1
|
Akila AA, Gad RA, Ewees MGED, Abdul-Hamid M, Abdel-Reheim ES. Clopidogrel protects against gentamicin-induced nephrotoxicity through targeting oxidative stress, apoptosis, and coagulation pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03380-5. [PMID: 39235475 DOI: 10.1007/s00210-024-03380-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024]
Abstract
Gentamicin (Genta)-induced nephrotoxicity poses a significant clinical challenge due to its detrimental effects on kidney function. Clopidogrel (Clop), an antiplatelet drug known for its ability to prevent blood clots by inhibiting platelet aggregation, also has potential effects on oxidative stress and cell death. This study investigates Clop's protective role against Genta-induced nephrotoxicity, emphasizing the importance of the coagulation cascade. The 32 adult male albino rats were randomly assigned to four groups of eight (n = 8). The first group received only the vehicle. Genta was injected intraperitoneally at 100 mg/kg/day for 8 days in the second group. Groups 3 and 4 received oral Clop at 10 and 20 mg/kg/day for 1 week before Genta delivery and throughout the experiment. Renal tissue showed renal function tests, oxidative stress, pro-inflammatory cytokines, apoptotic markers, coagulation profile, and fibrin expression. Clop improved Genta-induced kidney function and histopathology. Clop substantially reduced pro-inflammatory cytokines, oxidative stress indicators, pro-apoptotic proteins, and fibrin protein. Clop also significantly boosted renal tissue anti-inflammatory and anti-apoptotic protein expression. Genta-induced nephrotoxicity involves oxidative stress, apoptosis, and coagulation system activation, according to studies. This study underscores that Genta-induced nephrotoxicity is associated with oxidative stress, apoptosis, and activation of the coagulation system. Clop's protective effects on nephrons are attributed to its anticoagulant, antioxidant, anti-inflammatory, and anti-apoptotic properties, presenting it as a promising therapeutic strategy against Genta-induced kidney damage.
Collapse
Affiliation(s)
- Asmaa A Akila
- Molecular Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Rania A Gad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, 62511, Egypt
| | - Mohamed Gamal El-Din Ewees
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, 62511, Egypt.
| | - Manal Abdul-Hamid
- Cell Biology and Histology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Eman S Abdel-Reheim
- Molecular Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
2
|
Crane A, Shanahan RM, Hudson JS, Nowicki KW, Gersey ZC, Agarwal P, Jacobs RC, Lang MJ, Gross B. Pharmaceutical Modulation of Intracranial Aneurysm Development and Rupture. J Clin Med 2024; 13:3324. [PMID: 38893035 PMCID: PMC11173282 DOI: 10.3390/jcm13113324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Management of intracranial aneurysms (IAs) is determined by patient age, risk of rupture, and comorbid conditions. While endovascular and microsurgical interventions offer solutions to mitigate the risk of rupture, pharmacological management strategies may complement these approaches or serve as alternatives in appropriate cases. The pathophysiology of IAs allows for the targeting of inflammation to prevent the development and rupture of IAs. The aim of this review is to provide an updated summary of different pharmaceutical management strategies for IAs. Acetylsalicylic acid and renin-angiotensin-aldosterone system (RAAS) inhibitor antihypertensives have some evidence supporting their protective effect. Studies of selective cyclooxygenase-2 (COX-2) inhibitors, statins, ADP inhibitors, and other metabolism-affecting drugs have demonstrated inconclusive findings regarding their association with aneurysm growth or rupture. In this manuscript, we highlight the evidence supporting each drug's effectiveness.
Collapse
Affiliation(s)
- Alex Crane
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA (Z.C.G.); (M.J.L.)
| | - Regan M. Shanahan
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA (Z.C.G.); (M.J.L.)
| | - Joseph S. Hudson
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA (Z.C.G.); (M.J.L.)
| | - Kamil W. Nowicki
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA;
| | - Zachary C. Gersey
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA (Z.C.G.); (M.J.L.)
| | - Prateek Agarwal
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA (Z.C.G.); (M.J.L.)
| | - Rachel C. Jacobs
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA (Z.C.G.); (M.J.L.)
| | - Michael J. Lang
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA (Z.C.G.); (M.J.L.)
| | - Bradley Gross
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA (Z.C.G.); (M.J.L.)
| |
Collapse
|
3
|
Gebeshuber CA, Daniel-Fischer L, Regele H, Schachner H, Aufricht C, Kornauth C, Ley M, Alper SL, Herzog R, Kratochwill K, Perco P. Computational drug repositioning of clopidogrel as a novel therapeutic option for focal segmental glomerulosclerosis. Transl Res 2023:S1931-5244(23)00057-9. [PMID: 37059330 DOI: 10.1016/j.trsl.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/13/2023] [Accepted: 04/04/2023] [Indexed: 04/16/2023]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a glomerular lesion often associated with nephrotic syndrome. It is also associated with a high risk of progression to end-stage kidney disease. Current treatment of FSGS is limited to systemic corticosteroids or calcineurin inhibition, along with inhibitors of the renin-angiotensin-aldosterone system. FSGS is heterogeneous in etiology, and novel therapies targeting specific, dysregulated molecular pathways represent a major unmet medical need. We have generated a network-based molecular model of FSGS pathophysiology using previously established systems biology workflows to allow computational evaluation of compounds for their predicted interference with molecular processes contributing to FSGS. We identified the anti-platelet drug clopidogrel as a therapeutic option to counterbalance dysregulated FSGS pathways. This prediction of our computational screen was validated by testing clopidogrel in the adriamycin FSGS mouse model. Clopidogrel improved key FSGS outcome parameters and significantly reduced urinary albumin to creatinine ratio (p<0.01) and weight loss (p<0.01), and ameliorated histopathological damage (p<0.05). Clopidogrel is used to treat several cardiovascular diseases linked to chronic kidney disease. Clopidogrel's favorable safety profile and its efficacy in the adriamycin mouse FSGS model thus recommend it as an attractive drug repositioning candidate for clinical trial in FSGS.
Collapse
Affiliation(s)
| | - Lisa Daniel-Fischer
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Heinz Regele
- Division of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Helga Schachner
- Division of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Christoph Aufricht
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Christoph Kornauth
- Division of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Matthias Ley
- Delta 4 GmbH, Alserstrasse 23 / 30, 1080 Vienna, Austria
| | - Seth L Alper
- Division of Nephology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA 02215
| | - Rebecca Herzog
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Klaus Kratochwill
- Delta 4 GmbH, Alserstrasse 23 / 30, 1080 Vienna, Austria; Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| | - Paul Perco
- Delta 4 GmbH, Alserstrasse 23 / 30, 1080 Vienna, Austria.
| |
Collapse
|
4
|
Chen J, Tang Y, Zhong Y, Wei B, Huang XR, Tang PMK, Xu A, Lan HY. P2Y12 inhibitor clopidogrel inhibits renal fibrosis by blocking macrophage-to-myofibroblast transition. Mol Ther 2022; 30:3017-3033. [PMID: 35791881 PMCID: PMC9481993 DOI: 10.1016/j.ymthe.2022.06.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/07/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022] Open
Abstract
Clopidogrel, a P2Y12 inhibitor, is a novel anti-fibrosis agent for chronic kidney disease (CKD), but its mechanisms remain unclear, which we investigated by silencing P2Y12 or treating unilateral ureteral obstruction (UUO) in LysM-Cre/Rosa Tomato mice with clopidogrel in vivo and in vitro. We found that P2Y12 was significantly increased and correlated with progressive renal fibrosis in CKD patients and UUO mice. Phenotypically, up to 82% of P2Y12-expressing cells within the fibrosing kidney were of macrophage origin, identified by co-expressing CD68/F4/80 antigens or a macrophage-lineage-tracing marker Tomato. Unexpectedly, more than 90% of P2Y12-expressing macrophages were undergoing macrophage-to-myofibroblast transition (MMT) by co-expressing alpha smooth muscle actin (α-SMA), which was also confirmed by single-cell RNA sequencing. Functionally, clopidogrel improved the decline rate of the estimated glomerular filtration rate (eGFR) in patients with CKD and significantly inhibited renal fibrosis in UUO mice. Mechanistically, P2Y12 expression was induced by transforming growth factor β1 (TGF-β1) and promoted MMT via the Smad3-dependent mechanism. Thus, silencing or pharmacological inhibition of P2Y12 was capable of inhibiting TGF-β/Smad3-mediated MMT and progressive renal fibrosis in vivo and in vitro. In conclusion, P2Y12 is highly expressed by macrophages in fibrosing kidneys and mediates renal fibrosis by promoting MMT via TGF-β/Smad3 signaling. Thus, P2Y12 inhibitor maybe a novel and effective anti-fibrosis agent for CKD.
Collapse
Affiliation(s)
- Junzhe Chen
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China; Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ying Tang
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yu Zhong
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Biao Wei
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao-Ru Huang
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, Guangdong Academy of Medical Science, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Patrick Ming-Kuen Tang
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China; Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China.
| | - Anping Xu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Hui-Yao Lan
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, Guangdong Academy of Medical Science, Guangdong Provincial People's Hospital, Guangzhou, China.
| |
Collapse
|
5
|
Wu B, Yu J, Luo Y, Wu L, Zhang Z, Deng L. An Albumin-Enriched Nanocomplex Achieves Systemic Delivery of Clopidogrel Bisulfate to Ameliorate Renal Ischemia Reperfusion Injury in Rats. Mol Pharm 2022; 19:3934-3947. [PMID: 36067352 DOI: 10.1021/acs.molpharmaceut.2c00401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, an albumin-enriched nanocomplex was developed for the solubilization and intravascular administration of clopidogrel bisulfate (CLP). In particular, CLP nanoparticles (HS-CLP-NPs) were synthesized via an improved nab-technology method using Solutol HS-15, and bovine serum albumin (BSA) was further enriched on the nanoparticle surface forming a protein corona (BH-CLP-NPs). BH-CLP-NPs displayed an average size of 163.4 ± 10.5 nm, a zeta potential of 1.85 ± 0.03 mV, an encapsulation efficiency of 99.9%, and a drug loading capacity of 32.9%. The cumulative release of CLP from BH-CLP-NPs reached about 60% within 168 h. The pharmacokinetic study on the CLP metabolite indicated that the BSA-enriched nanoparticle showed greater in vivo exposure. Pharmacodynamic studies in the renal ischemia/reperfusion injury rat model further demonstrated the renal protective effect of systemically administered BH-CLP-NPs against acute kidney injury with significantly downregulated blood urea nitrogen and creatinine levels. Overall, the albumin-enriched nanocomplexes offer a neat and efficient strategy for the development of poorly water-soluble drugs to achieve intravascular administration.
Collapse
Affiliation(s)
- Bangqing Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.,Guiyang Public Health Clinical Center, Guiyang 550000, China
| | - Jiaojiao Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yiting Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.,College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Lijun Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Li Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Immunomodulatory Activity of the Most Commonly Used Antihypertensive Drugs-Angiotensin Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers. Int J Mol Sci 2022; 23:ijms23031772. [PMID: 35163696 PMCID: PMC8836033 DOI: 10.3390/ijms23031772] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/06/2023] Open
Abstract
This review article is focused on antihypertensive drugs, namely angiotensin converting enzyme inhibitors (ACEI) and angiotensin II receptor blockers (ARB), and their immunomodulatory properties reported in hypertensive patients as well as in experimental settings involving studies on animal models and cell lines. The immune regulatory action of ACEI and ARB is mainly connected with the inhibition of proinflammatory cytokine secretion, diminished expression of adhesion molecules, and normalization of CRP concentration in the blood plasma. The topic has significant importance in future medical practice in the therapy of patients with comorbidities with underlying chronic inflammatory responses. Thus, this additional effect of immune regulatory action of ACEI and ARB may also benefit the treatment of patients with metabolic syndrome, allergies, or autoimmune disorders.
Collapse
|
7
|
Szrejder M, Rogacka D, Piwkowska A. Purinergic P2 receptors: Involvement and therapeutic implications in diabetes-related glomerular injury. Arch Biochem Biophys 2021; 714:109078. [PMID: 34742673 DOI: 10.1016/j.abb.2021.109078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/15/2021] [Accepted: 10/30/2021] [Indexed: 02/08/2023]
Abstract
The purinergic activation of P2 receptors initiates a powerful and rapid signaling cascade that contributes to the regulation of an array of physiological and pathophysiological processes in many organs, including the kidney. P2 receptors are broadly distributed in both epithelial and vascular renal cells. Disturbances of purinergic signaling can lead to impairments in renal function. A growing body of evidence indicates changes in P2 receptor expression and nucleotide metabolism in chronic renal injury and inflammatory diseases. Increasing attention has focused on purinergic P2X7 receptors, which are not normally expressed in healthy kidney tissue but are highly expressed at sites of tissue damage and inflammation. Under hyperglycemic conditions, several mechanisms that are linked to purinergic signaling and involve nucleotide release and degradation are disrupted, resulting in the accumulation of adenosine 5'-triphosphate in the bloodstream in diabetes. Dysfunction of the purinergic system might be associated with serious vascular complications in diabetes, including diabetic nephropathy. This review summarizes our current knowledge of the role of P2 receptors in diabetes-related glomerular injury and its implications for new therapeutics for diabetic nephropathy.
Collapse
Affiliation(s)
- Maria Szrejder
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdańsk, Poland.
| | - Dorota Rogacka
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdańsk, Poland; Department of Molecular Biotechnology, University of Gdańsk, Faculty of Chemistry, Gdańsk, Poland
| | - Agnieszka Piwkowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdańsk, Poland; Department of Molecular Biotechnology, University of Gdańsk, Faculty of Chemistry, Gdańsk, Poland
| |
Collapse
|
8
|
Rodriguez-Araujo G. Nonalcoholic fatty liver disease: implications for endocrinologists and cardiologists. Cardiovasc Endocrinol Metab 2020; 9:96-100. [PMID: 32803141 PMCID: PMC7410017 DOI: 10.1097/xce.0000000000000197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/19/2020] [Indexed: 01/14/2023]
Abstract
Type 2 diabetes mellitus is not just a risk factor but a progression factor for a plethora of multi-organ complications, including the liver and the vascular system. The profibrogenic-inflammatory liver disease nonalcoholic steatohepatitis affects patient's mortality and overall cardiovascular and liver-related complications. There is an evident overlap between these diseases; therefore, there are important implications for endocrinologists, cardiologists, and hepatologists when treating these patients. In addition, as newly approved nonalcoholic steatohepatitis pharmacotherapy is expected to be available early this year, clinicians need to be able to identify patients with type 2 diabetes mellitus that are at risk of advanced liver fibrosis to establish adequate and efficient management plans to limit or avoid cardiovascular or liver-related complications. In this review, we summarize the current knowledge in the nonalcoholic steatohepatitis field with potential value for clinicians focusing on the implications of the overlap between type 2 diabetes mellitus, cardiovascular disease, and nonalcoholic steatohepatitis, the available diagnostic tools for risk stratification, management pathways, and nonalcoholic steatohepatitis pharmacotherapy, including antidiabetic and cardiovascular drugs that may be beneficial or detrimental to their patients.
Collapse
Affiliation(s)
- Gerardo Rodriguez-Araujo
- University of Arkansas for Medical Science, Graduate School, University of Arkansas for Medical Science, Little Rock, Arkansas, USA
| |
Collapse
|
9
|
Khalaf NEA, El Banna FM, Youssef MY, Mosaad YM, Daba MHY, Ashour RH. Clopidogrel combats neuroinflammation and enhances learning behavior and memory in a rat model of Alzheimer's disease. Pharmacol Biochem Behav 2020; 195:172956. [PMID: 32474163 DOI: 10.1016/j.pbb.2020.172956] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIM Alzheimer's disease (AD) is a progressive neurodegenerative disease. Multiple molecular mechanisms have been employed in its pathogenesis such as Amyloid β (Aβ) formation, tau protein hyperphosphorylation, reduced acetylcholine (ACh) level, and neuroinflammation. This study aimed to assess the possible neuroprotective effect of clopidogrel in AD model induced by aluminum chloride (AlCl3) in rats. METHODS Sixty adult male Sprague-Dawley rats were divided into four different groups: Control, AlCl3, AlCl3 + donepezil, and AlCl3 + Clopidogrel. AlCl3 and the drugs were given orally once/day for 42 days. The spatial learning and memory and recognition memory were evaluated using Morris Water Maze (MWM) and Novel Object Recognition (NOR) tests, respectively. After euthanasia, hippocampal acetylcholinesterase (AChE) activity, tumor necrosis factor-alpha (TNF-α), and interleukin-1β (IL-1β) levels were biochemically assessed. Moreover, amyloid precursor protein (APP) mRNA gene expression was analyzed in the hippocampi of all rats. Histopathology for amyloid plaques was done. RESULTS Clopidogrel co-treatment significantly ameliorated the cognitive deficits induced by AlCl3 in rats. Besides, clopidogrel significantly reduced AChE activity, TNF-α and IL-1β concentrations, and APP mRNA gene expression in the hippocampi of rats compared to AlCl3 rats. The decrease of hippocampal TNF-α and IL-1β concentrations by clopidogrel was significant compared to donepezil co-treated rats. Clopidogrel co-treatment lessened amyloid plaque deposition in the hippocampal tissues of rats compared to AlCl3 rats. CONCLUSION These findings demonstrate that clopidogrel could alleviate learning and memory deficit induced by AlCl3 in rats and significantly reduced AChE activity. The neuroprotective outcome of clopidogrel might be assigned to its anti-inflammatory effect.
Collapse
Affiliation(s)
- Noura El Adle Khalaf
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Egypt.
| | | | | | | | | | - Rehab Hamdy Ashour
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Egypt.
| |
Collapse
|
10
|
Nakhaei A, Sepehri MM, Shadpour P, Khatibi T. Studying the Effects of Systemic Inflammatory Markers and Drugs on AVF Longevity through a Novel Clinical Intelligent Framework. IEEE J Biomed Health Inform 2020; 24:3295-3307. [PMID: 32287026 DOI: 10.1109/jbhi.2020.2986183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although arteriovenous fistula is the preferred vascular access method, it has challenges in three phases of planning, maturation, and maintenance. We looked at the root of fistula challenges in the maintenance phase and found traces of inflammation. Accordingly, we investigated the role of systemic inflammation in this phase to understand its effects on post-maturation function and extract knowledge to help extend fistula longevity. Previous studies on longevity of fistula have focused entirely on statistical tests, and since they put limitations on data, we also used a data mining framework for data analysis. For prediction, we used Decision Tree, Random Forest, and Support Vector Machines, and for inferential analysis, we used Wilcoxon and Chi-squared tests. We analyzed the archived data of 119 hemodialysis patients. In these data, independent variables were serum inflammatory markers, serum metabolic values, anti-inflammatory drugs, and demographic characteristics, and the dependent variable was fistula longevity separated in classes of equal to or greater than four and less than four years. Both predictive and inferential approaches have shown that serum inflammatory markers had no significant involvement in fistula longevity, but some anti-inflammatory drugs were effective. The results have shown that blood tests and drug variables, alone or together, could predict longevity class by 100% accuracy. This prediction can help surgeons make better decisions in selecting patients for fistula creation. Also, the extracted knowledge can provide guidelines for post-maturation disorders.
Collapse
|
11
|
Distler JHW, Györfi AH, Ramanujam M, Whitfield ML, Königshoff M, Lafyatis R. Shared and distinct mechanisms of fibrosis. Nat Rev Rheumatol 2019; 15:705-730. [PMID: 31712723 DOI: 10.1038/s41584-019-0322-7] [Citation(s) in RCA: 371] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
|
12
|
Mahmoud NI, Messiha BA, Salehc IG, Abo-Saif AA, Abdel-Bakky MS. Interruption of platelets and thrombin function as a new approach against liver fibrosis induced experimentally in rats. Life Sci 2019; 231:116522. [DOI: 10.1016/j.lfs.2019.05.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 02/07/2023]
|
13
|
Distler JHW, Feghali-Bostwick C, Soare A, Asano Y, Distler O, Abraham DJ. Review: Frontiers of Antifibrotic Therapy in Systemic Sclerosis. Arthritis Rheumatol 2019; 69:257-267. [PMID: 27636741 DOI: 10.1002/art.39865] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/30/2016] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Alina Soare
- University of Erlangen-Nuremberg, Erlangen, Germany
| | - Yoshihide Asano
- University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
14
|
Zheng Z, Ma T, Lian X, Gao J, Wang W, Weng W, Lu X, Sun W, Cheng Y, Fu Y, Rane MJ, Gozal E, Cai L. Clopidogrel Reduces Fibronectin Accumulation and Improves Diabetes-Induced Renal Fibrosis. Int J Biol Sci 2019; 15:239-252. [PMID: 30662363 PMCID: PMC6329922 DOI: 10.7150/ijbs.29063] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/11/2018] [Indexed: 12/18/2022] Open
Abstract
Hyperglycemia-induced renal fibrosis causes end-stage renal disease. Clopidogrel, a platelet inhibitor, is often administered to decrease cardiovascular events in diabetic patients. We investigated whether clopidogrel can reduce diabetes-induced renal fibrosis in a streptozotocin-induced type 1 diabetes murine model and fibronectin involvement in this protective response. Diabetic and age-matched controls were sacrificed three months after the onset of diabetes, and additional controls and diabetic animals were further treated with clopidogrel or vehicle for three months. Diabetes induced renal morphological changes and fibrosis after three months. Clopidogrel, administered during the last three months, significantly decreased blood glucose, collagen and fibronectin expression compared to vehicle-treated diabetic mice. Diabetes increased TGF-β expression, inducing fibrosis via Smad-independent pathways, MAP kinases, and Akt activation at three months but returned to baseline at six months, whereas the expression of fibronectin and collagen remained elevated. Our results suggest that activation of TGF-β, CTGF, and MAP kinases are early profibrotic signaling events, resulting in significant fibronectin accumulation at the early time point and returning to baseline at a later time point. Akt activation at the three-month time point may serve as an adaptive response in T1D. Mechanisms of clopidogrel therapeutic effect on the diabetic kidney remain to be investigated as this clinically approved compound could provide novel approaches to prevent diabetes-induced renal disease, therefore improving patients' survival.
Collapse
Affiliation(s)
- Zongyu Zheng
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
| | - Tianjiao Ma
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
- Department of Rheumatology and Immunology, China-Japan Union Hospital of the Jilin University, Changchun 130033, China
| | - Xin Lian
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Jialin Gao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Weigang Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Wenya Weng
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
- The Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of the Wenzhou Medical University, Ruian 325200, China
| | - Xuemian Lu
- The Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of the Wenzhou Medical University, Ruian 325200, China
| | - Weixia Sun
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yanli Cheng
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yaowen Fu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Madhavi J. Rane
- Division of Nephrology, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Evelyne Gozal
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
- Departments of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
- Departments of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
15
|
Clopidogrel Partially Counteracts Adenosine-5'-Diphosphate Effects on Blood Pressure and Renal Hemodynamics and Excretion in Rats. Am J Med Sci 2018; 356:287-295. [PMID: 30293555 DOI: 10.1016/j.amjms.2018.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 04/21/2018] [Accepted: 04/25/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Adenosine-5'-diphosphate (ADP) can influence intrarenal vascular tone and tubular transport, partly through activation of purine P2Y12 receptors (P2Y12-R), but their actual in vivo role in regulation of renal circulation and excretion remains unclear. METHODS The effects of intravenous ADP infusions of 2-8mg/kg/hour were examined in anesthetized Wistar rats that were untreated or chronically pretreated with clopidogrel, 20mg/kg/24hours, a selective P2Y12-R antagonist. Renal blood flow (transonic probe) and perfusion of the superficial cortex and medulla (laser-Doppler fluxes) were measured, together with urine osmolality (Uosm), diuresis (V), total solute (UosmV), sodium (UNaV) and potassium (UKV) excretion. RESULTS ADP induced a gradual, dose-dependent 15% decrease of mean arterial pressure, a sustained increase of renal blood flow and a 25% decrease in renal vascular resistance. Clopidogrel pretreatment attenuated the mean arterial pressure decrease, and did not significantly alter renal blood flow or renal vascular resistance. Renal medullary perfusion was not affected by ADP whereas Uosm decreased from 1,080 ± 125 to 685 ± 75 mosmol/kg H20. There were also substantial significant decreases in UosmV, UNaV and UKV; all these changes were attenuated or abolished by clopidogrel pretreatment. Two-weeks' clopidogrel treatment decreased V while UosmUosmV and UNaV increased, most distinctly after 7 days. Acute clopidogrel infusion modestly decreased mean arterial pressure and significantly increased outer- and decreased inner-medullary perfusion. CONCLUSIONS Our functional studies show that ADP can cause systemic and renal vasodilation and a decrease in mean arterial pressure, an action at least partly mediated by P2Y12 receptors. We confirmed that these receptors exert tonic action to reduce tubular water reabsorption and urine concentration.
Collapse
|
16
|
Ikeme JC, Pergola PE, Scherzer R, Shlipak MG, Benavente OR, Peralta CA. Post Hoc Analyses of Randomized Clinical Trial for the Effect of Clopidogrel Added to Aspirin on Kidney Function. Clin J Am Soc Nephrol 2017; 12:1040-1047. [PMID: 28446537 PMCID: PMC5498342 DOI: 10.2215/cjn.00100117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/30/2017] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Despite the high burden of CKD, few specific therapies are available that can halt disease progression. In animal models, clopidogrel has emerged as a potential therapy to preserve kidney function. The effect of clopidogrel on kidney function in humans has not been established. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS The Secondary Prevention of Small Subcortical Strokes Study randomized participants with prior lacunar stroke to treatment with aspirin or aspirin plus clopidogrel. We compared annual eGFR decline and incidence of rapid eGFR decline (≥30% from baseline) using generalized estimating equations and interval-censored proportional hazards regression, respectively. We also stratified our analyses by baseline eGFR, systolic BP target, and time after randomization. RESULTS At randomization, median age was 62 (interquartile range, 55-71) years old; 36% had a history of diabetes, 90% had hypertension, and the median eGFR was 81 (interquartile range, 65-94) ml/min per 1 m2. Persons receiving aspirin plus clopidogrel had an average annual change in kidney function of -1.39 (95% confidence interval, -1.15 to -1.62) ml/min per 1.73 m2 per year compared with -1.52 (95% confidence interval, -1.30 to -1.74) ml/min per 1.73 m2 per year among persons receiving aspirin only (P=0.42). Rapid kidney function decline occurred in 21% of participants receiving clopidogrel plus aspirin compared with 22% of participants receiving aspirin plus placebo (hazard ratio, 0.94; 95% confidence interval, 0.79 to 1.10; P=0.42). Findings did not vary by baseline eGFR, time after randomization, or systolic BP target (all P values for interaction were >0.3). CONCLUSIONS We found no effect of clopidogrel added to aspirin compared with aspirin alone on kidney function decline among persons with prior lacunar stroke.
Collapse
Affiliation(s)
- Jesse C. Ikeme
- The Kidney Health Research Collaborative, University of California, San Francisco, California
- San Francisco Veterans Affairs Medical Center, San Francisco, California
| | - Pablo E. Pergola
- University of Texas Health Science Center at San Antonio, San Antonio, Texas; and
| | - Rebecca Scherzer
- The Kidney Health Research Collaborative, University of California, San Francisco, California
- San Francisco Veterans Affairs Medical Center, San Francisco, California
| | - Michael G. Shlipak
- The Kidney Health Research Collaborative, University of California, San Francisco, California
- San Francisco Veterans Affairs Medical Center, San Francisco, California
| | | | - Carmen A. Peralta
- The Kidney Health Research Collaborative, University of California, San Francisco, California
- San Francisco Veterans Affairs Medical Center, San Francisco, California
| |
Collapse
|
17
|
El-Mahdy NA, El-Sayad MES, El-Kadem AH. Combination of telmisartan with sildenafil ameliorate progression of diabetic nephropathy in streptozotocin-induced diabetic model. Biomed Pharmacother 2016; 81:136-144. [DOI: 10.1016/j.biopha.2016.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 02/07/2023] Open
|
18
|
Michel MC, Brunner HR, Foster C, Huo Y. Angiotensin II type 1 receptor antagonists in animal models of vascular, cardiac, metabolic and renal disease. Pharmacol Ther 2016; 164:1-81. [PMID: 27130806 DOI: 10.1016/j.pharmthera.2016.03.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 02/07/2023]
Abstract
We have reviewed the effects of angiotensin II type 1 receptor antagonists (ARBs) in various animal models of hypertension, atherosclerosis, cardiac function, hypertrophy and fibrosis, glucose and lipid metabolism, and renal function and morphology. Those of azilsartan and telmisartan have been included comprehensively whereas those of other ARBs have been included systematically but without intention of completeness. ARBs as a class lower blood pressure in established hypertension and prevent hypertension development in all applicable animal models except those with a markedly suppressed renin-angiotensin system; blood pressure lowering even persists for a considerable time after discontinuation of treatment. This translates into a reduced mortality, particularly in models exhibiting marked hypertension. The retrieved data on vascular, cardiac and renal function and morphology as well as on glucose and lipid metabolism are discussed to address three main questions: 1. Can ARB effects on blood vessels, heart, kidney and metabolic function be explained by blood pressure lowering alone or are they additionally directly related to blockade of the renin-angiotensin system? 2. Are they shared by other inhibitors of the renin-angiotensin system, e.g. angiotensin converting enzyme inhibitors? 3. Are some effects specific for one or more compounds within the ARB class? Taken together these data profile ARBs as a drug class with unique properties that have beneficial effects far beyond those on blood pressure reduction and, in some cases distinct from those of angiotensin converting enzyme inhibitors. The clinical relevance of angiotensin receptor-independent effects of some ARBs remains to be determined.
Collapse
Affiliation(s)
- Martin C Michel
- Dept. Pharmacology, Johannes Gutenberg University, Mainz, Germany; Dept. Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim, Ingelheim, Germany.
| | | | - Carolyn Foster
- Retiree from Dept. of Research Networking, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Yong Huo
- Dept. Cardiology & Heart Center, Peking University First Hospital, Beijing, PR China
| |
Collapse
|
19
|
The Protective Mechanism of Fluorofenidone in Renal Interstitial Inflammation and Fibrosis. Am J Med Sci 2015; 350:195-203. [PMID: 26035627 DOI: 10.1097/maj.0000000000000501] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Deregulated inflammation has been implicated in the development of renal interstitial fibrosis and progressive renal failure. Previous work has established that fluorofenidone, a pyridone agent, attenuates renal fibrosis. However, the mechanism by which fluorofenidone prevents renal fibrosis remains unclear. The aim of this study was to investigate the in vivo effects of fluorofenidone on unilateral ureteral obstruction-induced fibrosis and the involved molecular mechanism in mouse peritoneal macrophages. METHODS Renal fibrosis was induced in rat by unilateral ureteral obstruction for 3, 7 or 14 days. Ipsilateral kidneys were harvested for morphologic analysis. Leukocyte infiltration was assessed by immunohistochemistry staining. The expression of chemokines (MCP-1, RANTAS, IP-10, MIP-1α and MIP-1β) and pro-inflammatory cytokines (TNF-α and IL-1β) was measured by enzyme-linked immunosorbent assay and real-time polymerase chain reaction. Mouse peritoneal macrophages and HK-2 cells were incubated with necrotic MES-13 cells or TNF-α in the presence or absence of fluorofenidone. The production of MCP-1 was measured by enzyme-linked immunosorbent assay, and phosphorylation of ERK1/2, p38 and JNK was quantified by Western blot. RESULTS Fluorofenidone treatment hampered renal pathologic change and interstitial collagen deposition. Leukocyte infiltration and the expression of chemokines (MCP-1, RANTES, IP-10, MIP-1α and MIP-1β) and pro-inflammatory cytokines (IL-1α) in kidney were significantly reduced by fluorofenidone treatment. Mechanistically, fluorofenidone significantly inhibited TNF-α or necrotic cell-induced activation of MAP kinase pathways in vitro. CONCLUSIONS Fluorofenidone serves as a novel anti-inflammatory agent that attenuates ureteral obstruction-induced renal interstitial inflammation and fibrosis, possibly through the inhibition of the microtubule-associated protein kinase pathways.
Collapse
|
20
|
Wang L, Cao AL, Chi YF, Ju ZC, Yin PH, Zhang XM, Peng W. You-gui Pill ameliorates renal tubulointerstitial fibrosis via inhibition of TGF-β/Smad signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2015; 169:229-238. [PMID: 25922264 DOI: 10.1016/j.jep.2015.04.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 04/08/2015] [Accepted: 04/18/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE You-gui Pill (YGP), a traditional Chinese medicinal prescription, was widely used to warm and recuperate "kidney-yang" clinically for hundreds of years in China. Recent studies found that YGP had a potential benefit for renoprotection. AIM OF THE STUDY The present study aimed to elucidate the in vivo and in vitro efficacy of YGP on renal tubulointerstitial fibrosis, and the molecular mechanism is also investigated. MATERIALS AND METHODS Rat renal tubulointerstitial fibrosis model was elicited by unilateral ureteral obstruction (UUO). Sprague-Dawley rats underwent UUO and were studied after 14 days. Animals were randomly subjected to six groups: sham, UUO, UUO/YGP (0.14, 0.42, 1.26g/kg/d), and UUO/enalapril (10mg/kg/d). HE, Masson and ELISA were used for evaluate renal injury and function. Immunohistochemical analysis and western blot were used to detect the expressions of α-SMA, fibronectin, collagen matrix and Smads. In vitro studies were investigated in TGF-β1-stiumlated NRK-49F cell line. RESULTS Oral administration of YGP significantly decreased UUO-induced inflammatory cell infiltration, tubular atrophy and interstitial fibrosis, and there was no significant difference between YGP at 1.26g/kg and enalapril at 10mg/kg treatment (P>0.05). Meanwhile, serum creatinine and blood urea nitrogen levels were reduced dramatically (P<0.01). In coincide with the decreased of TGF-β1, α-SMA, fibronectin and collagen matrix expressions were also declined with YGP treatment in both UUO kidneys and TGF-β1-stimulated NRK-49F cell line. Additionally, nuclear translocation of p-Smad2/3 was markedly down-regulated by YGP (P<0.001), with a relative mild up-regulated expression of Smad7 (P<0.05). CONCLUSIONS Our findings demonstrate that YGP had a renoprotective effect in ameliorating renal tubulointerstitial fibrosis, and this activity possibly via suppression of the TGF-β and its downstream regulatory signaling pathway, including Smad2/3.
Collapse
Affiliation(s)
- Li Wang
- Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Ai-Li Cao
- Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yang-Feng Chi
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Zheng-Cai Ju
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Pei-Hao Yin
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Xue-Mei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Wen Peng
- Laboratory of Renal Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| |
Collapse
|
21
|
Tang J, Liu CY, Lu MM, Zhang J, Mei WJ, Yang WJ, Xie YY, Huang L, Peng ZZ, Yuan QJ, Liu JS, Hu GY, Tao LJ. Fluorofenidone protects against renal fibrosis by inhibiting STAT3 tyrosine phosphorylation. Mol Cell Biochem 2015; 407:77-87. [PMID: 26033204 DOI: 10.1007/s11010-015-2456-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 05/16/2015] [Indexed: 12/17/2022]
Abstract
Signaling through the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway, especially JAK2/STAT3, is involved in renal fibrosis. Fluorofenidone (FD), a novel pyridone agent, exerts anti-fibrotic effects in vitro and in vivo. Herein, we sought to investigate whether FD demonstrates its inhibitory function through preventing JAK2/STAT3 pathway. In this study, we examined the effect of FD on activation of rat renal interstitial fibroblasts, glomerular mesangial cells (GMC), and expression of JAK2/STAT3. Moreover, we explored the histological protection effects of FD in UUO rats, db/db mice, and phosphorylation of JAK2/STAT3 cascade. Our studies found that pretreatment with FD resulted in blockade of activation of fibroblast and GMC manifested by fibronectin (FN) and α-smooth muscle actin (α-SMA) protein expression and decline of STAT3 tyrosine phosphorylation induced by IL-6 or high glucose. In unilateral ureteral obstruction rats and a murine model of spontaneous type 2 diabetes (db/db mice), treatment with FD blocked the expression of FN and α-SMA, prevented renal fibrosis progression, and attenuated STAT3 activation. However, FD administration did not interfere with JAK2 activation both in vivo and in vitro. In summary, the molecular mechanism by which FD exhibits renoprotective effects appears to involve the inhibition of STAT3 phosphorylation.
Collapse
Affiliation(s)
- Juan Tang
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Fluorofenidone inhibits macrophage IL-1β production by suppressing inflammasome activity. Int Immunopharmacol 2015; 27:148-53. [PMID: 25983199 DOI: 10.1016/j.intimp.2015.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/22/2015] [Accepted: 05/04/2015] [Indexed: 11/23/2022]
Abstract
Interleukin-1 beta (IL-1β) is a potent pro-inflammatory and pro-fibrotic cytokine that plays an important role in renal fibrosis. Fluorofenidone (AKF-PD) is a novel pyridone agent that exerts a strong renal anti-fibrotic effect. We previously found that administration of AKF-PD could significantly attenuate IL-1β production in vitro and in vivo. However, the underlying mechanism is not fully understood. Here we show that AKF-PD has no effect on the expression of pro-IL-1β in activated mouse macrophages in vitro. Instead, AKF-PD inhibits the inflammasome, lowering caspase-1 levels and thereby decreasing cleavage of pro-IL-1β into IL-1β. AKF-PD was found to block inflammasome activity induced by various signals, including ATP, alum crystals, and Salmonella typhimurium. These results provide a novel mechanistic insight into how AKF-PD exerts its anti-inflammatory and anti-fibrotic activities, and suggest that AKF-PD might block IL-1β production via suppression of inflammasomes in renal fibrosis. In addition, the results suggest that AKF-PD may be of therapeutic potential in other inflammasome-related diseases.
Collapse
|
23
|
Davila CD, Vargas F, Huang KHG, Monaco T, Dimou A, Rangaswami J, Figueredo VM. Dipstick proteinuria is an independent predictor of high on treatment platelet reactivity in patients on clopidogrel, but not aspirin, admitted for major adverse cardiovascular events. Platelets 2014; 26:651-6. [PMID: 25354134 DOI: 10.3109/09537104.2014.971000] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The effectiveness of aspirin and clopidogrel in patients with chronic kidney disease (CKD) suffering from acute cardiovascular events is unclear. High on treatment platelet reactivity (HTPR) has been associated with worse outcomes. Here, we assessed the association of dipstick proteinuria (DP) and renal function on HTPR and clinical outcomes. Retrospective cohort analysis of 261 consecutive, non-dialysis patients admitted for Major Adverse Cardiovascular Events (MACE) that had VerifyNow P2Y12 and VerifyNow Aspirin assays performed. HTPR was defined as P2Y12 reactivity unit (PRU) > 208 for clopidogrel and aspirin reaction units (ARU) > 550 for aspirin. Renal function was classified based on the estimated glomerular filtration rate (eGFR), and dipstick proteinuria was defined as ≥ 30 mg/dl of albumin detected on a spot analysis. All cause mortality, readmissions, and cardiac catheterizations were reviewed over 520 days. In patients on clopidogrel (n = 106), DP was associated with HTPR, independent of eGFR, diabetes mellitus, smoking or use of proton pump inhibitor (AOR = 4.76, p = 0.03). In patients with acute coronary syndromes, HTPR was associated with more cardiac catheterizations (p = 0.009) and readmissions (p = 0.032), but no differences in in-stent thrombosis or re-stenosis were noted in this cohort. In patients on aspirin (n = 155), no associations were seen between DP and HTPR. However, all cause mortality was significantly higher with HTPR in this group (p = 0.038). In this cohort, DP is an independent predictor of HTPR in patients on clopidogrel, but not aspirin, admitted to the hospital for MACE.
Collapse
Affiliation(s)
- Carlos D Davila
- a Department of Medicine , Einstein Medical Center , Philadelphia , PA , USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Vilar S, Ryan PB, Madigan D, Stang PE, Schuemie MJ, Friedman C, Tatonetti NP, Hripcsak G. Similarity-based modeling applied to signal detection in pharmacovigilance. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2014; 3:e137. [PMID: 25250527 PMCID: PMC4211266 DOI: 10.1038/psp.2014.35] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/06/2014] [Indexed: 12/31/2022]
Abstract
One of the main objectives in pharmacovigilance is the detection of adverse drug events (ADEs) through mining of healthcare databases, such as electronic health records or administrative claims data. Although different approaches have been shown to be of great value, research is still focusing on the enhancement of signal detection to gain efficiency in further assessment and follow-up. We applied similarity-based modeling techniques, using 2D and 3D molecular structure, ADE, target, and ATC (anatomical therapeutic chemical) similarity measures, to the candidate associations selected previously in a medication-wide association study for four ADE outcomes. Our results showed an improvement in the precision when we ranked the subset of ADE candidates using similarity scorings. This method is simple, useful to strengthen or prioritize signals generated from healthcare databases, and facilitates ADE detection through the identification of the most similar drugs for which ADE information is available.
Collapse
Affiliation(s)
- S Vilar
- 1] Department of Biomedical Informatics, Columbia University, New York, New York, USA [2] Observational Health Data Sciences and Informatics (OHDSI), New York, New York, USA
| | - P B Ryan
- 1] Observational Health Data Sciences and Informatics (OHDSI), New York, New York, USA [2] Janssen Research and Development, Titusville, New Jersey, USA
| | - D Madigan
- 1] Observational Health Data Sciences and Informatics (OHDSI), New York, New York, USA [2] Department of Statistics, Columbia University, New York, New York, USA
| | - P E Stang
- 1] Observational Health Data Sciences and Informatics (OHDSI), New York, New York, USA [2] Janssen Research and Development, Titusville, New Jersey, USA
| | - M J Schuemie
- 1] Observational Health Data Sciences and Informatics (OHDSI), New York, New York, USA [2] Janssen Research and Development, Titusville, New Jersey, USA
| | - C Friedman
- 1] Department of Biomedical Informatics, Columbia University, New York, New York, USA [2] Observational Health Data Sciences and Informatics (OHDSI), New York, New York, USA
| | - N P Tatonetti
- 1] Department of Biomedical Informatics, Columbia University, New York, New York, USA [2] Observational Health Data Sciences and Informatics (OHDSI), New York, New York, USA [3] Department of Systems Biology, Columbia University Medical Center, New York, New York, USA [4] Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - G Hripcsak
- 1] Department of Biomedical Informatics, Columbia University, New York, New York, USA [2] Observational Health Data Sciences and Informatics (OHDSI), New York, New York, USA
| |
Collapse
|
25
|
Jin C, O'Boyle S, Kleven DT, Pollock JS, Pollock DM, White JJ. Antihypertensive and anti-inflammatory actions of combined azilsartan and chlorthalidone in Dahl salt-sensitive rats on a high-fat, high-salt diet. Clin Exp Pharmacol Physiol 2014; 41:579-88. [DOI: 10.1111/1440-1681.12250] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/17/2014] [Accepted: 04/21/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Chunhua Jin
- Division of Nephrology; Department of Medicine; University of Alabama at Birmingham; Birmingham AL USA
| | - Sean O'Boyle
- Division of Nephrology; Department of Medicine; University of Alabama at Birmingham; Birmingham AL USA
| | - Daniel T. Kleven
- Department of Pathology; Georgia Regents University; Augusta GA USA
| | - Jennifer S. Pollock
- Division of Nephrology; Department of Medicine; University of Alabama at Birmingham; Birmingham AL USA
| | - David M. Pollock
- Division of Nephrology; Department of Medicine; University of Alabama at Birmingham; Birmingham AL USA
| | - John J. White
- Section of Nephrology, Hypertension and Transplantation; Department of Medicine; Georgia Regents University; Augusta GA USA
| |
Collapse
|
26
|
Osmond DA, Zhang S, Pollock JS, Yamamoto T, De Miguel C, Inscho EW. Clopidogrel preserves whole kidney autoregulatory behavior in ANG II-induced hypertension. Am J Physiol Renal Physiol 2014; 306:F619-28. [PMID: 24477682 DOI: 10.1152/ajprenal.00444.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This study tested the hypothesis that P2Y12 receptor blockade with clopidogrel preserves renal autoregulatory ability during ANG II-induced hypertension. Clopidogrel was administered orally to male Sprague-Dawley rats chronically infused with ANG II. After 14 days of treatment, whole kidney autoregulation of renal blood flow was assessed in vivo in pentobarbital-anesthetized rats using an ultrasonic flow probe placed around the left renal artery. In ANG II-vehicle-treated rats, decreasing arterial pressure over a range from 160 to 100 mmHg resulted in a 25 ± 5% decrease in renal blood flow, demonstrating a significant loss of autoregulation with an autoregulatory index of 0.66 ± 0.15. However, clopidogrel treatment preserved autoregulatory behavior in ANG II-treated rats to levels indistinguishable from normotensive sham-operated (sham) rats (autoregulatory index: 0.04 ± 0.14). Compared with normotensive sham-vehicle-treated rats, ANG II infusion increased renal CD3-positive T cell infiltration by 66 ± 6%, induced significant thickening of the preglomerular vessels and glomerular basement membrane and increased glomerular collagen I deposition, tubulointerstitial fibrosis, damage to the proximal tubular brush border, and protein excretion. Clopidogrel significantly reduced renal infiltration of T cells by 39 ± 9% and prevented interstitial artery thickening, ANG II-induced damage to the glomerular basement membrane, deposition of collagen type I, and tubulointerstitial fibrosis, despite the maintenance of hypertension. These data demonstrate that systemic P2Y12 receptor blockade with clopidogrel protects against impairment of autoregulatory behavior and renal vascular injury in ANG II-induced hypertension, possibly by reducing renal T cell infiltration.
Collapse
Affiliation(s)
- David A Osmond
- Dept. of Physiology CA-3137, Georgia Regents Univ., 1120 15th St., Augusta, GA 30912.
| | | | | | | | | | | |
Collapse
|
27
|
Hartner A, Cordasic N, Klanke B, Menendez-Castro C, Veelken R, Schmieder RE, Hilgers KF. Renal protection by low dose irbesartan in diabetic nephropathy is paralleled by a reduction of inflammation, not of endoplasmic reticulum stress. Biochim Biophys Acta Mol Basis Dis 2014; 1842:558-65. [PMID: 24418215 DOI: 10.1016/j.bbadis.2014.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 12/18/2013] [Accepted: 01/06/2014] [Indexed: 10/25/2022]
Abstract
Diabetes can disrupt endoplasmic reticulum (ER) homeostasis which leads to ER stress. ER stress-induced renal apoptosis seems to be involved in the development of diabetic nephropathy. The present study was designed to investigate the contribution of reduced ER stress to the beneficial effects of an angiotensin receptor blocker. Insulin-dependent diabetes mellitus was induced by streptozotocin injections to hypertensive mRen2-transgenic rats. After 2weeks animals were treated with 0.7mg/kg/day irbesartan. Blood glucose, blood pressure and protein excretion were assessed. Expression of ER stress markers was measured by real-time PCR. Immunohistochemistry was performed to detect markers of ER stress, renal damage and infiltrating cells. Glomerulosclerosis and apoptosis were evaluated. Diabetic mRen2-transgenic rats developed renal injury with proteinuria, tubulointerstitial cell proliferation as well as glomerulosclerosis and podocyte injury. Moreover, an increase in inflammation, podocyte ER stress and apoptosis was detected. Irbesartan somewhat lowered blood pressure and reduced proteinuria, tubulointerstitial cell proliferation and glomerulosclerosis. Podocyte damage was ameliorated but markers of ER stress (calnexin, grp78) and apoptosis were not reduced by irbesartan. On the other hand, inflammatory cell infiltration in the tubulointerstitium and the glomerulus was significantly attenuated. We conclude that irbesartan reduced renal damage even in a very low dose. The beneficial effects of low dose irbesartan were paralleled by a reduction of blood pressure and inflammation but not by a reduction of ER stress and apoptosis. Thus, sustained endoplasmic reticulum stress in the kidney does not necessarily lead to increased inflammation and tubulointerstitial or glomerular injury.
Collapse
Affiliation(s)
- Andrea Hartner
- Department of Pediatrics and Adolescent Medicine, University of Erlangen-Nürnberg, Loschgestrasse 15, D-91054 Erlangen, Germany.
| | - Nada Cordasic
- Department of Nephrology and Hypertension, University of Erlangen-Nürnberg, Loschgestrasse 8, D-91054 Erlangen, Germany
| | - Bernd Klanke
- Department of Nephrology and Hypertension, University of Erlangen-Nürnberg, Loschgestrasse 8, D-91054 Erlangen, Germany
| | - Carlos Menendez-Castro
- Department of Pediatrics and Adolescent Medicine, University of Erlangen-Nürnberg, Loschgestrasse 15, D-91054 Erlangen, Germany
| | - Roland Veelken
- Department of Nephrology and Hypertension, University of Erlangen-Nürnberg, Loschgestrasse 8, D-91054 Erlangen, Germany
| | - Roland E Schmieder
- Department of Nephrology and Hypertension, University of Erlangen-Nürnberg, Loschgestrasse 8, D-91054 Erlangen, Germany
| | - Karl F Hilgers
- Department of Nephrology and Hypertension, University of Erlangen-Nürnberg, Loschgestrasse 8, D-91054 Erlangen, Germany
| |
Collapse
|
28
|
Dash A, Maiti R, Bandakkanavar TKA, Bhaskar A, Prakash J, Pandey BL. Prophylactic Add-on Antiplatelet Therapy in Chronic Kidney Disease With Type 2 Diabetes Mellitus: Comparison Between Clopidogrel and Low-dose Aspirin. Int J Prev Med 2013; 4:902-10. [PMID: 24049616 PMCID: PMC3775167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 04/01/2012] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) coexisting with type 2 diabetes mellitus (DM) leads to coronary artery disease. The present study compares clopidogrel and low-dose aspirin as prophylactic therapy against coronary events in patients with CKD with diabetes. METHODS Total 80 patients of CKD with type 2 DM were randomized and allocated to clopidogrel and aspirin groups to receive the drug at a dose of 75 mg and 150 mg once daily respectively for 8 weeks as add-on therapy. Main outcome was change in blood pressure, metabolic parameters, renal function, inflammatory biomarkers, platelet aggregability and (UKPDS) United Kingdom Prospective Diabetes Study risk scoring. RESULTS Significant decrease in blood pressure (P < 0.01), total cholesterol (P = 0.02), LDL (P < 0.01), triglyceride (P < 0.01) and a better glycemic control (P < 0.01) was found in clopidogrel group. Renal markers and electrolytes have been improved in clopidogrel group but in aspirin group there was deterioration (2.5%) of creatinine clearance. Clopidogrel group has shown a significant decrease in hsCRP (P < 0.01), UKPDS risk scoring (P < 0.01) and better anti-aggregatory effect. CONCLUSIONS Clopidogrel has prophylactic role in CKD with type 2 DM due to better control of metabolic parameters, renal function and inflammatory burden in comparison to aspirin.
Collapse
Affiliation(s)
- Amitabh Dash
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi-5, Uttar Pradesh, India
| | - Rituparna Maiti
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, Odisha, India
| | | | - Amit Bhaskar
- Department of General Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi-5, Uttar Pradesh, India
| | - Jai Prakash
- Department of Nephrology, Institute of Medical Sciences, Banaras Hindu University, Varanasi-5, Uttar Pradesh, India
| | - Bajarang Lal Pandey
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi-5, Uttar Pradesh, India
| |
Collapse
|
29
|
Baek SD, Baek CH, Kim JS, Kim SM, Kim JH, Kim SB. Does stage III chronic kidney disease always progress to end-stage renal disease? A ten-year follow-up study. ACTA ACUST UNITED AC 2012; 46:232-8. [PMID: 22545920 DOI: 10.3109/00365599.2011.649045] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Clinically, it may be appropriate to subdivide patients with stage 3 chronic kidney disease (CKD) into two subgroups, as they show different risks for kidney outcomes. This study evaluated the proportion of patients with stage 3 CKD who progressed to stage 4 or 5 CKD over 10 years and independent predictors of progression of renal dysfunction. It sought to validate whether stage 3 CKD patients should be subdivided. MATERIAL AND METHODS This retrospective cohort study enrolled 347 stage 3 CKD patients between January 1997 and December 1999, who were followed up through June 2010. The baseline clinical characteristics and outcomes were compared in patients with stage 3A [45 <estimated glomerular filtration rate (eGFR) <60 ml/min/1.73 m(2)] and stage 3B (30 < eGFR <45 ml/min/1.73 m(2)) CKD. RESULTS Of the 347 patients, 196 (58.2%) were in stage 3A. The only difference in baseline characteristics between stages 3A and 3B patients was the degree of albuminuria. During follow-up, 167 patients (48.1%) did not progress, 60 (17.3%) progressed to stage 4 and 120 (34.6%) progressed to stage 5, with 91 (26.2%) starting dialysis. Multivariate Cox regression analysis showed that macroalbuminuria [(hazard ratio (HR) 3.06, 95% confidence interval (CI) 1.48-2.89, p < 0.001], microalbuminuria (HR 1.99 95% CI 1.04-3.85, p = 0.038), microscopic haematuria (HR 2.07 95% CI 1.48-2.89, p < 0.001) and stage 3B CKD (HR 2.99 95% CI 2.19-4.10, p < 0.001) were independent predictors of progression of renal dysfunction. Stage 3B patients had higher risks of adverse renal and cardiovascular outcomes than stage 3A patients. CONCLUSIONS About half of the patients with stage 3 CKD progressed to stage 4 or 5, as assessed by eGFR, over 10 years. Degree of albuminuria, stage 3 subgroup and microscopic haematuria were important risk factors for progression of stage 3 CKD. It would be appropriate to divide the present stage 3 CKD into two subgroups.
Collapse
Affiliation(s)
- Seung Don Baek
- Department of Internal Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
30
|
Do aspirin and other antiplatelet drugs reduce the mortality in critically ill patients? THROMBOSIS 2011; 2012:720254. [PMID: 22110915 PMCID: PMC3216368 DOI: 10.1155/2012/720254] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 10/03/2011] [Indexed: 11/17/2022]
Abstract
Platelet activation has been implicated in microvascular thrombosis and organ failure in critically ill patients. In the first part the present paper summarises important data on the role of platelets in systemic inflammation and sepsis as well as on the beneficial effects of antiplatelet drugs in animal models of sepsis. In the second part the data of retrospective and prospective observational clinical studies on the effect of aspirin and other antiplatelet drugs in critically ill patients are reviewed. All of these studies have shown that aspirin and other antiplatelet drugs may reduce organ failure and mortality in these patients, even in case of high bleeding risk. From the data reviewed here interventional prospective trials are needed to test whether aspirin and other antiplatelet drugs might offer a novel therapeutic option to prevent organ failure in critically ill patients.
Collapse
|
31
|
Yu H, Zhang D, Haller S, Kanjwal K, Colyer W, Brewster P, Steffes M, Shapiro JI, Cooper CJ. Determinants of renal function in patients with renal artery stenosis. Vasc Med 2011; 16:331-8. [PMID: 21908683 DOI: 10.1177/1358863x11419998] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Renal artery stenosis (RAS) is an important cause of renal failure; however, the factors associated with loss of kidney function in patients with RAS are poorly described, as are the predictors of an improvement in kidney function after stenting. One hundred patients at seven centers undergoing renal stenting were randomly assigned to an embolic protection device or double-blind use of a platelet glycoprotein IIb/IIIa inhibitor. The glomerular filtration rate (GFR) was measured using the creatinine-derived modified Modification of Diet in Renal Disease (MDRD) equation, cystatin C, and iohexol clearance. In univariate and multivariate models, baseline MDRD and cystatin C GFR were associated with congestive heart failure (CHF) (p = 0.01), lesion length (p = 0.01), and percent stenosis (-0.27, p = 0.01). In multivariate models, MDRD-estimated GFR 1 month after stenting was associated with bilateral stenosis (p < 0.05) and lesion length (p < 0.05), whereas with cystatin C the multivariate model included angiotensin receptor blocker (ARB) (p < 0.05) and minimal luminal diameter (MLD) (p < 0.05). The improvement in GFR from baseline to 1 month, measured as percent change, was related to baseline MDRD (p = 0.009) and cystatin C (p = 0.03) GFR. For MDRD GFR combined treatment with abciximab and Angioguard(®) embolic protection (p = 0.02) remained significant in multivariate analysis as did CHF, which was also significant with cystatin C (p = 0.05). In conclusion, CHF and lesion characteristics (MLD, percent stenosis and lesion length) are determinants of renal function in patients with RAS. In contrast, the acute improvement in renal function after revascularization is most strongly influenced by baseline GFR, and to a lesser degree CHF and combined procedural treatment with abciximab and embolic protection but not lesion characteristics. Clinical Trial Registration - URL:http://www.clinicaltrials.gov. Unique identifier: NCT00234585.
Collapse
|
32
|
Pavlatou MG, Mastorakos G, Margeli A, Kouskouni E, Tentolouris N, Katsilambros N, Chrousos GP, Papassotiriou I. Angiotensin blockade in diabetic patients decreases insulin resistance-associated low-grade inflammation. Eur J Clin Invest 2011; 41:652-8. [PMID: 21175613 DOI: 10.1111/j.1365-2362.2010.02453.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Insulin-resistant states, such as metabolic syndrome and diabetes mellitus type 2 (DM2), have been associated with chronic low-grade systemic inflammation. Elevated levels of interleukin-6 (IL-6), monocyte chemoattractant protein (MCP-1) and C-reactive protein (hs-CRP), are found in patients with type 2 diabetes with and without complications. Angiotensin II (Ang II), a potent vasopressor, seems to regulate also the expression of the above inflammatory mediators acting as proinflammatory cytokine. In this study, we examined the effects of candesartan, an angiotensin receptror blocker, in the chronic low-grade inflammation observed in DM 2. MATERIALS AND METHODS Seventeen patients with DM2 of <5years duration were recruited for the study. Patients received 4mg of candesartan, an angiotensin receptor blocker, for 6months. Blood levels of IL-6, MCP-1, hs-CRP and other inflammatory indices were measured before and at the end of candesartan administration. RESULTS At the end of treatment with candesartan, IL-6 levels decreased significantly (P<0·05). Serum levels of MCP-1 and hs-CRP showed a trend for significant decrease with treatment (P<0·08 and P<0·09, respectively). Statistically significant correlations were found between hs-CRP and MCP-1 (r=0·623, P< 0·05), IL-6 and MCP-1 (r=0·703, P<0·05) and TRT and MCP-1 (r=0·752, P<0·05), before but not at the end of candesartan administration. CONCLUSIONS Candesartan could decrease the low-grade inflammation of type 2 DM as shown by the decrease of inflammatory mediators. Thus, angiotensin receptor blockers could be useful for treating patients with DM2 not only for their antihypertensive capacity but also for their anti-inflammatory actions.
Collapse
Affiliation(s)
- Maria G Pavlatou
- First Department of Pediatrics, Athens University Medical School, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Hu H, Batteux F, Chéreau C, Kavian N, Marut W, Gobeaux C, Borderie D, Dinh-Xuan AT, Weill B, Nicco C. Clopidogrel protects from cell apoptosis and oxidative damage in a mouse model of renal ischaemia-reperfusion injury. J Pathol 2011; 225:265-75. [DOI: 10.1002/path.2916] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 03/31/2011] [Accepted: 04/04/2011] [Indexed: 12/31/2022]
|
34
|
Girardi JM, Farias RE, Ferreira AP, Raposo NRB. Rosuvastatin prevents proteinuria and renal inflammation in nitric oxide-deficient rats. Clinics (Sao Paulo) 2011; 66:1457-62. [PMID: 21915500 PMCID: PMC3161228 DOI: 10.1590/s1807-59322011000800025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 05/11/2011] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE The aim of the present study was to assess the effects of rosuvastatin on renal injury and inflammation in a model of nitric oxide deficiency. METHODS Male Wistar rats were randomly divided into four groups (n = 10/group) and treated for 28 days with saline (CTRL); 30 mg/kg/day L-NAME (L-name); L-NAME and 20 mg/kg/day rosuvastatin (L-name+ROS-20); or L-NAME and 2 mg/kg/day rosuvastatin (L-name+ROS-2). Systolic blood pressure was measured by plethysmography in the central artery of the tail. The serum total cholesterol, triglycerides, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, creatinine, nitric oxide, interleukin-6, and tumor necrosis factor alpha levels were analyzed. Urine samples were taken to measure the albumin: urinary creatinine ratio. Kidneys were sectioned and stained with hematoxylin/eosin and Masson's trichrome. Immunohistochemical analysis of the renal tissue was performed to detect macrophage infiltration of the glomeruli. RESULTS The systolic blood pressure was elevated in the L-name but not the L-name+rosuvastatin-20 and L-name+rosuvastatin-2 groups. The L-name group had a significantly reduced nitric oxide level and an increased interleukin-6 and tumor necrosis factor alpha level, albumin: urinary creatinine ratio and number of macrophages in the renal glomeruli. Rosuvastatin increased the nitric oxide level in the L-name+rosuvastatin-2 group and reduced the interleukin-6 and tumor necrosis factor alpha levels, glomerular macrophage number and albumin:urinary creatinine ratio in the L-name+rosuvastatin-20 and L-name+rosuvastatin-2 groups. CONCLUSION Rosuvastatin treatment reduced glomerular damage due to improvement in the inflammatory pattern independent of the systolic blood pressure and serum lipid level. These effects may lead to improvements in the treatment of kidney disease.
Collapse
|
35
|
Abstract
The pathologic paradigm for renal progression is advancing tubulointerstitial fibrosis. Whereas mechanisms underlying fibrogenesis have grown in scope and understanding in recent decades, effective human treatment to directly halt or even reverse fibrosis remains elusive. Here, we examine key features mediating the molecular and cellular basis of tubulointerstitial fibrosis and highlight new insights that may lead to novel therapies. How to prevent chronic kidney disease from progressing to renal failure awaits even deeper biochemical understanding.
Collapse
Affiliation(s)
- Michael Zeisberg
- Division of Matrix Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | | |
Collapse
|
36
|
Tang Y, Li B, Wang N, Xie Y, Wang L, Yuan Q, Zhang F, Qin J, Peng Z, Ning W, Wang L, Hu G, Li J, Tao L. Fluorofenidone protects mice from lethal endotoxemia through the inhibition of TNF-α and IL-1β release. Int Immunopharmacol 2010; 10:580-3. [PMID: 20159052 DOI: 10.1016/j.intimp.2010.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 02/09/2010] [Accepted: 02/10/2010] [Indexed: 10/19/2022]
|
37
|
Mulay SR, Gaikwad AB, Tikoo K. Combination of aspirin with telmisartan suppresses the augmented TGFbeta/smad signaling during the development of streptozotocin-induced type I diabetic nephropathy. Chem Biol Interact 2010; 185:137-42. [PMID: 20223228 DOI: 10.1016/j.cbi.2010.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 02/25/2010] [Accepted: 03/02/2010] [Indexed: 01/12/2023]
Abstract
Diabetic nephropathy (DN) is the most common indication for the development of end stage renal diseases. Inflammation is increasingly seen as the core process in the development of diabetes. Inflammatory markers e.g. NFkappaB (p65 levels), TNFalpha, COX-2 and TGFbeta-smad signaling are the key elements in the development of DN. Renin-angiotensin system suppressors like telmisartan have been used to treat DN, but they are not able to prevent completely because of development of resistance against them. Anti-inflammatory agents like, aspirin acts through both COX dependent and COX independent pathways. Hence, we thought that combining aspirin with telmisartan will be better therapeutic option in preventing the progression of nephropathy in diabetes. In the present study we studied the effect of this combination on inflammatory markers [COX-2, NFkappaB (p65 levels), TNFalpha], TGFbeta-smad expression in preventing the progression of streptozotocin-induced type I diabetic nephropathy. Treatment of aspirin significantly prevented the progression of nephropathy and inhibited the augmented COX-2, NFkappaB (p65 levels), TNFalpha, and TGFbeta-smad expression. Combination of aspirin with telmisartan resulted in a further decrease in the development of nephropathy and inflammatory markers in comparison to aspirin alone treatment. This is the first report which shows that aspirin in combination with telmisartan is more proficient in the treatment of diabetic nephropathy than any single drug therapy and involves the change in expression of inflammatory markers and TGFbeta-smad signaling.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme Inhibitors/pharmacology
- Angiotensin-Converting Enzyme Inhibitors/therapeutic use
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Aspirin/pharmacology
- Aspirin/therapeutic use
- Benzimidazoles/pharmacology
- Benzimidazoles/therapeutic use
- Benzoates/pharmacology
- Benzoates/therapeutic use
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetic Nephropathies/chemically induced
- Diabetic Nephropathies/drug therapy
- Diabetic Nephropathies/metabolism
- Diabetic Nephropathies/pathology
- Dose-Response Relationship, Drug
- Drug Therapy, Combination
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Inflammation/drug therapy
- Inflammation/metabolism
- Inflammation/pathology
- Male
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Oxidative Stress/drug effects
- Oxidative Stress/physiology
- Rats
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Smad Proteins/metabolism
- Streptozocin/administration & dosage
- Streptozocin/toxicity
- Telmisartan
- Transforming Growth Factor beta/metabolism
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Shrikant Ramesh Mulay
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, India
| | | | | |
Collapse
|
38
|
Notaro LA, Usman MH, Burke JF, Siddiqui A, Superdock KR, Ezekowitz MD. Secondary Prevention in Concurrent Coronary Artery, Cerebrovascular, and Chronic Kidney Disease: Focus on Pharmacological Therapy. Cardiovasc Ther 2009; 27:199-215. [DOI: 10.1111/j.1755-5922.2009.00087.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
39
|
Silverstein DM. Inflammation in chronic kidney disease: role in the progression of renal and cardiovascular disease. Pediatr Nephrol 2009; 24:1445-52. [PMID: 19083024 DOI: 10.1007/s00467-008-1046-0] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 09/24/2008] [Accepted: 10/11/2008] [Indexed: 11/28/2022]
Abstract
Inflammation is the response of the vasculature or tissues to various stimuli. An acute and chronic pro-inflammatory state exists in patients with chronic kidney disease (CKD), contributing substantially to morbidity and mortality. There are many mediators of inflammation in adults with CKD and end-stage kidney disease (ESKD), including hypoalbuminemia/malnutrition, atherosclerosis, advanced oxidation protein products, the peroxisome proliferators-activated receptor, leptin, the thiobarbituric acid reactive system, asymmetric dimethyl arginine, iron, fetuin-A, and cytokines. Inflammation contributes to the progression of CKD by inducing the release of cytokines and the increased production and activity of adhesion molecules, which together contribute to T cell adhesion and migration into the interstitium, subsequently attracting pro-fibrotic factors. Inflammation in CKD also causes mortality from cardiovascular disease by contributing to the development of vascular calcifications and endothelial dysfunction. Similar to the situation in adults, cardiovascular disease in pediatric CKD is linked to inflammation: abnormal left ventricular wall geometry is positively associated with markers of inflammation. This review focuses on traditional and novel mediators of inflammation in CKD and ESKD, and the deleterious effect inflammation has on the progression of renal and cardiovascular disease.
Collapse
Affiliation(s)
- Douglas M Silverstein
- Department of Nephrology, Children's National Medical Center, 111 Michigan Avenue NW, Washington D.C. 20010, USA.
| |
Collapse
|
40
|
Hobo A, Yuzawa Y, Kosugi T, Kato N, Asai N, Sato W, Maruyama S, Ito Y, Kobori H, Ikematsu S, Nishiyama A, Matsuo S, Kadomatsu K. The growth factor midkine regulates the renin-angiotensin system in mice. J Clin Invest 2009; 119:1616-25. [PMID: 19451697 DOI: 10.1172/jci37249] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 03/25/2009] [Indexed: 12/24/2022] Open
Abstract
The renin-angiotensin system plays a pivotal role in regulating blood pressure and is involved in the pathogenesis of kidney disorders and other diseases. Here, we report that the growth factor midkine is what we believe to be a novel regulator of the renin-angiotensin system. The hypertension induced in mice by 5/6 nephrectomy was accompanied by renal damage and elevated plasma angiotensin II levels and was ameliorated by an angiotensin-converting enzyme (ACE) inhibitor and an angiotensin receptor blocker. Notably, ACE activity in the lung, midkine expression in the lung, and midkine levels in the plasma were all increased after 5/6 nephrectomy. Exposure to midkine protein enhanced ACE expression in primary cultured human lung microvascular endothelial cells. Furthermore, hypertension was not induced and renal damage was less severe in midkine-deficient mice. Supplemental administration of midkine protein to midkine-deficient mice restored ACE expression in the lung and hypertension after 5/6 nephrectomy. Oxidative stress might be involved in midkine expression, since expression of NADH/NADPH oxidase-1, -2, and -4 was induced in the lung after 5/6 nephrectomy. Indeed, the antioxidative reagent tempol reduced midkine expression and plasma angiotensin II levels and consequently ameliorated hypertension. These results suggest that midkine regulates the renin-angiotensin system and mediates the kidney-lung interaction after 5/6 nephrectomy.
Collapse
Affiliation(s)
- Akinori Hobo
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Winning J, Reichel J, Eisenhut Y, Hamacher J, Kohl M, Deigner HP, Claus RA, Bauer M, Lösche W. Anti-platelet drugs and outcome in severe infection: clinical impact and underlying mechanisms. Platelets 2009; 20:50-7. [PMID: 19172522 DOI: 10.1080/09537100802503368] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Platelet activation contributes to microvascular thrombosis and organ failure in systemic inflammation. We tested the hypothesis whether anti-platelet drugs might favourably affect outcome in patients at risk for organ failure as well as in a mouse model of endotoxin shock. Two hundred twenty-four consecutive patients who were admitted for community acquired pneumonia over a time period of 5 years to a University Hospital were enrolled; about 20% of whom received anti-platelet drugs (acetylsalicylic acid, thienopyridines) for secondary prevention of cardiovascular disease. Patients with anti-platelet drugs were about 12 years old but did not differ in SOFA score and routine laboratory parameters at admission. Logistic regression and 2 x 2 table analysis in age-matched subgroups indicated that anti-platelet drugs may reduce the need of intensive care treatment (odds ratio (OR) 0.32 [95% confidential interval: 0.10-1.00] and 0.19 [0.04-0.87], respectively). In age-matched subgroups, the use of anti-platelet drugs was also associated with a shorter stay in hospital (13.9 +/- 6.2 vs. 18.2 +/- 10.2 days; p < 0.02). In the animal model Balb/c mice were pre-treated with clopidogrel (added to drinking water) for 4 days prior to intraperitoneal (i.p.) administration of endotoxin (lipopolsaccharide (LPS) from Escherichia coli 0111:B4). Within the first 48 hours after LPS there were no differences between clopidogrel and control animals (n = 26 each) in macro-haemodynamics. However, clopidogrel abolished the LPS-induced drop in platelet count and reduced fibrin deposition in lung tissue. Using DNA microarray technology, we could show that clopidogrel suppressed endotoxin-induced up-regulation of inflammation-relevant genes, including arachidonate-5-lipoxygenase activating protein and leukotriene B4 receptor 1. According to our data a possible benefit of anti-platelet drugs in patients on risk for systemic inflammation and organ failure should be tested in a prospective trial.
Collapse
Affiliation(s)
- Johannes Winning
- Anaesthesiology and Intensive Care Medicine, University Hospital Jena, Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|