1
|
Lee MJ, Cho JY, Bae S, Jung HS, Kang CM, Kim SH, Choi HJ, Lee CK, Kim H, Jo D, Paik YK. Inhibition of the Alternative Complement Pathway May Cause Secretion of Factor B, Enabling an Early Detection of Pancreatic Cancer. J Proteome Res 2024; 23:985-998. [PMID: 38306169 DOI: 10.1021/acs.jproteome.3c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
This study aims to elucidate the cellular mechanisms behind the secretion of complement factor B (CFB), known for its dual roles as an early biomarker for pancreatic ductal adenocarcinoma (PDAC) and as the initial substrate for the alternative complement pathway (ACP). Using parallel reaction monitoring analysis, we confirmed a consistent ∼2-fold increase in CFB expression in PDAC patients compared with that in both healthy donors (HD) and chronic pancreatitis (CP) patients. Elevated ACP activity was observed in CP and other benign conditions compared with that in HD and PDAC patients, suggesting a functional link between ACP and PDAC. Protein-protein interaction analyses involving key complement proteins and their regulatory factors were conducted using blood samples from PDAC patients and cultured cell lines. Our findings revealed a complex control system governing the ACP and its regulatory factors, including Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation, adrenomedullin (AM), and complement factor H (CFH). Particularly, AM emerged as a crucial player in CFB secretion, activating CFH and promoting its predominant binding to C3b over CFB. Mechanistically, our data suggest that the KRAS mutation stimulates AM expression, enhancing CFH activity in the fluid phase through binding. This heightened AM-CFH interaction conferred greater affinity for C3b over CFB, potentially suppressing the ACP cascade. This sequence of events likely culminated in the preferential release of ductal CFB into plasma during the early stages of PDAC. (Data set ID PXD047043.).
Collapse
Affiliation(s)
- Min Jung Lee
- Yonsei Proteome Research Center, Yonsei University, Seoul 03722, South Korea
| | - Jin-Young Cho
- Yonsei Proteome Research Center, Yonsei University, Seoul 03722, South Korea
| | - Sumi Bae
- JW BioScience Corp., 38 Gwacheon-daero, Gwacheon-si, Gyeonggi-do 13840, South Korea
| | - Hye Soo Jung
- JW BioScience Corp., 38 Gwacheon-daero, Gwacheon-si, Gyeonggi-do 13840, South Korea
| | - Chang Moo Kang
- Department of Surgery, Division of HBP Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Sung Hyun Kim
- Department of Surgery, Division of HBP Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Hye Jin Choi
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Choong-Kun Lee
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Hoguen Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Daewoong Jo
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul 03929, Korea
| | - Young-Ki Paik
- Yonsei Proteome Research Center, Yonsei University, Seoul 03722, South Korea
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul 03929, Korea
| |
Collapse
|
2
|
García-Sanmartín J, Narro-Íñiguez J, Rodríguez-Barbero A, Martínez A. Endoglin and Activin Receptor-like Kinase 1 (Alk1) Modify Adrenomedullin Expression in an Organ-Specific Manner in Mice. BIOLOGY 2022; 11:biology11030358. [PMID: 35336733 PMCID: PMC8945164 DOI: 10.3390/biology11030358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 01/23/2023]
Abstract
Simple Summary Hereditary hemorrhagic telangiectasia (HHT) is called a rare disease because it affects relatively few people. It is characterized by malformations in some blood vessels and usually results in profuse nose bleedings. In a recent article, we found that these patients have higher levels of adrenomedullin (AM), a molecule with cardiovascular activities, than healthy people. Thus we wanted to know whether the mutations that cause the HHT disease are directly responsible for these higher levels of AM. To investigate this issue, we used mutant mice, which express lower levels of the genes involved in the disease (called Eng and Acvrl1), and measured how much AM was found in different tissues. Although we expected a higher amount of AM in all organs, that was not the case. Some organs showed no variation, some had lower levels of AM than normal mice (fat, skin, and adrenals), and others had a higher expression (cerebellum and colon). Interestingly, our results suggest that these genes and the related molecule BMP-9 may have novel functions, which have not been yet investigated, which may shed more light on the physiopathology of HHT. Abstract Hereditary hemorrhagic telangiectasia (HHT) is a rare disease characterized by vascular malformations and profuse bleeding. The disease is caused by mutations in the components of the BMP-9 receptor: endoglin (ENG) and activin receptor-like kinase 1 (ACVRL1) genes. Recently, we reported that HHT patients expressed higher serum levels of adrenomedullin (AM) than healthy volunteers; thus, we studied the expression of AM (by enzyme immunoassay, qRT-PCR, immunohistochemistry, and Western blotting) in mice deficient in either one of the receptor components to investigate whether these defects may be the cause of that elevated AM in patients. We found that AM expression is not affected by these mutations in a consistent pattern. On the contrary, in some organs (blood, lungs, stomach, pancreas, heart, kidneys, ovaries, brain cortex, hippocampus, foot skin, and microvessels), there were no significant changes, whereas in others we found either a reduced expression (fat, skin, and adrenals) or an enhanced production of AM (cerebellum and colon). These results contradict our initial hypothesis that the increased AM expression found in HHT patients may be due directly to the mutations, but open intriguing questions about the potential phenotypic manifestations of Eng and Acvrl1 mutants that have not yet been studied and that may offer, in the future, a new focus for research on HHT.
Collapse
Affiliation(s)
- Josune García-Sanmartín
- Angiogenesis Unit, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logrono, Spain; (J.G.-S.); (J.N.-Í.)
| | - Judit Narro-Íñiguez
- Angiogenesis Unit, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logrono, Spain; (J.G.-S.); (J.N.-Í.)
| | - Alicia Rodríguez-Barbero
- Vascular Endothelium Pathophysiology (ENDOVAS) Unit, Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain;
- Biomedical Research Institute of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Alfredo Martínez
- Angiogenesis Unit, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logrono, Spain; (J.G.-S.); (J.N.-Í.)
- Correspondence: ; Tel.: +34-941278775
| |
Collapse
|
3
|
Martínez-Herrero S, Martínez A. Adrenomedullin: Not Just Another Gastrointestinal Peptide. Biomolecules 2022; 12:biom12020156. [PMID: 35204657 PMCID: PMC8961556 DOI: 10.3390/biom12020156] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/11/2022] Open
Abstract
Adrenomedullin (AM) and proadrenomedullin N-terminal 20 peptide (PAMP) are two bioactive peptides derived from the same precursor with several biological functions including vasodilation, angiogenesis, or anti-inflammation, among others. AM and PAMP are widely expressed throughout the gastrointestinal (GI) tract where they behave as GI hormones, regulating numerous physiological processes such as gastric emptying, gastric acid release, insulin secretion, bowel movements, or intestinal barrier function. Furthermore, it has been recently demonstrated that AM/PAMP have an impact on gut microbiome composition, inhibiting the growth of bacteria related with disease and increasing the number of beneficial bacteria such as Lactobacillus or Bifidobacterium. Due to their wide functions in the GI tract, AM and PAMP are involved in several digestive pathologies such as peptic ulcer, diabetes, colon cancer, or inflammatory bowel disease (IBD). AM is a key protective factor in IBD onset and development, as it regulates cytokine production in the intestinal mucosa, improves vascular and lymphatic regeneration and function and mucosal epithelial repair, and promotes a beneficial gut microbiome composition. AM and PAMP are relevant GI hormones that can be targeted to develop novel therapeutic agents for IBD, other GI disorders, or microbiome-related pathologies.
Collapse
|
4
|
Lewis RD, Narayanaswamy AK, Farewell D, Rees DA. Complement activation in polycystic ovary syndrome occurs in the postprandial and fasted state and is influenced by obesity and insulin sensitivity. Clin Endocrinol (Oxf) 2021; 94:74-84. [PMID: 32865246 PMCID: PMC9623543 DOI: 10.1111/cen.14322] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/01/2020] [Accepted: 08/08/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Polycystic ovary syndrome (PCOS) is associated with metabolic risk. Complement proteins regulate inflammation and lipid clearance but their role in PCOS-associated metabolic risk is unclear. We sought to establish whether the complement system is activated in PCOS in the fasting and postprandial state. DESIGN Case-control study. PATIENTS Fasting complement levels were measured in 84 women with PCOS and 95 healthy controls. Complement activation post-oral fat tolerance test (OFTT) was compared in 40 additional subjects (20 PCOS, 20 controls). MEASUREMENTS Activation pathway (C3, C4, C3a(desArg), factor B, factor H, properdin, Factor D) and terminal pathway (C5, C5a, terminal complement complex [TCC]) proteins were measured by commercial or in-house assays. RESULTS Fasting C3, C3a(desArg) and TCC concentrations were increased in insulin-resistant (adjusted differences: C3 0.13 g/L [95%CI 0-0.25]; C3a(desArg) 319.2 ng/mL [19.5-619]; TCC 0.66 μg/mL [0.04-1.28]) but not in insulin-sensitive women with PCOS. C3 and factor H levels increased with obesity. Post-OFTT, C3 and C4 levels increased to a similar extent in PCOS subjects and controls, whist factor H levels increased more in women with PCOS compared to controls (adjusted differences (area under the curve): 12 167 μg min/mL [4942-19 392]), particularly in the presence of concomitant obesity. CONCLUSIONS Activation and terminal complement pathway components are elevated in patients with PCOS, especially in the presence of insulin resistance and obesity.
Collapse
Affiliation(s)
- Ruth D. Lewis
- Division of Infection and ImmunitySchool of MedicineCardiff UniversityCardiffUK
| | - Anil K. Narayanaswamy
- Division of Psychological Medicine and Clinical NeurosciencesSchool of MedicineCardiff UniversityCardiffUK
| | - Daniel Farewell
- Division of Population MedicineSchool of MedicineCardiff UniversityCardiffUK
| | - Dafydd Aled Rees
- Division of Psychological Medicine and Clinical NeurosciencesSchool of MedicineCardiff UniversityCardiffUK
| |
Collapse
|
5
|
Lidani KCF, Sandri TL, Andrade FA, Bavia L, Nisihara R, Messias-Reason IJ. Complement Factor H as a potential atherogenic marker in chronic Chagas’ disease. Parasite Immunol 2018; 40:e12537. [DOI: 10.1111/pim.12537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/10/2018] [Indexed: 02/03/2023]
Affiliation(s)
- K. C. F. Lidani
- Laboratory of Molecular Immunopathology; Clinical Hospital; Federal University of Paraná; Curitiba Brazil
| | - T. L. Sandri
- Laboratory of Molecular Immunopathology; Clinical Hospital; Federal University of Paraná; Curitiba Brazil
- Institute of Tropical Medicine; University of Tübingen; Tübingen Germany
| | - F. A. Andrade
- Laboratory of Molecular Immunopathology; Clinical Hospital; Federal University of Paraná; Curitiba Brazil
| | - L. Bavia
- Laboratory of Molecular Immunopathology; Clinical Hospital; Federal University of Paraná; Curitiba Brazil
| | - R. Nisihara
- Laboratory of Molecular Immunopathology; Clinical Hospital; Federal University of Paraná; Curitiba Brazil
| | - I. J. Messias-Reason
- Laboratory of Molecular Immunopathology; Clinical Hospital; Federal University of Paraná; Curitiba Brazil
| |
Collapse
|
6
|
Reichhardt MP, Meri S. Intracellular complement activation-An alarm raising mechanism? Semin Immunol 2018; 38:54-62. [PMID: 29631809 DOI: 10.1016/j.smim.2018.03.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/26/2018] [Indexed: 12/20/2022]
Abstract
It has become increasingly apparent that the complement system, being an ancient defense mechanism, is not operative only in the extracellular milieu but also intracellularly. In addition to the known synthetic machinery in the liver and by macrophages, many other cell types, including lymphocytes, adipocytes and epithelial cells produce selected complement components. Activation of e.g. C3 and C5 inside cells may have multiple effects ranging from direct antimicrobial defense to cell differentiation and possible influence on metabolism. Intracellular activation of C3 and C5 in T cells is involved in the maintenance of immunological tolerance and promotes differentiation of T helper cells into Th1-type cells that activate cell-mediated immune responses. Adipocytes are unique in producing many complement sensor proteins (like C1q) and Factor D (adipsin), the key enzyme in promoting alternative pathway amplification. The effects of complement activation products are mediated by intracellular and cell membrane receptors, like C3aR, C5aR1, C5aR2 and the complement regulator MCP/CD46, often jointly with other receptors like the T cell receptor, Toll-like receptors and those of the inflammasomes. These recent observations link complement activation to cellular metabolic processes, intracellular defense reactions and to diverse adaptive immune responses. The complement components may thus be viewed as intracellular alarm molecules involved in the cellular danger response.
Collapse
Affiliation(s)
- M P Reichhardt
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom.
| | - S Meri
- Department of Bacteriology and Immunology, Haartman Institute, Immunobiology Research Program, University of Helsinki, Helsinki, Finland; Helsinki University Central Hospital Laboratory (HUSLAB), Helsinki, Finland.
| |
Collapse
|
7
|
Hu W, Wang M, Yin C, Li S, Liu Y, Xiao Y. Serum complement factor 5a levels are associated with nonalcoholic fatty liver disease in obese children. Acta Paediatr 2018; 107:322-327. [PMID: 28981167 DOI: 10.1111/apa.14106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 07/09/2017] [Accepted: 09/29/2017] [Indexed: 12/16/2022]
Abstract
AIM Nonalcoholic fatty liver disease (NAFLD) is a leading cause of progressive and chronic liver injury. Complement factor 5a (C5a) may be involved in many inflammation disorders. This study investigated levels of systemic C5a in patients with and without NAFLD and lean controls. METHODS A cross-sectional study was conducted from July 2012 to June 2013 among 96 Chinese children, aged 6-17 years, recruited from the Pediatric Department of the Second Affiliated Hospital of Xi'an Jiao Tong University: 40 obese children with NAFLD, 31 obese children without NAFLD and 25 lean controls. Anthropometric parameters, clinical data and circulating C5a levels were measured. RESULTS Obese children had higher serum concentrations of complement factor C5a compared with lean controls, especially in obese children with NAFLD. C5a was positively correlated with body mass index (BMI), waist circumference, diastolic blood pressure (BP), triglycerides and homoeostasis model of insulin resistance, independent of their body mass index standard deviations score and age. Of the well-known risk factors, C5a was a significant predictor of NAFLD in obese children. CONCLUSION Serum C5a was elevated in obese children, especially in those with NAFLD and it may be proposed as a novel marker to predict advanced disease.
Collapse
Affiliation(s)
- Wei Hu
- Department of Pediatrics; the Second Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - Min Wang
- Department of Pediatrics; the Second Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - Chunyan Yin
- Department of Pediatrics; the Second Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - Shuangshaung Li
- Department of Pediatrics; Shangluo City Central Hospital; Xi'an Shanxi Province China
| | - Yuesheng Liu
- Department of Pediatrics; the Second Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - Yanfeng Xiao
- Department of Pediatrics; the Second Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| |
Collapse
|
8
|
Martínez-Herrero S, Martínez A. Adrenomedullin regulates intestinal physiology and pathophysiology. Domest Anim Endocrinol 2016; 56 Suppl:S66-83. [PMID: 27345325 DOI: 10.1016/j.domaniend.2016.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 02/08/2023]
Abstract
Adrenomedullin (AM) and proadrenomedullin N-terminal 20 peptide (PAMP) are 2 biologically active peptides produced by the same gene, ADM, with ubiquitous distribution and many physiological functions. Adrenomedullin is composed of 52 amino acids, has an internal molecular ring composed by 6 amino acids and a disulfide bond, and shares structural similarities with calcitonin gene-related peptide, amylin, and intermedin. The AM receptor consists of a 7-transmembrane domain protein called calcitonin receptor-like receptor in combination with a single transmembrane domain protein known as receptor activity-modifying protein. Using morphologic techniques, it has been shown that AM and PAMP are expressed throughout the gastrointestinal tract, being specially abundant in the neuroendocrine cells of the gastrointestinal mucosa; in the enterochromaffin-like and chief cells of the gastric fundus; and in the submucosa of the duodenum, ileum, and colon. This wide distribution in the gastrointestinal tract suggests that AM and PAMP may act as gut hormones regulating many physiological and pathologic conditions. To date, it has been proven that AM and PAMP act as autocrine/paracrine growth factors in the gastrointestinal epithelium, play key roles in the protection of gastric mucosa from various kinds of injury, and accelerate healing in diseases such as gastric ulcer and inflammatory bowel diseases. In addition, both peptides are potent inhibitors of gastric acid secretion and gastric emptying; they regulate the active transport of sugars in the intestine, regulate water and ion transport in the colon, modulate colonic bowel movements and small-intestine motility, improve endothelial barrier function, and stabilize circulatory function during gastrointestinal inflammation. Furthermore, AM and PAMP are antimicrobial peptides, and they contribute to the mucosal host defense system by regulating gut microbiota. To get a formal demonstration of the effects that endogenous AM and PAMP may have in gut microbiota, we developed an inducible knockout of the ADM gene. Using this model, we have shown, for the first time, that lack of AM/PAMP leads to changes in gut microbiota composition in mice. Further studies are needed to investigate whether this lack of AM/PAMP may have an impact in the development and/or progression of intestinal diseases through their effect on microbiota composition.
Collapse
Affiliation(s)
- S Martínez-Herrero
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, La Rioja 26006, Spain
| | - A Martínez
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, La Rioja 26006, Spain.
| |
Collapse
|
9
|
Glu-tubulin is a marker for Schwann cells and can distinguish between schwannomas and neurofibromas. Histochem Cell Biol 2016; 146:467-77. [PMID: 27278446 DOI: 10.1007/s00418-016-1455-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2016] [Indexed: 10/21/2022]
Abstract
Schwann cells generate myelin sheaths around the axons of the peripheral nervous system, thus facilitating efficient nerve impulse propagation. Two main tumor types can arise from peripheral nerves, schwannomas and neurofibromas, which are sometimes difficult to distinguish and may require the use of diagnostic biomarkers. Here, we characterize a new marker for Schwann cells and its potential use as a diagnostic marker for schwannomas. Immunohistochemistry for Glu-tubulin, a posttranslational modification of α-tubulin, was performed in mouse and human tissues. This technique labels Schwann cells but not oligodendrocytes. All peripheral nerves were immunoreactive for this antibody, including large nerve trunks, thin myelinated nerves, as well as the myenteric and submucous plexus of the digestive tract. In the mouse brain, many neurons were immunoreactive for Glu-tubulin but oligodendrocytes were negative. During embryo development, immunoreactive nerves were already found at E10. In Schwann cells, the staining is restricted to the myelin sheaths and is not present in the perinuclear cytoplasm or the Ranvier nodes. Primary cultures of fibroblasts and Schwann cells were established from mouse sciatic nerves, and Western blot analysis showed that Glu-tubulin immunoreactivity was found in the Schwann cells but not in the fibroblasts. Clinical specimens of schwannomas (n = 20) and neurofibromas (n = 20) were stained with anti-Glu-tubulin antibodies. Schwannomas presented a strong staining in all tumor cells, whereas neurofibromas had a light speckled staining pattern, easily distinguishable from the one found in schwannomas. In conclusion, Glu-tubulin can be used as a marker of Schwann cells and can help in diagnosing peripheral nerve tumors.
Collapse
|
10
|
Adrenomedullin: A potential therapeutic target for retinochoroidal disease. Prog Retin Eye Res 2016; 52:112-29. [DOI: 10.1016/j.preteyeres.2016.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 11/22/2022]
|
11
|
Specific Biomarkers: Detection of Cancer Biomarkers Through High-Throughput Transcriptomics Data. Cognit Comput 2015. [DOI: 10.1007/s12559-015-9336-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
12
|
The role of the complement system in metabolic organs and metabolic diseases. Semin Immunol 2013; 25:47-53. [PMID: 23684628 DOI: 10.1016/j.smim.2013.04.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/13/2013] [Indexed: 12/20/2022]
Abstract
Emerging evidence points to a close crosstalk between metabolic organs and innate immunity in the course of metabolic disorders. In particular, cellular and humoral factors of innate immunity are thought to contribute to metabolic dysregulation of the adipose tissue or the liver, as well as to dysfunction of the pancreas; all these conditions are linked to the development of insulin resistance and diabetes mellitus. A central component of innate immunity is the complement system. Interestingly, the classical view of complement as a major system of host defense that copes with infections is changing to that of a multi-functional player in tissue homeostasis, degeneration, and regeneration. In the present review, we will discuss the link between complement and metabolic organs, focusing on the pancreas, adipose tissue, and liver and the diverse effects of complement system on metabolic disorders.
Collapse
|
13
|
Yuda K, Takahashi H, Inoue T, Ueta T, Iriyama A, Kadonosono K, Tamaki Y, Aburatani H, Nagai R, Yanagi Y. Adrenomedullin Inhibits Choroidal Neovascularization via CCL2 in the Retinal Pigment Epithelium. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1464-72. [DOI: 10.1016/j.ajpath.2012.06.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 05/01/2012] [Accepted: 06/28/2012] [Indexed: 12/15/2022]
|
14
|
Chen M, Rahman L, Voeller D, Kastanos E, Yang SX, Feigenbaum L, Allegra C, Kaye FJ, Steeg P, Zajac-Kaye M. Transgenic expression of human thymidylate synthase accelerates the development of hyperplasia and tumors in the endocrine pancreas. Oncogene 2007; 26:4817-24. [PMID: 17297449 DOI: 10.1038/sj.onc.1210273] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Thymidylate synthase (TS) is an essential enzyme for DNA synthesis and repair and elevated levels of TS have been identified as an important prognostic biomarker for colorectal cancer and several other common human malignancies. In addition, TS gene expression has been linked with cell-cycle regulation and cell proliferation through the ability of retinoblastoma protein to repress the transcriptional activation of E2F target genes such as TS. Therefore, overproduction of TS could participate in the progression to a neoplastic phenotype. Consistent with this model, a recent study has suggested that ectopic TS expression can induce a transformed phenotype in mammalian cells. To investigate the role of deregulated TS activity in tumor development, we generated transgenic mice that express high levels of catalytically active human TS (hTS) exclusively in the pancreas and low levels of hTS in multiple other tissues. Analyses of pancreatic tissue in TS transgenic mice revealed abnormalities within the endocrine pancreas, ranging from pancreatic islet hyperplasia to the detection of islet cell tumors. Overexpression of hTS in murine islets provides a new model to study genetic alterations associated with the progression from normal cells to hyperplasia to islet cell tumors, and suggests that this mouse model may be useful for regulating TS activity in vivo for development of cancer prevention and new therapies.
Collapse
Affiliation(s)
- M Chen
- Molecular Therapeutics Program, Center for Cancer Research, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Elsasser TH, Capuco AV, Caperna TJ, Martínez A, Cuttitta F, Kahl S. Adrenomedullin (AM) and adrenomedullin binding protein (AM-BP) in the bovine mammary gland and milk: Effects of stage of lactation and experimental intramammary E. coli infection. Domest Anim Endocrinol 2007; 32:138-54. [PMID: 16569490 DOI: 10.1016/j.domaniend.2006.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 02/16/2006] [Accepted: 02/17/2006] [Indexed: 11/19/2022]
Abstract
Adrenomedullin (AM) has been characterized as an endogenous tissue survival factor and modulator of many inflammatory processes. Because of the increased susceptibility of the mammary gland to infection during the time surrounding parturition in the cow, we investigated how milk and tissue content of AM and its binding protein (AM-BP) might be affected by the stage of lactation and the udder health status. Milk and mammary biopsy samples were obtained from Holstein cows 21 days prior to and at various times after calving to represent the dry period and early and mid-stages of lactation. Additional cows received an intramammary challenge with Escherichia coli for immunohistochemical characterization of AM and AM-BP. Milk AM concentrations were relatively constant across the stages of lactation while AM-BP increased two-fold (P<0.04) between early and mid-lactation. Milk AM (P<0.04) and AM-BP (P<0.03) increased as somatic cell counts (SCCs) increased within a given stage of lactation. Tissue content of both (AM and AM-BP) were significantly affected by stage of lactation, lowest in the dry period and progressively increasing to peak at mid-lactation as well as increasing in association with higher levels of SCCs. Following E. coli challenge, AM increased in epithelial cells surrounding mammary alveoli presenting high levels of SCCs. The data suggest that AM and AM-BP are cooperatively regulated in the mammary gland during lactation; changes in localized tissue AM and AM-BP content reflect a dynamic regulation of these tissue factors in the bovine mammary gland consistent with their protective effects within inflamed tissue.
Collapse
Affiliation(s)
- Ted H Elsasser
- USDA-ARS, Growth Biology Laboratory, Beltsville, MD 20705, US.
| | | | | | | | | | | |
Collapse
|
16
|
García MA, Martín-Santamaría S, de Pascual-Teresa B, Ramos A, Julián M, Martínez A. Adrenomedullin: a new and promising target for drug discovery. Expert Opin Ther Targets 2006; 10:303-17. [PMID: 16548778 DOI: 10.1517/14728222.10.2.303] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Adrenomedullin (AM) is a 52 amino acid peptide that plays a critical role in several diseases such as hypertension, cancer, diabetes, cardiovascular and renal disorders, among others. Interestingly, AM behaves as a protective agent against some pathologies, yet is a stimulating factor for other disorders. Thus, AM can be considered as a new and promising target for the design of non-peptidic modulators that could be useful for the treatment of those pathologies, by regulating AM levels or the activity of AM. A full decade on from its discovery, much more is known about AM molecular biology and pharmacology, but this knowledge still needs to be applied to the development of clinically useful drugs.
Collapse
Affiliation(s)
- Mario A García
- Universidad San Pablo CEU, Departamento de Química, Facultad de Farmacia, Urbanización Montepríncipe, 28668 Boadilla del Monte, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
17
|
Julián M, Cacho M, García MA, Martín-Santamaría S, de Pascual-Teresa B, Ramos A, Martínez A, Cuttitta F. Adrenomedullin: a new target for the design of small molecule modulators with promising pharmacological activities. Eur J Med Chem 2005; 40:737-50. [PMID: 15927308 DOI: 10.1016/j.ejmech.2004.10.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Revised: 10/26/2004] [Accepted: 10/27/2004] [Indexed: 10/25/2022]
Abstract
Adrenomedullin (AM) is a 52-amino acid peptide with a pluripotential activity. AM is expressed in many tissues throughout the body, and plays a critical role in several diseases such as cancer, diabetes, cardiovascular and renal disorders, among others. While AM is a protective agent against cardiovascular disorders, it behaves as a stimulating factor in other pathologies such as cancer and diabetes. Therefore, AM is a new and promising target for the development of molecules which, through their ability to regulate AM levels, could be used in the treatment of these pathologies.
Collapse
Affiliation(s)
- Miguel Julián
- Departamento de Química, Facultad de Farmacia, Universidad San Pablo CEU, Urbanización Montepríncipe, 28668 Boadilla del Monte, Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The recent increase in pharmaceutical companies' efforts toward the treatment of obesity reflects recognition of the related health risks, the growth of knowledge about mechanisms that control energy balance, and the potential market for new compounds. The current patent literature gives a picture of the targets that are available for pharmaceutical intervention; these include signals of satiety and signals related to fat storage that act in the hypothalamus. The regulation of energy use and storage in adipocytes and the reduction of intestinal absorption of energy are also pharmaceutical focus areas. The multiplicity of targets illustrates not only the many potential approaches to the treatment of obesity but also the complexity and redundancy of the processes that regulate energy storage in the body.
Collapse
Affiliation(s)
- Ronald J Jandacek
- Department of Pathology, University of Cincinnati School of Medicine, Cincinnati, OH 45267, USA
| | | |
Collapse
|
19
|
Martínez A, Oh HR, Unsworth EJ, Bregonzio C, Saavedra JM, Stetler-Stevenson WG, Cuttitta F. Matrix metalloproteinase-2 cleavage of adrenomedullin produces a vasoconstrictor out of a vasodilator. Biochem J 2004; 383:413-8. [PMID: 15307819 PMCID: PMC1133733 DOI: 10.1042/bj20040920] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 07/22/2004] [Accepted: 08/13/2004] [Indexed: 11/17/2022]
Abstract
MMPs (matrix metalloproteinases) play a major role in the pathogenesis of hypertension by altering the extracellular matrix during cardiovascular remodelling. In the present study we show that MMP-2, but not MMP-9, cleaves the vasodilator peptide AM (adrenomedullin). Addition of the AM-binding protein, complement factor H, prevents this cleavage, providing a hitherto unknown mechanism of action for this binding protein. We identified the signature cleavage fragments and found some of them in human urine, suggesting that MMP-2 processing of AM may occur in vivo. Synthetic AM fragments regulated blood pressure in rats. The larger peptides are vasodilators, as is intact AM, whereas intermediate fragments did not affect blood pressure. In contrast, AM(11-22) elicited vasoconstriction. Studies of AM receptor activation in Rat2 cells confirm that the larger AM cleavage peptides activated this receptor, whereas AM(11-22) did not. The present study defines a new mechanism through which MMP-2 may regulate blood pressure by simultaneously eliminating a vasodilator and generating a vasoconstrictor.
Collapse
Affiliation(s)
- Alfredo Martínez
- Cell and Cancer Biology Branch and Vascular Biology Faculty, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Martínez A, Julián M, Bregonzio C, Notari L, Moody TW, Cuttitta F. Identification of vasoactive nonpeptidic positive and negative modulators of adrenomedullin using a neutralizing antibody-based screening strategy. Endocrinology 2004; 145:3858-65. [PMID: 15107357 DOI: 10.1210/en.2003-1251] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adrenomedullin (AM) is a peptide hormone implicated in blood pressure regulation and in the pathophysiology of important diseases, such as hypertension, cancer, and diabetes. However, nonpeptidic modulators of this peptide that could be used to clinically regulate its actions are not available. We present here an efficient new method to screen a large library of small molecules. This technology was applied to the identification of positive and negative modulators of AM function. A two-tier screening strategy was developed in which the first screening entails disruption of the interaction between the peptide and a neutralizing monoclonal antibody. Selected compounds were further characterized by their ability to modulate second messengers in cells containing specific AM receptors. A parallel screen against gastrin-releasing peptide selected a different subset of molecules, confirming the specificity of the screening method. Identified AM-positive regulators reduced blood pressure in vivo, whereas AM-negative regulators mediated vasoconstriction, as predicted by the vasodilatory activity of AM. Binding of the small molecules to immobilized AM was demonstrated by surface plasmon resonance assays, with K(d) values ranging from 7.76 x 10(-9) to 4.14 x 10(-6) m. Preclinical development of AM modulators may result in useful drugs for the prevention and treatment of hypertension, cancer, and diabetes.
Collapse
Affiliation(s)
- Alfredo Martínez
- Cell and Cancer Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | |
Collapse
|
21
|
López J, Martínez A. Cell and molecular biology of the multifunctional peptide, adrenomedullin. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 221:1-92. [PMID: 12455746 DOI: 10.1016/s0074-7696(02)21010-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adrenomedullin (AM) is a recently discovered regulatory peptide involved in many functions including vasodilatation, electrolyte balance, neurotransmission, growth, and hormone secretion regulation, among others. This 52-amino acid peptide is expressed by specific cell types in many organs throughout the body. A complex receptor system has been described for AM; it requires at least the presence of a seven-transmembrane-domain G-protein-coupled receptor, a single-transmembrane-domain receptor activity modifying protein, and a receptor component protein needed to establish the connection with the downstream signal transduction pathway, which usually involves cyclicAMP. In addition, a serum-binding protein regulates the biological actions of AM, frequently by increasing AM functional attributes. Changes in levels of circulating AM correlate with several critical diseases, including cardiovascular and renal disorders, sepsis, cancer, and diabetes. Whether AM is a causal agent, a protective reaction, or just a marker for these diseases is currently under investigation. New technologies seeking to elevate and/or reduce AM levels are being investigated as potential therapeutic avenues.
Collapse
Affiliation(s)
- José López
- Cell Biology Unit, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
22
|
Serrano J, Encinas JM, Fernández AP, Castro-Blanco S, Alonso D, Fernández-Vizarra P, Richart A, Bentura ML, Santacana M, Cuttitta F, Martínez A, Rodrigo J. Distribution of immunoreactivity for the adrenomedullin binding protein, complement factor H, in the rat brain. Neuroscience 2003; 116:947-62. [PMID: 12617936 DOI: 10.1016/s0306-4522(02)00773-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adrenomedullin is a multifunctional amidated peptide that has been found in most nuclei of the CNS, where it plays a neuromodulatory role. An adrenomedullin binding protein has recently been found in plasma and characterized as complement factor H. This regulator of the complement system inhibits the progression of the complement cascade and modulates the function of adrenomedullin. Our study shows the ample distribution of factor H immunoreactivity in neurons of telencephalon, diencephalon, mesencephalon, pons, medulla, and cerebellum in the rat CNS, using immunohistochemical techniques for both light and electron microscopy. Factor H immunoreactivity was found in the cytoplasm, but nuclear staining was also a common finding. Some blood vessels and glial cells were also immunoreactive for factor H. Colocalization studies by double immunofluorescence followed by confocal microscopy revealed frequent coexistence of factor H and adrenomedullin immunoreactivities, thus providing morphological evidence for the potential interaction of these molecules in the CNS. The presence of factor H immunoreactivity in glial cells was confirmed by colocalization with glial fibrillary acidic protein. In summary, factor H is highly expressed in the CNS where it could play important roles in regulating adrenomedullin actions and contributing to an intracerebral complement system.
Collapse
Affiliation(s)
- J Serrano
- Department of Neuroanatomy and Cell Biology, Cajal Institute, CSIC, Avenue Doctor Arce 37, E-28002 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zudaire E, Cuttitta F, Martínez A. Regulation of pancreatic physiology by adrenomedullin and its binding protein. REGULATORY PEPTIDES 2003; 112:121-30. [PMID: 12667633 DOI: 10.1016/s0167-0115(03)00030-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adrenomedullin (AM) is a 52 amino acid, multifunctional hormone. It is expressed in many tissues of the human body including the pancreas, where it is mainly localized to the periphery of the islets of Langerhans and specifically to the pancreatic polypeptide-expressing cells. The AM receptor, a complex formed by calcitonin receptor-like receptor (CRLR) and receptor activity-modifying proteins (RAMPs), and the recently discovered AM-binding protein, complement factor H (fH), are expressed in the insulin-producing beta-cells. The colocalization of these key elements of the AM system in the endocrine portion of the pancreas implicates AM in the control of both normal and altered pancreatic physiologies. AM inhibits insulin secretion both in vitro (isolated rat islets) and in vivo (oral glucose tolerance test in rats) in a dose-dependent manner. The addition of fH to isolated rat islets produces a further reduction of insulin secretion in the presence of AM. Furthermore, AM is elevated in plasma from patients with pancreatic dysfunctions such as type 1 or type 2 diabetes and insulinoma. Using a diabetic model in rats, we have shown that AM increases circulating glucose levels whereas a blocking monoclonal antibody against AM has the opposite effect and improves postprandial recovery. Such experimental evidence implicates AM as a fundamental factor in maintaining insulin homeostasis and normoglycemia, and suggests the implication of AM as a possible causal agent in diabetes. Further investigation focused on the development of blocking agents for AM could result in new treatments for pancreatic AM-related disorders.
Collapse
Affiliation(s)
- E Zudaire
- Department of Cell and Cancer Biology, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 13N262, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
24
|
Martínez A, Pío R, Zipfel PF, Cuttitta F. Mapping of the adrenomedullin-binding domains in human complement factor H. Hypertens Res 2003; 26 Suppl:S55-9. [PMID: 12630812 DOI: 10.1291/hypres.26.s55] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Adrenomedullin (AM) is a multifunctional peptide involved in roles as varied as blood pressure regulation, growth, neurotransmission, and inflammation control, among others. We previously identified complement factor H as a serum binding protein for AM and showed that factor H regulates AM functions and vice versa. Here we searched for the specific binding sites for AM by using recombinant fragments of factor H and a non-radioactive binding assay with fluorescein-tagged AM. By this methodology, two specific binding sites for AM were found in factor H. One of them shows a high affinity for AM and is located at the carboxy terminal end of factor H, comprising short consensus repeats (SCR) 15-20. Smaller fragments of this region did not bind to AM efficiently, suggesting that the high affinity binding site of factor H requires a complex three-dimensional structure to recognize AM. Another binding site with lower affinity for AM was found in the middle of the factor H molecule, at SCR 8-11. Antibodies against factor H prevented AM binding altogether, but the main binding partner of factor H, C3b, did not, indicating that C3b and AM bind to different regions of factor H. These structure-function data support previous biochemical observations. Our understanding of the binding between AM and factor H may help in the development of new treatments for diseases in which these molecules play active roles.
Collapse
Affiliation(s)
- Alfredo Martínez
- Cell and Cancer Biology Branch, Vascular Biology Faculty, National Cancer Institute, NIH, Building 10, Room 13N262, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
25
|
Abstract
Adrenomedullin (AM) is a multiregulatory peptide which is expressed in a wide range of tissues. In the pancreas, AM was first found in mammals, including man, and its colocalization with the pancreatic polypeptide (PP) was established in islet F cells. In addition, three different AM receptors have been characterized in B-cells. AM has been also located in the pancreatic cells of other vertebrate classes. The frequency and distribution of AM cells vary between different animals; they can be found scattered among the exocrine tissue, in the islets, or in ductal epithelia. The colocalization of AM with other hormones presents different patterns, although in birds, as in mammals, it seems to colocalize only with PP. The best-determined pancreatic AM function is the inhibition of insulin secretion in B-cells, which seems to be linked to a recently discovered binding protein, factor H. In relation to this physiological role, clinical data show that AM is raised in some groups of both types I and II diabetic patients and AM might have triggered the disease in a subset of them. On the other hand, AM pancreatic cells are also involved in the response to septic shock by increasing AM circulating levels. A third putative function is the inhibition of amylase secretion by the exocrine pancreatic cells. AM has been found in embryonic mammalian pancreas from the earliest stages of the development, colocalizing with all pancreatic hormones, although in adults only coexpression with PP is kept. AM may play a role in the growth and morphogenesis of the pancreas.
Collapse
Affiliation(s)
- José López
- Department of Biology, Cell Biology Unit, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain.
| | | |
Collapse
|