1
|
Li X, Yang W, Ma K, Zheng Z, Liu X, Hu B, Liu H, Zhao Q, Han Y, Xiao Z, Chen R, Li H, Huang S, Liu J, Wang C, Yin L, Meng Y. Circulating B Cell-Derived Small RNA Delivered by Extracellular Vesicles: A Dialogue Mechanism for Long-Range Targeted Renal Mitochondrial Injury in Obesity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402526. [PMID: 38958071 DOI: 10.1002/smll.202402526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/24/2024] [Indexed: 07/04/2024]
Abstract
The intricate processes that govern the interactions between peripatetic immune cells and distal renal injury in obesity are not fully understood. Employing transcriptomic analysis of circulating extracellular vesicles (EVs), a marked amplification of small RNA (miR-3960) is discerned within CD3-CD19+ B cells. This RNA is found to be preferentially augmented in kidney tissues, contrasting with its subdued expression in other organs. By synthesizing dual-luciferase reporter assay with co-immunoprecipitation analysis, it is pinpointed that miR-3960 specifically targets the nuclear gene TRMT5, a pivotal actor in the methylation of mitochondrial tRNA. This liaison instigates aberrations in the post-transcriptional modifications of mitochondrial tRNA, engendering deficiencies within the electron respiratory chain, primarily attributable to the diminution of the mitochondrial bioenergetic compound (NDUFA7) complex I. Such perturbations lead to a compromised mitochondrial respiratory capacity in renal tubular cells, thereby exacerbating tubular injury. In contrast, EV blockade or miR-3960 depletion markedly alleviates renal tubular injury in obesity. This investigation unveils a hitherto unexplored pathway by which obesity-induced circulating immune cells remotely manipulate mitochondrial metabolism in target organs. The strategic targeting of obese EVs or infiltrative immune cells and their specifically secreted RNAs emerges as a promising therapeutic avenue to forestall obesity-related renal afflictions.
Collapse
Affiliation(s)
- Xiaqing Li
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, 510632, China
- Nephrology department, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, Guangdong, 517000, China
| | - Wah Yang
- Department of Obesity and Metabolic Disorders, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, 510632, China
- Institute of Obesity and Metabolic Disorders, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Ke Ma
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, 510632, China
- Nephrology department, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, Guangdong, 517000, China
| | - Zirun Zheng
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, 510632, China
- Nephrology department, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, Guangdong, 517000, China
| | - Xiayun Liu
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, 510632, China
- Nephrology department, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, Guangdong, 517000, China
| | - Bo Hu
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Huanhuan Liu
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qian Zhao
- Department of Infectious Diseases and Hepatology Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510400, China
| | - Yi Han
- Traditional Chinese Medicine Department, People's Hospital of Yanjiang District, Ziyang, Sichuan, 641300, China
| | - Zhangzhang Xiao
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, 510632, China
- Department of Nephrology, Houjie Hospital of Dongguan, Dongguan, Guangdong, 523945, China
| | - Ruichang Chen
- Department of Emergency Medicine, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Hongyue Li
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, 510632, China
- Nephrology department, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, Guangdong, 517000, China
| | - Sibo Huang
- Health Management Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Jinfeng Liu
- Department of Gastroenterology, Binhaiwan Central Hospital of Dongguan, Dongguan, Guangdong, 523000, China
| | - Cunchuan Wang
- Department of Obesity and Metabolic Disorders, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, 510632, China
- Institute of Obesity and Metabolic Disorders, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Lianghong Yin
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, 510632, China
- Huangpu Institute of Materials, Guangzhou, Guangdong, 510663, China
| | - Yu Meng
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, 510632, China
- Nephrology department, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, Guangdong, 517000, China
- Nephrology Department and Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, Guangdong, 517000, China
| |
Collapse
|
2
|
Ryznychuk MO, Pishak VP, Bacyuk-Ponych NV, Pishak OV. Hereditary tubulopathies accompanying polyuia. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Tubulopathies are a group of heterogeneous diseases that are manifested in the malfunction of the renal tubules. This review addresses tubulopathies associated with polyuria syndrome, namely renal glucosuria syndrome, nephrogenic diabetes insipidus and pseudohyperaldosteronism. Types of renal glucosuria are described, namely: type A, type B and the most severe type 0. Type A is characterized by a low filtration threshold and low glucose reabsorption. The type of inheritance is autosomal recessive. Type B, autosomal dominant, is characterized by uneven activity of glucose transport, in which its reabsorption is reduced only in some nephrons. That is, normal reabsorption of glucose is maintained, but the filtration threshold of the latter is reduced. Type 0 with a severe course is characterized by complete inability of epithelial cells of the proximal tubules to reabsorb glucose. Nephrogenic diabetes insipidus is a rare inherited disease caused by impaired response of the renal tubules to antidiuretic hormone (ADH). Depending on the degree of inability to concentrate urine, there are complete and partial forms. It is divided into nephrogenic diabetes insipidus type I (X-linked recessive); nephrogenic diabetes insipidus type II (autosomal recessive and autosomal dominant) and nephrogenic diabetes insipidus syndrome with dementia and intracerebral calcifications (type of inheritance remains unknown). Children with autosomal recessive type of inheritance suffer from the more severe disease course. Pseudohypoaldosteronism is characterized by a special condition of the renal tubules which is due to insufficient sensitivity of the tubular epithelium to aldosterone, which in turn leads to hyperaldosteronism, the development of hyponatremia, metabolic acidosis with hyperkalemia, polydipsia and polyuria, decreased sodium reabsorption and retardation of the child's physical development. The classification includes three syndromes of pseudohypoaldosteronism, namely: type I (PHA1), which is divided into PHA1A (autosomal dominant, renal), PHA1B (autosomal recessive, systemic); type II (PHA2; Gordon’s syndrome), type III (secondary), which develops as a result of renal pathology.
Collapse
|
3
|
Wang X, Yang L, Wang J, Zhang Y, Dong R, Wu X, Yang CS, Zhang Z, Zhang J. A mouse model of subacute liver failure with ascites induced by step-wise increased doses of (-)-epigallocatechin-3-gallate. Sci Rep 2019; 9:18102. [PMID: 31792332 PMCID: PMC6888815 DOI: 10.1038/s41598-019-54691-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022] Open
Abstract
Acute liver failure is divided into hyperacute, acute and subacute liver failure. Ascites is a common complication of subacute liver failure. Although animal models of acute liver failure have been established, the study of the pathogenesis of subacute liver failure with ascites complication is hampered by the lack of experimental animal model. The present study aimed at providing a mouse model of subacute liver failure with ascites complication. Kunming mice were intraperitoneally injected with (-)-epigallocatechin-3-gallate (EGCG), a redox-active polyphenol from green tea, for 32 consecutive days with step-wise increased dosage. The EGCG treatment resulted in liver failure as evidenced by extensive hepatocyte necrosis observed histologically along with significant elevation of serum alanine aminotransferase, aspartate aminotransferase, total bilirubin and direct bilirubin levels as well as significant reduction of serum albumin. Liver fibrosis was not observed by Masson staining and fibrosis-associated proteins were not increased. The mortality was less than 12% and the survival mice developed noticeable ascites. Hepatic thioredoxin and glutathione systems were activated by the EGCG. These adaptive responses might render most mice tolerable to the EGCG treatment. The EGCG treatment significantly up-regulated renal urea transporter A1 and promoted its trafficking to apical membrane. These alterations, known to increase water reabsorption, may be responsible, at least in part, for the formation of the ascites. Overall, the mice treated with gradually elevated doses of EGCG exhibits some of the features observed in patients with subacute liver failure, especially ascites. This mouse model is a useful tool for investigating the pathogenesis of subacute liver failure with ascites complication.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Lumin Yang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Jiajia Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Yafei Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Ruixia Dong
- Department of Forestry and Technology, Lishui Vocational and Technical College, Lishui, Zhejiang, China
| | - Ximing Wu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- International Joint Research Laboratory of Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Zhenhua Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, P.R. China.
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China.
- International Joint Research Laboratory of Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China.
| |
Collapse
|
4
|
Chou CL, Hwang G, Hageman DJ, Han L, Agrawal P, Pisitkun T, Knepper MA. Identification of UT-A1- and AQP2-interacting proteins in rat inner medullary collecting duct. Am J Physiol Cell Physiol 2018; 314:C99-C117. [PMID: 29046292 PMCID: PMC5866378 DOI: 10.1152/ajpcell.00082.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 11/22/2022]
Abstract
The urea channel UT-A1 and the water channel aquaporin-2 (AQP2) mediate vasopressin-regulated transport in the renal inner medullary collecting duct (IMCD). To identify the proteins that interact with UT-A1 and AQP2 in native rat IMCD cells, we carried out chemical cross-linking followed by detergent solubilization, immunoprecipitation, and LC-MS/MS analysis of the immunoprecipitated material. The analyses revealed 133 UT-A1-interacting proteins and 139 AQP2-interacting proteins, each identified in multiple replicates. Fifty-three proteins that were present in both the UT-A1 and the AQP2 interactomes can be considered as mediators of housekeeping interactions, likely common to all plasma membrane proteins. Among proteins unique to the UT-A1 list were those involved in posttranslational modifications: phosphorylation (protein kinases Cdc42bpb, Phkb, Camk2d, and Mtor), ubiquitylation/deubiquitylation (Uba1, Usp9x), and neddylation (Nae1 and Uba3). Among the proteins unique to the AQP2 list were several Rab proteins (Rab1a, Rab2a, Rab5b, Rab5c, Rab7a, Rab11a, Rab11b, Rab14, Rab17) involved in membrane trafficking. UT-A1 was found to interact with UT-A3, although quantitative proteomics revealed that most UT-A1 molecules in the cell are not bound to UT-A3. In vitro incubation of UT-A1 peptides with the protein kinases identified in the UT-A1 interactome revealed that all except Mtor were capable of phosphorylating known sites in UT-A1. Overall, the UT-A1 and AQP2 interactomes provide a snapshot of a dynamic process in which UT-A1 and AQP2 are produced in the rough endoplasmic reticulum, processed through the Golgi apparatus, delivered to endosomes that move into and out of the plasma membrane, and are regulated in the plasma membrane.
Collapse
Affiliation(s)
- Chung-Lin Chou
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Gloria Hwang
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Daniel J Hageman
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Lichy Han
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Prashasti Agrawal
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Trairak Pisitkun
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
- Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| |
Collapse
|
5
|
Hou R, Kong X, Yang B, Xie Y, Chen G. SLC14A1: a novel target for human urothelial cancer. Clin Transl Oncol 2017; 19:1438-1446. [PMID: 28589430 PMCID: PMC5700210 DOI: 10.1007/s12094-017-1693-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/26/2017] [Indexed: 12/23/2022]
Abstract
Urinary bladder cancer is the second commonly diagnosed genitourinary malignancy. Previously, bio-molecular alterations have been observed within certain locations such as chromosome 9, retinoblastoma gene and fibroblast growth factor receptor-3. Solute carrier family 14 member 1 (SLC14A1) gene encodes the type-B urea transporter (UT-B) which facilitates the passive movement of urea across cell membrane, and has recently been related with human malignancies, especially for bladder cancer. Herein, we discussed the SLC14A1 gene and UT-B protein properties, aiming to elucidate the expression behavior of SLC14A1 in human bladder cancer. Furthermore, by reviewing some well-established theories regarding the carcinogenesis of bladder cancer, including several genome wide association researches, we have bridged the mechanisms of cancer development with the aberrant expression of SLC14A1. In conclusion, the altered expression of SLC14A1 gene in human urothelial cancer may implicate its significance as a novel target for research.
Collapse
Affiliation(s)
- R Hou
- Department of Urology, China Japan Union Hospital, Jilin University, Changchun, 130033, Jilin, China
| | - X Kong
- Department of Urology, China Japan Union Hospital, Jilin University, Changchun, 130033, Jilin, China
| | - B Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Y Xie
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
| | - G Chen
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Department of Physiology, Emory University School of Medicine, Whitehead Research Building Room 615, 615 Michael Street, Atlanta, GA, 30322, USA.
| |
Collapse
|
6
|
Hara M, Minami Y, Ohashi M, Tsuchiya Y, Kusaba T, Tamagaki K, Koike N, Umemura Y, Inokawa H, Yagita K. Robust circadian clock oscillation and osmotic rhythms in inner medulla reflecting cortico-medullary osmotic gradient rhythm in rodent kidney. Sci Rep 2017; 7:7306. [PMID: 28779094 PMCID: PMC5544761 DOI: 10.1038/s41598-017-07767-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/29/2017] [Indexed: 11/18/2022] Open
Abstract
Circadian clocks in mammals function in most organs and tissues throughout the body. Various renal functions such as the glomerular filtration and excretion of electrolytes exhibit circadian rhythms. Although it has been reported that the expression of the clock genes composing molecular oscillators show apparent daily rhythms in rodent kidneys, functional variations of regional clocks are not yet fully understood. In this study, using macroscopic bioluminescence imaging method of the PER2::Luciferase knock-in mouse kidney, we reveal that strong and robust circadian clock oscillation is observed in the medulla. In addition, the osmotic pressure in the inner medulla shows apparent daily fluctuation, but not in the cortex. Quantitative-PCR analysis of the genes contributing to the generation of high osmotic pressure or the water re-absorption in the inner medulla, such as vasopressin receptors (V1aR, V2R), urea transporter (UT-A2) and water channel (Aqp2) show diurnal variations as well as clock genes. Deficiency of an essential clock gene Bmal1 impairs day-night variations of osmotic pressure gradient in the inner medulla, suggesting that circadian clocks in the medulla part of the kidney may regulate the circadian rhythm of cortico-medullary osmotic pressure gradient, and may contribute physiological day-night rhythm of urination.
Collapse
Affiliation(s)
- Masayuki Hara
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoichi Minami
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Munehiro Ohashi
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshiki Tsuchiya
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tetsuro Kusaba
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keiichi Tamagaki
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Nobuya Koike
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasuhiro Umemura
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hitoshi Inokawa
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuhiro Yagita
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| |
Collapse
|
7
|
Bachmann S, Mutig K. Regulation of renal Na-(K)-Cl cotransporters by vasopressin. Pflugers Arch 2017; 469:889-897. [DOI: 10.1007/s00424-017-2002-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 10/19/2022]
|
8
|
Teoh CW, Robinson LA, Noone D. Perspectives on edema in childhood nephrotic syndrome. Am J Physiol Renal Physiol 2015; 309:F575-82. [PMID: 26290369 DOI: 10.1152/ajprenal.00229.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/11/2015] [Indexed: 12/21/2022] Open
Abstract
There have been two major theories surrounding the development of edema in nephrotic syndrome (NS), namely, the under- and overfill hypotheses. Edema is one of the cardinal features of NS and remains one of the principal reasons for admission of children to the hospital. Recently, the discovery that proteases in the glomerular filtrate of patients with NS are activating the epithelial sodium channel (ENaC), resulting in intrarenal salt retention and thereby contributing to edema, might suggest that targeting ENaC with amiloride might be a suitable strategy to manage the edema of NS. Other potential agents, particularly urearetics and aquaretics, might also prove useful in NS. Recent evidence also suggests that there may be other areas involved in salt storage, especially the skin, and it will be intriguing to study the implications of this in NS.
Collapse
Affiliation(s)
- Chia Wei Teoh
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lisa A Robinson
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Damien Noone
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Kortenoeven MLA, Pedersen NB, Rosenbaek LL, Fenton RA. Vasopressin regulation of sodium transport in the distal nephron and collecting duct. Am J Physiol Renal Physiol 2015; 309:F280-99. [DOI: 10.1152/ajprenal.00093.2015] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/27/2015] [Indexed: 12/22/2022] Open
Abstract
Arginine vasopressin (AVP) is released from the posterior pituitary gland during states of hyperosmolality or hypovolemia. AVP is a peptide hormone, with antidiuretic and antinatriuretic properties. It allows the kidneys to increase body water retention predominantly by increasing the cell surface expression of aquaporin water channels in the collecting duct alongside increasing the osmotic driving forces for water reabsorption. The antinatriuretic effects of AVP are mediated by the regulation of sodium transport throughout the distal nephron, from the thick ascending limb through to the collecting duct, which in turn partially facilitates osmotic movement of water. In this review, we will discuss the regulatory role of AVP in sodium transport and summarize the effects of AVP on various molecular targets, including the sodium-potassium-chloride cotransporter NKCC2, the thiazide-sensitive sodium-chloride cotransporter NCC, and the epithelial sodium channel ENaC.
Collapse
Affiliation(s)
- M. L. A. Kortenoeven
- Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport (InterPrET), Aarhus University, Aarhus, Denmark
| | - N. B. Pedersen
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; and
| | - L. L. Rosenbaek
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - R. A. Fenton
- Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport (InterPrET), Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
Weiner ID, Mitch WE, Sands JM. Urea and Ammonia Metabolism and the Control of Renal Nitrogen Excretion. Clin J Am Soc Nephrol 2015; 10:1444-58. [PMID: 25078422 PMCID: PMC4527031 DOI: 10.2215/cjn.10311013] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Renal nitrogen metabolism primarily involves urea and ammonia metabolism, and is essential to normal health. Urea is the largest circulating pool of nitrogen, excluding nitrogen in circulating proteins, and its production changes in parallel to the degradation of dietary and endogenous proteins. In addition to serving as a way to excrete nitrogen, urea transport, mediated through specific urea transport proteins, mediates a central role in the urine concentrating mechanism. Renal ammonia excretion, although often considered only in the context of acid-base homeostasis, accounts for approximately 10% of total renal nitrogen excretion under basal conditions, but can increase substantially in a variety of clinical conditions. Because renal ammonia metabolism requires intrarenal ammoniagenesis from glutamine, changes in factors regulating renal ammonia metabolism can have important effects on glutamine in addition to nitrogen balance. This review covers aspects of protein metabolism and the control of the two major molecules involved in renal nitrogen excretion: urea and ammonia. Both urea and ammonia transport can be altered by glucocorticoids and hypokalemia, two conditions that also affect protein metabolism. Clinical conditions associated with altered urine concentrating ability or water homeostasis can result in changes in urea excretion and urea transporters. Clinical conditions associated with altered ammonia excretion can have important effects on nitrogen balance.
Collapse
Affiliation(s)
- I David Weiner
- Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida; Division of Nephrology, Hypertension, and Transplantation, University of Florida College of Medicine, Gainesville, Florida;
| | - William E Mitch
- Nephrology Division, Baylor College of Medicine, Houston, Texas; and
| | - Jeff M Sands
- Nephrology Division, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
11
|
Abstract
Disequilibrium syndrome (DS) is a central nervous system disorder described in hemodialysis (HD) patients. The authors present 4 cases of elevated blood urea nitrogen (BUN); the first patient passed away from suspected DS, whereas the other 3 patients were identified as having a high risk of developing DS on the basis of their BUN. The authors tried to lower their BUN slowly and prevent rapid correction by different methods. This is the first study in which DS has been studied in patients who are not on HD, and methods are described to identify and prevent DS in such patients. They also review the existing literature on the pathogenesis of DS and highlight the importance of recognizing this syndrome in non-HD patients, while suggesting some innovative ways to prevent it.
Collapse
|
12
|
Esteva-Font C, Anderson MO, Verkman AS. Urea transporter proteins as targets for small-molecule diuretics. Nat Rev Nephrol 2015; 11:113-23. [PMID: 25488859 PMCID: PMC4743986 DOI: 10.1038/nrneph.2014.219] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Conventional diuretics such as furosemide and thiazides target salt transporters in kidney tubules, but urea transporters (UTs) have emerged as alternative targets. UTs are a family of transmembrane channels expressed in a variety of mammalian tissues, in particular the kidney. UT knockout mice and humans with UT mutations exhibit reduced maximal urinary osmolality, demonstrating that UTs are necessary for the concentration of urine. Small-molecule screening has identified potent and selective inhibitors of UT-A, the UT protein expressed in renal tubule epithelial cells, and UT-B, the UT protein expressed in vasa recta endothelial cells. Data from UT knockout mice and from rodents administered UT inhibitors support the diuretic action of UT inhibition. The kidney-specific expression of UT-A1, together with high selectivity of the small-molecule inhibitors, means that off-target effects of such small-molecule drugs should be minimal. This Review summarizes the structure, expression and function of UTs, and looks at the evidence supporting the validity of UTs as targets for the development of salt-sparing diuretics with a unique mechanism of action. UT-targeted inhibitors may be useful alone or in combination with conventional diuretics for therapy of various oedemas and hyponatraemias, potentially including those refractory to treatment with current diuretics.
Collapse
Affiliation(s)
- Cristina Esteva-Font
- Departments of Medicine and Physiology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Marc O Anderson
- Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Alan S Verkman
- Departments of Medicine and Physiology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
13
|
Hoban CA, Black LN, Ordas RJ, Gumina DL, Pulous FE, Sim JH, Sands JM, Blount MA. Vasopressin regulation of multisite phosphorylation of UT-A1 in the inner medullary collecting duct. Am J Physiol Renal Physiol 2015; 308:F49-55. [PMID: 25377918 PMCID: PMC4281692 DOI: 10.1152/ajprenal.00642.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 11/03/2014] [Indexed: 12/16/2022] Open
Abstract
Vasopressin signaling is critical for the regulation of urea transport in the inner medullary collecting duct (IMCD). Increased urea permeability is driven by a vasopressin-mediated elevation of cAMP that results in the direct phosphorylation of urea transporter (UT)-A1. The identification of cAMP-sensitive phosphorylation sites, Ser(486) and Ser(499), in the rat UT-A1 sequence was the first step in understanding the mechanism of vasopressin action on the phosphorylation-dependent modulation of urea transport. To investigate the significance of multisite phosphorylation of UT-A1 in response to elevated cAMP, we used highly specific and sensitive phosphosite antibodies to Ser(486) and Ser(499) to determine cAMP action at each phosphorylation site. We found that phosphorylation at both sites was rapid and sustained. Furthermore, the rate of phosphorylation of the two sites was similar in both mIMCD3 cells and rat inner medullary tissue. UT-A1 localized to the apical membrane in response to vasopressin was phosphorylated at Ser(486) and Ser(499). We confirmed that elevated cAMP resulted in increased phosphorylation of both sites by PKA but not through the vasopressin-sensitive exchange protein activated by cAMP pathway. These results elucidate the multisite phosphorylation of UT-A1 in response to cAMP, thus providing the beginning of understanding the intracellular factors underlying vasopressin stimulation of urea transport in the IMCD.
Collapse
Affiliation(s)
- Carol A Hoban
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; and
| | - Lauren N Black
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; and
| | - Ronald J Ordas
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; and
| | - Diane L Gumina
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; and
| | - Fadi E Pulous
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; and
| | - Jae H Sim
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; and
| | - Jeff M Sands
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; and Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Mitsi A Blount
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; and Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
14
|
Hyodo S, Kakumura K, Takagi W, Hasegawa K, Yamaguchi Y. Morphological and functional characteristics of the kidney of cartilaginous fishes: with special reference to urea reabsorption. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1381-95. [PMID: 25339681 DOI: 10.1152/ajpregu.00033.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
For adaptation to high-salinity marine environments, cartilaginous fishes (sharks, skates, rays, and chimaeras) adopt a unique urea-based osmoregulation strategy. Their kidneys reabsorb nearly all filtered urea from the primary urine, and this is an essential component of urea retention in their body fluid. Anatomical investigations have revealed the extraordinarily elaborate nephron system in the kidney of cartilaginous fishes, e.g., the four-loop configuration of each nephron, the occurrence of distinct sinus and bundle zones, and the sac-like peritubular sheath in the bundle zone, in which the nephron segments are arranged in a countercurrent fashion. These anatomical and morphological characteristics have been considered to be important for urea reabsorption; however, a mechanism for urea reabsorption is still largely unknown. This review focuses on recent progress in the identification and mapping of various pumps, channels, and transporters on the nephron segments in the kidney of cartilaginous fishes. The molecules include urea transporters, Na(+)/K(+)-ATPase, Na(+)-K(+)-Cl(-) cotransporters, and aquaporins, which most probably all contribute to the urea reabsorption process. Although research is still in progress, a possible model for urea reabsorption in the kidney of cartilaginous fishes is discussed based on the anatomical features of nephron segments and vascular systems and on the results of molecular mapping. The molecular anatomical approach thus provides a powerful tool for understanding the physiological processes that take place in the highly elaborate kidney of cartilaginous fishes.
Collapse
Affiliation(s)
- Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Kawshiwa, Chiba, Japan
| | - Keigo Kakumura
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Kawshiwa, Chiba, Japan
| | - Wataru Takagi
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Kawshiwa, Chiba, Japan
| | - Kumi Hasegawa
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Kawshiwa, Chiba, Japan
| | - Yoko Yamaguchi
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Kawshiwa, Chiba, Japan
| |
Collapse
|
15
|
Ren H, Wang Y, Xing Y, Ran J, Liu M, Lei T, Zhou H, Li R, Sands JM, Yang B. Thienoquinolins exert diuresis by strongly inhibiting UT-A urea transporters. Am J Physiol Renal Physiol 2014; 307:F1363-72. [PMID: 25298523 DOI: 10.1152/ajprenal.00421.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Urea transporters (UT) play an important role in the urine concentration mechanism by mediating intrarenal urea recycling, suggesting that UT inhibitors could have therapeutic use as a novel class of diuretic. Recently, we found a thienoquinolin UT inhibitor, PU-14, that exhibited diuretic activity. The purpose of this study was to identify more potent UT inhibitors that strongly inhibit UT-A isoforms in the inner medullary collecting duct (IMCD). Efficient thienoquinolin UT inhibitors were identified by structure-activity relationship analysis. Urea transport inhibition activity was assayed in perfused rat terminal IMCDs. Diuretic activity of the compound was determined in rats and mice using metabolic cages. The results show that the compound PU-48 exhibited potent UT-A inhibition activity. The inhibition was 69.5% with an IC50 of 0.32 μM. PU-48 significantly inhibited urea transport in perfused rat terminal IMCDs. PU-48 caused significant diuresis in UT-B null mice, which indicates that UT-A is the target of PU-48. The diuresis caused by PU-48 did not change blood Na(+), K(+), or Cl(-) levels or nonurea solute excretion in rats and mice. No toxicity was detected in cells or animals treated with PU-48. The results indicate that thienoquinolin UT inhibitors induce a diuresis by inhibiting UT-A in the IMCD. This suggests that they may have the potential to be developed as a novel class of diuretics with fewer side effects than classical diuretics.
Collapse
Affiliation(s)
- Huiwen Ren
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yanhua Wang
- Renal Division, Departments of Medicine and Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Yongning Xing
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jianhua Ran
- Department of Anatomy, Neuroscience Research Center, Basic Medical College, Chongqing Medical University, Chongqing, China; and
| | - Ming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Tianluo Lei
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Runtao Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jeff M Sands
- Renal Division, Departments of Medicine and Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| |
Collapse
|
16
|
Abstract
The renal medulla produces concentrated urine through the generation of an osmotic gradient that progressively increases from the cortico-medullary boundary to the inner medullary tip. In the outer medulla, the osmolality gradient arises principally from vigorous active transport of NaCl, without accompanying water, from the thick ascending limbs of short- and long-looped nephrons. In the inner medulla, the source of the osmotic gradient has not been identified. Recently, there have been important advances in our understanding of key components of the urine-concentrating mechanism, including (a) better understanding of the regulation of water, urea, and sodium transport proteins; (b) better resolution of the anatomical relationships in the medulla; and (c) improvements in mathematical modeling of the urine-concentrating mechanism. Continued experimental investigation of signaling pathways regulating transepithelial transport, both in normal animals and in knockout mice, and incorporation of the resulting information into mathematical simulations may help to more fully elucidate the mechanism for concentrating urine in the inner medulla.
Collapse
Affiliation(s)
- Jeff M. Sands
- Renal Division, Department of Medicine, and Department of Physiology,Emory University School of Medicine, Atlanta, Georgia 30322
| | - Harold E. Layton
- Department of Mathematics, Duke University, Durham, North Carolina 27708-0320
| |
Collapse
|
17
|
Kittikulsuth W, Stuart D, Van Hoek AN, Stockand JD, Bugaj V, Mironova E, Blount MA, Kohan DE. Lack of an effect of collecting duct-specific deletion of adenylyl cyclase 3 on renal Na+ and water excretion or arterial pressure. Am J Physiol Renal Physiol 2014; 306:F597-607. [PMID: 24431204 DOI: 10.1152/ajprenal.00505.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
cAMP is a key mediator of connecting tubule and collecting duct (CD) Na(+) and water reabsorption. Studies performed in vitro have suggested that CD adenylyl cyclase (AC)3 partly mediates the actions of vasopressin; however, the physiological role of CD AC3 has not been determined. To assess this, mice were developed with CD-specific disruption of AC3 [CD AC3 knockout (KO)]. Inner medullary CDs from these mice exhibited 100% target gene recombination and had reduced ANG II- but not vasopressin-induced cAMP accumulation. However, there were no differences in urine volume, urinary urea excretion, or urine osmolality between KO and control mice during normal water intake or varying degrees of water restriction in the presence or absence of chronic vasopressin administration. There were no differences between CD AC3 KO and control mice in arterial pressure or urinary Na(+) or K(+) excretion during a normal or high-salt diet, whereas plasma renin and vasopressin concentrations were similar between the two genotypes. Patch-clamp analysis of split-open cortical CDs revealed no difference in epithelial Na(+) channel activity in the presence or absence of vasopressin. Compensatory changes in AC6 were not responsible for the lack of a renal phenotype in CD AC3 KO mice since combined CD AC3/AC6 KO mice had similar arterial pressure and renal Na(+) and water handling compared with CD AC6 KO mice. In summary, these data do not support a significant role for CD AC3 in the regulation of renal Na(+) and water excretion in general or vasopressin regulation of CD function in particular.
Collapse
Affiliation(s)
- Wararat Kittikulsuth
- Div. of Nephrology, Univ. of Utah Health Sciences Center, 1900 East 30 North, Salt Lake City, UT 84132.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Uchiyama M, Maejima S, Wong MKS, Preyavichyapugdee N, Wanichanon C, Hyodo S, Takei Y, Matuda K. Changes in plasma angiotensin II, aldosterone, arginine vasotocin, corticosterone, and electrolyte concentrations during acclimation to dry condition and seawater in the crab-eating frog. Gen Comp Endocrinol 2014; 195:40-6. [PMID: 24184110 DOI: 10.1016/j.ygcen.2013.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 10/15/2013] [Accepted: 10/17/2013] [Indexed: 10/26/2022]
Abstract
The crab-eating frog Fejervarya cancrivora inhabits mangrove swamps and marshes in Southeast Asia. In the present study, circulating angiotensin II (Ang II), aldosterone (Aldo), arginine vasotocin (AVT), and corticosterone (Cort) concentrations as well as various blood parameters were studied under osmotically stressful conditions. Following acclimation to hyperosmotic seawater and dry condition for 5days, body weight was significantly decreased. Under both conditions, plasma Na(+), Cl(-), and urea concentrations, hematocrit values (Ht; blood volume indicator), and osmolality were significantly increased. Dehydration associated with hypovolemic and hyperosmotic states of body fluids was induced during acclimation to hyperosmotic seawater and dry condition in the crab-eating frogs. Ang II, Aldo, AVT, and Cort were maintained within relatively narrow concentration ranges in the control frogs; however, in frogs under dry and hyperosmotic seawater conditions, large variations were observed among individuals in each group. Mean plasma Ang II and Aldo concentrations significantly increased in hyperosmotic seawater-acclimated and desiccated frogs. Although mean plasma AVT concentrations in dehydrated frogs of both the groups were approximately 2.0-3.5 times higher than those in the control frogs, the differences were not significant because of the variation. There was a significant correlation between plasma osmolality and AVT as well as Ang II but not Aldo. A significant correlation was also observed between Ht and AVT as well as Ang II. Plasma Ang II was significantly correlated with plasma Aldo. These results indicate that the crab-eating frogs may exhibit similar physiological responses to both seawater-acclimated and dry conditions. It appears that under dehydrated conditions, osmoregulatory mechanisms participate in stabilization of the situation. The renin-angiotensin system may have pivotal roles in body fluid regulation under volemic and osmotic stress in the Fejervarya species with unique osmoregulation.
Collapse
Affiliation(s)
- Minoru Uchiyama
- Department of Life and Environmental Science, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan.
| | - Sho Maejima
- Department of Life and Environmental Science, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Marty K S Wong
- Department of Marine Biosciences, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-15 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Narin Preyavichyapugdee
- Faculty of Animal Sciences and Agricultural Technology, Silpakorn University, Petchaburi IT Campus, Petchaburi 76120, Thailand
| | - Chaitip Wanichanon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Susumu Hyodo
- Department of Marine Biosciences, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-15 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Yoshio Takei
- Department of Marine Biosciences, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-15 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Kouhei Matuda
- Department of Life and Environmental Science, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| |
Collapse
|
19
|
Abstract
UT-A and UT-B families of urea transporters consist of multiple isoforms that are subject to regulation of both acutely and by long-term measures. This chapter provides a brief overview of the expression of the urea transporter forms and their locations in the kidney. Rapid regulation of UT-A1 results from the combination of phosphorylation and membrane accumulation. Phosphorylation of UT-A1 has been linked to vasopressin and hyperosmolality, although through different kinases. Other acute influences on urea transporter activity are ubiquitination and glycosylation, both of which influence the membrane association of the urea transporter, again through different mechanisms. Long-term regulation of urea transport is most closely associated with the environment that the kidney experiences. Low-protein diets may influence the amount of urea transporter available. Conditions of osmotic diuresis, where urea concentrations are low, will prompt an increase in urea transporter abundance. Although adrenal steroids affect urea transporter abundance, conflicting reports make conclusions tenuous. Urea transporters are upregulated when P2Y2 purinergic receptors are decreased, suggesting a role for these receptors in UT regulation. Hypercalcemia and hypokalemia both cause urine concentration deficiencies. Urea transporter abundances are reduced in aging animals and animals with angiotensin-converting enzyme deficiencies. This chapter will provide information about both rapid and long-term regulation of urea transporters and provide an introduction into the literature.
Collapse
Affiliation(s)
- Janet D Klein
- Renal Division, Department of Medicine and Department of Physiology, Emory University School of Medicine, WMB Room 3319B, 1639 Pierce Drive, NE, Atlanta, GA, 30322, USA,
| |
Collapse
|
20
|
Chen G. New advances in urea transporter UT-A1 membrane trafficking. Int J Mol Sci 2013; 14:10674-82. [PMID: 23698785 PMCID: PMC3676860 DOI: 10.3390/ijms140510674] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/09/2013] [Accepted: 05/09/2013] [Indexed: 01/23/2023] Open
Abstract
The vasopressin-regulated urea transporter UT-A1, expressed in kidney inner medullary collecting duct (IMCD) epithelial cells, plays a critical role in the urinary concentrating mechanisms. As a membrane protein, the function of UT-A1 transport activity relies on its presence in the plasma membrane. Therefore, UT-A1 successfully trafficking to the apical membrane of the polarized epithelial cells is crucial for the regulation of urea transport. This review summarizes the research progress of UT-A1 regulation over the past few years, specifically on the regulation of UT-A1 membrane trafficking by lipid rafts, N-linked glycosylation and a group of accessory proteins.
Collapse
Affiliation(s)
- Guangping Chen
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
21
|
Yang SK, Xiao L, Li J, Liu F, Sun L, Kanwar YS. Role of guanine-nucleotide exchange factor Epac in renal physiology and pathophysiology. Am J Physiol Renal Physiol 2013; 304:F831-9. [PMID: 23364803 PMCID: PMC3625846 DOI: 10.1152/ajprenal.00711.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 01/28/2013] [Indexed: 12/13/2022] Open
Abstract
Exchange proteins directly activated by cAMP [Epac(s)] were discovered more than a decade ago as new sensors for the second messenger cAMP. The Epac family members, including Epac1 and Epac2, are guanine nucleotide exchange factors for the Ras-like small GTPases Rap1 and Rap2, and they function independently of protein kinase A. Given the importance of cAMP in kidney homeostasis, several molecular and cellular studies using specific Epac agonists have analyzed the role and regulation of Epac proteins in renal physiology and pathophysiology. The specificity of the functions of Epac proteins may depend upon their expression and localization in the kidney as well as their abundance in the microcellular environment. This review discusses recent literature data concerning the involvement of Epac in renal tubular transport physiology and renal glomerular cells where various signaling pathways are known to be operative. In addition, the potential role of Epac in kidney disorders, such as diabetic kidney disease and ischemic kidney injury, is discussed.
Collapse
Affiliation(s)
- Shi-kun Yang
- Department of Nephrology, The Second Xiangya Hospital, Kidney Institute of Nephrology, Central South University, Changsha, Hunan Province, China
| | | | | | | | | | | |
Collapse
|
22
|
Ilori TO, Blount MA, Martin CF, Sands JM, Klein JD. Urine concentration in the diabetic mouse requires both urea and water transporters. Am J Physiol Renal Physiol 2013; 304:F103-11. [PMID: 23136000 PMCID: PMC3543621 DOI: 10.1152/ajprenal.00385.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/31/2012] [Indexed: 11/22/2022] Open
Abstract
The regulation of the inner medullary collecting duct (IMCD) urea transporters (UT-A1, UT-A3) and aquaporin-2 (AQP2) and their interactions in diabetic animals is unknown. We investigated whether the urine concentrating defect in diabetic animals was a function of AQP2, the UT-As, or both transporters. UT-A1/UT-A3 knockout (UT-A1/A3 KO) mice produce dilute urine. We gave wild-type (WT) and UT-A1/A3 KO mice vasopressin via minipump for 7 days. In WT mice, vasopressin increased urine osmolality from 3,000 to 4,550 mosmol/kgH(2)O. In contrast, urine osmolality was low (800 mosmol/kgH(2)O) in the UT-A1/A3 KOs and remained low following vasopressin. Surprisingly, AQP2 protein abundance increased in UT-A1/A3 KO (114%) and WT (92%) mice. To define the role of UT-A1 and UT-A3 in the diabetic responses, WT and UT-A1/A3 KO mice were injected with streptozotocin (STZ). UT-A1/A3 KO mice showed only 40% survival at 7 days post-STZ injection compared with 70% in WT. AQP2 did not increase in the diabetic UT-A1/A3 KO mice compared with a 133% increase in WT diabetic mice. Biotinylation studies in rat IMCDs showed that membrane accumulation of UT-A1 increased by 68% in response to vasopressin in control rats but was unchanged by vasopressin in diabetic rat IMCDs. We conclude that, even with increased AQP2, UT-A1/UT-A3 is essential to optimal urine concentration. Furthermore, UT-A1 may be maximally membrane associated in diabetic rat inner medulla, making additional stimulation by vasopressin ineffective.
Collapse
|
23
|
Klein JD, Blount MA, Sands JM. Molecular mechanisms of urea transport in health and disease. Pflugers Arch 2012; 464:561-72. [PMID: 23007461 PMCID: PMC3514661 DOI: 10.1007/s00424-012-1157-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 09/05/2012] [Accepted: 09/06/2012] [Indexed: 10/27/2022]
Abstract
In the late 1980s, urea permeability measurements produced values that could not be explained by paracellular transport or lipid phase diffusion. The existence of urea transport proteins were thus proposed and less than a decade later, the first urea transporter was cloned. The family of urea transporters has two major subgroups, designated SLC14A1 (or UT-B) and Slc14A2 (or UT-A). UT-B and UT-A gene products are glycoproteins located in various extra-renal tissues however, a majority of the resulting isoforms are found in the kidney. The UT-B (Slc14A1) urea transporter was originally isolated from erythrocytes and two isoforms have been reported. In kidney, UT-B is located primarily in the descending vasa recta. The UT-A (Slc14A2) urea transporter yields six distinct isoforms, of which three are found chiefly in the kidney medulla. UT-A1 and UT-A3 are found in the inner medullary collecting duct (IMCD), while UT-A2 is located in the thin descending limb. These transporters are crucial to the kidney's ability to concentrate urine. The regulation of urea transporter activity in the IMCD involves acute modification through phosphorylation and subsequent movement to the plasma membrane. UT-A1 and UT-A3 accumulate in the plasma membrane in response to stimulation by vasopressin or hypertonicity. Long-term regulation of the urea transporters in the IMCD involves altering protein abundance in response to changes in hydration status, low protein diets, or adrenal steroids. Urea transporters have been studied using animal models of disease including diabetes mellitus, lithium intoxication, hypertension, and nephrotoxic drug responses. Exciting new genetically engineered mouse models are being developed to study these transporters.
Collapse
Affiliation(s)
- Janet D Klein
- Renal Division, Department of Medicine, and Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
24
|
Su H, Carter CB, Laur O, Sands JM, Chen G. Forskolin stimulation promotes urea transporter UT-A1 ubiquitination, endocytosis, and degradation in MDCK cells. Am J Physiol Renal Physiol 2012; 303:F1325-32. [PMID: 22914781 PMCID: PMC3518190 DOI: 10.1152/ajprenal.00248.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 08/21/2012] [Indexed: 11/22/2022] Open
Abstract
The adenylyl cyclase stimulator forskolin (FSK) stimulates UT-A1 phosphorylation, membrane trafficking, and urea transport activity. Here, we found that FSK stimulation induces UT-A1 ubiquitination in UT-A1 Madin-Darby canine kidney (MDCK) cells. This suggests that phosphorylation by FSK also triggers the protein degradation machinery for UT-A1. UT-A1-MDCK cells were treated with 100 μg/ml cycloheximide to inhibit protein synthesis, with or without 10 μM FSK. Total UT-A1 protein abundance was significantly reduced after FSK treatment, concomitantly ubiquitinated UT-A1 was increased. We then specifically investigated the effect of FSK on UT-A1 expressed on the cell plasma membrane. FSK treatment accelerated UT-A1 removal from the cell plasma membrane by increasing UT-A1 endocytosis as judged by biotinylation/MesNa treatment and confocal microscopy. We further found that inhibition of the clathrin-mediated endocytic pathway, but not the caveolin-mediated endocytic pathway, significantly blocks FSK-stimulated UT-A1 endocytosis. The PKA inhibitor H89 and the proteasome inhibitors MG132 and lactacystin reduced FSK-induced membrane UT-A1 reduction. Our study shows that FSK activates the UT-A1 urea transporter and the activation/phosphorylation subsequently triggers the downregulation of UT-A1, which represents an important mechanism for the cell to return to the basal conditions after vasopressin stimulation.
Collapse
Affiliation(s)
- Hua Su
- Department of Medicine, Renal Division, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
25
|
Su H, Carter CB, Fröhlich O, Cummings RD, Chen G. Glycoforms of UT-A3 urea transporter with poly-N-acetyllactosamine glycosylation have enhanced transport activity. Am J Physiol Renal Physiol 2012; 303:F201-8. [PMID: 22535801 PMCID: PMC3404584 DOI: 10.1152/ajprenal.00140.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 04/23/2012] [Indexed: 11/22/2022] Open
Abstract
Urea transporters UT-A1 and UT-A3 are both expressed in the kidney inner medulla. However, the function of UT-A3 remains unclear. Here, we found that UT-A3, which comprises only the NH(2)-terminal half of UT-A1, has a higher urea transport activity than UT-A1 in the oocyte and that this difference was associated with differences in N-glycosylation. Heterologously expressed UT-A3 is fully glycosylated with two glycoforms of 65 and 45 kDa. By contrast, UT-A1 expressed in HEK293 cells and oocytes exhibits only a 97-kDa glycosylation form. We further found that N-glycans of UT-A3 contain a large amount of poly-N-acetyllactosamine. This highly glycosylated UT-A3 is more stable and is enriched in lipid raft domains on the cell membrane. Kifunensine, an inhibitor of α-mannosidase that inhibits N-glycan processing beyond high-mannose-type N-glycans, significantly reduced UT-A3 urea transport activity. We then examined the native UT-A1 and UT-A3 glycosylation states from kidney inner medulla and found the ratio of 65 to 45 kDa in UT-A3 is higher than that of 117 to 97 kDa in UT-A1. The highly stable expression of highly glycosylated UT-A3 on the cell membrane in kidney inner medulla suggests that UT-A3 may have an important function in urea reabsorption.
Collapse
Affiliation(s)
- Hua Su
- Renal Division, Emory University School of Medicine, 1639 Pierce Dr., Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
26
|
Levin EJ, Cao Y, Enkavi G, Quick M, Pan Y, Tajkhorshid E, Zhou M. Structure and permeation mechanism of a mammalian urea transporter. Proc Natl Acad Sci U S A 2012; 109:11194-9. [PMID: 22733730 PMCID: PMC3396522 DOI: 10.1073/pnas.1207362109] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As an adaptation to infrequent access to water, terrestrial mammals produce urine that is hyperosmotic to plasma. To prevent osmotic diuresis by the large quantity of urea generated by protein catabolism, the kidney epithelia contain facilitative urea transporters (UTs) that allow rapid equilibration between the urinary space and the hyperosmotic interstitium. Here we report the first X-ray crystal structure of a mammalian UT, UT-B, at a resolution of 2.36 Å. UT-B is a homotrimer and each protomer contains a urea conduction pore with a narrow selectivity filter. Structural analyses and molecular dynamics simulations showed that the selectivity filter has two urea binding sites separated by an approximately 5.0 kcal/mol energy barrier. Functional studies showed that the rate of urea conduction in UT-B is increased by hypoosmotic stress, and that the site of osmoregulation coincides with the location of the energy barrier.
Collapse
Affiliation(s)
- Elena J. Levin
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032
| | - Yu Cao
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032
| | - Giray Enkavi
- Center for Biophysics and Computational Biology, Department of Biochemistry, College of Medicine, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801; and
| | - Matthias Quick
- Department of Psychiatry and Center for Molecular Recognition, Columbia University, 650 West 168th Street, New York, NY 10032
| | - Yaping Pan
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032
| | - Emad Tajkhorshid
- Center for Biophysics and Computational Biology, Department of Biochemistry, College of Medicine, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801; and
| | - Ming Zhou
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032
| |
Collapse
|
27
|
von Morze C, Bok RA, Sands JM, Kurhanewicz J, Vigneron DB. Monitoring urea transport in rat kidney in vivo using hyperpolarized ¹³C magnetic resonance imaging. Am J Physiol Renal Physiol 2012; 302:F1658-62. [PMID: 22492940 PMCID: PMC3378100 DOI: 10.1152/ajprenal.00640.2011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 03/30/2012] [Indexed: 11/22/2022] Open
Abstract
Urea functions as a key osmolyte in the urinary concentrating mechanism of the inner medulla. The urea transporter UT-A1 is upregulated by antidiuretic hormone, facilitating faster equilibration of urea between the lumen and interstitium of the inner medullary collecting duct, resulting in the formation of more highly concentrated urine. New methods in dynamic nuclear polarization, providing ∼50,000-fold enhancement of nuclear magnetic resonance signals in the liquid state, offer a novel means to monitor this process in vivo using magnetic resonance imaging. In this study, we detected significant signal differences in the rat kidney between acute diuretic and antidiuretic states, using dynamic (13)C magnetic resonance imaging following a bolus infusion of hyperpolarized [(13)C]urea. More rapid medullary enhancement was observed under antidiuresis, consistent with known upregulation of UT-A1.
Collapse
Affiliation(s)
- Cornelius von Morze
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA.
| | | | | | | | | |
Collapse
|
28
|
Klein JD, Martin CF, Kent KJ, Sands JM. Protein kinase C-α mediates hypertonicity-stimulated increase in urea transporter phosphorylation in the inner medullary collecting duct. Am J Physiol Renal Physiol 2012; 302:F1098-103. [PMID: 22301620 PMCID: PMC3362171 DOI: 10.1152/ajprenal.00664.2011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 01/27/2012] [Indexed: 12/13/2022] Open
Abstract
The UT-A1 urea transporter plays a critical role in the production of concentrated urine. Both vasopressin and hypertonicity increase urea permeability in rat terminal inner medullary collecting ducts (IMCD). Each agonist independently increases UT-A1 phosphorylation and apical plasma membrane accumulation. Vasopressin activates PKA and phosphorylates UT-A1 at serines 486 and 499. Hypertonicity stimulates urea permeability through protein kinase C (PKC) and intracellular calcium. To determine whether the hypertonic stimulation of urea permeability results from a PKC-mediated phosphorylation of UT-A1, rat IMCDs were metabolically labeled with [(32)P]. Hypertonicity stimulated UT-A1 phosphorylation, and this increase was blocked by preincubation with a PKC inhibitor. IMCDs were biotinylated to assess plasma membrane UT-A1. Hypertonicity increased biotinylated UT-A1, and this increase was blocked by preincubation with a PKC inhibitor. When PKC was directly activated using a phorbol ester, total UT-A1 phosphorylation increased, but phosphorylation at serine 486 was not increased, indicating that PKC did not phosphorylate UT-A1 at the same residue as PKA. Since PKC-α is a calcium-dependent PKC isoform and PKC-α knockout mice have a urine-concentrating defect, it suggested that PKC-α may mediate the response to hypertonicity. Consistent with this hypothesis, hypertonicity increased phospho-PKC-α in rat IMCDs. Finally, PKC-α knockout mice were used to determine whether hypertonicity could stimulate UT-A1 phosphorylation in the absence of PKC-α. Hypertonicity significantly increased UT-A1 phosphorylation in wild-type mice but not in PKC-α knockout mice. We conclude that PKC-α mediates the hypertonicity-stimulated increase in UT-A1 phosphorylation in the IMCD.
Collapse
Affiliation(s)
- Janet D Klein
- Emory University School of Medicine, Department of Medicine, Renal Division, 1639 Pierce Dr., Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
29
|
Ilori TO, Wang Y, Blount MA, Martin CF, Sands JM, Klein JD. Acute calcineurin inhibition with tacrolimus increases phosphorylated UT-A1. Am J Physiol Renal Physiol 2012; 302:F998-F1004. [PMID: 22205230 PMCID: PMC3395357 DOI: 10.1152/ajprenal.00358.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 12/21/2011] [Indexed: 11/22/2022] Open
Abstract
UT-A1, the urea transporter present in the apical membrane of the inner medullary collecting duct, is crucial to the kidney's ability to concentrate urine. Phosphorylation of UT-A1 on serines 486 and 499 is important for plasma membrane trafficking. The effect of calcineurin on dephosphorylation of UT-A1 was investigated. Inner medullary collecting ducts from Sprague-Dawley rats were metabolically labeled and treated with tacrolimus to inhibit calcineurin or calyculin to inhibit protein phosphatases 1 and 2A. UT-A1 was immunoprecipitated, electrophoresed, blotted, and total UT-A1 phosphorylation was assessed by autoradiography. Total UT-A1 was determined by Western blotting. A phospho-specific antibody to pser486-UT-A1 was used to determine whether serine 486 can be hyperphosphorylated by inhibiting phosphatases. Inhibition of calcineurin showed an increase in phosphorylation per unit protein at serine 486. In contrast, inhibition of phosphatases 1 and 2A resulted in an increase in UT-A1 phosphorylation but no increase in pser486-UT-A1. In vitro perfusion of inner medullary collecting ducts showed tacrolimus-stimulated urea permeability consistent with stimulated urea transport. The location of phosphorylated UT-A1 in rats treated acutely and chronically with tacrolimus was determined using immunohistochemistry. Inner medullary collecting ducts of the acutely treated rats showed increased apical membrane association of phosphorylated UT-A1 while chronic treatment reduced membrane association of phosphorylated UT-A1. We conclude that UT-A1 may be dephosphorylated by multiple phosphatases and that the PKA-phosphorylated serine 486 is dephosphorylated by calcineurin. This is the first documentation of the role of phosphatases and the specific site of phosphorylation of UT-A1, in response to tacrolimus.
Collapse
Affiliation(s)
- Titilayo O Ilori
- Renal Division, Dept. of Medicine, Emory University, 1639 Pierce Dr., Atlanta, GA 30322, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Xu G, Su H, Carter CB, Fröhlich O, Chen G. Depolymerization of cortical actin inhibits UT-A1 urea transporter endocytosis but promotes forskolin-stimulated membrane trafficking. Am J Physiol Cell Physiol 2012; 302:C1012-8. [PMID: 22262062 PMCID: PMC3330733 DOI: 10.1152/ajpcell.00440.2011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 01/17/2012] [Indexed: 11/22/2022]
Abstract
The cytoskeleton participates in many aspects of transporter protein regulation. In this study, by using yeast two-hybrid screening, we identified the cytoskeletal protein actin as a binding partner with the UT-A1 urea transporter. This suggests that actin plays a role in regulating UT-A1 activity. Actin specifically binds to the carboxyl terminus of UT-A1. A serial mutation study shows that actin binding to UT-A1's carboxyl terminus was abolished when serine 918 was mutated to alanine. In polarized UT-A1-MDCK cells, cortical filamentous (F) actin colocalizes with UT-A1 at the apical membrane and the subapical cytoplasm. In the cell surface, both actin and UT-A1 are distributed in the lipid raft microdomains. Disruption of the F-actin cytoskeleton by latrunculin B resulted in UT-A1 accumulation in the cell membrane as measured by biotinylation. This effect was mainly due to inhibition of UT-A1 endocytosis in both clathrin and caveolin-mediated endocytic pathways. In contrast, actin depolymerization facilitated forskolin-stimulated UT-A1 trafficking to the cell surface. Functionally, depolymerization of actin by latrunculin B significantly increased UT-A1 urea transport activity in an oocyte expression system. Our study shows that cortical F-actin not only serves as a structural protein, but directly interacts with UT-A1 and plays an important role in controlling UT-A1 cell surface expression by affecting both endocytosis and trafficking, therefore regulating UT-A1 bioactivity.
Collapse
Affiliation(s)
- Gang Xu
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
31
|
Stewart G. The emerging physiological roles of the SLC14A family of urea transporters. Br J Pharmacol 2012; 164:1780-92. [PMID: 21449978 DOI: 10.1111/j.1476-5381.2011.01377.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In mammals, urea is the main nitrogenous breakdown product of protein catabolism and is produced in the liver. In certain tissues, the movement of urea across cell membranes is specifically mediated by a group of proteins known as the SLC14A family of facilitative urea transporters. These proteins are derived from two distinct genes, UT-A (SLC14A2) and UT-B (SLC14A1). Facilitative urea transporters play an important role in two major physiological processes - urinary concentration and urea nitrogen salvaging. Although UT-A and UT-B transporters both have a similar basic structure and mediate the transport of urea in a facilitative manner, there are a number of significant differences between them. UT-A transporters are mainly found in the kidney, are highly specific for urea, have relatively lower transport rates and are highly regulated at both gene expression and cellular localization levels. In contrast, UT-B transporters are more widespread in their tissue location, transport both urea and water, have a relatively high transport rate, are inhibited by mercurial compounds and currently appear to be less acutely regulated. This review details the fundamental research that has so far been performed to investigate the function and physiological significance of these two types of urea transporters.
Collapse
Affiliation(s)
- Gavin Stewart
- School of Biology & Environmental Science, College of Life Sciences, University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
32
|
Trischitta F, Faggio C, Torre A. Living with high concentrations of urea: They can! ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ojas.2012.21005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Kamel KS, Halperin ML. Intrarenal urea recycling leads to a higher rate of renal excretion of potassium: an hypothesis with clinical implications. Curr Opin Nephrol Hypertens 2011; 20:547-54. [PMID: 21788894 DOI: 10.1097/mnh.0b013e328349b8f9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review aims to illustrate why urea recycling may play an important role in potassium (K⁺) excretion and to emphasize its potential clinical implications. RECENT FINDINGS A quantitative analysis of the process of intrarenal urea recycling reveals that the amount of urea delivered to the distal convoluted tubule is about two-fold larger than the quantity of urea excreted in the urine. As the number of osmoles delivered to the late cortical distal nephron (CCD) determines its flow rate when aquaporin 2 water channels have been inserted in the luminal membrane of principal cells, urea recycling may play an important role in regulating the rate of excretion of K⁺ when the distal delivery of electrolytes is not very high. SUMMARY Urea recycling aids the excretion of K⁺; this is especially important in patients with disorders or those who are taking drugs that lead to a less lumen-negative voltage in the CCD. As a large quantity of urea is reabsorbed daily in the inner medullary collecting duct, the assumption made in the calculation of the transtubular K concentration gradient that there is no appreciable reabsorption of osmoles downstream CCD is not valid.
Collapse
Affiliation(s)
- Kamel S Kamel
- Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Division of Nephrology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
34
|
Chen G, Howe AG, Xu G, Fröhlich O, Klein JD, Sands JM. Mature N-linked glycans facilitate UT-A1 urea transporter lipid raft compartmentalization. FASEB J 2011; 25:4531-9. [PMID: 21965602 PMCID: PMC3236619 DOI: 10.1096/fj.11-185991] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Accepted: 09/15/2011] [Indexed: 11/11/2022]
Abstract
The UT-A1 urea transporter is a glycoprotein with two different glycosylated forms of 97 and 117 kDa. In this study, we found the 117-kDa UT-A1 preferentially resides in lipid rafts, suggesting that the glycosylation status may interfere with UT-A1 lipid raft trafficking. This was confirmed by a site-directed mutagenesis study in MDCK cells. The nonglycosylated UT-A1 showed reduced localization in lipid rafts. By using sugar-specific binding lectins, we further found that the UT-A1 in nonlipid rafts contained a high amount of mannose, as detected by concanavalin A, while the UT-A1 in lipid rafts was the mature N-acetylglucosamine-containing form, as detected by wheat germ agglutinin. In the inner medulla (IM) of diabetic rats, the more abundant 117-kDa UT-A1 in lipid rafts was the mature glycosylation form, with high amounts of N-acetylglucosamine and sialic acid. In contrast, in the IM of normal rats, the predominant 97-kDa UT-A1 was the form enriched in mannose. Functionally, inhibition of glycosylation by tunicamycin or elimination of the glycosylation sites by mutation significantly reduced UT-A1 activity in oocytes. Taken together, our study reveals a new role of N-linked glycosylation in regulating UT-A1 activity by promoting UT-A1 trafficking into membrane lipid raft subdomains.
Collapse
Affiliation(s)
- Guangping Chen
- Renal Division, Department of Medicine, Emory University, Atlanta, GA 30322, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Lei T, Zhou L, Layton AT, Zhou H, Zhao X, Bankir L, Yang B. Role of thin descending limb urea transport in renal urea handling and the urine concentrating mechanism. Am J Physiol Renal Physiol 2011; 301:F1251-9. [PMID: 21849488 PMCID: PMC3233864 DOI: 10.1152/ajprenal.00404.2011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 08/15/2011] [Indexed: 11/22/2022] Open
Abstract
Urea transporters UT-A2 and UT-B are expressed in epithelia of thin descending limb of Henle's loop and in descending vasa recta, respectively. To study their role and possible interaction in the context of the urine concentration mechanism, a UT-A2 and UT-B double knockout (UT-A2/B knockout) mouse model was generated by targeted deletion of the UT-A2 promoter in embryonic stem cells with UT-B gene knockout. The UT-A2/B knockout mice lacked detectable UT-A2 and UT-B transcripts and proteins and showed normal survival and growth. Daily urine output was significantly higher in UT-A2/B knockout mice than that in wild-type mice and lower than that in UT-B knockout mice. Urine osmolality in UT-A2/B knockout mice was intermediate between that in UT-B knockout and wild-type mice. The changes in urine osmolality and flow rate, plasma and urine urea concentration, as well as non-urea solute concentration after an acute urea load or chronic changes in protein intake suggested that UT-A2 plays a role in the progressive accumulation of urea in the inner medulla. These results suggest that in wild-type mice UT-A2 facilitates urea absorption by urea efflux from the thin descending limb of short loops of Henle. Moreover, UT-A2 deletion in UT-B knockout mice partially remedies the urine concentrating defect caused by UT-B deletion, by reducing urea loss from the descending limbs to the peripheral circulation; instead, urea is returned to the inner medulla through the loops of Henle and the collecting ducts.
Collapse
Affiliation(s)
- Tianluo Lei
- Dept. of Pharmacology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Lu, Haidian District, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Urea transport proteins were initially proposed to exist in the kidney in the late 1980s when studies of urea permeability revealed values in excess of those predicted by simple lipid-phase diffusion and paracellular transport. Less than a decade later, the first urea transporter was cloned. Currently, the SLC14A family of urea transporters contains two major subgroups: SLC14A1, the UT-B urea transporter originally isolated from erythrocytes; and SLC14A2, the UT-A group with six distinct isoforms described to date. In the kidney, UT-A1 and UT-A3 are found in the inner medullary collecting duct; UT-A2 is located in the thin descending limb, and UT-B is located primarily in the descending vasa recta; all are glycoproteins. These transporters are crucial to the kidney's ability to concentrate urine. UT-A1 and UT-A3 are acutely regulated by vasopressin. UT-A1 has also been shown to be regulated by hypertonicity, angiotensin II, and oxytocin. Acute regulation of these transporters is through phosphorylation. Both UT-A1 and UT-A3 rapidly accumulate in the plasma membrane in response to stimulation by vasopressin or hypertonicity. Long-term regulation involves altering protein abundance in response to changes in hydration status, low protein diets, adrenal steroids, sustained diuresis, or antidiuresis. Urea transporters have been studied using animal models of disease including diabetes mellitus, lithium intoxication, hypertension, and nephrotoxic drug responses. Exciting new animal models are being developed to study these transporters and search for active urea transporters. Here we introduce urea and describe the current knowledge of the urea transporter proteins, their regulation, and their role in the kidney.
Collapse
Affiliation(s)
- Janet D Klein
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | | | | |
Collapse
|
37
|
Fenton RA, Praetorius J. Molecular Physiology of the Medullary Collecting Duct. Compr Physiol 2011; 1:1031-56. [DOI: 10.1002/cphy.c100064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Huang H, Feng X, Zhuang J, Fröhlich O, Klein JD, Cai H, Sands JM, Chen G. Internalization of UT-A1 urea transporter is dynamin dependent and mediated by both caveolae- and clathrin-coated pit pathways. Am J Physiol Renal Physiol 2010; 299:F1389-95. [PMID: 20861071 PMCID: PMC3006306 DOI: 10.1152/ajprenal.00718.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 09/20/2010] [Indexed: 11/22/2022] Open
Abstract
Dynamin is a large GTPase involved in several distinct modes of cell endocytosis. In this study, we examined the possible role of dynamin in UT-A1 internalization. The direct relationship of UT-A1 and dynamin was identified by coimmunoprecipitation. UT-A1 has cytosolic NH(2) and COOH termini and a large intracellular loop. Dynamin specifically binds to the intracellular loop of UT-A1, but not the NH(2) and COOH termini. In cell surface biotinylation experiments, coexpression of dynamin and UT-A1 in HEK293 cells resulted in a decrease of UT-A1 cell surface expression. Conversely, cells expressing dynamin mutant K44A, which is deficient in GTP binding, showed an increased accumulation of UT-A1 protein on the cell surface. Cell plasma membrane lipid raft fractionation experiments revealed that blocking endocytosis with dynamin K44A causes UT-A1 protein accumulation in both the lipid raft and nonlipid raft pools, suggesting that both caveolae- and clathrin-mediated mechanisms may be involved in the internalization of UT-A1. This was further supported by 1) small interfering RNA to knock down either caveolin-1 or μ2 reduced UT-A1 internalization in HEK293 cells and 2) inhibition of either the caveolae pathway by methyl-β-cyclodextrin or the clathrin pathway by concanavalin A caused UT-A1 cell membrane accumulation. Functionally, overexpression of dynamin, caveolin, or μ2 decreased UT-A1 urea transport activity and decreased UT-A1 cell surface expression. We conclude that UT-A1 endocytosis is dynamin-dependent and mediated by both caveolae- and clathrin-coated pit pathways.
Collapse
Affiliation(s)
- Haidong Huang
- Department of Medicine, Renal Division, School of Medicine, Emory University, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Cai Q, Nelson SK, McReynolds MR, Diamond-Stanic MK, Elliott D, Brooks HL. Vasopressin increases expression of UT-A1, UT-A3, and ER chaperone GRP78 in the renal medulla of mice with a urinary concentrating defect. Am J Physiol Renal Physiol 2010; 299:F712-9. [PMID: 20668095 PMCID: PMC2957250 DOI: 10.1152/ajprenal.00690.2009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 07/27/2010] [Indexed: 11/22/2022] Open
Abstract
Activation of V2 receptors (V2R) during antidiuresis increases the permeability of the inner medullary collecting duct to urea and water. Extracellular osmolality is elevated as the concentrating capacity of the kidney increases. Osmolality is known to contribute to the regulation of collecting duct water (aquaporin-2; AQP2) and urea transporter (UT-A1, UT-A3) regulation. AQP1KO mice are a concentrating mechanism knockout, a defect attributed to the loss of high interstitial osmolality. A V2R-specific agonist, deamino-8-D-arginine vasopressin (dDAVP), was infused into wild-type and AQP1KO mice for 7 days. UT-A1 mRNA and protein abundance were significantly increased in the medullas of wild-type and AQP1KO mice following dDAVP infusion. The mRNA and protein abundance of UT-A3, the basolateral urea transporter, was significantly increased by dDAVP in both wild-type and AQP1KO mice. Semiquantitative immunoblots revealed that dDAVP infusion induced a significant increase in the medullary expression of the endoplasmic reticulum (ER) chaperone GRP78. Immunofluorescence studies demonstrated that GRP78 expression colocalized with AQP2 in principal cells of the papillary tip of the renal medulla. Using immunohistochemistry and immunogold electron microscopy, we demonstrate that vasopressin induced a marked apical targeting of GRP78 in medullary principal cells. Urea-sensitive genes, GADD153 and ATF4 (components of the ER stress pathway), were significantly increased in AQP1KO mice by dDAVP infusion. These findings strongly support an important role of vasopressin in the activation of an ER stress response in renal collecting duct cells, in addition to its role in activating an increase in UT-A1 and UT-A3 abundance.
Collapse
Affiliation(s)
- Qi Cai
- Dept. of Physiology, College of Medicine, Univ. of Arizona, Tucson, AZ 85724-5218, USA
| | | | | | | | | | | |
Collapse
|
40
|
Mistry AC, Mallick R, Klein JD, Sands JM, Fröhlich O. Functional characterization of the central hydrophilic linker region of the urea transporter UT-A1: cAMP activation and snapin binding. Am J Physiol Cell Physiol 2010; 298:C1431-7. [PMID: 20457831 PMCID: PMC2889632 DOI: 10.1152/ajpcell.00497.2009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 03/22/2010] [Indexed: 11/22/2022]
Abstract
Of the three major protein variants produced by the UT-A gene (UT-A1, UT-A2, and UT-A3) UT-A1 is the largest. It contains UT-A3 as its NH(2)-terminal half and UT-A2 as its COOH-terminal half. When being part of UT-A1, UT-A3 and UT-A2 are joined by a segment, Lp, whose central part, Lc, is not part of UT-A3 or UT-A2 but is present only in UT-A1. Lc contains the phosphorylation sites S486 and S499 that are involved in protein kinase A-dependent activation, as well as the binding site for snapin, a protein involved in soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE)-mediated vesicle trafficking and fusion to the plasma membrane. We attached Lc to UT-A2 and UT-A3 to test how these phosphorylation sites influenced their urea transport activity. Adding Lc to UT-A2 conferred stimulation by cAMP to the cAMP-unresponsive UT-A2, and adding Lc to UT-A3 did not further enhance its already existing cAMP response. These findings suggest that the responsiveness to vasopressin that is observed with UT-A1 can be introduced into the unresponsive UT-A2 variant through the Lc segment that is unique to UT-A1. In UT-A3, however, the Lc segment plays no significant role in its activation by cAMP. In addition, the Lc segment also gave UT-A2 the ability to bind snapin and, in Xenopus oocytes, to be stimulated in its urea transport activity by snapin and syntaxins 3 and 4, in the same way as UT-A1.
Collapse
Affiliation(s)
- Abinash C Mistry
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
41
|
Klein JD, Blount MA, Fröhlich O, Denson CE, Tan X, Sim JH, Martin CF, Sands JM. Phosphorylation of UT-A1 on serine 486 correlates with membrane accumulation and urea transport activity in both rat IMCDs and cultured cells. Am J Physiol Renal Physiol 2010; 298:F935-40. [PMID: 20071460 PMCID: PMC2853315 DOI: 10.1152/ajprenal.00682.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 01/12/2010] [Indexed: 11/22/2022] Open
Abstract
Vasopressin is the primary hormone regulating urine-concentrating ability. Vasopressin phosphorylates the UT-A1 urea transporter in rat inner medullary collecting ducts (IMCDs). To assess the effect of UT-A1 phosphorylation at S486, we developed a phospho-specific antibody to S486-UT-A1 using an 11 amino acid peptide antigen starting from amino acid 482 that bracketed S486 in roughly the center of the sequence. We also developed two stably transfected mIMCD3 cell lines: one expressing wild-type UT-A1 and one expressing a mutated form of UT-A1, S486A/S499A, that is unresponsive to protein kinase A. Forskolin stimulates urea flux in the wild-type UT-A1-mIMCD3 cells but not in the S486A/S499A-UT-A1-mIMCD3 cells. The phospho-S486-UT-A1 antibody identified UT-A1 protein in the wild-type UT-A1-mIMCD3 cells but not in the S486A/S499A-UT-A1-mIMCD3 cells. In rat IMCDs, forskolin increased the abundance of phospho-S486-UT-A1 (measured using the phospho-S486 antibody) and of total UT-A1 phosphorylation (measured by (32)P incorporation). Forskolin also increased the plasma membrane accumulation of phospho-S486-UT-A1 in rat IMCD suspensions, as measured by biotinylation. In rats treated with vasopressin in vivo, the majority of the phospho-S486-UT-A1 appears in the apical plasma membrane. In summary, we developed stably transfected mIMCD3 cell lines expressing UT-A1 and an S486-UT-A1 phospho-specific antibody. We confirmed that vasopressin increases UT-A1 accumulation in the apical plasma membrane and showed that vasopressin phosphorylates UT-A1 at S486 in rat IMCDs and that the S486-phospho-UT-A1 form is primarily detected in the apical plasma membrane.
Collapse
Affiliation(s)
- Janet D Klein
- Department of Medicine, Renal Division, Emory University School of Medicine, 1639 Pierce Drive, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Yamaguchi Y, Takaki S, Hyodo S. Subcellular distribution of urea transporter in the collecting tubule of shark kidney is dependent on environmental salinity. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL GENETICS AND PHYSIOLOGY 2009; 311:705-18. [PMID: 19606464 DOI: 10.1002/jez.558] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the kidney of marine elasmobranchs, urea reabsorption from filtered urine is essential for maintaining high levels of urea in the body. In the kidney of the houndshark, Triakis scyllium, we previously found that a facilitative urea transporter (UT) is localized to a specific nephron segment, the collecting tubule, suggesting that the collecting tubule has an important role in the urea reabsorption process. To elucidate the roles of UT, we transferred T. scyllium to high (130%) and low (30%) salinity, and examined UT mRNA levels and UT distribution patterns in the kidney using real-time PCR and semi-quantitative fluorescence immunohistochemistry, respectively. Following transfer to low and high salinity, houndshark decreased and increased plasma urea concentrations, respectively, in order to control plasma osmolality. The abundance of UT mRNA did not differ among the experimental groups, whereas that of UT protein in the collecting tubule was significantly decreased in 30% seawater (SW). Furthermore, the subcellular UT distribution was dramatically changed. UT in the apical plasma membrane of collecting tubule almost disappeared in 30% SW, whereas it slightly increased in 130% SW compared with 100% SW. Conversely, reverse transfer of fish from 30 to100% SW restored UT in the apical membrane. These results indicate that the accumulation of UT to the apical plasma membrane of the collecting tubule of Triakis is an important factor for regulating urea reabsorption in the kidney.
Collapse
Affiliation(s)
- Yoko Yamaguchi
- Laboratory of Physiology, Ocean Research Institute, University of Tokyo, 1-15-1 Minamidai, Nakano, Tokyo 164-8639, Japan.
| | | | | |
Collapse
|
43
|
Abstract
Aged people and rats have a reduced ability to maximally concentrate their urine. Many of the key transport proteins that contribute to urine concentrating ability are reduced in the medulla of aged rats. The reductions in the abundances of water, sodium, and urea transport proteins, and their reduced response to water restriction, contributes to the reduced ability of aged rats to concentrate their urine and conserve water. If similar mechanisms occur in human kidneys, it would provide a molecular explanation for the reduced concentrating ability in aging and may provide opportunities for novel therapeutic approaches to improve urine concentrating ability.
Collapse
Affiliation(s)
- Jeff M Sands
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
44
|
Wang Y, Klein JD, Blount MA, Martin CF, Kent KJ, Pech V, Wall SM, Sands JM. Epac regulates UT-A1 to increase urea transport in inner medullary collecting ducts. J Am Soc Nephrol 2009; 20:2018-24. [PMID: 19661162 PMCID: PMC2736771 DOI: 10.1681/asn.2008121225] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 06/20/2009] [Indexed: 11/03/2022] Open
Abstract
Urea plays a critical role in the concentration of urine, thereby regulating water balance. Vasopressin, acting through cAMP, stimulates urea transport across rat terminal inner medullary collecting ducts (IMCD) by increasing the phosphorylation and accumulation at the apical plasma membrane of UT-A1. In addition to acting through protein kinase A (PKA), cAMP also activates Epac (exchange protein activated by cAMP). In this study, we tested whether the regulation of urea transport and UT-A1 transporter activity involve Epac in rat IMCD. Functional analysis showed that an Epac activator significantly increased urea permeability in isolated, perfused rat terminal IMCD. Similarly, stimulating Epac by adding forskolin and an inhibitor of PKA significantly increased urea permeability. Incubation of rat IMCD suspensions with the Epac activator significantly increased UT-A1 phosphorylation and its accumulation in the plasma membrane. Furthermore, forskolin-stimulated cAMP significantly increased ERK 1/2 phosphorylation, which was not prevented by inhibiting PKA, indicating that Epac mediated this phosphorylation of ERK 1/2. Inhibition of MEK 1/2 phosphorylation decreased the forskolin-stimulated UT-A1 phosphorylation. Taken together, activation of Epac increases urea transport, accumulation of UT-A1 at the plasma membrane, and UT-A1 phosphorylation, the latter of which is mediated by the MEK-ERK pathway.
Collapse
Affiliation(s)
- Yanhua Wang
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Janet D. Klein
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Mitsi A. Blount
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Christopher F. Martin
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Kimilia J. Kent
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Vladimir Pech
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Susan M. Wall
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Jeff M. Sands
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
45
|
Abstract
The renal medulla produces concentrated urine through the generation of an osmotic gradient extending from the cortico-medullary boundary to the inner medullary tip. This gradient is generated in the outer medulla by the countercurrent multiplication of a comparatively small transepithelial difference in osmotic pressure. This small difference, called a single effect, arises from active NaCl reabsorption from thick ascending limbs, which dilutes ascending limb flow relative to flow in vessels and other tubules. In the inner medulla, the gradient may also be generated by the countercurrent multiplication of a single effect, but the single effect has not been definitively identified. There have been important recent advances in our understanding of key components of the urine concentrating mechanism. In particular, the identification and localization of key transport proteins for water, urea, and sodium, the elucidation of the role and regulation of osmoprotective osmolytes, better resolution of the anatomical relationships in the medulla, and improvements in mathematic modeling of the urine concentrating mechanism. Continued experimental investigation of transepithelial transport and its regulation, both in normal animals and in knock-out mice, and incorporation of the resulting information into mathematic simulations, may help to more fully elucidate the inner medullary urine concentrating mechanism.
Collapse
Affiliation(s)
- Jeff M Sands
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | |
Collapse
|
46
|
Tickle P, Thistlethwaite A, Smith CP, Stewart GS. Novel bUT-B2 urea transporter isoform is constitutively activated. Am J Physiol Regul Integr Comp Physiol 2009; 297:R323-9. [PMID: 19474392 DOI: 10.1152/ajpregu.00199.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our previous studies have detailed a novel facilitative UT-B urea transporter isoform, bUT-B2. Despite the existence of mouse and human orthologs, the functional characteristics of UT-B2 remain undefined. In this report, we produced a stable MDCK cell line that expressed bUT-B2 protein and investigated the transepithelial urea flux across cultured cell monolayers. We observed a large basal urea flux that was significantly reduced by known inhibitors of facilitative urea transporters; 1,3 dimethylurea (P < 0.001, n = 17), thionicotinamide (P < 0.05, n = 11), and phloretin (P < 0.05, n = 9). Pre-exposure for 1 h to the antidiuretic hormone vasopressin had no effect on bUT-B2-mediated urea transport (NS, n = 3). Acute vasopressin exposure for up to 30 min also failed to elicit any transient response (NS, n = 9). Further investigation confirmed that bUT-B2 function was not affected by alteration of intracellular cAMP (NS, n = 4), intracellular calcium (NS, n = 3), or protein kinase activity (NS, n = 4). Finally, immunoblot data suggested a possible role for glycosylation in regulating bUT-B2 function. In conclusion, this study showed that bUT-B2-mediated transepithelial urea transport was constitutively activated and unaffected by known regulators of renal UT-A urea transporters.
Collapse
Affiliation(s)
- P Tickle
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | | | | | | |
Collapse
|
47
|
Feng X, Huang H, Yang Y, Fröhlich O, Klein JD, Sands JM, Chen G. Caveolin-1 directly interacts with UT-A1 urea transporter: the role of caveolae/lipid rafts in UT-A1 regulation at the cell membrane. Am J Physiol Renal Physiol 2009; 296:F1514-20. [PMID: 19369293 PMCID: PMC2692441 DOI: 10.1152/ajprenal.00068.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 04/10/2009] [Indexed: 11/22/2022] Open
Abstract
The cell plasma membrane contains specialized microdomains called lipid rafts which contain high amounts of sphingolipids and cholesterol. Lipid rafts are involved in a number of membrane protein functions. The urea transporter UT-A1, located in the kidney inner medullary collecting duct (IMCD), is important for urine concentrating ability. In this study, we investigated the possible role of lipid rafts in UT-A1 membrane regulation. Using sucrose gradient cell fractionation, we demonstrated that UT-A1 is concentrated in the caveolae-rich fraction both in stably expressing UT-A1 HEK293 cells and in freshly isolated kidney IMCD suspensions. In these gradients, UT-A1 at the cell plasma membrane is codistributed with caveolin-1, a major component of caveolae. The colocalization of UT-A1 in lipid rafts/caveolae was further confirmed in isolated caveolae from UT-A1-HEK293 cells. The direct association of UT-A1 and caveolin-1 was identified by immunoprecipitation and GST pull-down assay. Examination of internalized UT-A1 in pEGFP-UT-A1 transfected HEK293 cells fluorescent overlap with labeled cholera toxin subunit B, a marker of the caveolae-mediated endocytosis pathway. Disruption of lipid rafts by methyl-beta-cyclodextrin or knocking down caveolin-1 by small-interference RNA resulted in UT-A1 cell membrane accumulation. Functionally, overexpression of caveolin-1 in oocytes decreased UT-A1 urea transport activity and UT-A1 cell surface expression. Our results indicate that lipid rafts/caveolae participate in UT-A1 membrane regulation and this effect is mediated via a direct interaction of caveolin-1 with UT-A1.
Collapse
Affiliation(s)
- Xiuyan Feng
- Emory Univ. School of Medicine, Renal Division, WMRB Rm. 338, 1639 Pierce Drive, NE, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Fenton RA. Essential role of vasopressin-regulated urea transport processes in the mammalian kidney. Pflugers Arch 2009; 458:169-77. [PMID: 19011892 DOI: 10.1007/s00424-008-0612-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 10/17/2008] [Accepted: 10/23/2008] [Indexed: 10/21/2022]
Abstract
Movement of urea across plasma membranes is modulated by specialized urea transporter proteins. Two urea-transporter genes have been cloned: UT-A (Slc14a2) and UT-B (Slc14a1). In the mammalian kidney, urea transporters are essential for the urinary concentrating mechanism and maintaining body fluid homeostasis. In this article, we discuss (1) an overview of historic discoveries in urea transport mechanisms; (2) an overview of recent discoveries in the regulation of urea transporters; (3) physiological studies in UT-A1/3 (-/-) mice highlighting the essential role of urea transporters in the urinary concentrating mechanism; and (4) physiological studies in UT-A2 and UT-B knockout mice examining the role of countercurrent exchange in the production of a maximally concentrated urine.
Collapse
Affiliation(s)
- Robert A Fenton
- The Water and Salt Research Center, Institute of Anatomy, University of Aarhus, Denmark.
| |
Collapse
|
49
|
Stewart GS, Thistlethwaite A, Lees H, Cooper GJ, Smith C. Vasopressin regulation of the renal UT-A3 urea transporter. Am J Physiol Renal Physiol 2009; 296:F642-8. [PMID: 19052101 DOI: 10.1152/ajprenal.90660.2008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Facilitative urea transporters in the mammalian kidney play a vital role in the urinary concentrating mechanism. The urea transporters located in the renal inner medullary collecting duct, namely UT-A1 and UT-A3, are acutely regulated by the antidiuretic hormone vasopressin. In this study, we investigated the vasopressin regulation of the basolateral urea transporter UT-A3 using an MDCK-mUT-A3 cell line. Within 10 min, vasopressin stimulates urea flux through UT-A3 transporters already present at the plasma membrane, via a PKA-dependent process. Within 1 h, vasopressin significantly increases UT-A3 localization at the basolateral membrane, causing a further increase in urea transport. While the basic trafficking of UT-A3 to basolateral membranes involves both protein kinase C and calmodulin, its regulation by vasopressin specifically occurs through a casein kinase II-dependent pathway. In conclusion, this study details the effects of vasopressin on UT-A3 urea transporter function and hence its role in regulating urea permeability within the renal inner medullary collecting duct.
Collapse
Affiliation(s)
- G S Stewart
- Faculty of Life Sciences, Core Technology Facility, University of Manchester, Manchester, United Kingdom
| | | | | | | | | |
Collapse
|
50
|
Rubin BR, Bogan JS. Intracellular retention and insulin-stimulated mobilization of GLUT4 glucose transporters. VITAMINS AND HORMONES 2009; 80:155-92. [PMID: 19251038 DOI: 10.1016/s0083-6729(08)00607-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
GLUT4 glucose transporters are expressed nearly exclusively in adipose and muscle cells, where they cycle to and from the plasma membrane. In cells not stimulated with insulin, GLUT4 is targeted to specialized GLUT4 storage vesicles (GSVs), which sequester it away from the cell surface. Insulin acts within minutes to mobilize these vesicles, translocating GLUT4 to the plasma membrane to enhance glucose uptake. The mechanisms controlling GSV sequestration and mobilization are poorly understood. An insulin-regulated aminopeptidase that cotraffics with GLUT4, IRAP, is required for basal GSV retention and insulin-stimulated mobilization. TUG and Ubc9 bind GLUT4, and likely retain GSVs within unstimulated cells. These proteins may be components of a retention receptor, which sequesters GLUT4 and IRAP away from recycling vesicles. Insulin may then act on this protein complex to liberate GLUT4 and IRAP, discharging GSVs into a recycling pathway for fusion at the cell surface. How GSVs are anchored intracellularly, and how insulin mobilizes these vesicles, are the important topics for ongoing research. Regulation of GLUT4 trafficking is tissue-specific, perhaps in part because the formation of GSVs requires cell type-specific expression of sortilin. Proteins controlling GSV retention and mobilization can then be more widely expressed. Indeed, GLUT4 likely participates in a general mechanism by which the cell surface delivery of various membrane proteins can be controlled by extracellular stimuli. Finally, it is not known if defects in the formation or intracellular retention of GSVs contribute to human insulin resistance, or play a role in the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- Bradley R Rubin
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520-8020, USA
| | | |
Collapse
|