1
|
Liu X, Huang X, Luo J, Gao SN, Bai C, Xie D, Gao SS, Guan H, Huang R, Zhou PK. Low-dose radiation promotes high-fat diet-induced atherosclerosis by activating cGAS signal pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167443. [PMID: 39067536 DOI: 10.1016/j.bbadis.2024.167443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/03/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Atherosclerosis (AS) is the most prevalent cardiovascular disease, with an exceptionally high burden. High-fat diet (HFD) is a popular diet behavior, whereas low-dose radiation (LDR) is an environmental physical factor. There is evidence to suggest that an HFD may exacerbate the onset of atherosclerosis. Whether the combination effect of HFD and LDR would have potential on atherosclerosis development remains incompletely unclear. METHODS In this study, ApoE-/- mice were used as atherosclerosis model animals to investigate the combination effects of HFD and LDR (10 × 0.01Gy, or 20 × 0.01Gy) on vascular lesions. Doppler ultrasound imaging, H&E staining, oil red O staining, western blotting, and immunohistochemistry (IHC) were used to assess the pro-atherosclerotic effects. LC-MS was used to detect the non-targeted lipidomic. RESULTS Long-term exposure of low-dose radiation at an accumulated dose of 0.2Gy significantly increased the occurrence of vascular stiffness and the aortic lesion in ApoE-/- mice. The synergistic effect of HFD and LDR was observed in the development of atherosclerosis, which might be linked to both the dysbiosis of lipid metabolism and the stimulation of the inflammatory signaling system. Moreover, LDR but not HFD can activate the cGAS-STING signaling through increasing the yield of cytosolic mitochondrial DNAs as well as the expression of cGAS protein. The activation of cGAS-STING signal triggers the release of IFN-α/-β, which functions as an inflammatory amplifier in the formation of atherosclerotic plaque. CONCLUSION The current study offers fresh insights into the risks and mechanism that underlie the development of atherosclerosis by LDR, and there is a combination effect of LDR and HFD with the involvement of cGAS-STING signal pathway.
Collapse
Affiliation(s)
- Xiaochang Liu
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xin Huang
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jinhua Luo
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China
| | - Shuai-Ning Gao
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Chenjun Bai
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Dafei Xie
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Shan-Shan Gao
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hua Guan
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
2
|
Houerbi N, Kim J, Overbey EG, Batra R, Schweickart A, Patras L, Lucotti S, Ryon KA, Najjar D, Meydan C, Damle N, Chin C, Narayanan SA, Guarnieri JW, Widjaja G, Beheshti A, Tobias G, Vatter F, Hirschberg JW, Kleinman A, Afshin EE, MacKay M, Chen Q, Miller D, Gajadhar AS, Williamson L, Tandel P, Yang Q, Chu J, Benz R, Siddiqui A, Hornburg D, Gross S, Shirah B, Krumsiek J, Mateus J, Mao X, Matei I, Mason CE. Secretome profiling reveals acute changes in oxidative stress, brain homeostasis, and coagulation following short-duration spaceflight. Nat Commun 2024; 15:4862. [PMID: 38862464 PMCID: PMC11166969 DOI: 10.1038/s41467-024-48841-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/15/2024] [Indexed: 06/13/2024] Open
Abstract
As spaceflight becomes more common with commercial crews, blood-based measures of crew health can guide both astronaut biomedicine and countermeasures. By profiling plasma proteins, metabolites, and extracellular vesicles/particles (EVPs) from the SpaceX Inspiration4 crew, we generated "spaceflight secretome profiles," which showed significant differences in coagulation, oxidative stress, and brain-enriched proteins. While >93% of differentially abundant proteins (DAPs) in vesicles and metabolites recovered within six months, the majority (73%) of plasma DAPs were still perturbed post-flight. Moreover, these proteomic alterations correlated better with peripheral blood mononuclear cells than whole blood, suggesting that immune cells contribute more DAPs than erythrocytes. Finally, to discern possible mechanisms leading to brain-enriched protein detection and blood-brain barrier (BBB) disruption, we examined protein changes in dissected brains of spaceflight mice, which showed increases in PECAM-1, a marker of BBB integrity. These data highlight how even short-duration spaceflight can disrupt human and murine physiology and identify spaceflight biomarkers that can guide countermeasure development.
Collapse
Affiliation(s)
- Nadia Houerbi
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Eliah G Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Richa Batra
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Annalise Schweickart
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional Biology and Medicine program, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Laura Patras
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Serena Lucotti
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Krista A Ryon
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Deena Najjar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Namita Damle
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Christopher Chin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - S Anand Narayanan
- Department of Nutrition & Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - Joseph W Guarnieri
- Center of Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Gabrielle Widjaja
- Center of Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Afshin Beheshti
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Gabriel Tobias
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
- Seer, Inc., Redwood City, CA, 94065, USA
| | - Fanny Vatter
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
- Seer, Inc., Redwood City, CA, 94065, USA
| | | | - Ashley Kleinman
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Evan E Afshin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Matthew MacKay
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Dawson Miller
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | | | | | | | - Qiu Yang
- Seer, Inc., Redwood City, CA, 94065, USA
| | | | - Ryan Benz
- Seer, Inc., Redwood City, CA, 94065, USA
| | | | | | - Steven Gross
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Bader Shirah
- Department of Neuroscience, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia
| | - Jan Krumsiek
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional Biology and Medicine program, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jaime Mateus
- Space Exploration Technologies Corporation (SpaceX), Hawthorne, CA, USA
| | - Xiao Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University Health, Loma Linda, CA, 92350, USA
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA.
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
- Tri-Institutional Biology and Medicine program, Weill Cornell Medicine, New York, NY, 10021, USA.
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA.
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
3
|
Ludtka C, Allen JB. The Effects of Simulated and Real Microgravity on Vascular Smooth Muscle Cells. GRAVITATIONAL AND SPACE RESEARCH : PUBLICATION OF THE AMERICAN SOCIETY FOR GRAVITATIONAL AND SPACE RESEARCH 2024; 12:46-59. [PMID: 38846256 PMCID: PMC11156189 DOI: 10.2478/gsr-2024-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
As considerations are being made for the limitations and safety of long-term human spaceflight, the vasculature is important given its connection to and impact on numerous organ systems. As a major constituent of blood vessels, vascular smooth muscle cells are of interest due to their influence over vascular tone and function. Additionally, vascular smooth muscle cells are responsive to pressure and flow changes. Therefore, alterations in these parameters under conditions of microgravity can be functionally disruptive. As such, here we review and discuss the existing literature that assesses the effects of microgravity, both actual and simulated, on smooth muscle cells. This includes the various methods for achieving or simulating microgravity, the animal models or cells used, and the various durations of microgravity assessed. We also discuss the various reported findings in the field, which include changes to cell proliferation, gene expression and phenotypic shifts, and renin-angiotensin-aldosterone system (RAAS), nitric oxide synthase (NOS), and Ca2+ signaling. Additionally, we briefly summarize the literature on smooth muscle tissue engineering in microgravity as well as considerations of radiation as another key component of spaceflight to contextualize spaceflight experiments, which by their nature include radiation exposure. Finally, we provide general recommendations based on the existing literature's focus and limitations.
Collapse
Affiliation(s)
- Christopher Ludtka
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Josephine B. Allen
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL
| |
Collapse
|
4
|
Andrade MR, Azeez TA, Montgomery MM, Caldwell JT, Park H, Kwok AT, Borg AM, Narayanan SA, Willey JS, Delp MD, La Favor JD. Neurovascular dysfunction associated with erectile dysfunction persists after long-term recovery from simulations of weightlessness and deep space irradiation. FASEB J 2023; 37:e23246. [PMID: 37990646 DOI: 10.1096/fj.202300506rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 11/23/2023]
Abstract
There has been growing interest within the space industry for long-duration manned expeditions to the Moon and Mars. During deep space missions, astronauts are exposed to high levels of galactic cosmic radiation (GCR) and microgravity which are associated with increased risk of oxidative stress and endothelial dysfunction. Oxidative stress and endothelial dysfunction are causative factors in the pathogenesis of erectile dysfunction, although the effects of spaceflight on erectile function have been unexplored. Therefore, the purpose of this study was to investigate the effects of simulated spaceflight and long-term recovery on tissues critical for erectile function, the distal internal pudendal artery (dIPA), and the corpus cavernosum (CC). Eighty-six adult male Fisher-344 rats were randomized into six groups and exposed to 4-weeks of hindlimb unloading (HLU) or weight-bearing control, and sham (0Gy), 0.75 Gy, or 1.5 Gy of simulated GCR at the ground-based GCR simulator at the NASA Space Radiation Laboratory. Following a 12-13-month recovery, ex vivo physiological analysis of the dIPA and CC tissue segments revealed differential impacts of HLU and GCR on endothelium-dependent and -independent relaxation that was tissue type specific. GCR impaired non-adrenergic non-cholinergic (NANC) nerve-mediated relaxation in the dIPA and CC, while follow-up experiments of the CC showed restoration of NANC-mediated relaxation of GCR tissues following acute incubation with the antioxidants mito-TEMPO and TEMPOL, as well as inhibitors of xanthine oxidase and arginase. These findings indicate that simulated spaceflight exerts a long-term impairment of neurovascular erectile function, which exposes a new health risk to consider with deep space exploration.
Collapse
Affiliation(s)
- Manuella R Andrade
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Tooyib A Azeez
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - McLane M Montgomery
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Jacob T Caldwell
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Hyerim Park
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Andy T Kwok
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Alexander M Borg
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - S Anand Narayanan
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Jeffrey S Willey
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Michael D Delp
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Justin D La Favor
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
5
|
Nemec-Bakk AS, Sridharan V, Seawright JW, Nelson GA, Cao M, Singh P, Cheema AK, Singh B, Li Y, Koturbash I, Miousse IR, Ewing LE, Skinner CM, Landes RD, Lowery JD, Mao XW, Singh SP, Boerma M. Effects of proton and oxygen ion irradiation on cardiovascular function and structure in a rabbit model. LIFE SCIENCES IN SPACE RESEARCH 2023; 37:78-87. [PMID: 37087182 PMCID: PMC10122719 DOI: 10.1016/j.lssr.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/13/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
PURPOSE Astronauts on missions beyond low Earth orbit will be exposed to galactic cosmic radiation, and there is concern about potential adverse cardiovascular effects. Most of the research to identify cardiovascular risk of space radiation has been performed in rodent models. To aid in the translation of research results to humans, the current study identified long-term effects of high-energy charged particle irradiation on cardiovascular function and structure in a larger non-rodent animal model. MATERIALS AND METHODS At the age of 12 months, male New Zealand white rabbits were exposed to whole-body protons (250 MeV) or oxygen ions (16O, 600 MeV/n) at a dose of 0 or 0.5 Gy and were followed for 12 months after irradiation. Ultrasonography was used to measure in vivo cardiac function and blood flow parameters at 10- and 12-months post-irradiation. At 12 months after irradiation, blood cell counts and blood chemistry values were assessed, and cardiac tissue and aorta were collected for histological as well as molecular and biochemical analyses. Plasma was used for metabolomic analysis and to quantify common markers of cardiac injury. RESULTS A small but significant decrease in the percentage of circulating lymphocytes and an increase in neutrophil percentage was seen 12 months after 0.5 Gy protons, while 16O exposure resulted in an increase in monocyte percentage. Markers of cardiac injury, cardiac troponin I (cTnI) and N-Terminal pro-B-type Natriuretic Peptide were modestly increased in the proton group, and cTnI was also increased after 16O. On the other hand, metabolomics on plasma at 12 months revealed no changes. Both types of irradiation demonstrated alterations in cardiac mitochondrial morphology and an increase in left ventricular protein levels of inflammatory cell marker CD68. However, changes in cardiac function were only mild. CONCLUSION Low dose charged particle irradiation caused mild long-term changes in inflammatory markers, cardiac function, and structure in the rabbit heart, in line with previous studies in mouse and rat models.
Collapse
Affiliation(s)
- Ashley S Nemec-Bakk
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Gregory A Nelson
- Departments of Basic Sciences and Radiation Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Maohua Cao
- College of Dentistry, Texas A&M, Dallas, TX, USA
| | | | - Amrita K Cheema
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Bhaldev Singh
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Yaoxiang Li
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Igor Koturbash
- Department of Environmental Health Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Isabelle R Miousse
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Laura E Ewing
- Natural State Laboratories and Natural State Genomics, North Little Rock, AR, USA
| | - Charles M Skinner
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Reid D Landes
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - John D Lowery
- Department of Laboratory Animal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Xiao-Wen Mao
- Departments of Basic Sciences and Radiation Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Sharda P Singh
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
6
|
Combined space stressors induce independent behavioral deficits predicted by early peripheral blood monocytes. Sci Rep 2023; 13:1749. [PMID: 36720960 PMCID: PMC9889764 DOI: 10.1038/s41598-023-28508-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/19/2023] [Indexed: 02/02/2023] Open
Abstract
Interplanetary space travel poses many hazards to the human body. To protect astronaut health and performance on critical missions, there is first a need to understand the effects of deep space hazards, including ionizing radiation, confinement, and altered gravity. Previous studies of rodents exposed to a single such stressor document significant deficits, but our study is the first to investigate possible cumulative and synergistic impacts of simultaneous ionizing radiation, confinement, and altered gravity on behavior and cognition. Our cohort was divided between 6-month-old female and male mice in group, social isolation, or hindlimb unloading housing, exposed to 0 or 50 cGy of 5 ion simplified simulated galactic cosmic radiation (GCRsim). We report interactions and independent effects of GCRsim exposure and housing conditions on behavioral and cognitive performance. Exposure to GCRsim drove changes in immune cell populations in peripheral blood collected early after irradiation, while housing conditions drove changes in blood collected at a later point. Female mice were largely resilient to deficits observed in male mice. Finally, we used principal component analysis to represent total deficits as principal component scores, which were predicted by general linear models using GCR exposure, housing condition, and early blood biomarkers.
Collapse
|
7
|
Mammarella N, Gatti M, Ceccato I, Di Crosta A, Di Domenico A, Palumbo R. The Protective Role of Neurogenetic Components in Reducing Stress-Related Effects during Spaceflights: Evidence from the Age-Related Positive Memory Approach. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081176. [PMID: 36013355 PMCID: PMC9410359 DOI: 10.3390/life12081176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022]
Abstract
Fighting stress-related effects during spaceflight is crucial for a successful mission. Emotional, motivational, and cognitive mechanisms have already been shown to be involved in the decrease of negative emotions. However, emerging evidence is pointing to a neurogenetic profile that may render some individuals more prone than others to focusing on positive information in memory and increasing affective health. The relevance for adaptation to the space environment and the interaction with other stressors such as ionizing radiations is discussed. In particular, to clarify this approach better, we will draw from the psychology and aging literature data. Subsequently, we report on studies on candidate genes for sensitivity to positive memories. We review work on the following candidate genes that may be crucial in adaptation mechanisms: ADRA2B, COMT, 5HTTLPR, CB1, and TOMM40. The final aim is to show how the study of genetics and cell biology of positive memory can help us to reveal the underlying bottom-up pathways to also increasing positive effects during a space mission.
Collapse
Affiliation(s)
- Nicola Mammarella
- Department of Psychological Sciences, Health and Territory, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (M.G.); (A.D.C.); (A.D.D.); (R.P.)
- Correspondence:
| | - Matteo Gatti
- Department of Psychological Sciences, Health and Territory, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (M.G.); (A.D.C.); (A.D.D.); (R.P.)
| | - Irene Ceccato
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy;
| | - Adolfo Di Crosta
- Department of Psychological Sciences, Health and Territory, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (M.G.); (A.D.C.); (A.D.D.); (R.P.)
| | - Alberto Di Domenico
- Department of Psychological Sciences, Health and Territory, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (M.G.); (A.D.C.); (A.D.D.); (R.P.)
| | - Rocco Palumbo
- Department of Psychological Sciences, Health and Territory, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (M.G.); (A.D.C.); (A.D.D.); (R.P.)
| |
Collapse
|
8
|
Horn AG, Behnke BJ, Poole DC. Comment on "Cardiovasomobility: an integrative understanding of how disuse impacts cardiovascular and skeletal muscle health". J Appl Physiol (1985) 2022; 133:320-321. [PMID: 35926223 DOI: 10.1152/japplphysiol.00300.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Andrew G Horn
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Bradley J Behnke
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
9
|
Locatelli L, Castiglioni S, Maier JAM. From Cultured Vascular Cells to Vessels: The Cellular and Molecular Basis of Vascular Dysfunction in Space. Front Bioeng Biotechnol 2022; 10:862059. [PMID: 35480977 PMCID: PMC9036997 DOI: 10.3389/fbioe.2022.862059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/18/2022] [Indexed: 11/23/2022] Open
Abstract
Life evolved on this planet under the pull of gravity, shielded from radiation by the magnetosphere and shaped by circadian rhythms due to Earth’s rotation on its axis. Once living beings leave such a protective environment, adaptive responses are activated to grant survival. In view of long manned mission out of Earth’s orbit, it is relevant to understand how humans adapt to space and if the responses activated might reveal detrimental in the long run. Here we review present knowledge about the effects on the vessels of various extraterrestrial factors on humans as well as in vivo and in vitro experimental models. It emerges that the vasculature activates complex adaptive responses finalized to supply oxygen and nutrients to all the tissues and to remove metabolic waste and carbon dioxide. Most studies point to oxidative stress and mitochondrial dysfunction as mediators of vascular alterations in space. Unraveling the cellular and molecular mechanisms involved in these adaptive processes might offer hints to design proper and personalized countermeasures to predict a safe future in space.
Collapse
Affiliation(s)
- Laura Locatelli
- Department of Biomedical and Clinical Sciences L. Sacco, Università di Milano, Milano, Italy
| | - Sara Castiglioni
- Department of Biomedical and Clinical Sciences L. Sacco, Università di Milano, Milano, Italy
| | - Jeanette A M Maier
- Department of Biomedical and Clinical Sciences L. Sacco, Università di Milano, Milano, Italy.,Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa), Università di Milano, Milan, Italy
| |
Collapse
|
10
|
Xu Y, Pei W, Hu W. A Current Overview of the Biological Effects of Combined Space Environmental Factors in Mammals. Front Cell Dev Biol 2022; 10:861006. [PMID: 35493084 PMCID: PMC9039719 DOI: 10.3389/fcell.2022.861006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/23/2022] [Indexed: 12/28/2022] Open
Abstract
Distinct from Earth’s environment, space environmental factors mainly include space radiation, microgravity, hypomagnetic field, and disrupted light/dark cycles that cause physiological changes in astronauts. Numerous studies have demonstrated that space environmental factors can lead to muscle atrophy, bone loss, carcinogenesis, immune disorders, vascular function and cognitive impairment. Most current ground-based studies focused on single environmental factor biological effects. To promote manned space exploration, a better understanding of the biological effects of the spaceflight environment is necessary. This paper summarizes the latest research progress of the combined biological effects of double or multiple space environmental factors on mammalian cells, and discusses their possible molecular mechanisms, with the hope of providing a scientific theoretical basis to develop appropriate countermeasures for astronauts.
Collapse
Affiliation(s)
- Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
- School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Weiwei Pei
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
- School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
- *Correspondence: Weiwei Pei, ; Wentao Hu,
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
- School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
- *Correspondence: Weiwei Pei, ; Wentao Hu,
| |
Collapse
|
11
|
Abstract
The direct (eg, radiation, microgravity) and indirect (eg, lifestyle perturbations) effects of spaceflight extend across multiple systems resulting in whole-organism cardiovascular deconditioning. For over 50 years, National Aeronautics and Space Administration has continually enhanced a countermeasures program designed to characterize and offset the adverse cardiovascular consequences of spaceflight. In this review, we provide a historical overview of research evaluating the effects of spaceflight on cardiovascular health in astronauts and outline mechanisms underpinning spaceflight-related cardiovascular alterations. We also discuss how spaceflight could be leveraged for aging, industry, and model systems such as human induced pluripotent stem cell-derived cardiomyocytes, organoid, and organ-on-a-chip technologies. Finally, we outline the increasing opportunities for scientists and clinicians to engage in cardiovascular research in space and on Earth.
Collapse
Affiliation(s)
- Jessica M Scott
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY (J.M.S.).,Weill Cornell Medical College, New York, NY (J.M.S.)
| | | | - Lianne Dolan
- Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada (L.D.)
| | | |
Collapse
|
12
|
Lee PHU, Chung M, Ren Z, Mair DB, Kim DH. Factors mediating spaceflight-induced skeletal muscle atrophy. Am J Physiol Cell Physiol 2022; 322:C567-C580. [PMID: 35171699 DOI: 10.1152/ajpcell.00203.2021] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Skeletal muscle atrophy is a well-known consequence of spaceflight. Because of the potential significant impact of muscle atrophy and muscle dysfunction on astronauts and to their mission, a thorough understanding of the mechanisms of this atrophy and the development of effective countermeasures is critical. Spaceflight-induced muscle atrophy is similar to atrophy seen in many terrestrial conditions, and therefore our understanding of this form of atrophy may also contribute to the treatment of atrophy in humans on Earth. The unique environmental features humans encounter in space include the weightlessness of microgravity, space radiation, and the distinctive aspects of living in a spacecraft. The disuse and unloading of muscles in microgravity are likely the most significant factors that mediate spaceflight-induced muscle atrophy, and have been extensively studied and reviewed. However, there are numerous other direct and indirect effects on skeletal muscle that may be contributing factors to the muscle atrophy and dysfunction seen as a result of spaceflight. This review offers a novel perspective on the issue of muscle atrophy in space by providing a comprehensive overview of the unique aspects of the spaceflight environment and the various ways in which they can lead to muscle atrophy. We systematically review the potential contributions of these different mechanisms of spaceflight-induced atrophy and include findings from both actual spaceflight and ground-based models of spaceflight in humans, animals, and in vitro studies.
Collapse
Affiliation(s)
- Peter H U Lee
- Department of Cardiothoracic Surgery, Southcoast Health, Fall River, MA, United States.,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | | | - Zhanping Ren
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Devin B Mair
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
13
|
Nemec-Bakk AS, Sridharan V, Landes RD, Singh P, Cao M, Seawright JW, Liu X, Zheng G, Dominic P, Pathak R, Boerma M. Mitigation of late cardiovascular effects of oxygen ion radiation by γ-tocotrienol in a mouse model. LIFE SCIENCES IN SPACE RESEARCH 2021; 31:43-50. [PMID: 34689949 PMCID: PMC8548672 DOI: 10.1016/j.lssr.2021.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/02/2021] [Accepted: 07/29/2021] [Indexed: 05/14/2023]
Abstract
PURPOSE While there is concern about degenerative tissue effects of exposure to space radiation during deep-space missions, there are no pharmacological countermeasures against these adverse effects. γ-Tocotrienol (GT3) is a natural form of vitamin E that has anti-oxidant properties, modifies cholesterol metabolism, and has anti-inflammatory and endothelial cell protective properties. The purpose of this study was to test whether GT3 could mitigate cardiovascular effects of oxygen ion (16O) irradiation in a mouse model. MATERIALS AND METHODS Male C57BL/6 J mice were exposed to whole-body 16O (600 MeV/n) irradiation (0.26-0.33 Gy/min) at doses of 0 or 0.25 Gy at 6 months of age and were followed up to 9 months after irradiation. Animals were administered GT3 (50 mg/kg/day s.c.) or vehicle, on Monday - Friday starting on day 3 after irradiation for a total of 16 administrations. Ultrasonography was used to measure in vivo cardiac function and blood flow parameters. Cardiac tissue remodeling and inflammatory infiltration were assessed with histology and immunoblot analysis at 2 weeks, 3 and 9 months after radiation. RESULTS GT3 mitigated the effects of 16O radiation on cardiac function, the expression of a collagen type III peptide, and markers of mast cells, T-cells and monocytes/macrophages in the left ventricle. CONCLUSIONS GT3 may be a potential countermeasure against late degenerative tissue effects of high-linear energy transfer radiation in the heart.
Collapse
Affiliation(s)
- Ashley S Nemec-Bakk
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Reid D Landes
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Preeti Singh
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Maohua Cao
- College of Dentistry, Texas A&M University, Dallas TX, USA
| | | | - Xingui Liu
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, USA
| | - Paari Dominic
- Department of Medicine and Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
14
|
Kim HN, Richardson KK, Krager KJ, Ling W, Simmons P, Allen AR, Aykin-Burns N. Simulated Galactic Cosmic Rays Modify Mitochondrial Metabolism in Osteoclasts, Increase Osteoclastogenesis and Cause Trabecular Bone Loss in Mice. Int J Mol Sci 2021; 22:11711. [PMID: 34769141 PMCID: PMC8583929 DOI: 10.3390/ijms222111711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/24/2022] Open
Abstract
Space is a high-stress environment. One major risk factor for the astronauts when they leave the Earth's magnetic field is exposure to ionizing radiation from galactic cosmic rays (GCR). Several adverse changes occur in mammalian anatomy and physiology in space, including bone loss. In this study, we assessed the effects of simplified GCR exposure on skeletal health in vivo. Three months following exposure to 0.5 Gy total body simulated GCR, blood, bone marrow and tissue were collected from 9 months old male mice. The key findings from our cell and tissue analysis are (1) GCR induced femoral trabecular bone loss in adult mice but had no effect on spinal trabecular bone. (2) GCR increased circulating osteoclast differentiation markers and osteoclast formation but did not alter new bone formation or osteoblast differentiation. (3) Steady-state levels of mitochondrial reactive oxygen species, mitochondrial and non-mitochondrial respiration were increased without any changes in mitochondrial mass in pre-osteoclasts after GCR exposure. (4) Alterations in substrate utilization following GCR exposure in pre-osteoclasts suggested a metabolic rewiring of mitochondria. Taken together, targeting radiation-mediated mitochondrial metabolic reprogramming of osteoclasts could be speculated as a viable therapeutic strategy for space travel induced bone loss.
Collapse
Affiliation(s)
- Ha-Neui Kim
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA; (K.K.R.); (W.L.)
| | - Kimberly K. Richardson
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA; (K.K.R.); (W.L.)
| | - Kimberly J. Krager
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA; (K.J.K.); (P.S.); (A.R.A.)
| | - Wen Ling
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA; (K.K.R.); (W.L.)
| | - Pilar Simmons
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA; (K.J.K.); (P.S.); (A.R.A.)
| | - Antino R. Allen
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA; (K.J.K.); (P.S.); (A.R.A.)
| | - Nukhet Aykin-Burns
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA; (K.J.K.); (P.S.); (A.R.A.)
| |
Collapse
|
15
|
Willey JS, Britten RA, Blaber E, Tahimic CG, Chancellor J, Mortreux M, Sanford LD, Kubik AJ, Delp MD, Mao XW. The individual and combined effects of spaceflight radiation and microgravity on biologic systems and functional outcomes. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:129-179. [PMID: 33902391 PMCID: PMC8274610 DOI: 10.1080/26896583.2021.1885283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Both microgravity and radiation exposure in the spaceflight environment have been identified as hazards to astronaut health and performance. Substantial study has been focused on understanding the biology and risks associated with prolonged exposure to microgravity, and the hazards presented by radiation from galactic cosmic rays (GCR) and solar particle events (SPEs) outside of low earth orbit (LEO). To date, the majority of the ground-based analogues (e.g., rodent or cell culture studies) that investigate the biology of and risks associated with spaceflight hazards will focus on an individual hazard in isolation. However, astronauts will face these challenges simultaneously Combined hazard studies are necessary for understanding the risks astronauts face as they travel outside of LEO, and are also critical for countermeasure development. The focus of this review is to describe biologic and functional outcomes from ground-based analogue models for microgravity and radiation, specifically highlighting the combined effects of radiation and reduced weight-bearing from rodent ground-based tail suspension via hind limb unloading (HLU) and partial weight-bearing (PWB) models, although in vitro and spaceflight results are discussed as appropriate. The review focuses on the skeletal, ocular, central nervous system (CNS), cardiovascular, and stem cells responses.
Collapse
Affiliation(s)
| | | | - Elizabeth Blaber
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute
| | | | | | - Marie Mortreux
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center
| | - Larry D. Sanford
- Department of Radiation Oncology, Eastern Virginia Medical School
| | - Angela J. Kubik
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute
| | - Michael D. Delp
- Department of Nutrition, Food and Exercise Sciences, Florida State University
| | - Xiao Wen Mao
- Division of Biomedical Engineering Sciences (BMES), Department of Basic Sciences, Loma Linda University
| |
Collapse
|
16
|
Lee SMC, Ribeiro LC, Martin DS, Zwart SR, Feiveson AH, Laurie SS, Macias BR, Crucian BE, Krieger S, Weber D, Grune T, Platts SH, Smith SM, Stenger MB. Arterial structure and function during and after long-duration spaceflight. J Appl Physiol (1985) 2020; 129:108-123. [PMID: 32525433 DOI: 10.1152/japplphysiol.00550.2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Spaceflight missions expose astronauts to increased risk of oxidative stress and inflammatory damage that might accelerate the development of asymptomatic cardiovascular disease. The purpose of this investigation was to determine whether long-duration spaceflight (>4 mo) results in structural and functional changes in the carotid and brachial arteries. Common carotid artery (CCA) intima-media thickness (cIMT), CCA distensibility and stiffness, and brachial artery endothelium-dependent and -independent vasodilation were measured in 13 astronauts (10 men, 3 women) ~180 and 60 days before launch, during the mission on ~15, 60, and 160 days of spaceflight, and within 1 wk after landing. Biomarkers of oxidative stress and inflammation were measured at corresponding times in fasting blood samples and urine samples from 24- or 48-h pools. Biomarkers of oxidative stress and inflammation increased during spaceflight, but most returned to preflight levels within 1 wk of landing. Mean cIMT, CCA stiffness, and distensibility were not significantly different from preflight at any time. As a group, neither mean endothelium-dependent nor -independent vasodilation changed from preflight to postflight, but changes within individuals in endothelial function related to some biomarkers of oxidative stress. Whereas biomarkers of oxidative stress and inflammation are elevated during spaceflight, CCA and brachial artery structure and function were not changed by spaceflight. It is unclear whether future exploration missions, with an extended duration in altered gravity fields and higher radiation exposure, may be problematic.NEW & NOTEWORTHY Carotid artery structure and stiffness did not change on average in astronauts during long-duration spaceflight (<12 mo), despite increased oxidative stress and inflammation. Most oxidative stress and inflammation biomarkers returned to preflight levels soon after landing. Brachial artery structure and function also were unchanged by spaceflight. In this group of healthy middle-aged male and female astronauts, spaceflight in low Earth orbit does not appear to increase long-term cardiovascular health risk.
Collapse
Affiliation(s)
| | | | | | - Sara R Zwart
- University of Texas Medical Branch, Galveston, Texas
| | | | | | | | | | | | - Daniela Weber
- Department of Molecular Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Tilman Grune
- Department of Molecular Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany.,German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | | | | | | |
Collapse
|
17
|
Steczina S, Tahimic CGT, Pendleton M, M'Saad O, Lowe M, Alwood JS, Halloran BP, Globus RK, Schreurs AS. Dietary countermeasure mitigates simulated spaceflight-induced osteopenia in mice. Sci Rep 2020; 10:6484. [PMID: 32300161 PMCID: PMC7162976 DOI: 10.1038/s41598-020-63404-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
Spaceflight is a unique environment that includes at least two factors which can negatively impact skeletal health: microgravity and ionizing radiation. We have previously shown that a diet supplemented with dried plum powder (DP) prevented radiation-induced bone loss in mice. In this study, we investigated the capacity of the DP diet to prevent bone loss in mice following exposure to simulated spaceflight, combining microgravity (by hindlimb unloading) and radiation exposure. The DP diet was effective at preventing most decrements in bone micro-architectural and mechanical properties due to hindlimb unloading alone and simulated spaceflight. Furthermore, we show that the DP diet can protect osteoprogenitors from impairments resulting from simulated microgravity. Based on our findings, a dietary supplementation with DP could be an effective countermeasure against the skeletal deficits observed in astronauts during spaceflight.
Collapse
Affiliation(s)
- Sonette Steczina
- Blue Marble Space Institute of Science, Seattle, WA, 98154, USA.,Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Candice G T Tahimic
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA.,KBR, Moffett Field, California, USA
| | - Megan Pendleton
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Ons M'Saad
- Space Life Sciences Training Program, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Moniece Lowe
- Blue Marble Space Institute of Science, Seattle, WA, 98154, USA.,Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Joshua S Alwood
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Bernard P Halloran
- Department of Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Ruth K Globus
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Ann-Sofie Schreurs
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA. .,Universities Space Research Association, Moffett Field, CA, USA.
| |
Collapse
|
18
|
Frederick NE, Mitchell R, Hein TW, Bagher P. Morphological and pharmacological characterization of the porcine popliteal artery: A novel model for study of lower limb arterial disease. Microcirculation 2019; 26:e12527. [PMID: 30597676 DOI: 10.1111/micc.12527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/06/2018] [Accepted: 12/26/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE This study was undertaken to characterize structural and pharmacological properties of the pig popliteal artery in order to develop a novel system for the examination of lower limb blood flow regulation in a variety of cardiovascular pathologies, such as diabetes-induced peripheral artery disease. METHODS Popliteal arteries were isolated from streptozocin-induced diabetic pigs or age-matched saline-injected control pigs for morphological study using transmission electron microscopy and for examination of vasoreactivity to pharmacological agents using wire myography. RESULTS Transmission electron microscopy of the porcine popliteal artery wall revealed the presence of endothelial cell-smooth muscle cell interactions (myoendothelial junctions) and smooth muscle cell-smooth muscle cell interactions, for which we have coined the term "myo-myo junctions." These myo-myo junctions were shown to feature plaques indicative of connexin expression. Further, the pig popliteal artery was highly responsive to a variety of vasoconstrictors including norepinephrine, phenylephrine, and U46619, and vasodilators including acetylcholine, adenosine 5'-[β-thio] diphosphate, and bradykinin. Finally, 2 weeks after streptozocin-induced diabetes, the normalized vasoconstriction of the pig popliteal artery to norepinephrine was unaltered compared to control. CONCLUSIONS The pig popliteal artery displays structural and pharmacological properties that might prove useful in future studies of diabetes-associated peripheral artery disease and other lower limb cardiovascular diseases.
Collapse
Affiliation(s)
- Norman E Frederick
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Temple, Texas
| | - Ray Mitchell
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Temple, Texas
| | - Travis W Hein
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Temple, Texas
| | - Pooneh Bagher
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Temple, Texas
| |
Collapse
|
19
|
Yatagai F, Honma M, Dohmae N, Ishioka N. Biological effects of space environmental factors: A possible interaction between space radiation and microgravity. LIFE SCIENCES IN SPACE RESEARCH 2019; 20:113-123. [PMID: 30797428 DOI: 10.1016/j.lssr.2018.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/27/2018] [Accepted: 10/26/2018] [Indexed: 06/09/2023]
Abstract
In the mid-1980s, space experiments began to examine if microgravity could alter the biological effects of space radiation. In the late 1990s, repair of DNA strand breaks was reported to not be influenced by microgravity using the pre-irradiated cells, because the exposure doses of space radiation were few due to the short spaceflight. There were, however, conflicting reports depending on the biological endpoints used in various systems. While almost no attempts were made to assess the possibility that the microgravity effects could be altered by space radiation. This was probably due to the general understanding that microgravity plays a major role in space and works independently from space radiation. Recent ground-based simulation studies focusing on DNA oxidative damage and signal transduction suggested that combined effects of microgravity and space radiation might exist. These studies also implicated the importance of research focusing not only on chromosomal DNA but also on cytoplasm, especially mitochondria. Therefore, we propose a new model which accounts for the combined-effects through the window of cellular responses. In this model, the interactions between microgravity and space radiation might occur during the following cellular-responses; (A) damaging and signaling by ROS, (B) damage responses on DNA (repair, replication, transcription, etc.), and (C) expression of gene and protein (regulation by chromatin, epigenetic control, etc.).
Collapse
Affiliation(s)
- Fumio Yatagai
- Institute of Astronautical Research, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Kanagawa 252-0022, Japan; Center for Sustainable Resource Science, The Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | - Masamitsu Honma
- Institute of Astronautical Research, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Kanagawa 252-0022, Japan; Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Naoshi Dohmae
- Center for Sustainable Resource Science, The Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Noriaki Ishioka
- Institute of Astronautical Research, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Kanagawa 252-0022, Japan; Department of Space and Astronautical Science, The Graduate University for Advanced Studies, 3-1-1 Yoshinodai, Chuo-ku, Kanagawa 252-0022, Japan
| |
Collapse
|
20
|
Seawright JW, Sridharan V, Landes RD, Cao M, Singh P, Koturbash I, Mao XW, Miousse IR, Singh SP, Nelson GA, Hauer-Jensen M, Boerma M. Effects of low-dose oxygen ions and protons on cardiac function and structure in male C57BL/6J mice. LIFE SCIENCES IN SPACE RESEARCH 2019; 20:72-84. [PMID: 30797436 PMCID: PMC6391741 DOI: 10.1016/j.lssr.2019.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 05/07/2023]
Abstract
PURPOSE Astronauts traveling beyond low-Earth orbit will be exposed to high linear-energy transfer charged particles. Because there is concern about the adverse effects of space radiation on the cardiovascular system, this study assessed cardiac function and structure and immune cell infiltration in a mouse model of charged-particle irradiation. MATERIALS AND METHODS Male C57BL/6 J mice were exposed to oxygen ions (16O, 600 MeV/n at 0.25-0.26 Gy/min to a total dose of 0, 0.05, 0.1, 0.25, or 1 Gy), protons (150 MeV, 0.35-0.55 Gy/min to 0, 0.5, or 1 Gy), or protons (150 MeV, 0.5 Gy) followed by 16O (600 MeV/n, 0.1 Gy). Separate groups of mice received 137Cs γ-rays (1 Gy/min to 0, 0.5, 1, or 3 Gy) as a reference. Cardiac function and blood velocity were measured with ultrasonography at 3, 5, 7, and 9 months after irradiation. At 2 weeks, 3 months, and 9 months, cardiac tissue was collected to assess apoptosis, tissue remodeling, and markers of immune cells. RESULTS Ejection fraction and fractional shortening decreased at 3 and 7 months after 16O. These parameters did not change in mice exposed to γ-rays, protons, or protons followed by 16O. Each of the radiation exposures caused only small increases in cleaved caspase-3 and numbers of apoptotic nuclei. Changes in the levels of α-smooth muscle cell actin and a 75-kDa peptide of collagen type III in the left ventricle suggested tissue remodeling, but there was no significant change in total collagen deposition at 2 weeks, 3 months, and 9 months. Increases in protein amounts of cluster of differentiation (CD)2, CD68, and CD45 as measured with immunoblots at 2 weeks, 3 months, and 9 months after exposure to protons or 16O alone suggested immune cell infiltration. For type III collagen, CD2 and CD68, the efficacy in inducing protein abundance of CD2, CD68, and CD45 was 16O > protons > γ-rays > protons followed by 16O. CONCLUSIONS Low-dose, high-energy charged-particle irradiation caused mild changes in cardiac function and tissue remodeling in the mouse.
Collapse
Affiliation(s)
- John W Seawright
- Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 West Markham Slot 522-10, Little Rock, AR 72205, USA
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 West Markham Slot 522-10, Little Rock, AR 72205, USA
| | - Reid D Landes
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Maohua Cao
- Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 West Markham Slot 522-10, Little Rock, AR 72205, USA
| | - Preeti Singh
- Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 West Markham Slot 522-10, Little Rock, AR 72205, USA
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Xiao-Wen Mao
- Department of Basic Sciences and Radiation Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Isabelle R Miousse
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sharda P Singh
- Department of Internal Medicine, Texas Tech Health Sciences Center, Lubbock, TX, USA
| | - Gregory A Nelson
- Department of Basic Sciences and Radiation Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Martin Hauer-Jensen
- Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 West Markham Slot 522-10, Little Rock, AR 72205, USA
| | - Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 West Markham Slot 522-10, Little Rock, AR 72205, USA.
| |
Collapse
|
21
|
Sylvester CB, Abe JI, Patel ZS, Grande-Allen KJ. Radiation-Induced Cardiovascular Disease: Mechanisms and Importance of Linear Energy Transfer. Front Cardiovasc Med 2018; 5:5. [PMID: 29445728 PMCID: PMC5797745 DOI: 10.3389/fcvm.2018.00005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/09/2018] [Indexed: 12/24/2022] Open
Abstract
Radiation therapy (RT) in the form of photons and protons is a well-established treatment for cancer. More recently, heavy charged particles have been used to treat radioresistant and high-risk cancers. Radiation treatment is known to cause cardiovascular disease (CVD) which can occur acutely during treatment or years afterward in the form of accelerated atherosclerosis. Radiation-induced cardiovascular disease (RICVD) can be a limiting factor in treatment as well as a cause of morbidity and mortality in successfully treated patients. Inflammation plays a key role in both acute and chronic RICVD, but the underling pathophysiology is complex, involving DNA damage, reactive oxygen species, and chronic inflammation. While understanding of the molecular mechanisms of RICVD has increased, the growing number of patients receiving RT warrants further research to identify individuals at risk, plans for prevention, and targets for the treatment of RICVD. Research on RICVD is also relevant to the National Aeronautics and Space Administration (NASA) due to the prevalent space radiation environment encountered by astronauts. NASA's current research on RICVD can both contribute to and benefit from concurrent work with cell and animal studies informing radiotoxicities resulting from cancer therapy. This review summarizes the types of radiation currently in clinical use, models of RICVD, current knowledge of the mechanisms by which they cause CVD, and how this knowledge might apply to those exposed to various types of radiation.
Collapse
Affiliation(s)
- Christopher B Sylvester
- Department of Bioengineering, Rice University, Houston, TX, United States.,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Jun-Ichi Abe
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Zarana S Patel
- Science and Space Operations, KBRwyle, Houston, TX, United States
| | | |
Collapse
|
22
|
Shanmugarajan S, Zhang Y, Moreno-Villanueva M, Clanton R, Rohde LH, Ramesh GT, Sibonga JD, Wu H. Combined Effects of Simulated Microgravity and Radiation Exposure on Osteoclast Cell Fusion. Int J Mol Sci 2017; 18:ijms18112443. [PMID: 29156538 PMCID: PMC5713410 DOI: 10.3390/ijms18112443] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/12/2017] [Accepted: 11/15/2017] [Indexed: 12/11/2022] Open
Abstract
The loss of bone mass and alteration in bone physiology during space flight are one of the major health risks for astronauts. Although the lack of weight bearing in microgravity is considered a risk factor for bone loss and possible osteoporosis, organisms living in space are also exposed to cosmic radiation and other environmental stress factors. As such, it is still unclear as to whether and by how much radiation exposure contributes to bone loss during space travel, and whether the effects of microgravity and radiation exposure are additive or synergistic. Bone is continuously renewed through the resorption of old bone by osteoclast cells and the formation of new bone by osteoblast cells. In this study, we investigated the combined effects of microgravity and radiation by evaluating the maturation of a hematopoietic cell line to mature osteoclasts. RAW 264.7 monocyte/macrophage cells were cultured in rotating wall vessels that simulate microgravity on the ground. Cells under static 1g or simulated microgravity were exposed to γ rays of varying doses, and then cultured in receptor activator of nuclear factor-κB ligand (RANKL) for the formation of osteoclast giant multinucleated cells (GMCs) and for gene expression analysis. Results of the study showed that radiation alone at doses as low as 0.1 Gy may stimulate osteoclast cell fusion as assessed by GMCs and the expression of signature genes such as tartrate resistant acid phosphatase (Trap) and dendritic cell-specific transmembrane protein (Dcstamp). However, osteoclast cell fusion decreased for doses greater than 0.5 Gy. In comparison to radiation exposure, simulated microgravity induced higher levels of cell fusion, and the effects of these two environmental factors appeared additive. Interestingly, the microgravity effect on osteoclast stimulatory transmembrane protein (Ocstamp) and Dcstamp expressions was significantly higher than the radiation effect, suggesting that radiation may not increase the synthesis of adhesion molecules as much as microgravity.
Collapse
Affiliation(s)
- Srinivasan Shanmugarajan
- NASA Johnson Space Center, Houston, TX 77058, USA.
- Department of Biological and Environmental Sciences, University of Houston Clear Lake, Houston, TX 77058, USA.
| | - Ye Zhang
- NASA Kennedy Space Center, Cape Canaveral, FL 32899, USA.
| | - Maria Moreno-Villanueva
- NASA Johnson Space Center, Houston, TX 77058, USA.
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany.
| | - Ryan Clanton
- Department of Nuclear Engineering, Texas A & M University, College Station, TX 77843, USA.
| | - Larry H Rohde
- Department of Biological and Environmental Sciences, University of Houston Clear Lake, Houston, TX 77058, USA.
| | | | | | - Honglu Wu
- NASA Johnson Space Center, Houston, TX 77058, USA.
| |
Collapse
|
23
|
Abstract
National space agencies and private corporations aim at an extended presence of humans in space in the medium to long term. Together with currently suboptimal technology, microgravity and cosmic rays raise health concerns about deep-space exploration missions. Both of these physical factors affect the cardiovascular system, whose gravity-dependence is pronounced. Heart and vascular function are, therefore, susceptible to substantial changes in weightlessness. The altered cardiovascular function in space causes physiological problems in the postflight period. A compromised cardiovascular system can be excessively vulnerable to space radiation, synergistically resulting in increased damage. The space radiation dose is significantly lower than in patients undergoing radiotherapy, in whom cardiac damage is well-documented following cancer therapy in the thoracic region. Nevertheless, epidemiological findings suggest an increased risk of late cardiovascular disease even with low doses of radiation. Moreover, the peculiar biological effectiveness of heavy ions in cosmic rays might increase this risk substantially. However, whether radiation-induced cardiovascular effects have a threshold at low doses is still unclear. The main countermeasures to mitigate the effect of the space environment on cardiac function are physical exercise, antioxidants, nutraceuticals, and radiation shielding.
Collapse
|
24
|
Tahimic CGT, Globus RK. Redox Signaling and Its Impact on Skeletal and Vascular Responses to Spaceflight. Int J Mol Sci 2017; 18:ijms18102153. [PMID: 29035346 PMCID: PMC5666834 DOI: 10.3390/ijms18102153] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 09/30/2017] [Accepted: 10/10/2017] [Indexed: 12/16/2022] Open
Abstract
Spaceflight entails exposure to numerous environmental challenges with the potential to contribute to both musculoskeletal and vascular dysfunction. The purpose of this review is to describe current understanding of microgravity and radiation impacts on the mammalian skeleton and associated vasculature at the level of the whole organism. Recent experiments from spaceflight and ground-based models have provided fresh insights into how these environmental stresses influence mechanisms that are related to redox signaling, oxidative stress, and tissue dysfunction. Emerging mechanistic knowledge on cellular defenses to radiation and other environmental stressors, including microgravity, are useful for both screening and developing interventions against spaceflight-induced deficits in bone and vascular function.
Collapse
Affiliation(s)
- Candice G T Tahimic
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA.
- KBRWyle, Moffett Field, CA 94035, USA.
| | - Ruth K Globus
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA.
| |
Collapse
|
25
|
Towards human exploration of space: the THESEUS review series on muscle and bone research priorities. NPJ Microgravity 2017. [PMID: 28649630 PMCID: PMC5445590 DOI: 10.1038/s41526-017-0013-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Without effective countermeasures, the musculoskeletal system is altered by the microgravity environment of long-duration spaceflight, resulting in atrophy of bone and muscle tissue, as well as in deficits in the function of cartilage, tendons, and vertebral disks. While inflight countermeasures implemented on the International Space Station have evidenced reduction of bone and muscle loss on low-Earth orbit missions of several months in length, important knowledge gaps must be addressed in order to develop effective strategies for managing human musculoskeletal health on exploration class missions well beyond Earth orbit. Analog environments, such as bed rest and/or isolation environments, may be employed in conjunction with large sample sizes to understand sex differences in countermeasure effectiveness, as well as interaction of exercise with pharmacologic, nutritional, immune system, sleep and psychological countermeasures. Studies of musculoskeletal biomechanics, involving both human subject and computer simulation studies, are essential to developing strategies to avoid bone fractures or other injuries to connective tissue during exercise and extravehicular activities. Animal models may be employed to understand effects of the space environment that cannot be modeled using human analog studies. These include studies of radiation effects on bone and muscle, unraveling the effects of genetics on bone and muscle loss, and characterizing the process of fracture healing in the mechanically unloaded and immuno-compromised spaceflight environment. In addition to setting the stage for evidence-based management of musculoskeletal health in long-duration space missions, the body of knowledge acquired in the process of addressing this array of scientific problems will lend insight into the understanding of terrestrial health conditions such as age-related osteoporosis and sarcopenia.
Collapse
|
26
|
Delp MD, Charvat JM, Limoli CL, Globus RK, Ghosh P. Apollo Lunar Astronauts Show Higher Cardiovascular Disease Mortality: Possible Deep Space Radiation Effects on the Vascular Endothelium. Sci Rep 2016; 6:29901. [PMID: 27467019 PMCID: PMC4964660 DOI: 10.1038/srep29901] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/22/2016] [Indexed: 01/30/2023] Open
Abstract
As multiple spacefaring nations contemplate extended manned missions to Mars and the Moon, health risks could be elevated as travel goes beyond the Earth's protective magnetosphere into the more intense deep space radiation environment. The primary purpose of this study was to determine whether mortality rates due to cardiovascular disease (CVD), cancer, accidents and all other causes of death differ in (1) astronauts who never flew orbital missions in space, (2) astronauts who flew only in low Earth orbit (LEO), and (3) Apollo lunar astronauts, the only humans to have traveled beyond Earth's magnetosphere. Results show there were no differences in CVD mortality rate between non-flight (9%) and LEO (11%) astronauts. However, the CVD mortality rate among Apollo lunar astronauts (43%) was 4-5 times higher than in non-flight and LEO astronauts. To test a possible mechanistic basis for these findings, a secondary purpose was to determine the long-term effects of simulated weightlessness and space-relevant total-body irradiation on vascular responsiveness in mice. The results demonstrate that space-relevant irradiation induces a sustained vascular endothelial cell dysfunction. Such impairment is known to lead to occlusive artery disease, and may be an important risk factor for CVD among astronauts exposed to deep space radiation.
Collapse
Affiliation(s)
- Michael D. Delp
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Jacqueline M. Charvat
- Wyle Science, Technology and Engineering Group, Johnson Space Center, Houston TX 77058, USA
| | - Charles L. Limoli
- Department of Radiation Oncology, University of California Irvine, Irvine, CA 92697, USA
| | - Ruth K. Globus
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Payal Ghosh
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|