1
|
Cheng X, Bai X, Shang WY, Wei L, Jia JY, Yan TK, Gu QH. Profiling dendritic cells subsets in renal tissue of patients with crescentic glomerulonephritis. Int Urol Nephrol 2024:10.1007/s11255-024-04175-6. [PMID: 39069601 DOI: 10.1007/s11255-024-04175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Dendritic cells (DCs) have been speculated to be involved in the pathogenesis of glomerular diseases. However, the numbers and distribution of DC subsets in the kidneys of patients with crescentic glomerulonephritis (CrGN) have not been clearly elucidated. METHODS A total of 26 patients with biopsy-proven CrGN were enrolled. Indirect immunofluorescence staining was used to quantify DC subsets in renal specimens. Double staining of HLA with CD11C, BDCA2 and CD209 respectively was performed to detect DC subsets. The correlation between DC subsets infiltrated in the kidney and clinical and pathological parameters was investigated. RESULTS DC subsets were predominantly present in the kidney interstitium, particularly in the peri-glomerular area. The numbers of CD11C+DCs, BDCA2+DCs and CD209+DCs increased in the patients with CrGN and varied among different types of CrGN. Though significant correlation between DC subsets and the percentage of crescents had not been identified, a notable increase in the number of CD11C+DCs were observed with the chronic development of crescents. Furthermore, patients with severe tubulointerstitial injury exhibited significantly more infiltrations of CD11C+DCs, BDCA2+DCs and CD209+DCs. Moreover, the numbers of CD11C+DCs and BDCA2+DCs were found to correlate with the level of serum C3. CONCLUSIONS Patients with CrGN showed increased kidney infiltration of DC subsets, primarily localized in the renal interstitium and peri-glomerular region. The correlation between DC subsets and fibrosis of crescent and severe tubulointerstitial injury implied a potential involvement of DCs in the development of CrGN.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xue Bai
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Wen-Ya Shang
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Li Wei
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jun-Ya Jia
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Tie-Kun Yan
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Qiu-Hua Gu
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
2
|
Armesto M, Nemours S, Arestín M, Bernal I, Solano-Iturri JD, Manrique M, Basterretxea L, Larrinaga G, Angulo JC, Lecumberri D, Iturregui AM, López JI, Lawrie CH. Identification of miRNAs and Their Target Genes Associated with Sunitinib Resistance in Clear Cell Renal Cell Carcinoma Patients. Int J Mol Sci 2024; 25:6881. [PMID: 38999991 PMCID: PMC11241516 DOI: 10.3390/ijms25136881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Sunitinib has greatly improved the survival of clear cell renal cell carcinoma (ccRCC) patients in recent years. However, 20-30% of treated patients do not respond. To identify miRNAs and genes associated with a response, comparisons were made between biopsies from responder and non-responder ccRCC patients. Using integrated transcriptomic analyses, we identified 37 miRNAs and 60 respective target genes, which were significantly associated with the NF-kappa B, PI3K-Akt and MAPK pathways. We validated expression of the miRNAs (miR-223, miR-155, miR-200b, miR-130b) and target genes (FLT1, PRDM1 and SAV1) in 35 ccRCC patients. High levels of miR-223 and low levels of FLT1, SAV1 and PRDM1 were associated with worse overall survival (OS), and combined miR-223 + SAV1 levels distinguished responders from non-responders (AUC = 0.92). Using immunohistochemical staining of 170 ccRCC patients, VEGFR1 (FLT1) expression was associated with treatment response, histological grade and RECIST (Response Evaluation Criteria in Solid Tumors) score, whereas SAV1 and BLIMP1 (PRDM1) were associated with metachronous metastatic disease. Using in situ hybridisation (ISH) to detect miR-155 we observed higher tumoural cell expression in non-responders, and non-tumoural cell expression with increased histological grade. In summary, our preliminary analysis using integrated miRNA-target gene analyses identified several novel biomarkers in ccRCC patients that surely warrant further investigation.
Collapse
Affiliation(s)
- María Armesto
- Molecular Oncology Group, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain; (M.A.); (S.N.); (M.A.); (I.B.); (L.B.)
| | - Stéphane Nemours
- Molecular Oncology Group, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain; (M.A.); (S.N.); (M.A.); (I.B.); (L.B.)
| | - María Arestín
- Molecular Oncology Group, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain; (M.A.); (S.N.); (M.A.); (I.B.); (L.B.)
| | - Iraide Bernal
- Molecular Oncology Group, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain; (M.A.); (S.N.); (M.A.); (I.B.); (L.B.)
- Pathology Department, Donostia University Hospital, 20014 San Sebastián, Spain; (J.D.S.-I.); (M.M.)
| | - Jon Danel Solano-Iturri
- Pathology Department, Donostia University Hospital, 20014 San Sebastián, Spain; (J.D.S.-I.); (M.M.)
| | - Manuel Manrique
- Pathology Department, Donostia University Hospital, 20014 San Sebastián, Spain; (J.D.S.-I.); (M.M.)
| | - Laura Basterretxea
- Molecular Oncology Group, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain; (M.A.); (S.N.); (M.A.); (I.B.); (L.B.)
- Medical Oncology Department, Donostia University Hospital, 20014 San Sebastián, Spain
| | - Gorka Larrinaga
- Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; (G.L.); (J.I.L.)
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Javier C. Angulo
- Clinical Department, Faculty of Medical Sciences, European University of Madrid, 28905 Getafe, Spain;
- Department of Urology, University Hospital of Getafe, 28907 Madrid, Spain
| | - David Lecumberri
- Department of Urology, Urduliz University Hospital, 48610 Urduliz, Spain;
| | | | - José I. López
- Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; (G.L.); (J.I.L.)
- Pathology Department, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Charles H. Lawrie
- Molecular Oncology Group, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain; (M.A.); (S.N.); (M.A.); (I.B.); (L.B.)
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
3
|
Li HY, Huang LF, Huang XR, Wu D, Chen XC, Tang JX, An N, Liu HF, Yang C. Endoplasmic Reticulum Stress in Systemic Lupus Erythematosus and Lupus Nephritis: Potential Therapeutic Target. J Immunol Res 2023; 2023:7625817. [PMID: 37692838 PMCID: PMC10484658 DOI: 10.1155/2023/7625817] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease. Approximately one-third to two-thirds of the patients with SLE progress to lupus nephritis (LN). The pathogenesis of SLE and LN has not yet been fully elucidated, and effective treatment for both conditions is lacking. The endoplasmic reticulum (ER) is the largest intracellular organelle and is a site of protein synthesis, lipid metabolism, and calcium storage. Under stress, the function of ER is disrupted, and the accumulation of unfolded or misfolded proteins occurs in ER, resulting in an ER stress (ERS) response. ERS is involved in the dysfunction of B cells, macrophages, T cells, dendritic cells, neutrophils, and other immune cells, causing immune system disorders, such as SLE. In addition, ERS is also involved in renal resident cell injury and contributes to the progression of LN. The molecular chaperones, autophagy, and proteasome degradation pathways inhibit ERS and restore ER homeostasis to improve the dysfunction of immune cells and renal resident cell injury. This may be a therapeutic strategy for SLE and LN. In this review, we summarize advances in this field.
Collapse
Affiliation(s)
- Hui-Yuan Li
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Li-Feng Huang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Xiao-Rong Huang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Dan Wu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Xiao-Cui Chen
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Ji-Xin Tang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Ning An
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Hua-Feng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Chen Yang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| |
Collapse
|
4
|
Han Z, Chen L, Peng H, Zheng H, Lin Y, Peng F, Fan Y, Xie X, Yang S, Wang Z, Yuan L, Wei X, Chen H. The role of thyroid hormone in the renal immune microenvironment. Int Immunopharmacol 2023; 119:110172. [PMID: 37086678 DOI: 10.1016/j.intimp.2023.110172] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023]
Abstract
Thyroid hormones are essential for proper kidney growth and development. The kidney is not only the organ of thyroid hormone metabolism but also the target organ of thyroid hormone. Kidney disease is a common type of kidney damage, mainly including different types of acute kidney injury, chronic kidney disease, diabetic nephropathy, lupus nephritis, and renal cell carcinoma. The kidney is often damaged by an immune response directed against its antigens or a systemic immune response. A variety of immune cells in the innate and adaptive immune systems, including neutrophils, macrophages, dendritic cells, T lymphocytes, and B lymphocytes, is essential for maintaining immune homeostasis and preventing autoimmune kidney disease. Recent studies have found that thyroid hormone plays an indispensable role in the immune microenvironment of various kidney diseases. Thyroid hormones regulate the activity of neutrophils, and dendritic cells express triiodothyronine receptors. Compared to hypothyroidism, hyperthyroidism has a greater effect on neutrophils. Furthermore, in adaptive immune systems, thyroid hormone may activate T lymphocytes through several underlying mechanisms, such as mediating NF-κB, protein kinase C signalling pathways, and β-adrenergic receptors, leading to increased T lymphocyte activation. The present review discusses the effects of thyroid hormone metabolism regulation in the immune microenvironment on the function of various immune cells, especially neutrophils, macrophages, dendritic cells, T lymphocytes, and B lymphocytes. Although there are not enough data at this stage to conclude the clinical relevance of these findings, thyroid hormone metabolism may influence autoimmune kidney disease by regulating the renal immune microenvironment.
Collapse
Affiliation(s)
- Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liuyan Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyao Peng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongying Zheng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Peng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunhe Fan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiuli Xie
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Simin Yang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhanzhan Wang
- Lianyungang Clinical Medical College of Nanjing Medical University, Lianyungang, China
| | - Lan Yuan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiuyan Wei
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | | |
Collapse
|
5
|
Alam R, Samad A, Ahammad F, Nur SM, Alsaiari AA, Imon RR, Talukder MEK, Nain Z, Rahman MM, Mohammad F, Karpiński TM. In silico formulation of a next-generation multiepitope vaccine for use as a prophylactic candidate against Crimean-Congo hemorrhagic fever. BMC Med 2023; 21:36. [PMID: 36726141 PMCID: PMC9891764 DOI: 10.1186/s12916-023-02750-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Crimean-Congo hemorrhagic fever (CCHF) is a widespread disease transmitted to humans and livestock animals through the bite of infected ticks or close contact with infected persons' blood, organs, or other bodily fluids. The virus is responsible for severe viral hemorrhagic fever outbreaks, with a case fatality rate of up to 40%. Despite having the highest fatality rate of the virus, a suitable treatment option or vaccination has not been developed yet. Therefore, this study aimed to formulate a multiepitope vaccine against CCHF through computational vaccine design approaches. METHODS The glycoprotein, nucleoprotein, and RNA-dependent RNA polymerase of CCHF were utilized to determine immunodominant T- and B-cell epitopes. Subsequently, an integrative computational vaccinology approach was used to formulate a multi-epitopes vaccine candidate against the virus. RESULTS After rigorous assessment, a multiepitope vaccine was constructed, which was antigenic, immunogenic, and non-allergenic with desired physicochemical properties. Molecular dynamics (MD) simulations of the vaccine-receptor complex show strong stability of the vaccine candidates to the targeted immune receptor. Additionally, the immune simulation of the vaccine candidates found that the vaccine could trigger real-life-like immune responses upon administration to humans. CONCLUSIONS Finally, we concluded that the formulated multiepitope vaccine candidates would provide excellent prophylactic properties against CCHF.
Collapse
Affiliation(s)
- Rahat Alam
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.,Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, 7408, Bangladesh
| | - Abdus Samad
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.,Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, 7408, Bangladesh
| | - Foysal Ahammad
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, 7408, Bangladesh.,Division of Biological and Biomedical Sciences (BBS), College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), 34110, Doha, Qatar
| | - Suza Mohammad Nur
- Department of Biochemistry, School of Medicine Case, Western Reserve University, Cleveland, OH, 44106, USA
| | - Ahad Amer Alsaiari
- College of Applied Medical Science, Clinical Laboratories Science Department, Taif University, Taif, 21944, Saudi Arabia
| | - Raihan Rahman Imon
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.,Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, 7408, Bangladesh
| | - Md Enamul Kabir Talukder
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.,Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, 7408, Bangladesh
| | - Zulkar Nain
- School of Biomedical Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Md Mashiar Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Farhan Mohammad
- Division of Biological and Biomedical Sciences (BBS), College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), 34110, Doha, Qatar.
| | - Tomasz M Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Rokietnicka 10, 60-806, Poznań, Poland.
| |
Collapse
|
6
|
Brech D, Herbstritt AS, Diederich S, Straub T, Kokolakis E, Irmler M, Beckers J, Büttner FA, Schaeffeler E, Winter S, Schwab M, Nelson PJ, Noessner E. Dendritic Cells or Macrophages? The Microenvironment of Human Clear Cell Renal Cell Carcinoma Imprints a Mosaic Myeloid Subtype Associated with Patient Survival. Cells 2022; 11:3289. [PMID: 36291154 PMCID: PMC9600747 DOI: 10.3390/cells11203289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 09/29/2023] Open
Abstract
Since their initial description by Elie Metchnikoff, phagocytes have sparked interest in a variety of biologic disciplines. These important cells perform central functions in tissue repair and immune activation as well as tolerance. Myeloid cells can be immunoinhibitory, particularly in the tumor microenvironment, where their presence is generally associated with poor patient prognosis. These cells are highly adaptable and plastic, and can be modulated to perform desired functions such as antitumor activity, if key programming molecules can be identified. Human clear cell renal cell carcinoma (ccRCC) is considered immunogenic; yet checkpoint blockades that target T cell dysfunction have shown limited clinical efficacy, suggesting additional layers of immunoinhibition. We previously described "enriched-in-renal cell carcinoma" (erc) DCs that were often found in tight contact with dysfunctional T cells. Using transcriptional profiling and flow cytometry, we describe here that ercDCs represent a mosaic cell type within the macrophage continuum co-expressing M1 and M2 markers. The polarization state reflects tissue-specific signals that are characteristic of RCC and renal tissue homeostasis. ErcDCs are tissue-resident with increasing prevalence related to tumor grade. Accordingly, a high ercDC score predicted poor patient survival. Within the profile, therapeutic targets (VSIG4, NRP1, GPNMB) were identified with promise to improve immunotherapy.
Collapse
Affiliation(s)
- Dorothee Brech
- Immunoanalytics/Tissue Control of Immunocytes, Helmholtz Zentrum München, 81377 Munich, Germany
| | - Anna S. Herbstritt
- Immunoanalytics/Tissue Control of Immunocytes, Helmholtz Zentrum München, 81377 Munich, Germany
| | - Sarah Diederich
- Immunoanalytics/Tissue Control of Immunocytes, Helmholtz Zentrum München, 81377 Munich, Germany
| | - Tobias Straub
- Bioinformatics Core Unit, Biomedical Center, Ludwig-Maximilians-University, 82152 Planegg, Germany
| | - Evangelos Kokolakis
- Immunoanalytics/Tissue Control of Immunocytes, Helmholtz Zentrum München, 81377 Munich, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Chair of Experimental Genetics, Technical University of Munich, 85354 Freising, Germany
| | - Florian A. Büttner
- Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- University of Tuebingen, 72074 Tuebingen, Germany
| | - Elke Schaeffeler
- Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- University of Tuebingen, 72074 Tuebingen, Germany
| | - Stefan Winter
- Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- University of Tuebingen, 72074 Tuebingen, Germany
| | - Matthias Schwab
- Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- University of Tuebingen, 72074 Tuebingen, Germany
- Department of Clinical Pharmacology, University of Tuebingen, 72074 Tuebingen, Germany
- Department of Pharmacy and Biochemistry, University of Tuebingen, 72074 Tuebingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tuebingen, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Peter J. Nelson
- Medizinische Klinik und Poliklinik IV, University of Munich, 80336 Munich, Germany
| | - Elfriede Noessner
- Immunoanalytics/Tissue Control of Immunocytes, Helmholtz Zentrum München, 81377 Munich, Germany
| |
Collapse
|
7
|
Lu X, Crowley SD. Actions of Dendritic Cells in the Kidney during Hypertension. Compr Physiol 2022; 12:4087-4101. [PMID: 35950656 DOI: 10.1002/cphy.c210050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The immune response plays a critical role in the pathogenesis of hypertension, and immune cell populations can promote blood pressure elevation via actions in the kidney. Among these cell lineages, dendritic cells (DCs), the most potent antigen-presenting cells, play a central role in regulating immune response during hypertension and kidney disease. DCs have different subtypes, and renal DCs are comprised of the CD103+ CD11b- and CD103- CD11b+ subsets. DCs become mature and express costimulatory molecules on their surface once they encounter antigen. Isolevuglandin-modified proteins function as antigens to activate DCs and trigger them to stimulate T cells. Activated T cells accumulate in the hypertensive kidney, release effector cytokines, promote renal oxidative stress, and promote renal salt and water retention. Individual subsets of activated T cells can secrete tumor necrosis factor-alpha, interleukin-17A, and interferon-gamma, each of which has augmented the elevation of blood pressure in hypertensive models by enhancing renal sodium transport. Fms-like tyrosine kinase 3 ligand-dependent classical DCs are required to sustain the full hypertensive response, but C-X3 -C chemokine receptor 1 positive DCs do not regulate blood pressure. Excess sodium enters the DC through transporters to activate DCs, whereas the ubiquitin editor A20 in dendritic cells constrains blood pressure elevation by limiting T cell activation. By contrast, activation of the salt sensing kinase, serum/glucocorticoid kinase 1 in DCs exacerbates salt-sensitive hypertension. This article discusses recent studies illustrating mechanisms through which DC-T cell interactions modulate levels of pro-hypertensive mediators to regulate blood pressure via actions in the kidney. © 2022 American Physiological Society. Compr Physiol 12:1-15, 2022.
Collapse
Affiliation(s)
- Xiaohan Lu
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| |
Collapse
|
8
|
Xu L. The Role of Myeloid Cells in Acute Kidney Injury and Kidney Repair. KIDNEY360 2021; 2:1852-1864. [PMID: 35372990 PMCID: PMC8785849 DOI: 10.34067/kid.0000672021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 09/17/2021] [Indexed: 02/04/2023]
Abstract
AKI remains highly prevalent, yet no optimal therapy is available to prevent it or promote recovery after initial insult. Experimental studies have demonstrated that both innate and adaptive immune responses play a central role during AKI. In response to injury, myeloid cells are first recruited and activated on the basis of specific signals from the damaged microenvironment. The subsequent recruitment and activation state of the immune cells depends on the stage of injury and recovery, reflecting a dynamic and diverse spectrum of immunophenotypes. In this review, we highlight our current understanding of the mechanisms by which myeloid cells contribute to injury, repair, and fibrosis after AKI.
Collapse
Affiliation(s)
- Leyuan Xu
- Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
9
|
Role of Dendritic Cell in Diabetic Nephropathy. Int J Mol Sci 2021; 22:ijms22147554. [PMID: 34299173 PMCID: PMC8308035 DOI: 10.3390/ijms22147554] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 11/18/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the most significant microvascular complications in diabetic patients. DN is the leading cause of end-stage renal disease, accounting for approximately 50% of incident cases. The current treatment options, such as optimal control of hyperglycemia and elevated blood pressure, are insufficient to prevent its progression. DN has been considered as a nonimmune, metabolic, or hemodynamic glomerular disease initiated by hyperglycemia. However, recent studies suggest that DN is an inflammatory disease, and immune cells related with innate and adaptive immunity, such as macrophage and T cells, might be involved in its development and progression. Although it has been revealed that kidney dendritic cells (DCs) accumulation in the renal tissue of human and animal models of DN require activated T cells in the kidney disease, little is known about the function of DCs in DN. In this review, we describe kidney DCs and their subsets, and the role in the pathogenesis of DN. We also suggest how to improve the kidney outcomes by modulating kidney DCs optimally in the patients with DN.
Collapse
|
10
|
Rodionova K, Hilgers KF, Paulus EM, Tiegs G, Ott C, Schmieder R, Schiffer M, Amann K, Veelken R, Ditting T. Neurogenic tachykinin mechanisms in experimental nephritis of rats. Pflugers Arch 2020; 472:1705-1717. [PMID: 33070237 PMCID: PMC7691313 DOI: 10.1007/s00424-020-02469-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/07/2020] [Accepted: 09/30/2020] [Indexed: 01/24/2023]
Abstract
We demonstrated earlier that renal afferent pathways combine very likely “classical” neural signal transduction to the central nervous system and a substance P (SP)–dependent mechanism to control sympathetic activity. SP content of afferent sensory neurons is known to mediate neurogenic inflammation upon release. We tested the hypothesis that alterations in SP-dependent mechanisms of renal innervation contribute to experimental nephritis. Nephritis was induced by OX-7 antibodies in rats, 6 days later instrumented for recording of blood pressure (BP), heart rate (HR), drug administration, and intrarenal administration (IRA) of the TRPV1 agonist capsaicin to stimulate afferent renal nerve pathways containing SP and electrodes for renal sympathetic nerve activity (RSNA). The presence of the SP receptor NK-1 on renal immune cells was assessed by FACS. IRA capsaicin decreased RSNA from 62.4 ± 5.1 to 21.6 ± 1.5 mV s (*p < 0.05) in controls, a response impaired in nephritis. Suppressed RSNA transiently but completely recovered after systemic administration of a neurokinin 1 (NK1-R) blocker. NK-1 receptors occurred mainly on CD11+ dendritic cells (DCs). An enhanced frequency of CD11c+NK1R+ cell, NK-1 receptor+ macrophages, and DCs was assessed in nephritis. Administration of the NK-1R antagonist aprepitant during nephritis reduced CD11c+NK1R+ cells, macrophage infiltration, renal expression of chemokines, and markers of sclerosis. Hence, SP promoted renal inflammation by weakening sympathoinhibitory mechanisms, while at the same time, substance SP released intrarenally from afferent nerve fibers aggravated immunological processes i.e. by the recruitment of DCs.
Collapse
Affiliation(s)
- Kristina Rodionova
- Department of Internal Medicine 4 (Nephrology und Hypertension), Friedrich-Alexander University Erlangen, Loschgestraße 8, 91054, Erlangen, Germany
| | - Karl F Hilgers
- Department of Internal Medicine 4 (Nephrology und Hypertension), Friedrich-Alexander University Erlangen, Loschgestraße 8, 91054, Erlangen, Germany
| | - Eva-Maria Paulus
- Department of Internal Medicine 4 (Nephrology und Hypertension), Friedrich-Alexander University Erlangen, Loschgestraße 8, 91054, Erlangen, Germany
| | - Gisa Tiegs
- Center of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Ott
- Department of Internal Medicine 4 (Nephrology und Hypertension), Friedrich-Alexander University Erlangen, Loschgestraße 8, 91054, Erlangen, Germany.,Department of Internal Medicine 4 (Nephrology und Hypertension), Paracelsus Private Medical School, Klinikum Nuremberg, Nuremberg, Germany
| | - Roland Schmieder
- Department of Internal Medicine 4 (Nephrology und Hypertension), Friedrich-Alexander University Erlangen, Loschgestraße 8, 91054, Erlangen, Germany
| | - Mario Schiffer
- Department of Internal Medicine 4 (Nephrology und Hypertension), Friedrich-Alexander University Erlangen, Loschgestraße 8, 91054, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, University of Erlangen, Erlangen, Germany
| | - Roland Veelken
- Department of Internal Medicine 4 (Nephrology und Hypertension), Friedrich-Alexander University Erlangen, Loschgestraße 8, 91054, Erlangen, Germany. .,Department of Internal Medicine 4 (Nephrology und Hypertension), Paracelsus Private Medical School, Klinikum Nuremberg, Nuremberg, Germany.
| | - Tilmann Ditting
- Department of Internal Medicine 4 (Nephrology und Hypertension), Friedrich-Alexander University Erlangen, Loschgestraße 8, 91054, Erlangen, Germany.,Department of Internal Medicine 4 (Nephrology und Hypertension), Paracelsus Private Medical School, Klinikum Nuremberg, Nuremberg, Germany
| |
Collapse
|
11
|
Kidney dendritic cells: fundamental biology and functional roles in health and disease. Nat Rev Nephrol 2020; 16:391-407. [PMID: 32372062 DOI: 10.1038/s41581-020-0272-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2020] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) are chief inducers of adaptive immunity and regulate local inflammatory responses across the body. Together with macrophages, the other main type of mononuclear phagocyte, DCs constitute the most abundant component of the intrarenal immune system. This network of functionally specialized immune cells constantly surveys its microenvironment for signs of injury or infection, which trigger the initiation of an immune response. In the healthy kidney, DCs coordinate effective immune responses, for example, by recruiting neutrophils for bacterial clearance in pyelonephritis. The pro-inflammatory actions of DCs can, however, also contribute to tissue damage in various types of acute kidney injury and chronic glomerulonephritis, as DCs recruit and activate effector T cells, which release toxic mediators and maintain tubulointerstitial immune infiltrates. These actions are counterbalanced by DC subsets that promote the activation and maintenance of regulatory T cells to support resolution of the immune response and allow kidney repair. Several studies have investigated the multiple roles for DCs in kidney homeostasis and disease, but it has become clear that current tools and subset markers are not sufficient to accurately distinguish DCs from macrophages. Multidimensional transcriptomic analysis studies promise to improve mononuclear phagocyte classification and provide a clearer view of DC ontogeny and subsets.
Collapse
|
12
|
Baharlou H, Canete NP, Cunningham AL, Harman AN, Patrick E. Mass Cytometry Imaging for the Study of Human Diseases-Applications and Data Analysis Strategies. Front Immunol 2019; 10:2657. [PMID: 31798587 PMCID: PMC6868098 DOI: 10.3389/fimmu.2019.02657] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/28/2019] [Indexed: 01/09/2023] Open
Abstract
High parameter imaging is an important tool in the life sciences for both discovery and healthcare applications. Imaging Mass Cytometry (IMC) and Multiplexed Ion Beam Imaging (MIBI) are two relatively recent technologies which enable clinical samples to be simultaneously analyzed for up to 40 parameters at subcellular resolution. Importantly, these "Mass Cytometry Imaging" (MCI) modalities are being rapidly adopted for studies of the immune system in both health and disease. In this review we discuss, first, the various applications of MCI to date. Second, due to the inherent challenge of analyzing high parameter spatial data, we discuss the various approaches that have been employed for the processing and analysis of data from MCI experiments.
Collapse
Affiliation(s)
- Heeva Baharlou
- The Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Nicolas P. Canete
- The Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Anthony L. Cunningham
- The Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Andrew N. Harman
- The Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Ellis Patrick
- The Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
- School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
13
|
Murkamilov IT, Sabirov IS, Fomin VV, Murkamilova ZA, Sabirova AI, Tsoi LG, Aitbaev KA, Redjapova NA, Yusupov FA. [Correlations between parameters of central hemodynamics and cytokine profile in chronic kidney disease in combination with cerebrovascular diseases]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:65-71. [PMID: 31407684 DOI: 10.17116/jnevro201911906165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To study the relationship between central hemodynamics and arterial stiffness indicators with cystatin C, tumor necrosis factor-alpha (TNF-alpha) and interleukin-(IL)-10 in patients with chronic kidney disease (CKD) in combination with cerebrovascular diseases (CEV). MATERIAL AND METHODS One hundred and twenty patients, aged from 19 to 81 years, with signs of chronic renal dysfunction, including 73 with CKD (1st group) and 47 with CKD in combination with CEH (group 2), were examined. 'AngioScan' (Russia) was used to study indices of arterial rigidity. Blood plasma concentrations of TNF-alpha, IL-10 and cystatin C were determined by the enzyme immunoassay. RESULTS There is a significant increase (p<0.05) in the systolic, diastolic, central levels of arterial pressure, augmentation index, the index of increase at a pulse rate of 75 per min, the age index, the age of the vascular system and cystatin C content in the patients with CKD in combination with CEV compared to the patients with CKD without accompanying CEH. In the group of patients with CKD in combination with CEV, a correlation was found between the level of TNF-alpha and arterial stiffness index on one side (r=0.318; p<0.05) and the augmentation index on the other (r=0.299; p<0.05). CONCLUSION The results confirm the fact that there is a significant increase in the level of plasma cystatin C and a decrease in GFR in patients with CKD in combination with CEV. Correlations were found between the level of TNF-alpha, augmentation index and deterioration of parameters of central hemodynamics and arterial stiffness in CKD in combination with CEH.
Collapse
Affiliation(s)
- I T Murkamilov
- Akhunbaev Kyrgyz State Medical Academy, Bishkek, Kyrgyzstan; First President of Russia B.N. Yeltsin Kyrgyz Russian Slavic University, Bishkek Kyrgyzstan
| | - I S Sabirov
- First President of Russia B.N. Yeltsin Kyrgyz Russian Slavic University, Bishkek Kyrgyzstan
| | - V V Fomin
- Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - A I Sabirova
- First President of Russia B.N. Yeltsin Kyrgyz Russian Slavic University, Bishkek Kyrgyzstan
| | - L G Tsoi
- First President of Russia B.N. Yeltsin Kyrgyz Russian Slavic University, Bishkek Kyrgyzstan
| | - K A Aitbaev
- Research Institute of Molecular Biology and Medicine, Bishkek, Kyrgyzstan
| | | | | |
Collapse
|
14
|
Neubert P, Schröder A, Müller DN, Jantsch J. Interplay of Na + Balance and Immunobiology of Dendritic Cells. Front Immunol 2019; 10:599. [PMID: 30984179 PMCID: PMC6449459 DOI: 10.3389/fimmu.2019.00599] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/06/2019] [Indexed: 12/12/2022] Open
Abstract
Local Na+ balance emerges as an important factor of tissue microenvironment. On the one hand, immune cells impact on local Na+ levels. On the other hand, Na+ availability is able to influence immune responses. In contrast to macrophages, our knowledge of dendritic cells (DCs) in this state of affair is rather limited. Current evidence suggests that the impact of increased Na+ on DCs is context dependent. Moreover, it is conceivable that DC immunobiology might also be influenced by Na+-rich-diet-induced changes of the gut microbiome.
Collapse
Affiliation(s)
- Patrick Neubert
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, University of Regensburg, Regensburg, Germany
| | - Agnes Schröder
- Department of Orthodontics, University Hospital Regensburg, University of Regensburg, Regensburg, Germany
| | - Dominik N Müller
- Experimental and Clinical Research Center, A Joint Cooperation of Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany.,Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, University of Regensburg, Regensburg, Germany
| |
Collapse
|
15
|
Abstract
Pathophysiologically, the classification of acute kidney injury (AKI) can be divided into three categories: (1) prerenal, (2) intrinsic, and (3) postrenal. Emerging evidence supports the involvement of renal tubular epithelial cells and the innate and adaptive arms of the immune system in the pathogenesis of intrinsic AKI. Pro-inflammatory damage-associated molecular patterns, pathogen-associated molecular patterns, hypoxia inducible factors, toll-like receptors, complement system, oxidative stress, adhesion molecules, cell death, resident renal dendritic cells, neutrophils, T and B lymphocytes, macrophages, natural killer T cells, cytokines, and secreted chemokines contribute to the immunopathogenesis of AKI. However, other immune cells and pathways such as M2 macrophages, regulatory T cells, progranulin, and autophagy exhibit anti-inflammatory properties and facilitate kidney tissue repair after AKI. Thus, therapies for AKI include agents such as anti-inflammatory (e.g., recombinant alkaline phosphatase), antioxidants (iron chelators), and apoptosis inhibitors. In preclinical toxicity studies, drug-induced kidney injury can be seen after exposure to a nephrotoxicant test article due to immune mechanisms and dysregulation of innate, and/or adaptive cellular immunity. The focus of this review will be on intrinsic AKI, as it relates to the immune and renal systems cross talks focusing on the cellular and pathophysiologic mechanisms of AKI.
Collapse
Affiliation(s)
- Zaher A. Radi
- Drug Safety R&D, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, USA
| |
Collapse
|
16
|
A review of the role of immune cells in acute kidney injury. Pediatr Nephrol 2018; 33:1629-1639. [PMID: 28801723 DOI: 10.1007/s00467-017-3774-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/30/2017] [Accepted: 07/20/2017] [Indexed: 01/08/2023]
Abstract
Acute kidney injury (AKI) is a systemic disease occurring commonly in patients who are critically ill. Etiologies of AKI can be septic or aseptic (nephrotoxic, or ischemia-reperfusion injury). Recent evidence reveals that innate and adaptive immune responses are involved in mediating damage to renal tubular cells and in recovery from AKI. Dendritic cells, monocytes/macrophages, neutrophils, T lymphocytes, and B lymphocytes all contribute to kidney injury. Conversely, M2 macrophages and regulatory T cells are essential in suppressing inflammation, tissue remodeling and repair following kidney injury. AKI itself confers an increased risk for developing infection owing to increased production and decreased clearance of cytokines, in addition to dysfunction of immune cells themselves. Neutrophils are the predominant cell type rendered dysfunctional by AKI. In this review, we describe the bi-directional interplay between the immune system and AKI and summarize recent developments in this field of research.
Collapse
|
17
|
Kumar V. Dendritic cells in sepsis: Potential immunoregulatory cells with therapeutic potential. Mol Immunol 2018; 101:615-626. [DOI: 10.1016/j.molimm.2018.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/01/2018] [Accepted: 07/02/2018] [Indexed: 12/13/2022]
|
18
|
Viehmann SF, Böhner AM, Kurts C, Brähler S. The multifaceted role of the renal mononuclear phagocyte system. Cell Immunol 2018; 330:97-104. [DOI: 10.1016/j.cellimm.2018.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 04/16/2018] [Accepted: 04/20/2018] [Indexed: 12/15/2022]
|
19
|
Eymael J, Sharma S, Loeven MA, Wetzels JF, Mooren F, Florquin S, Deegens JK, Willemsen BK, Sharma V, van Kuppevelt TH, Bakker MA, Ostendorf T, Moeller MJ, Dijkman HB, Smeets B, van der Vlag J. CD44 is required for the pathogenesis of experimental crescentic glomerulonephritis and collapsing focal segmental glomerulosclerosis. Kidney Int 2018; 93:626-642. [DOI: 10.1016/j.kint.2017.09.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 09/11/2017] [Accepted: 09/21/2017] [Indexed: 10/18/2022]
|
20
|
Brähler S, Zinselmeyer BH, Raju S, Nitschke M, Suleiman H, Saunders BT, Johnson MW, Böhner AMC, Viehmann SF, Theisen DJ, Kretzer NM, Briseño CG, Zaitsev K, Ornatsky O, Chang Q, Carrero JA, Kopp JB, Artyomov MN, Kurts C, Murphy KM, Miner JH, Shaw AS. Opposing Roles of Dendritic Cell Subsets in Experimental GN. J Am Soc Nephrol 2018; 29:138-154. [PMID: 29217759 PMCID: PMC5748909 DOI: 10.1681/asn.2017030270] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 09/15/2017] [Indexed: 01/08/2023] Open
Abstract
Dendritic cells (DCs) are thought to form a dendritic network across barrier surfaces and throughout organs, including the kidney, to perform an important sentinel function. However, previous studies of DC function used markers, such as CD11c or CX3CR1, that are not unique to DCs. Here, we evaluated the role of DCs in renal inflammation using a CD11c reporter mouse line and two mouse lines with DC-specific reporters, Zbtb46-GFP and Snx22-GFP. Multiphoton microscopy of kidney sections confirmed that most of the dendritically shaped CD11c+ cells forming a network throughout the renal interstitium expressed macrophage-specific markers. In contrast, DCs marked by Zbtb46-GFP or Snx22-GFP were less abundant, concentrated around blood vessels, and round in shape. We confirmed this pattern of localization using imaging mass cytometry. Motility measurements showed that resident macrophages were sessile, whereas DCs were motile before and after inflammation. Although uninflamed glomeruli rarely contained DCs, injury with nephrotoxic antibodies resulted in accumulation of ZBTB46 + cells in the periglomerular region. ZBTB46 identifies all classic DCs, which can be categorized into two functional subsets that express either CD103 or CD11b. Depletion of ZBTB46 + cells attenuated the antibody-induced kidney injury, whereas deficiency of the CD103+ subset accelerated injury through a mechanism that involved increased neutrophil infiltration. RNA sequencing 7 days after nephrotoxic antibody injection showed that CD11b+ DCs expressed the neutrophil-attracting cytokine CXCL2, whereas CD103+ DCs expressed high levels of several anti-inflammatory genes. These results provide new insights into the distinct functions of the two major DC subsets in glomerular inflammation.
Collapse
Affiliation(s)
- Sebastian Brähler
- Department of Pathology and Immunology
- Division of Nephrology, Department of Medicine, and
- Department II of Internal Medicine and
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | - Alexander M C Böhner
- Institute of Experimental Immunology, University Clinic of the Rheinische Friedrich Wilhelms Universität, Bonn, Germany
| | - Susanne F Viehmann
- Institute of Experimental Immunology, University Clinic of the Rheinische Friedrich Wilhelms Universität, Bonn, Germany
| | | | | | | | - Konstantin Zaitsev
- Computer Technologies Department, ITMO University, St. Petersburg, Russia
| | | | - Qing Chang
- Fluidigm Inc., Markham, Ontario, Canada; and
| | | | - Jeffrey B Kopp
- Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Maxim N Artyomov
- Department of Pathology and Immunology
- Computer Technologies Department, ITMO University, St. Petersburg, Russia
| | - Christian Kurts
- Institute of Experimental Immunology, University Clinic of the Rheinische Friedrich Wilhelms Universität, Bonn, Germany
| | - Kenneth M Murphy
- Department of Pathology and Immunology
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri
| | | | - Andrey S Shaw
- Research Biology, Genentech, South San Francisco, California;
| |
Collapse
|
21
|
Luque Y, Cathelin D, Vandermeersch S, Xu X, Sohier J, Placier S, Xu-Dubois YC, Louis K, Hertig A, Bories JC, Vasseur F, Campagne F, Di Santo JP, Vosshenrich C, Rondeau E, Mesnard L. Glomerular common gamma chain confers B- and T-cell–independent protection against glomerulonephritis. Kidney Int 2017; 91:1146-1158. [DOI: 10.1016/j.kint.2016.10.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 10/19/2016] [Accepted: 10/27/2016] [Indexed: 12/22/2022]
|
22
|
Pakalniškytė D, Schraml BU. Tissue-Specific Diversity and Functions of Conventional Dendritic Cells. Adv Immunol 2017; 134:89-135. [DOI: 10.1016/bs.ai.2017.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Lovisa S, Zeisberg M, Kalluri R. Partial Epithelial-to-Mesenchymal Transition and Other New Mechanisms of Kidney Fibrosis. Trends Endocrinol Metab 2016; 27:681-695. [PMID: 27372267 DOI: 10.1016/j.tem.2016.06.004] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/06/2016] [Accepted: 06/06/2016] [Indexed: 12/24/2022]
Abstract
Kidney fibrosis is the unavoidable consequence of chronic kidney disease irrespective of the primary underlying insult. It is a complex phenomenon governed by the interplay between different cellular components and intricate networks of signaling pathways, which together lead to loss of renal functionality and replacement of kidney parenchyma with scar tissue. An immense effort has recently been made to understand the molecular and cellular mechanisms leading to kidney fibrosis. The cellular protagonists of this process include myofibroblasts, tubular epithelial cells, endothelial cells, and immune cells. We discuss here the most recent findings, including partial epithelial-to-mesenchymal transition (EMT), in the initiation and progression of tissue fibrosis and chronic kidney disease (CKD). A deep understanding of these mechanisms will allow the development of effective therapies.
Collapse
Affiliation(s)
- Sara Lovisa
- Department of Cancer Biology, Metastasis Research Center, University of Texas M.D. Anderson Cancer Center, Houston, TX 77054, USA
| | - Michael Zeisberg
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen, Germany
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas M.D. Anderson Cancer Center, Houston, TX 77054, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Bioengineering, Rice University, Houston, TX 77030, USA.
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Despite recent developments and treatment successes, the outcome, and prognosis of patients with lupus nephritis (LuN) have not greatly changed since the 1980s. This review covers the application of new concepts to the understanding of renal inflammation and the study of new pharmacologic agents to improve patient outcomes. RECENT FINDINGS Studies have shown that the presence of anti-vimentin antibodies and T follicular helper cells in patient biopsies is associated with more severe interstitial inflammation, which has been tied to faster disease progression and onset of end-stage renal disease. Additionally, data regarding the role of serum IgE antidouble-stranded DNA antibodies in LuN by means of mediating IFN1 production by plasmacytoid dendritic cells are highlighted. Finally, a thorough review of completed and currently open clinical trials of therapeutic agents is provided. SUMMARY Current management of LuN is guided almost exclusively by glomerular involvement. Based on the data provided in this review, we argue that renal tubulointerstitial inflammation is no less important and represents an overlooked feature in the current clinical approach to patients. Tubulointerstitial inflammation is driven by both adaptive and innate immune mechanisms that are still poorly understood. Studying these pathogenic processes promises to reveal new therapeutic opportunities for those LuN patients with the worst prognosis. VIDEO ABSTRACT Alternate video abstract introduction (see Video, Supplemental Digital Content 1, with introduction by two of the authors - VL and KT). Abstract Video: http://links.lww.com/COR/A35.
Collapse
Affiliation(s)
- Kimberly Trotter
- Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, 60637
| | - Marcus R. Clark
- Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, 60637
| | - Vladimir M. Liarski
- Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, 60637
| |
Collapse
|
25
|
Klingberg A, Hasenberg A, Ludwig-Portugall I, Medyukhina A, Männ L, Brenzel A, Engel DR, Figge MT, Kurts C, Gunzer M. Fully Automated Evaluation of Total Glomerular Number and Capillary Tuft Size in Nephritic Kidneys Using Lightsheet Microscopy. J Am Soc Nephrol 2016; 28:452-459. [PMID: 27487796 DOI: 10.1681/asn.2016020232] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/08/2016] [Indexed: 12/19/2022] Open
Abstract
The total number of glomeruli is a fundamental parameter of kidney function but very difficult to determine using standard methodology. Here, we counted all individual glomeruli in murine kidneys and sized the capillary tufts by combining in vivo fluorescence labeling of endothelial cells, a novel tissue-clearing technique, lightsheet microscopy, and automated registration by image analysis. Total hands-on time per organ was <1 hour, and automated counting/sizing was finished in <3 hours. We also investigated the novel use of ethyl-3-phenylprop-2-enoate (ethyl cinnamate) as a nontoxic solvent-based clearing reagent that can be handled without specific safety measures. Ethyl cinnamate rapidly cleared all tested organs, including calcified bone, but the fluorescence of proteins and immunohistochemical labels was maintained over weeks. Using ethyl cinnamate-cleared kidneys, we also quantified the average creatinine clearance rate per glomerulus. This parameter decreased in the first week of experimental nephrotoxic nephritis, whereas reduction in glomerular numbers occurred much later. Our approach delivers fundamental parameters of renal function, and because of its ease of use and speed, it is suitable for high-throughput analysis and could greatly facilitate studies of the effect of kidney diseases on whole-organ physiology.
Collapse
Affiliation(s)
- Anika Klingberg
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Anja Hasenberg
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Isis Ludwig-Portugall
- Institute for Experimental Immunology, Rheinische-Friedrichs-Wilhelms University of Bonn, Bonn, Germany
| | - Anna Medyukhina
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Leibniz-Association, Jena, Germany; and
| | - Linda Männ
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Alexandra Brenzel
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Daniel R Engel
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Leibniz-Association, Jena, Germany; and.,Friedrich Schiller University Jena, Jena, Germany
| | - Christian Kurts
- Institute for Experimental Immunology, Rheinische-Friedrichs-Wilhelms University of Bonn, Bonn, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany;
| |
Collapse
|
26
|
Evers BDG, Engel DR, Böhner AMC, Tittel AP, Krause TA, Heuser C, Garbi N, Kastenmüller W, Mack M, Tiegs G, Panzer U, Boor P, Ludwig-Portugall I, Kurts C. CD103+ Kidney Dendritic Cells Protect against Crescentic GN by Maintaining IL-10-Producing Regulatory T Cells. J Am Soc Nephrol 2016; 27:3368-3382. [PMID: 27036736 DOI: 10.1681/asn.2015080873] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 02/23/2016] [Indexed: 01/09/2023] Open
Abstract
Kidney dendritic cells (DCs) regulate nephritogenic T cell responses. Most kidney DCs belong to the CD11b+ subset and promote crescentic GN (cGN). The function of the CD103+ subset, which represents <5% of kidney DCs, is poorly understood. We studied the role of CD103+ DCs in cGN using several lines of genetically modified mice that allowed us to reduce the number of these cells. In all lines, we detected a reduction of FoxP3+ intrarenal regulatory T cells (Tregs), which protect against cGN. Mice lacking the transcription factor Batf3 had a more profound reduction of CD103+ DCs and Tregs than did the other lines used, and showed the most profound aggravation of cGN. The conditional reduction of CD103+ DC numbers by 50% in Langerin-DTR mice halved Treg numbers, which did not suffice to significantly aggravate cGN. Mice lacking the cytokine Flt3L had fewer CD103+ DCs and Tregs than Langerin-DTR mice but exhibited milder cGN than did Batf3-/- mice presumably because proinflammatory CD11b+ DCs were somewhat depleted as well. Conversely, Flt3L supplementation increased the number of CD103+ DCs and Tregs, but also of proinflammatory CD11b+ DCs. On antibody-mediated removal of CD11b+ DCs, Flt3L supplementation ameliorated cGN. Mechanistically, CD103+ DCs caused cocultured T cells to differentiate into Tregs and produced the chemokine CCL20, which is known to attract Tregs into the kidney. Our findings show that CD103+ DCs foster intrarenal FoxP3+ Treg accumulation, thereby antagonizing proinflammatory CD11b+ DCs. Thus, increasing CD103+ DC numbers or functionality might be advantageous in cGN.
Collapse
Affiliation(s)
- Beatrix D G Evers
- Institute of Experimental Immunology, University Clinic of the Rheinische Friedrich Wilhelms Universität, Bonn, Germany
| | - Daniel R Engel
- Institute of Experimental Immunology, University Clinic of the Rheinische Friedrich Wilhelms Universität, Bonn, Germany.,Institute for Experimental Immunology and Imaging, University Duisburg-Essen and University Hospital Essen, Essen, Germany
| | - Alexander M C Böhner
- Institute of Experimental Immunology, University Clinic of the Rheinische Friedrich Wilhelms Universität, Bonn, Germany
| | - André P Tittel
- Institute of Experimental Immunology, University Clinic of the Rheinische Friedrich Wilhelms Universität, Bonn, Germany
| | - Torsten A Krause
- Institute of Experimental Immunology, University Clinic of the Rheinische Friedrich Wilhelms Universität, Bonn, Germany
| | - Christoph Heuser
- Institute of Experimental Immunology, University Clinic of the Rheinische Friedrich Wilhelms Universität, Bonn, Germany
| | - Natalio Garbi
- Institute of Experimental Immunology, University Clinic of the Rheinische Friedrich Wilhelms Universität, Bonn, Germany
| | - Wolfgang Kastenmüller
- Institute of Experimental Immunology, University Clinic of the Rheinische Friedrich Wilhelms Universität, Bonn, Germany
| | - Matthias Mack
- Department of Internal Medicine II and Center for Interventional Immunology, University Hospital Regensburg, Regensburg, Germany
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology and
| | - Ulf Panzer
- III Clinic of Nephrology, University Clinic Eppendorf, Hamburg, Germany; and
| | - Peter Boor
- Institute of Pathology and Department of Nephrology, Rheinisch-Westfälische Technische Hochschule, Aachen, Germany
| | - Isis Ludwig-Portugall
- Institute of Experimental Immunology, University Clinic of the Rheinische Friedrich Wilhelms Universität, Bonn, Germany
| | - Christian Kurts
- Institute of Experimental Immunology, University Clinic of the Rheinische Friedrich Wilhelms Universität, Bonn, Germany;
| |
Collapse
|
27
|
Abstract
The mononuclear phagocytes (dendritic cells and macrophages) are closely related immune cells with central roles in anti-infectious defense and maintenance of organ integrity. The canonical function of dendritic cells is the activation of T cells, whereas macrophages remove apoptotic cells and microbes by phagocytosis. In the kidney, these cell types form an intricate system of mononuclear phagocytes that surveys against injury and infection and contributes to organ homeostasis and tissue repair but may also promote progression of CKD. This review summarizes the general functions and classification of dendritic cells and macrophages in the immune system and recapitulates why overlapping definitions and historically separate research have created controversy about their tasks. Their roles in acute kidney disease, CKD, and renal transplantation are described, and therapeutic strategy to modify these cells for therapeutic purposes is discussed.
Collapse
Affiliation(s)
- Christina K Weisheit
- Institute of Experimental Immunology, University Clinic, Rheinische Friedrich-Wilhelms University, Bonn, Germany and Clinic for Anesthesiology and Intensive Care, University Clinic, Rheinische Friedrich-Wilhelms University, Bonn, Germany; and
| | - Daniel R Engel
- Institute of Experimental Immunology, University Clinic, Rheinische Friedrich-Wilhelms University, Bonn, Germany and Institute for Experimental Immunology and Imaging, University Duisburg-Essen and University Hospital Essen, Essen, Germany
| | - Christian Kurts
- Institute of Experimental Immunology, University Clinic, Rheinische Friedrich-Wilhelms University, Bonn, Germany and
| |
Collapse
|
28
|
Cao Q, Lu J, Li Q, Wang C, Wang XM, Lee VWS, Wang C, Nguyen H, Zheng G, Zhao Y, Alexander SI, Wang Y, Harris DCH. CD103+ Dendritic Cells Elicit CD8+ T Cell Responses to Accelerate Kidney Injury in Adriamycin Nephropathy. J Am Soc Nephrol 2015; 27:1344-60. [PMID: 26376858 DOI: 10.1681/asn.2015030229] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 07/31/2015] [Indexed: 12/22/2022] Open
Abstract
CD103(+) dendritic cells (DCs) in nonlymphoid organs exhibit two main functions: maintaining tolerance by induction of regulatory T cells and protecting against tissue infection through cross-presentation of foreign antigens to CD8(+) T cells. However, the role of CD103(+) DCs in kidney disease is unknown. In this study, we show that CD103(+) DCs are one of four subpopulations of renal mononuclear phagocytes in normal kidneys. CD103(+) DCs expressed DC-specific surface markers, transcription factors, and growth factor receptors and were found in the kidney cortex but not in the medulla. The number of kidney CD103(+) DCs was significantly higher in mice with adriamycin nephropathy (AN) than in normal mice, and depletion of CD103(+) DCs attenuated kidney injury in AN mice. In vitro, kidney CD103(+) DCs preferentially primed CD8(+) T cells and did not directly induce tubular epithelial cell apoptosis. Adoptive transfer of CD8(+) T cells significantly exacerbated kidney injury in AN SCID mice, whereas depletion of CD103(+) DCs in these mice impaired activation and proliferation of transfused CD8(+) T cells and prevented the exacerbation of kidney injury associated with this transfusion. In conclusion, kidney CD103(+) DCs display a pathogenic role in murine CKD via activation of CD8(+) T cells.
Collapse
Affiliation(s)
- Qi Cao
- Centre for Transplant and Renal Research and
| | - Junyu Lu
- Emergency Department, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China; and
| | - Qing Li
- Centre for Transplant and Renal Research and
| | | | - Xin Maggie Wang
- Flow Cytometry Facility, Westmead Millennium Institute, University of Sydney, Sydney, New South Wales, Australia
| | | | | | - Hanh Nguyen
- Centre for Transplant and Renal Research and
| | | | - Ye Zhao
- Centre for Transplant and Renal Research and
| | - Stephen I Alexander
- Centre for Kidney Research, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Yiping Wang
- Centre for Transplant and Renal Research and
| | | |
Collapse
|
29
|
Clark MR, Trotter K, Chang A. The Pathogenesis and Therapeutic Implications of Tubulointerstitial Inflammation in Human Lupus Nephritis. Semin Nephrol 2015; 35:455-64. [PMID: 26573548 PMCID: PMC4653081 DOI: 10.1016/j.semnephrol.2015.08.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nephritis is a common complication of systemic lupus erythematosus for which current therapies often prove inadequate. Current lupus nephritis classification systems emphasize glomerular acuity and scarring. However, tubulointerstitial inflammation (TII) and scarring are much better predictors of progression to renal failure. It now is becoming clear that the immunologic features, and probable underlying mechanisms, are very different in lupus glomerulonephritis and TII at the time of biopsy. Although glomerulonephritis is a manifestation of systemic autoimmunity, TII is associated with local in situ adaptive immune cell networks predicted to amplify local inflammation and tissue damage. In addition, poorly defined networks of innate immune cells and effectors likely contribute to the severity of local inflammation. Defining these in situ immune mechanisms should lead to a better understanding of prognostically meaningful lupus nephritis subsets and show novel therapeutic opportunities.
Collapse
Affiliation(s)
- Marcus R Clark
- Department of Medicine, University of Chicago, Chicago, IL; Department of Pathology, University of Chicago, Chicago, IL; Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL.
| | | | - Anthony Chang
- Department of Pathology, University of Chicago, Chicago, IL
| |
Collapse
|
30
|
Gottschalk C, Kurts C. The Debate about Dendritic Cells and Macrophages in the Kidney. Front Immunol 2015; 6:435. [PMID: 26388867 PMCID: PMC4556034 DOI: 10.3389/fimmu.2015.00435] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/11/2015] [Indexed: 11/13/2022] Open
Abstract
The mononuclear phagocyte system includes macrophages and dendritic cells (DCs), which are usually classified by morphology, phenotypical characteristics, and function. In the last decades, large research communities have gathered substantial knowledge on the roles of these cells in immune homeostasis and anti-infectious defense. However, these communities developed to a degree independent from each other, so that the nomenclature and functions of the numerous DC and macrophage subsets overlap, resulting in the present intense debate about the correct nomenclature. This controversy has also reached the field of experimental nephrology. At present, no mutually accepted way to distinguish renal DC and macrophages is available, so that many important roles in acute and chronic kidney disease have been ascribed to both DCs and macrophages. In this perspective article, we discuss the causes and consequences of the overlapping DC-macrophage classification systems, functional roles of DCs and macrophages, and the transferability of recent findings from other disciplines to the renal mononuclear phagocyte system from the nephrologist's point of view.
Collapse
Affiliation(s)
- Catherine Gottschalk
- Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms-Universität Bonn , Bonn , Germany
| | - Christian Kurts
- Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms-Universität Bonn , Bonn , Germany
| |
Collapse
|
31
|
Braun GS, Nagayama Y, Maruta Y, Heymann F, van Roeyen CR, Klinkhammer BM, Boor P, Villa L, Salant DJ, Raffetseder U, Rose-John S, Ostendorf T, Floege J. IL-6 Trans-Signaling Drives Murine Crescentic GN. J Am Soc Nephrol 2015; 27:132-42. [PMID: 26041841 DOI: 10.1681/asn.2014111147] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/20/2015] [Indexed: 01/07/2023] Open
Abstract
The role of IL-6 signaling in renal diseases remains controversial, with data describing both anti-inflammatory and proinflammatory effects. IL-6 can act via classic signaling, engaging its two membrane receptors gp130 and IL-6 receptor (IL-6R). Alternatively, IL-6 trans-signaling requires soluble IL-6R (sIL-6R) to act on IL-6R-negative cells that express gp130. Here, we characterize the role of both pathways in crescentic nephritis. Patients with crescentic nephritis had significantly elevated levels of IL-6 in both serum and urine. Similarly, nephrotoxic serum-induced nephritis (NTN) in BALB/c mice was associated with elevated serum IL-6 levels. Levels of serum sIL-6R and renal downstream signals of IL-6 (phosphorylated signal transducer and activator of transcription 3, suppressor of cytokine signaling 3) increased over time in this model. Simultaneous inhibition of both IL-6 signaling pathways using anti-IL-6 antibody did not have a significant impact on NTN severity. In contrast, specific inhibition of trans-signaling using recombinant sgp130Fc resulted in milder disease. Vice versa, specific activation of trans-signaling using a recombinant IL-6-sIL-6R fusion molecule (Hyper-IL-6) significantly aggravated NTN and led to increased systolic BP in NTN mice. This correlated with increased renal mRNA synthesis of the Th17 cell cytokine IL-17A and decreased synthesis of resistin-like alpha (RELMalpha)-encoding mRNA, a surrogate marker of lesion-mitigating M2 macrophage subtypes. Collectively, our data suggest a central role for IL-6 trans-signaling in crescentic nephritis and offer options for more effective and specific therapeutic interventions in the IL-6 system.
Collapse
Affiliation(s)
- Gerald S Braun
- Division of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen Germany; Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany;
| | - Yoshikuni Nagayama
- Division of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen Germany; Division of Nephrology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Yuichi Maruta
- Division of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen Germany; Division of Nephrology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Felix Heymann
- Division of Gastroenterology, Metabolic Diseases and Intensive Care, RWTH Aachen University, Aachen, Germany
| | - Claudia R van Roeyen
- Division of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen Germany
| | - Barbara M Klinkhammer
- Division of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen Germany; Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Peter Boor
- Division of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen Germany; Institute of Pathology, RWTH Aachen University, Aachen, Germany; Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | - Luigi Villa
- Division of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen Germany
| | - David J Salant
- Department of Medicine, Section of Nephrology, Boston University School of Medicine, Boston, MA; and
| | - Ute Raffetseder
- Division of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University, Kiel, Germany
| | - Tammo Ostendorf
- Division of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen Germany
| | - Jürgen Floege
- Division of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen Germany
| |
Collapse
|
32
|
Fractalkine-CX3CR1-dependent recruitment and retention of human CD1c+ myeloid dendritic cells by in vitro-activated proximal tubular epithelial cells. Kidney Int 2015; 87:1153-63. [PMID: 25587706 DOI: 10.1038/ki.2014.407] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/23/2014] [Accepted: 10/30/2014] [Indexed: 12/24/2022]
Abstract
Chemokines play pivotal roles in tissue recruitment and retention of leukocytes, with CX3CR1 recently identified as a chemokine receptor that selectively targets mouse kidney dendritic cells (DCs). We have previously demonstrated increased tubulointerstitial recruitment of human transforming growth factor-β (TGF-β)-producing DCs in renal fibrosis and chronic kidney disease (CKD). However, little is known about the mechanism of human DC recruitment and retention within the renal interstitium. We identified CD1c+ DCs as the predominant source of profibrotic TGF-β and highest expressors of the fractalkine receptor CX3CR1 within the renal DC compartment. Immunohistochemical analysis of diseased human kidney biopsies showed colocalization of CD1c+ DCs with fractalkine-positive proximal tubular epithelial cells (PTECs). Human primary PTEC activation with interferon-γ and tumor necrosis factor-α induced both secreted and surface fractalkine expression. In line with this, we found fractalkine-dependent chemotaxis of CD1c+ DCs to supernatant from activated PTECs. Finally, in comparison with unactivated PTECs, we showed significantly increased adhesion of CD1c+ DCs to activated PTECs via a fractalkine-dependent mechanism. Thus, TGF-β-producing CD1c+ DCs are recruited and retained in the renal tubulointerstitium by PTEC-derived fractalkine. These cells are then positioned to play a role in the development of fibrosis and progression of chronic kidney disease.
Collapse
|
33
|
Hochheiser K, Kurts C. Selective Dependence of Kidney Dendritic Cells on CX3CR1--Implications for Glomerulonephritis Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 850:55-71. [PMID: 26324346 DOI: 10.1007/978-3-319-15774-0_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As central regulators of the adaptive immune response, dendritic cells (DCs) are found in virtually all lymphatic and non-lymphatic organs. A compact network of DCs also spans the kidneys. DCs play a central role in maintenance of organ homeostasis as well as in induction of immune responses against invading pathogens. They can mediate protective or destructive functions in a context-dependent manner.We recently identified CX(3)CR1 as a kidney-specific "homing receptor" for DCs. There was a strong reduction of DCs in the kidneys of CX(3)CR1-deficient mice compared to controls. This reduction was not observed in other organs except the small intestine. As a possible underlying reason we found a strong expression of the CX(3)CR1 ligand fractalkine in the kidneys. Due to this CX(3)CR1-dependent reduction of DCs, especially in the renal cortex, a glomerulonephritis (GN) model was ameliorated in CX(3)CR1-deficient mice. In contrast, the immune defense against the most common renal infection, bacterial pyelonephritis (PN), was not significantly influenced by CX(3)CR1-deficiency. This was explained by the much smaller CX(3)CR1-dependency of medullary DCs, which recruit effector cells into the kidney during PN. Additionally, once neutrophils had been recruited by mechanisms distinct from CX(3)CR1, they carried out some of the functions of DCs.Taken together, we suggest CX(3)CR1 as a therapeutic target for GN treatment, as the absence of CX(3)CR1 selectively influences DCs in the kidney without rendering mice more susceptible towards bacterial kidney infections.
Collapse
Affiliation(s)
- Katharina Hochheiser
- Institute of Experimental Immunology(IMMEI), Rheinische Friedrich-Wilhelms University, 53105, Bonn, Germany,
| | | |
Collapse
|
34
|
Chen T, Cao Q, Wang Y, Harris D. The Role of Dendritic Cells in Renal Inflammation. CURRENT PATHOBIOLOGY REPORTS 2014. [DOI: 10.1007/s40139-014-0059-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Rogers NM, Ferenbach DA, Isenberg JS, Thomson AW, Hughes J. Dendritic cells and macrophages in the kidney: a spectrum of good and evil. Nat Rev Nephrol 2014; 10:625-43. [PMID: 25266210 PMCID: PMC4922410 DOI: 10.1038/nrneph.2014.170] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Renal dendritic cells (DCs) and macrophages represent a constitutive, extensive and contiguous network of innate immune cells that provide sentinel and immune-intelligence activity; they induce and regulate inflammatory responses to freely filtered antigenic material and protect the kidney from infection. Tissue-resident or infiltrating DCs and macrophages are key factors in the initiation and propagation of renal disease, as well as essential contributors to subsequent tissue regeneration, regardless of the aetiological and pathogenetic mechanisms. The identification, and functional and phenotypic distinction of these cell types is complex and incompletely understood, and the same is true of their interplay and relationships with effector and regulatory cells of the adaptive immune system. In this Review, we discuss the common and distinct characteristics of DCs and macrophages, as well as key advances that have identified the renal-specific functions of these important phagocytic, antigen-presenting cells, and their roles in potentiating or mitigating intrinsic kidney disease. We also identify remaining issues that are of priority for further investigation, and highlight the prospects for translational and therapeutic application of the knowledge acquired.
Collapse
Affiliation(s)
- Natasha M Rogers
- Vascular Medicine Institute and Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, W1544 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | - David A Ferenbach
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Jeffrey S Isenberg
- Vascular Medicine Institute and Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, W1544 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | - Angus W Thomson
- Vascular Medicine Institute and Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, W1544 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | - Jeremy Hughes
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
36
|
Wan X, Huang WJ, Chen W, Xie HG, Wei P, Chen X, Cao CC. IL-10 deficiency increases renal ischemia-reperfusion injury. Nephron Clin Pract 2014; 128:37-45. [PMID: 25376659 DOI: 10.1159/000366130] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 07/22/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Renal ischemia-reperfusion (IR) injury is a frequent cause of acute kidney injury, which results in high morbidity and mortality. Inflammation is an important factor that is involved in kidney repair after renal IR injury. IL-10 is a potent anti-inflammatory cytokine that inhibits inflammatory pathways, but the role of IL-10 in repairing renal IR injury is not known. Here, we investigated the role of IL-10 in kidney repair after renal IR injury. METHODS We used an IL-10(-/-) mouse model and examined the serologic and histomorphology of kidney after IR injury. We also measured ki67, TNF-α, IL-6, and macrophages with immunohistochemistry or Western blotting. RESULTS There was a greater increase in serum creatinine in IL-10(-/-) mice than in wild-type (WT) mice. And compared with WT mice, IL-10(-/-) mice had increased histologic renal injury and decreased proliferation. Moreover, the expression of TNF-α, IL-6 and macrophages was clearly increased in IL-10(-/-) mice compared with the WT mice. CONCLUSION These data reveal an important role for IL-10 in the improvement of renal IR injury, acting through suppression of inflammatory mediators, and that IL-10 would be a crucial target for the treatment of IR injury.
Collapse
Affiliation(s)
- Xin Wan
- Division of Nephrology, Department of Medicine, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Belliere J, Casemayou A, Ducasse L, Zakaroff-Girard A, Martins F, Iacovoni JS, Guilbeau-Frugier C, Buffin-Meyer B, Pipy B, Chauveau D, Schanstra JP, Bascands JL. Specific macrophage subtypes influence the progression of rhabdomyolysis-induced kidney injury. J Am Soc Nephrol 2014; 26:1363-77. [PMID: 25270069 DOI: 10.1681/asn.2014040320] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/29/2014] [Indexed: 01/06/2023] Open
Abstract
Rhabdomyolysis can be life threatening if complicated by AKI. Macrophage infiltration has been observed in rat kidneys after glycerol-induced rhabdomyolysis, but the role of macrophages in rhabdomyolysis-induced AKI remains unknown. Here, in a patient diagnosed with rhabdomyolysis, we detected substantial macrophage infiltration in the kidney. In a mouse model of rhabdomyolysis-induced AKI, diverse renal macrophage phenotypes were observed depending on the stage of the disease. Two days after rhabdomyolysis, F4/80(low)CD11b(high)Ly6b(high)CD206(low) kidney macrophages were dominant, whereas by day 8, F4/80(high)CD11b(+)Ly6b(low)CD206(high) cells became the most abundant. Single-cell gene expression analyses of FACS-sorted macrophages revealed that these subpopulations were heterogeneous and that individual cells simultaneously expressed both M1 and M2 markers. Liposomal clodronate-mediated macrophage depletion significantly reduced the early infiltration of F4/80(low)CD11b(high)Ly6b(high)CD206(low) macrophages. Furthermore, transcriptionally regulated targets potentially involved in disease progression, including fibronectin, collagen III, and chemoattractants that were identified via single-cell analysis, were verified as macrophage-dependent in situ. In vitro, myoglobin treatment induced proximal tubular cells to secrete chemoattractants and macrophages to express proinflammatory markers. At day 30, liposomal clodronate-mediated macrophage depletion reduced fibrosis and improved both kidney repair and mouse survival. Seven months after rhabdomyolysis, histologic lesions were still present but were substantially reduced with prior depletion of macrophages. These results suggest an important role for macrophages in rhabdomyolysis-induced AKI progression and advocate the utility of long-term follow-up for patients with this disease.
Collapse
Affiliation(s)
- Julie Belliere
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institute of Cardiovascular and Metabolic Diseases, Toulouse, France; Université de Toulouse III Paul Sabatier, Toulouse, France; Department of Nephrology and Organ Transplantation, Centre Hospitalier Universitaire Rangueil, Toulouse, France
| | - Audrey Casemayou
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institute of Cardiovascular and Metabolic Diseases, Toulouse, France; Université de Toulouse III Paul Sabatier, Toulouse, France
| | - Laure Ducasse
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institute of Cardiovascular and Metabolic Diseases, Toulouse, France; Université de Toulouse III Paul Sabatier, Toulouse, France
| | - Alexia Zakaroff-Girard
- Cytometry and Cell-sorting Platform, INSERM/Unité Mixte de Recherche U1048, Toulouse, France
| | - Frédéric Martins
- Genome and Transcriptome Platform, Toulouse Genopole INSERM/Unité Mixte de Recherche U1048, University Paul Sabatier, Toulouse, France
| | - Jason S Iacovoni
- Bioinformatic Platform, INSERM/Unité Mixte de Recherche U1048, University Paul Sabatier, Toulouse, France
| | - Céline Guilbeau-Frugier
- Université de Toulouse III Paul Sabatier, Toulouse, France; Department of Pathology, Toulouse University Hospital, Rangueil, Toulouse, France; and
| | - Bénédicte Buffin-Meyer
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institute of Cardiovascular and Metabolic Diseases, Toulouse, France; Université de Toulouse III Paul Sabatier, Toulouse, France
| | - Bernard Pipy
- Unité Mixte de Recherche 152, Macrophages Polarization and Nuclear Receptors, Toulouse, France
| | - Dominique Chauveau
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institute of Cardiovascular and Metabolic Diseases, Toulouse, France; Université de Toulouse III Paul Sabatier, Toulouse, France; Department of Nephrology and Organ Transplantation, Centre Hospitalier Universitaire Rangueil, Toulouse, France
| | - Joost P Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institute of Cardiovascular and Metabolic Diseases, Toulouse, France; Université de Toulouse III Paul Sabatier, Toulouse, France;
| | - Jean-Loup Bascands
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institute of Cardiovascular and Metabolic Diseases, Toulouse, France; Université de Toulouse III Paul Sabatier, Toulouse, France;
| |
Collapse
|
38
|
Pathophysiology of cisplatin-induced acute kidney injury. BIOMED RESEARCH INTERNATIONAL 2014; 2014:967826. [PMID: 25165721 PMCID: PMC4140112 DOI: 10.1155/2014/967826] [Citation(s) in RCA: 469] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/18/2014] [Accepted: 07/19/2014] [Indexed: 02/06/2023]
Abstract
Cisplatin and other platinum derivatives are the most widely used chemotherapeutic agents to treat solid tumors including ovarian, head and neck, and testicular germ cell tumors. A known complication of cisplatin administration is acute kidney injury (AKI). The nephrotoxic effect of cisplatin is cumulative and dose-dependent and often necessitates dose reduction or withdrawal. Recurrent episodes of AKI may result in chronic kidney disease. The pathophysiology of cisplatin-induced AKI involves proximal tubular injury, oxidative stress, inflammation, and vascular injury in the kidney. There is predominantly acute tubular necrosis and also apoptosis in the proximal tubules. There is activation of multiple proinflammatory cytokines and infiltration of inflammatory cells in the kidney. Inhibition of the proinflammatory cytokines TNF-α or IL-33 or depletion of CD4+ T cells or mast cells protects against cisplatin-induced AKI. Cisplatin also causes endothelial cell injury. An understanding of the pathogenesis of cisplatin-induced AKI is important for the development of adjunctive therapies to prevent AKI, to lessen the need for dose decrease or drug withdrawal, and to lessen patient morbidity and mortality.
Collapse
|
39
|
Cao Q, Wang Y, Wang XM, Lu J, Lee VWS, Ye Q, Nguyen H, Zheng G, Zhao Y, Alexander SI, Harris DCH. Renal F4/80+ CD11c+ mononuclear phagocytes display phenotypic and functional characteristics of macrophages in health and in adriamycin nephropathy. J Am Soc Nephrol 2014; 26:349-63. [PMID: 25012165 DOI: 10.1681/asn.2013121336] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Conventional markers of macrophages (Mфs) and dendritic cells (DCs) lack specificity and often overlap, leading to confusion and controversy regarding the precise function of these cells in kidney and other diseases. This study aimed to identify the phenotype and function of renal mononuclear phagocytes (rMPs) expressing key markers of both Mфs and DCs. F4/80(+)CD11c(+) cells accounted for 45% of total rMPs in normal kidneys and in those from mice with Adriamycin nephropathy (AN). Despite expression of the DC marker CD11c, these double-positive rMPs displayed the features of Mфs, including Mф-like morphology, high expression of CD68, CD204, and CD206, and high phagocytic ability but low antigen-presenting ability. F4/80(+)CD11c(+) cells were found in the cortex but not in the medulla of the kidney. In AN, F4/80(+)CD11c(+) cells displayed an M1 Mф phenotype with high expression of inflammatory mediators and costimulatory factors. Adoptive transfer of F4/80(+)CD11c(+) cells separated from diseased kidney aggravated renal injury in AN mice. Furthermore, adoptive transfer of common progenitors revealed that kidney F4/80(+)CD11c(+) cells were derived predominantly from monocytes, but not from pre-DCs. In conclusion, renal F4/80(+)CD11c(+) cells are a major subset of rMPs and display Mф-like phenotypic and functional characteristics in health and in AN.
Collapse
Affiliation(s)
- Qi Cao
- Centre for Transplant and Renal Research and
| | - Yiping Wang
- Centre for Transplant and Renal Research and
| | - Xin Maggie Wang
- Flow Cytometry Facility, Westmead Millennium Institute, University of Sydney, Sydney, New South Wales, Australia; and
| | - Junyu Lu
- Centre for Transplant and Renal Research and
| | | | - Qianling Ye
- Centre for Transplant and Renal Research and
| | - Hanh Nguyen
- Centre for Transplant and Renal Research and
| | | | - Ye Zhao
- Centre for Transplant and Renal Research and
| | - Stephen I Alexander
- Centre for Kidney Research, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | | |
Collapse
|
40
|
Update on crescentic glomerulonephritis. Semin Immunopathol 2014; 36:479-90. [PMID: 24948005 DOI: 10.1007/s00281-014-0435-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/27/2014] [Indexed: 10/25/2022]
Abstract
The recent years have seen a number of major progresses in the field of extracapillary glomerulonephritis. This entity is the final damage caused by unrelated immunological disorders such as immune complexes glomerular deposits or microvascular injury caused by proinflammatory cytokines, neutrophil extracellular traps (NET), and cell adhesion molecules in the context of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). This review provides a summary of recent advances in the understanding of crescentic glomerulonephritis, focusing on interplays of local immune cells and on local mediators participating to crescent formation especially in anti-glomerular basement membrane (anti-GBM) antibody disease. The recent advances about AAV and lupus nephritis are covered by other chapters of this issue. Nevertheless, these considerations may apply to the general case of crescentic glomerulonephritis of all causes.
Collapse
|
41
|
Nagayama Y, Braun GS, Jakobs CM, Maruta Y, van Roeyen CR, Klinkhammer BM, Boor P, Villa L, Raffetseder U, Trautwein C, Görtz D, Müller-Newen G, Ostendorf T, Floege J. Gp130-dependent signaling in the podocyte. Am J Physiol Renal Physiol 2014; 307:F346-55. [PMID: 24899055 DOI: 10.1152/ajprenal.00620.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Renal inflammation, in particular glomerular, is often characterized by increased IL-6 levels. The in vivo relevance of IL-6 signaling in glomerular podocytes, which play central roles in most glomerular diseases, is unknown. Here, we show that in normal mice, podocytes express gp130, the common signal-transducing receptor subunit of the IL-6 family of cytokines. Following systemic IL-6 or LPS injection in mice, podocyte IL-6 signaling was evidenced by downstream STAT3 phosphorylation. Next, we generated mice deficient for gp130 in podocytes. Expectedly, these mice exhibited abrogated IL-6 downstream signaling in podocytes. At the age of 40 wk, they did not show spontaneous renal pathology or abnormal renal function. The mice were then challenged using two LPS injury models as well as nephrotoxic serum to induce crescentic nephritis. Under all conditions, circulating IL-6 levels increased markedly and the mice developed the pathological hallmarks of the corresponding injury models such as proteinuria and development of glomerular crescents, respectively. However, despite the capacity of normal podocytes to transduce IL-6 family signals downstream, there were no significant differences between mice bearing the podocyte-specific gp130 deletion and their control littermates in any of these models. In conclusion, under the different conditions tested, gp130 signaling was not a critical component of the (patho-)biology of the podocyte in vivo.
Collapse
Affiliation(s)
- Yoshikuni Nagayama
- Division of Nephrology and Immunology, RWTH Aachen University, Aachen Germany; Division of Nephrology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Gerald S Braun
- Division of Nephrology and Immunology, RWTH Aachen University, Aachen Germany; Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany;
| | - Christina M Jakobs
- Division of Nephrology and Immunology, RWTH Aachen University, Aachen Germany
| | - Yuichi Maruta
- Division of Nephrology and Immunology, RWTH Aachen University, Aachen Germany; Division of Nephrology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | | | | | - Peter Boor
- Division of Nephrology and Immunology, RWTH Aachen University, Aachen Germany; Institute of Pathology, RWTH Aachen University, Aachen, Germany; Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia; and
| | - Luigi Villa
- Division of Nephrology and Immunology, RWTH Aachen University, Aachen Germany
| | - Ute Raffetseder
- Division of Nephrology and Immunology, RWTH Aachen University, Aachen Germany
| | - Christian Trautwein
- Division of Gastroenterology, Metabolic Diseases, and Intensive Care, RWTH Aachen University, Aachen, Germany
| | - Dieter Görtz
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | - Gerhard Müller-Newen
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | - Tammo Ostendorf
- Division of Nephrology and Immunology, RWTH Aachen University, Aachen Germany
| | - Jürgen Floege
- Division of Nephrology and Immunology, RWTH Aachen University, Aachen Germany
| |
Collapse
|
42
|
Kitching AR. Dendritic cells in progressive renal disease: some answers, many questions. Nephrol Dial Transplant 2014; 29:2185-93. [DOI: 10.1093/ndt/gfu076] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
43
|
Zheng D, Wen L, Li C, Peng A, Cao Q, Wang Y, Harris D. Adoptive transfer of bone marrow dendritic cells failed to localize in the renal cortex and to improve renal injury in adriamycin nephropathy. Nephron Clin Pract 2014; 126:8-15. [PMID: 24526139 DOI: 10.1159/000358086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 12/12/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND AIMS Murine bone marrow (BM) dendritic cells (DCs) can be modulated to be tolerogenic by cytokines, such as interleukin (IL)-10 and transforming growth factor (TGF)-β, and may play a regulatory role and sustain immune hemostasis in cognate kidney disease. However, it is unknown whether BM-DCs can be used to protect against renal injury in murine Adriamycin nephropathy (AN). METHODS In this study, by adoptive in vivo transfer of BM-DCs, including immature DCs, mature DCs (lipopolysaccharide-stimulated DCs) and BM regulatory DCs (IL-10/TGF-β-modified DCs, DCregs), we addressed the potential benefits of BM-DCs in chronic kidney disease. RESULTS We found that after adoptive transfer of DCregs, renal injury, including glomerulosclerosis, interstitial fibrosis and tubular atrophy, was not changed compared to AN controls. Correspondingly, renal functions measured by serum creatinine, 12-hour urine protein and creatinine clearance were also not improved by transfusion with DCregs compared to AN controls. CONCLUSION This study showed that the adoptive transfer of BM-DCs was unable to improve renal injury in an AN model, and this failure related to their inability to access the kidney.
Collapse
Affiliation(s)
- Dong Zheng
- Department of Nephrology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Kassianos AJ, Wang X, Sampangi S, Muczynski K, Healy H, Wilkinson R. Increased tubulointerstitial recruitment of human CD141(hi) CLEC9A(+) and CD1c(+) myeloid dendritic cell subsets in renal fibrosis and chronic kidney disease. Am J Physiol Renal Physiol 2013; 305:F1391-401. [PMID: 24049150 DOI: 10.1152/ajprenal.00318.2013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dendritic cells (DCs) play critical roles in immune-mediated kidney diseases. Little is known, however, about DC subsets in human chronic kidney disease, with previous studies restricted to a limited set of pathologies and to using immunohistochemical methods. In this study, we developed novel protocols for extracting renal DC subsets from diseased human kidneys and identified, enumerated, and phenotyped them by multicolor flow cytometry. We detected significantly greater numbers of total DCs as well as CD141(hi) and CD1c(+) myeloid DC (mDCs) subsets in diseased biopsies with interstitial fibrosis than diseased biopsies without fibrosis or healthy kidney tissue. In contrast, plasmacytoid DC numbers were significantly higher in the fibrotic group compared with healthy tissue only. Numbers of all DC subsets correlated with loss of kidney function, recorded as estimated glomerular filtration rate. CD141(hi) DCs expressed C-type lectin domain family 9 member A (CLEC9A), whereas the majority of CD1c(+) DCs lacked the expression of CD1a and DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN), suggesting these mDC subsets may be circulating CD141(hi) and CD1c(+) blood DCs infiltrating kidney tissue. Our analysis revealed CLEC9A(+) and CD1c(+) cells were restricted to the tubulointerstitium. Notably, DC expression of the costimulatory and maturation molecule CD86 was significantly increased in both diseased cohorts compared with healthy tissue. Transforming growth factor-β levels in dissociated tissue supernatants were significantly elevated in diseased biopsies with fibrosis compared with nonfibrotic biopsies, with mDCs identified as a major source of this profibrotic cytokine. Collectively, our data indicate that activated mDC subsets, likely recruited into the tubulointerstitium, are positioned to play a role in the development of fibrosis and, thus, progression to chronic kidney disease.
Collapse
Affiliation(s)
- Andrew J Kassianos
- Conjoint Kidney Research Laboratory, Pathology Queensland, Queensland Institute of Medical Research, Level 9, Bancroft Centre, Herston 4006, Queensland, Australia.
| | | | | | | | | | | |
Collapse
|
45
|
Hochheiser K, Heuser C, Krause TA, Teteris S, Ilias A, Weisheit C, Hoss F, Tittel AP, Knolle PA, Panzer U, Engel DR, Tharaux PL, Kurts C. Exclusive CX3CR1 dependence of kidney DCs impacts glomerulonephritis progression. J Clin Invest 2013; 123:4242-54. [PMID: 23999431 DOI: 10.1172/jci70143] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 07/03/2013] [Indexed: 01/25/2023] Open
Abstract
DCs and macrophages both express the chemokine receptor CX3CR1. Here we demonstrate that its ligand, CX3CL1, is highly expressed in the murine kidney and intestine. CX3CR1 deficiency markedly reduced DC numbers in the healthy and inflamed kidney cortex, and to a lesser degree in the kidney medulla and intestine, but not in other organs. CX3CR1 also promoted influx of DC precursors in crescentic glomerulonephritis, a DC-dependent aggressive type of nephritis. Disease severity was strongly attenuated in CX3CR1-deficient mice. Primarily CX3CR1-dependent DCs in the kidney cortex processed antigen for the intrarenal stimulation of T helper cells, a function important for glomerulonephritis progression. In contrast, medullary DCs played a specialized role in inducing innate immunity against bacterial pyelonephritis by recruiting neutrophils through rapid chemokine production. CX3CR1 deficiency had little effect on the immune defense against pyelonephritis, as medullary DCs were less CX3CR1 dependent than cortical DCs and because recruited neutrophils produced chemokines to compensate for the DC paucity. These findings demonstrate that cortical and medullary DCs play specialized roles in their respective kidney compartments. We identify CX3CR1 as a potential therapeutic target in glomerulonephritis that may involve fewer adverse side effects, such as impaired anti-infectious defense or compromised DC functions in other organs.
Collapse
|
46
|
CD11c⁺ cells partially mediate the renoprotective effect induced by bone marrow-derived mesenchymal stem cells. PLoS One 2013; 8:e72544. [PMID: 23940814 PMCID: PMC3735517 DOI: 10.1371/journal.pone.0072544] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 07/12/2013] [Indexed: 12/29/2022] Open
Abstract
Previous studies have shown that induction of immune tolerance by mesenchymal stem cells (MSCs) is partially mediated via monocytes or dendritic cells (DCs). The purpose of this study was to determine the role of CD11c+ cells in MSC-induced effects on ischemia/reperfusion injury (IRI). IRI was induced in wildtype (WT) mice and CD11c+-depleted mice following pretreatment with or without MSCs. In the in-vitro experiments, the MSC-treated CD11c+ cells acquired regulatory phenotype with increased intracellular IL-10 production. Although splenocytes cocultured with MSCs showed reduced T cell proliferation and expansion of CD4+FoxP3+ regulatory T cells (Tregs), depletion of CD11c+ cells was associated with partial loss of MSCs effect on T cells. In in-vivo experiment, MSCs’ renoprotective effect was also associated with induction of more immature CD11c+ cells and increased FoxP3 expression in I/R kidneys. However all these effects induced by the MSCs were partially abrogated when CD11c+ cells were depleted in the CD11c+-DTR transgenic mice. In addition, the observation that adoptive transfer of WT CD11c+ cells partially restored the beneficial effect of the MSCs, while transferring IL-10 deficient CD11c+ cells did not, strongly suggest the important contribution of IL-10 producing CD11c+ cells in attenuating kidney injury by MSCs. Our results suggest that the CD11c+ cell-Tregs play critical role in mediating renoprotective effect of MSCs.
Collapse
|
47
|
Mononuclear phagocyte depletion strategies in models of acute kidney disease: what are they trying to tell us? Kidney Int 2013; 82:835-7. [PMID: 23018825 DOI: 10.1038/ki.2012.164] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mononuclear phagocytes (macrophages, dendritic cells, and monocytes) play a complex role in kidney disease. Techniques for selectively depleting them in rodents have made important contributions but have also generated some contradictory results. Ferenbach et al. report that two widely used mononuclear phagocyte depletion techniques differentially affect early severity of renal ischemia/reperfusion injury and provide evidence that this may be due to a residual, protective subset that persists in the kidney after one of the two techniques.
Collapse
|
48
|
Alikhan MA, Ricardo SD. Mononuclear phagocyte system in kidney disease and repair. Nephrology (Carlton) 2013. [PMID: 23194390 DOI: 10.1111/nep.12014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The mononuclear phagocyte system is comprised of circulating monocytes, tissue macrophages and dendritic cells (DCs) that play key roles in tissue homeostasis, immune surveillance, and immune and non-immune-mediated tissue injury and repair. This review summarizes the various subsets within this system that exhibit significant functional and phenotypic diversity that can adapt to their surrounding microenvironments during inflammation and in response to colony-stimulating factor (CSF)-1. The current understanding of the co-ordination of monocyte infiltration into the homeostatic and diseased kidney through adhesion molecules, chemokines and chemokine receptors, and cytokines are described. Furthermore, the significant confusion and controversy associated with monocyte differentiation into renal macrophages and DCs following infiltration into the kidney, the considerable functional and phenotypic overlap between both tissue populations and their respective roles in immune and non-immune-mediated renal is also discussed. Understanding the factors that control the activation and recruitment of cells from the mononuclear phagocyte system during renal injury may offer an avenue for the development of new cellular and growth factor-based therapies in combination with existing therapies as an alternative treatment option for patients with renal disease.
Collapse
Affiliation(s)
- Maliha A Alikhan
- Monash Immunology and Stem Cell Laboratories (MISCL), Monash University, Melbourne, Victoria, Australia
| | | |
Collapse
|
49
|
Schwarz M, Taubitz A, Eltrich N, Mulay SR, Allam R, Vielhauer V. Analysis of TNF-mediated recruitment and activation of glomerular dendritic cells in mouse kidneys by compartment-specific flow cytometry. Kidney Int 2013; 84:116-29. [DOI: 10.1038/ki.2013.46] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 12/15/2012] [Accepted: 12/21/2012] [Indexed: 12/18/2022]
|
50
|
Hato T, El-Achkar TM, Dagher PC. Sisters in arms: myeloid and tubular epithelial cells shape renal innate immunity. Am J Physiol Renal Physiol 2013; 304:F1243-51. [PMID: 23515715 DOI: 10.1152/ajprenal.00101.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The importance of innate immunity for survival is underscored by its presence at almost every level of the evolutionary tree of life. The task of "danger" recognition by the innate immune system is carried out by a broad class of pattern recognition receptors. These receptors are expressed in both hematopoietic and nonhematopoietic cells such as renal epithelial cells. Upon activation, pattern recognition receptors induce essentially two types of defensive responses: inflammation and phagocytosis. In this review, we highlight evidence that renal epithelial cells are endowed with such defensive capabilities and as such fully participate in renal innate immune responses.
Collapse
Affiliation(s)
- Takashi Hato
- Department of Medicine, Indiana University, Indianapolis, IN, USA
| | | | | |
Collapse
|