealed several foci that were larger and displayed a track pattern only in the Day 14 flight samples. To confirm that the foci data from the flight study was actually induced from space radiation exposure, cultured human fibroblasts were exposed to low dose rate γ rays at 37°C. Cells exposed to chronic γ rays showed similar foci size distribution in comparison to the non-exposed controls. The cells were also exposed to low- and high-LET protons, and high-LET Fe ions on the ground. Our results suggest that in G1 human fibroblasts under the normal culture condition, only a small fraction of large size foci can be attributed to high-LET radiation in space.
Collapse
Affiliation(s)
- Tao Lu
- NASA Johnson Space Center, Houston, TX, USA; University of Houston Clear Lake, Houston, TX, USA
| | - Ye Zhang
- NASA Kennedy Space Center, Cape Canaveral, FL, USA
| | | | | | - Ramona Gaza
- NASA Johnson Space Center, Houston, TX, USA; Leidos Exploration & Mission Support, Houston, TX, USA
| | - Nicholas Stoffle
- NASA Johnson Space Center, Houston, TX, USA; Leidos Exploration & Mission Support, Houston, TX, USA
| | - Huichen Wang
- Prairie View A&M University, Prairie View, TX, USA
| | | | - Larry Rohde
- University of Houston Clear Lake, Houston, TX, USA
| | | | - Fathi Karouia
- NASA Ames Research Center, Moffett Field, CA, USA; University of California San Francisco, San Francisco, CA, USA
| | - Honglu Wu
- NASA Johnson Space Center, Houston, TX, USA.
| |
Collapse
|
31
|
Can high dose rates used in cancer radiotherapy change therapeutic effectiveness? Contemp Oncol (Pozn) 2017; 20:449-452. [PMID: 28239281 PMCID: PMC5320456 DOI: 10.5114/wo.2016.65603] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 09/30/2016] [Indexed: 11/17/2022] Open
Abstract
Current cancer radiotherapy relies on increasingly high dose rates of ionising radiation (100-2400 cGy/min). It is possible that changing dose rates is not paralleled by treatment effectiveness. Irradiating cancer cells is assumed to induce molecular alterations that ultimately lead to apoptotic death. Studies comparing the efficacy of radiation-induced DNA damage and apoptotic death in relation to varying dose rates do not provide unequivocal data. Whereas some have demonstrated higher dose rates (single dose) to effectively kill cancer cells, others claim the opposite. Recent gene expression studies in cells subject to variable dose rates stress alterations in molecular signalling, especially in the expression of genes linked to cell survival, immune response, and tumour progression. Novel irradiation techniques of modern cancer treatment do not rely anymore on maintaining absolute constancy of dose rates during radiation emission: instead, timing and exposure areas are regulated temporally and spatially by modulating the dose rate and beam shape. Such conditions may be reflected in tumour cells' response to irradiation, and this is supported by the references provided.
Collapse
|
32
|
van Oorschot B, Hovingh S, Dekker A, Stalpers LJ, Franken NAP. Predicting Radiosensitivity with Gamma-H2AX Foci Assay after Single High-Dose-Rate and Pulsed Dose-Rate Ionizing Irradiation. Radiat Res 2016; 185:190-8. [PMID: 26789702 DOI: 10.1667/rr14098.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Gamma-H2AX foci detection is the standard method to quantify DNA double-strand break (DSB) induction and repair. In this study, we investigated the induction and decay of γ-H2AX foci of different tumor cell lines and fibroblasts with known mutations in DNA damage repair genes, including ATM, LigIV, DNA-PKcs, Rad51 and Rad54. A radiation dose of 2.4 Gy was used for either an acute single high-dose-rate (sHDR) exposure or a pulsed dose-rate (pDR) exposure over 24 h. The number of γ-H2AX foci was determined at 30 min and 24 h after sHDR irradiation and directly after pDR irradiation. In a similar manner, γ-H2AX foci were also examined in lymphocytes of patients with differences in normal tissue toxicity after a total radiation dose of 1 Gy. In an initial count of the number of foci 30 min after sHDR irradiation, repair-proficient cell types could not be distinguished from repair-deficient cell types. However at 24 h postirradiation, while we observed a large decrease in foci numbers in NHEJ-proficient cells, the amount of γ-H2AX foci in cell types with mutated NHEJ repair remained at high levels. Except for IRS-1SF cells, HR-deficient cell types eventually did show a moderate decrease in foci number over time, albeit to a lesser extent than their corresponding parentals or repair-proficient control cells. In addition, analysis of γ-H2AX foci after sHDR exposure of patients with different sensitivity status clearly showed individual differences in radiation response. Radiosensitive patients could be distinguished from the more radioresistant patients with γ-H2AX foci decay ratios (initial number of foci divided by residual number of foci). Significantly higher decay ratios were observed in patients without toxicities, indicating more proficient repair compared to patients with radiation-induced side effects. After pDR irradiation, no consistent correlation could be found between foci number and radiosensitivity. In conclusion, γ-H2AX formation is a rapid and sensitive cellular response to DNA DSBs. Decay ratios after sHDR exposure elucidated large differences in γ-H2AX foci kinetics between the repair-proficient or -deficient cell types and patients. This assay may be useful for measuring cellular radiosensitivity and could serve as a clinically useful test for predicting radiosensitivity ex vivo before treatment.
Collapse
Affiliation(s)
- Bregje van Oorschot
- Academic Medical Center, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, The Netherlands
| | - Suzanne Hovingh
- Academic Medical Center, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, The Netherlands
| | - Annelot Dekker
- Academic Medical Center, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, The Netherlands
| | - Lukas J Stalpers
- Academic Medical Center, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, The Netherlands
| | - Nicolaas A P Franken
- Academic Medical Center, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, The Netherlands
| |
Collapse
|
33
|
γ-H2AX Kinetic Profile in Mouse Lymphocytes Exposed to the Internal Emitters Cesium-137 and Strontium-90. PLoS One 2015; 10:e0143815. [PMID: 26618801 PMCID: PMC4664397 DOI: 10.1371/journal.pone.0143815] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/10/2015] [Indexed: 11/19/2022] Open
Abstract
In the event of a dirty bomb scenario or an industrial nuclear accident, a significant dose of volatile radionuclides such as 137Cs and 90Sr may be dispersed into the atmosphere as a component of fallout and inhaled or ingested by hundreds and thousands of people. To study the effects of prolonged exposure to ingested radionuclides, we have performed long-term (30 day) internal-emitter mouse irradiations using soluble-injected 137CsCl and 90SrCl2 radioisotopes. The effect of ionizing radiation on the induction and repair of DNA double strand breaks (DSBs) in peripheral mouse lymphocytes in vivo was determined using the γ-H2AX biodosimetry marker. Using a serial sacrifice experimental design, whole-body radiation absorbed doses for 137Cs (0 to 10 Gy) and 90Sr (0 to 49 Gy) were delivered over 30 days following exposure to each radionuclide. The committed absorbed doses of the two internal emitters as a function of time post exposure were calculated based on their retention parameters and their derived dose coefficients for each specific sacrifice time. In order to measure the kinetic profile for γ-H2AX, peripheral blood samples were drawn at 5 specific timed dose points over the 30-day study period and the total γ-H2AX nuclear fluorescence per lymphocyte was determined using image analysis software. A key finding was that a significant γ-H2AX signal was observed in vivo several weeks after a single radionuclide exposure. A mechanistically-motivated model was used to analyze the temporal kinetics of γ-H2AX fluorescence. Exposure to either radionuclide showed two peaks of γ-H2AX: one within the first week, which may represent the death of mature, differentiated lymphocytes, and the second at approximately three weeks, which may represent the production of new lymphocytes from damaged progenitor cells. The complexity of the observed responses to internal irradiation is likely caused by the interplay between continual production and repair of DNA damage, cell cycle effects and apoptosis.
Collapse
|
34
|
Paul S, Smilenov LB, Elliston CD, Amundson SA. Radiation Dose-Rate Effects on Gene Expression in a Mouse Biodosimetry Model. Radiat Res 2015; 184:24-32. [PMID: 26114327 DOI: 10.1667/rr14044.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In the event of a nuclear accident or radiological terrorist attack, there will be a pressing need for biodosimetry to triage a large, potentially exposed population and to assign individuals to appropriate treatment. Exposures from fallout are likely, resulting in protracted dose delivery that would, in turn, impact the extent of injury. Biodosimetry approaches that can distinguish such low-dose-rate (LDR) exposures from acute exposures have not yet been developed. In this study, we used the C57BL/6 mouse model in an initial investigation of the impact of low-dose-rate delivery on the transcriptomic response in blood. While a large number of the same genes responded to LDR and acute radiation exposures, for many genes the magnitude of response was lower after LDR exposures. Some genes, however, were differentially expressed (P < 0.001, false discovery rate <5%) in mice exposed to LDR compared with mice exposed to acute radiation. We identified a set of 164 genes that correctly classified 97% of the samples in this experiment as exposed to acute or LDR radiation using a support vector machine algorithm. Gene expression is a promising approach to radiation biodosimetry, enhanced greatly by this first demonstration of its potential for distinguishing between acute and LDR exposures. Further development of this aspect of radiation biodosimetry, either as part of a complete gene expression biodosimetry test or as an adjunct to other methods, could provide vital triage information in a mass radiological casualty event.
Collapse
Affiliation(s)
- Sunirmal Paul
- a Center for Radiological Research, Columbia University Medical Center, New York, New York 10032;,b Rutgers University, Newark, New Jersey 07103; and
| | - Lubomir B Smilenov
- a Center for Radiological Research, Columbia University Medical Center, New York, New York 10032
| | - Carl D Elliston
- a Center for Radiological Research, Columbia University Medical Center, New York, New York 10032;,c Maimonides Medical Center, Brooklyn, New York 11219
| | - Sally A Amundson
- a Center for Radiological Research, Columbia University Medical Center, New York, New York 10032
| |
Collapse
|