1
|
Sussman CR, Holmes HL, Stiller A, Thao K, Gregory AV, Anaam D, Meloche R, Mkhaimer Y, Wells HH, Vasconcelos LD, Urban MW, Macura SI, Harris PC, Kline TL, Romero MF. Robotic Ultrasound and Novel Collagen Analyses for Polycystic Kidney Disease Research Using Mice. KIDNEY360 2024; 5:1543-1552. [PMID: 39145639 PMCID: PMC11556928 DOI: 10.34067/kid.0000000000000542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Key Points Robotic ultrasound performed favorably compared with magnetic resonance imaging for evaluating total kidney volume. Collagen evaluation by two novel methods of picrosirius red imaging were more informative than the standard method by brightfield imaging. Findings can improve research by increasing speed and access to total kidney volume determination and sensitivity of collagen assessment. Background 3D imaging and histology are critical tools for assessing polycystic kidney disease (PKD) in patients and animal models. Magnetic resonance (MR) imaging provides micron resolution but is time consuming and expensive, and access to equipment and expertise is limited. Robotic ultrasound (US) imaging has lower spatial resolution but is faster, more cost-effective, and accessible. Similarly, picrosirius red (PSR) staining and brightfield microscopy are commonly used to assess fibrosis; however, alternative methods have been shown in non-kidney tissues to provide greater sensitivity and more detailed structural characterization. Methods In this study, we evaluated the utility of robotic US and alternative methods of quantifying PSR staining for PKD research. We compared longitudinal total kidney volume measurements using US and MR imaging. We additionally compared PSR imaging and quantification using standard brightfield microscopy with that by circularly polarized light with hue analysis and fluorescence imaging analyzed using curvelet transform fiber extraction software for automatic detection of individual collagen fibers. Results Increased total kidney volume was detected by US in Pkd1 RC/RC versus wild-type (WT) at time points spanning from early to established disease. US interobserver variability was greater but allowed scanning in 2–5 minutes/mouse, whereas MR imaging required 20–30 minutes/mouse. While no change in fibrotic index was detected in this cohort of relatively mild disease using brightfield microscopy, polarized light showed fibers skewed thinner in Pkd1 RC/RC versus WT. Fluorescence imaging showed a higher density of collagen fibers in Pkd1 RC/RC versus WT, and fibers were thinner and curvier with no change in length. In addition, fiber density was higher in both glomeruli and tubules in Pkd1 RC/RC , and glomeruli had a higher fiber density than tubules in Pkd1 RC/RC and trended higher in WT. Conclusions These studies show robotic US is a rigorous imaging tool for preclinical PKD research. In addition, they demonstrate the increased sensitivity of polarized and fluorescence analysis of PSR-stained collagen.
Collapse
Affiliation(s)
- Caroline R. Sussman
- Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Heather L. Holmes
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Alison Stiller
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Ka Thao
- Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Adriana V. Gregory
- Radiology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Deema Anaam
- Radiology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Ryan Meloche
- Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Yaman Mkhaimer
- Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Harrison H. Wells
- Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Luiz D. Vasconcelos
- Radiology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Matthew W. Urban
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
- Radiology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Slobodan I. Macura
- Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
- Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Peter C. Harris
- Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
- Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Timothy L. Kline
- Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
- Radiology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Michael F. Romero
- Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| |
Collapse
|
2
|
Zivotic I, Kolic I, Cvetkovic M, Spasojevic-Dimitrijeva B, Zivkovic M, Stankovic A, Jovanovic I. Copy number variation analysis identifies MIR9-3 and MIR1299 as novel miRNA candidate genes for CAKUT. Pediatr Nephrol 2024; 39:2655-2665. [PMID: 38656454 DOI: 10.1007/s00467-024-06381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Congenital anomalies of the kidney and urinary tract (CAKUT) represent a frequent cause of pediatric kidney failure. CNVs, as a major class of genomic variations, can also affect miRNA regions. Common CNV corresponding miRNAs (cCNV-miRNAs) are functional variants regulating crucial processes which could affect urinary system development. Thus, we hypothesize that cCNV-miRNAs are associated with CAKUT occurrence and its expressivity. METHODS The extraction and filtering of common CNVs, identified in control samples deposited in publicly available databases gnomAD v2.1 and dbVar, were coupled with mapping of miRNA sequences using UCSC Genome Browser. After verification of the mapped miRNAs using referent miRBase V22.1, prioritization of cCNV-miRNA candidates has been performed using bioinformatic annotation and literature research. Genotyping of miRNA gene copy numbers for MIR9-3, MIR511, and MIR1299, was conducted on 221 CAKUT patients and 192 controls using TaqMan™ technology. RESULTS We observed significantly different MIR9-3 and MIR1299 gene copy number distribution between CAKUT patients and controls (Chi-square, P = 0.006 and P = 0.0002, respectively), while difference of MIR511 copy number distribution showed nominal significance (Chi-square, P = 0.027). The counts of less and more than two of MIR1299 copy numbers were more frequent within CAKUT patients compared to controls (P = 0.01 and P = 0.008, respectively) and also in cohort of patients with anomalies of the urinary tract compared to controls (P = 0.016 and P = 0.003, respectively). CONCLUSIONS Copy number variations of miRNA genes represent a novel avenue in clarification of the inheritance complexity in CAKUT and provide potential evidence about the association of common genetic variation with CAKUT phenotypes.
Collapse
Affiliation(s)
- Ivan Zivotic
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
| | - Ivana Kolic
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
| | - Mirjana Cvetkovic
- Nephrology and Urology Departments, University Children's Hospital, Belgrade, Serbia
- Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Brankica Spasojevic-Dimitrijeva
- Nephrology and Urology Departments, University Children's Hospital, Belgrade, Serbia
- Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Maja Zivkovic
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
| | - Aleksandra Stankovic
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
| | - Ivan Jovanovic
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia.
| |
Collapse
|
3
|
Guarnaroli M, Padoan F, Fava C, Benetti MG, Brugnara M, Pietrobelli A, Piacentini G, Pecoraro L. The Impact of Autosomal Dominant Polycystic Kidney Disease in Children: A Nephrological, Nutritional, and Psychological Point of View. Biomedicines 2024; 12:1823. [PMID: 39200287 PMCID: PMC11351308 DOI: 10.3390/biomedicines12081823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a hereditary disorder characterized by the formation of numerous fluid-filled cysts in the kidneys, leading to progressive renal failure and various extrarenal complications, including hypertension. This review explores the genetic basis of ADPKD, including emerging evidence of epigenetic mechanisms in modulating gene expression and disease progression in ADPKD. Furthermore, it proposes to examine the pathological characteristics of this condition at the nephrological, cardiovascular, nutritional, and psychological levels, emphasizing that the follow-up of patients with ADPKD should be multidisciplinary from a young pediatric age.
Collapse
Affiliation(s)
- Matteo Guarnaroli
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37126 Verona, Italy
| | - Flavia Padoan
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37126 Verona, Italy
| | - Cristiano Fava
- General Medicine and Hypertension Unit, Department of Medicine, University of Verona, 37126 Verona, Italy;
| | - Maria Giulia Benetti
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37126 Verona, Italy
| | - Milena Brugnara
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37126 Verona, Italy
| | - Angelo Pietrobelli
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37126 Verona, Italy
| | - Giorgio Piacentini
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37126 Verona, Italy
| | - Luca Pecoraro
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37126 Verona, Italy
| |
Collapse
|
4
|
Lapin B, Gropplero G, Vandensteen J, Mazloum M, Bienaimé F, Descroix S, Coscoy S. Decoupling shear stress and pressure effects in the biomechanics of autosomal dominant polycystic kidney disease using a perfused kidney-on-chip. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599137. [PMID: 38948811 PMCID: PMC11212944 DOI: 10.1101/2024.06.18.599137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Kidney tubular cells are submitted to two distinct mechanical forces generated by the urine flow: shear stress and hydrostatic pressure. In addition, the mechanical properties of the surrounding extracellular matrix modulate tubule deformation under constraints. These mechanical factors likely play a role in the pathophysiology of kidney diseases as exemplified by autosomal dominant polycystic kidney disease, in which pressure, flow and matrix stiffness have been proposed to modulate the cystic dilation of tubules with PKD1 mutations. The lack of in vitro systems recapitulating the mechanical environment of kidney tubules impedes our ability to dissect the role of these mechanical factors. Here we describe a perfused kidney-on-chip with tunable extracellular matrix mechanical properties and hydrodynamic constraints, that allows a decoupling of shear stress and flow. We used this system to dissect how these mechanical cues affect Pkd1 -/- tubule dilation. Our results show two distinct mechanisms leading to tubular dilation. For PCT cells (proximal tubule), overproliferation mechanically leads to tubular dilation, regardless of the mechanical context. For mIMCD-3 cells (collecting duct), tube dilation is associated with a squamous cell morphology but not with overproliferation and is highly sensitive to extracellular matrix properties and hydrodynamic constraints. Surprisingly, flow alone suppressed Pkd1 -/- mIMCD-3 tubule dilation observed in static conditions, while the addition of luminal pressure restored it. Our in vitro model emulating nephron geometrical and mechanical organization sheds light on the roles of mechanical constraints in ADPKD and demonstrates the importance of controlling intraluminal pressure in kidney tubule models.
Collapse
Affiliation(s)
- Brice Lapin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, 75005 Paris, France
| | - Giacomo Gropplero
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, 75005 Paris, France
| | - Jessica Vandensteen
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, 75005 Paris, France
| | - Manal Mazloum
- Université de Paris Cité, Institut Necker Enfants Malades-INEM, Département ‘Croissance et Signalisation’, INSERM UMR1151, CNRS UMR 8253 Paris, France
| | - Frank Bienaimé
- Université de Paris Cité, Institut Necker Enfants Malades-INEM, Département ‘Croissance et Signalisation’, INSERM UMR1151, CNRS UMR 8253 Paris, France
- Service de Physiologie Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Stéphanie Descroix
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, 75005 Paris, France
| | - Sylvie Coscoy
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physique des Cellules et Cancer, 75005 Paris, France
| |
Collapse
|
5
|
Luo J, Zhang Y, Jayaprakash S, Zhuang L, He J. Cross-Species Insights into Autosomal Dominant Polycystic Kidney Disease: Provide an Alternative View on Research Advancement. Int J Mol Sci 2024; 25:5646. [PMID: 38891834 PMCID: PMC11171680 DOI: 10.3390/ijms25115646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a prevalent hereditary disorder that affects the kidneys, characterized by the development of an excessive number of fluid-filled cysts of varying sizes in both kidneys. Along with the progression of ADPKD, these enlarged cysts displace normal kidney tissue, often accompanied by interstitial fibrosis and inflammation, and significantly impair renal function, leading to end-stage renal disease. Currently, the precise mechanisms underlying ADPKD remain elusive, and a definitive cure has yet to be discovered. This review delineates the epidemiology, pathological features, and clinical diagnostics of ADPKD or ADPKD-like disease across human populations, as well as companion animals and other domesticated species. A light has been shed on pivotal genes and biological pathways essential for preventing and managing ADPKD, which underscores the importance of cross-species research in addressing this complex condition. Treatment options are currently limited to Tolvaptan, dialysis, or surgical excision of large cysts. However, comparative studies of ADPKD across different species hold promise for unveiling novel insights and therapeutic strategies to combat this disease.
Collapse
Affiliation(s)
- Jianing Luo
- College of Animal Sciences, Zhejiang University, Hangzhou 310027, China; (J.L.); (Y.Z.); (L.Z.)
| | - Yuan Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310027, China; (J.L.); (Y.Z.); (L.Z.)
| | - Sakthidasan Jayaprakash
- Department of Biotechnology, Hindustan Institute of Technology and Science, Tamil Nadu 603103, India;
| | - Lenan Zhuang
- College of Animal Sciences, Zhejiang University, Hangzhou 310027, China; (J.L.); (Y.Z.); (L.Z.)
| | - Jin He
- College of Animal Sciences, Zhejiang University, Hangzhou 310027, China; (J.L.); (Y.Z.); (L.Z.)
| |
Collapse
|
6
|
Sui WF, Duan YX, Li JY, Shao WB, Fu JH. Safety and efficacy of transcatheter arterial embolization in autosomal dominant polycystic kidney patients with gross hematuria: Six case reports. World J Clin Cases 2024; 12:1954-1959. [PMID: 38660552 PMCID: PMC11036527 DOI: 10.12998/wjcc.v12.i11.1954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/30/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND To retrospectively report the safety and efficacy of renal transcatheter arterial embolization for treating autosomal dominant polycystic kidney disease (ADPKD) patients with gross hematuria. CASE SUMMARY The purpose of this study is to retrospectively report the safety and efficacy of renal transcatheter arterial embolization for treating ADPKD patients with gross hematuria. Materials and methods: During the period from January 2018 to December 2019, renal transcatheter arterial embolization was carried out on 6 patients with polycystic kidneys and gross hematuria. Renal arteriography was performed first, and then we determined the location of the hemorrhage and performed embolization under digital subtraction angiography monitoring. Improvements in routine blood test results, routine urine test results, urine color and postoperative reactions were observed and analyzed. Results: Renal transcatheter arterial embolization was successfully conducted in 6 patients. The indices of 5 patients and the color of gross hematuria improved after surgery compared with before surgery. No severe complication reactions occurred. CONCLUSION For autosomal dominant polycystic kidney syndrome patients with gross hematuria, transcatheter arterial embolization was safe and effective.
Collapse
Affiliation(s)
- Wei-Fan Sui
- Department of Interventional Radiology, Zhenjiang First People's Hospital, Zhenjiang 212000, Jiangsu Province, China
| | - Yun-Xin Duan
- Department of Interventional Radiology, Zhenjiang First People's Hospital, Zhenjiang 212000, Jiangsu Province, China
| | - Jian-Yun Li
- Department of Interventional Radiology, Zhenjiang First People's Hospital, Zhenjiang 212000, Jiangsu Province, China
| | - Wei-Bin Shao
- Department of Nephrology, Zhenjiang First People’s Hospital, Zhenjiang 212000, Jiangsu Province, China
| | - Jian-Hua Fu
- Department of Interventional Radiology, Zhenjiang First People's Hospital, Zhenjiang 212000, Jiangsu Province, China
| |
Collapse
|
7
|
Yasinoglu SA, Kuipers TB, Suidgeest E, van der Weerd L, Mei H, Baelde HJ, Peters DJM. Transcriptomic profiling of Polycystic Kidney Disease identifies paracrine factors in the early cyst microenvironment. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166987. [PMID: 38070582 DOI: 10.1016/j.bbadis.2023.166987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
Initial cysts that are formed upon Pkd1 loss in mice impose persistent stress on surrounding tissue and trigger a cystic snowball effect, in which local aberrant PKD-related signaling increases the likelihood of new cyst formation, ultimately leading to accelerated disease progression. Although many pathways have been associated with PKD progression, the knowledge of early changes near initial cysts is limited. To perform an unbiased analysis of transcriptomic alterations in the cyst microenvironment, microdomains were collected from kidney sections of iKsp-Pkd1del mice with scattered Pkd1-deletion using Laser Capture Microdissection. These microdomains were defined as F4/80-low cystic, representing early alterations in the cyst microenvironment, F4/80-high cystic, with more advanced alterations, or non-cystic. RNA sequencing and differential gene expression analysis revealed 953 and 8088 dysregulated genes in the F4/80-low and F4/80-high cyst microenvironment, respectively, when compared to non-cystic microdomains. In the early cyst microenvironment, several injury-repair, growth, and tissue remodeling-related pathways were activated, accompanied by mild metabolic changes. In the more advanced F4/80-high microdomains, these pathways were potentiated and the metabolism was highly dysregulated. Upstream regulator analysis revealed a series of paracrine factors with increased activity in the early cyst microenvironment, including TNFSF12 and OSM. In line with the upstream regulator analysis, TWEAK and Oncostatin-M promoted cell proliferation and inflammatory gene expression in renal epithelial cells and fibroblasts in vitro. Collectively, our data provide an overview of molecular alterations that specifically occur in the cyst microenvironment and identify paracrine factors that may mediate early and advanced alterations in the cyst microenvironment.
Collapse
Affiliation(s)
- Sevtap A Yasinoglu
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Thomas B Kuipers
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Ernst Suidgeest
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Louise van der Weerd
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Hans J Baelde
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
8
|
Zhu J, Liu F, Mao J. Clinical findings, underlying pathogenetic processes and treatment of vascular dysfunction in autosomal dominant polycystic kidney disease. Ren Fail 2023; 45:2282027. [PMID: 37970664 PMCID: PMC11001366 DOI: 10.1080/0886022x.2023.2282027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is an inherited disorder characterized by the development of fluid-filled cysts in the kidneys. The primary cause of ADPKD is mutations in the PKD1 (polycystic kidney disease 1) or PKD2 (polycystic kidney disease 2) gene. Patients with ADPKD often develop a variety of vascular abnormalities, which have a major impact on the structure and function of the blood vessels and can lead to complications such as hypertension, intracranial aneurysm (ICAN), and atherosclerosis. The progression of ADPKD involves intricate molecular and cellular processes that lead to the development of these vascular abnormalities. Our understanding of these processes remains incomplete, and available treatment options are limited. The aim of this review is to delve into the underlying mechanisms of these vascular abnormalities and to explore potential interventions.
Collapse
Affiliation(s)
- Jinjun Zhu
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Fei Liu
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
9
|
Wigerinck S, Gregory AV, Smith BH, Iliuta IA, Hanna C, Chedid M, Kaidbay HDN, Senum SR, Shukoor S, Harris PC, Torres VE, Kline TL, Chebib FT. Evaluation of advanced imaging biomarkers at kidney failure in patients with ADPKD: a pilot study. Clin Kidney J 2023; 16:1691-1700. [PMID: 37779848 PMCID: PMC10539251 DOI: 10.1093/ckj/sfad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Indexed: 10/03/2023] Open
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) presents with variable disease severity and progression. Advanced imaging biomarkers may provide insights into cystic and non-cystic processes leading to kidney failure in different age groups. Methods This pilot study included 39 ADPKD patients with kidney failure, stratified into three age groups (<46, 46-56, >56 years old). Advanced imaging biomarkers were assessed using an automated instance cyst segmentation tool. The biomarkers were compared with an age- and sex-matched ADPKD cohort in early chronic kidney disease (CKD). Results Ht-total parenchymal volume correlated negatively with age at kidney failure. The median Ht-total parenchymal volume was significantly lower in patients older than 56 years. Cystic burden was significantly higher at time of kidney failure, especially in patients who reached it before age 46 years. The cyst index at kidney failure was comparable across age groups and Mayo Imaging Classes. Advanced imaging biomarkers showed higher correlation with Ht-total kidney volume in early CKD than at kidney failure. Cyst index and parenchymal index were relatively stable over 5 years prior to kidney failure, whereas Ht-total cyst volume and cyst parenchymal surface area increased significantly. Conclusion Age-related differences in advanced imaging biomarkers suggest variable pathophysiological mechanisms in ADPKD patients with kidney failure. Further studies are needed to validate the utility of these biomarkers in predicting disease progression and guiding treatment strategies.
Collapse
Affiliation(s)
- Stijn Wigerinck
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Faculty of Medicine, Catholic University of Leuven, Leuven, Belgium
| | | | - Byron H Smith
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Ioan-Andrei Iliuta
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, FL, USA
| | - Christian Hanna
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Division of Pediatric Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Maroun Chedid
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | | | - Sarah R Senum
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Shebaz Shukoor
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | | | - Fouad T Chebib
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
10
|
Márquez-Nogueras KM, Vuchkovska V, Kuo IY. Calcium signaling in polycystic kidney disease- cell death and survival. Cell Calcium 2023; 112:102733. [PMID: 37023534 PMCID: PMC10348384 DOI: 10.1016/j.ceca.2023.102733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/20/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Polycystic kidney disease is typified by cysts in the kidney and extra-renal manifestations including hypertension and heart failure. The main genetic underpinning this disease are loss-of function mutations to the two polycystin proteins, polycystin 1 and polycystin 2. Molecularly, the disease is characterized by changes in multiple signaling pathways including down regulation of calcium signaling, which, in part, is contributed by the calcium permeant properties of polycystin 2. These signaling pathways enable the cystic cells to survive and avoid cell death. This review focuses on the studies that have emerged in the past 5 years describing how the structural insights gained from PC-1 and PC-2 inform the calcium dependent molecular pathways of autophagy and the unfolded protein response that are regulated by the polycystin proteins and how it leads to cell survival and/or cell death.
Collapse
Affiliation(s)
- Karla M Márquez-Nogueras
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, 2160 S. First Ave, Maywood, IL, USA
| | - Virdjinija Vuchkovska
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, 2160 S. First Ave, Maywood, IL, USA; Graduate School, Loyola University Chicago, 2160 S. First Ave, Maywood, IL, USA
| | - Ivana Y Kuo
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, 2160 S. First Ave, Maywood, IL, USA.
| |
Collapse
|
11
|
Luo L, Roy S, Li L, Ma M. Polycystic kidney disease: novel insights into polycystin function. Trends Mol Med 2023; 29:268-281. [PMID: 36805211 DOI: 10.1016/j.molmed.2023.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 02/17/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a life-threatening monogenic disease caused by mutations in PKD1 and PKD2 that encode polycystin 1 (PC1) and polycystin 2 (PC2). PC1/2 localize to cilia of renal epithelial cells, and their function is believed to embody an inhibitory activity that suppresses the cilia-dependent cyst activation (CDCA) signal. Consequently, PC deficiency results in activation of CDCA and stimulates cyst growth. Recently, re-expression of PCs in established cysts has been shown to reverse PKD. Thus, the mode of action of PCs resembles a 'counterbalance in cruise control' to maintain lumen diameter within a designated range. Herein we review recent studies that point to novel arenas for future PC research with therapeutic potential for ADPKD.
Collapse
Affiliation(s)
- Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, 400715, China
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119288, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Li Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, 400715, China; Research Center of Stem cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Ming Ma
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
12
|
Mechanism of cystogenesis by Cd79a-driven, conditional mTOR activation in developing mouse nephrons. Sci Rep 2023; 13:508. [PMID: 36627370 PMCID: PMC9832032 DOI: 10.1038/s41598-023-27766-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Polycystic kidney disease (PKD) is a common genetic disorder arising from developmental and postnatal processes. Defects in primary cilia and their signaling (eg, mTOR) underlie the pathogenesis. However, how mTOR regulates tubular integrity remains unclear. The paucity of faithful models has limited our understanding of pathogenesis and, therefore, the refinement of therapeutic targets. To understand the role of mTOR in early cystogenesis, we studied an in-house mouse model, Cd79a-Cre;Tsc1ff. (Cd79a-Tsc1 KO hereafter), recapitulating human autosomal-dominant PKD histology. Cre-mediated Tsc1 depletion driven by the promoter for Cd79a, a known B-cell receptor, activated mTORC1 exclusively along the distal nephron from embryonic day 16 onward. Cysts appeared in the distal nephron at 1 weeks of age and mice developed definite PKD by 4 weeks. Cd79a-Tsc1 KO tubule cells proliferated at a rate comparable to controls after birth but continued to divide even after postnatal day 14 when tubulogenesis is normally completed. Apoptosis occurred only after 9 weeks. During postnatal days 7-11, pre-cystic Cd79a-Tsc1 KO tubule cells showed cilia elongation, aberrant cell intercalation, and mitotic division, suggesting that defective cell planar polarity (PCP) may underlie cystogenesis. mTORC1 was activated in a portion of cyst-lining cells and occasionally even when Tsc1 was not depleted, implying a non-autonomous mechanism. Our results indicate that mTORC1 overactivation in developing distal tubules impairs their postnatal narrowing by disrupting morphogenesis, which orients an actively proliferating cell toward the elongating axis. The interplay between mTOR and cilium signaling, which coordinate cell proliferation with PCP, may be essential for cystogenesis.
Collapse
|
13
|
Li Z, Zimmerman KA, Cherakara S, Chumley PH, Collawn JF, Wang J, Haycraft CJ, Song CJ, Chacana T, Andersen RS, Croyle MJ, Aloria EJ, Hombal RP, Thomas IN, Chweih H, Simanyi KL, George JF, Parant JM, Mrug M, Yoder BK. A kidney resident macrophage subset is a candidate biomarker for renal cystic disease in preclinical models. Dis Model Mech 2023; 16:dmm049810. [PMID: 36457161 PMCID: PMC9884121 DOI: 10.1242/dmm.049810] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
Although renal macrophages have been shown to contribute to cyst development in polycystic kidney disease (PKD) animal models, it remains unclear whether there is a specific macrophage subpopulation involved. Here, we analyzed changes in macrophage populations during renal maturation in association with cystogenesis rates in conditional Pkd2 mutant mice. We observed that CD206+ resident macrophages were minimal in a normal adult kidney but accumulated in cystic areas in adult-induced Pkd2 mutants. Using Cx3cr1 null mice, we reduced macrophage number, including CD206+ macrophages, and showed that this significantly reduced cyst severity in adult-induced Pkd2 mutant kidneys. We also found that the number of CD206+ resident macrophage-like cells increased in kidneys and in the urine from autosomal-dominant PKD (ADPKD) patients relative to the rate of renal functional decline. These data indicate a direct correlation between CD206+ resident macrophages and cyst formation, and reveal that the CD206+ resident macrophages in urine could serve as a biomarker for renal cystic disease activity in preclinical models and ADPKD patients. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Zhang Li
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kurt A. Zimmerman
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 732104, USA
| | - Sreelakshmi Cherakara
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Phillip H. Chumley
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Veterans Affairs Medical Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - James F. Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jun Wang
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Courtney J. Haycraft
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Cheng J. Song
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Teresa Chacana
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Reagan S. Andersen
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mandy J. Croyle
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ernald J. Aloria
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Raksha P. Hombal
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Isis N. Thomas
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hanan Chweih
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kristin L. Simanyi
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - James F. George
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John M. Parant
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michal Mrug
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Veterans Affairs Medical Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Bradley K. Yoder
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
14
|
Mitrovic K, Zivotic I, Kolic I, Djordjevic A, Zakula J, Filipovic Trickovic J, Zivkovic M, Stankovic A, Jovanovic I. Identification and functional interpretation of miRNAs affected by rare CNVs in CAKUT. Sci Rep 2022; 12:17746. [PMID: 36273030 PMCID: PMC9587983 DOI: 10.1038/s41598-022-22749-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/19/2022] [Indexed: 01/18/2023] Open
Abstract
Rare copy number variants (CNVs) are among the most common genomic disorders underlying CAKUT. miRNAs located in rare CNVs represent well-founded functional variants for human CAKUT research. The study aimed to identify and functionally interpret miRNAs most frequently affected by rare CNVs in CAKUT and to estimate the overall burden of rare CNVs on miRNA genes in CAKUT. The additional aim of this study was to experimentally confirm the effect of a rare CNV in CAKUT on candidate miRNA's expression and the subsequent change in mRNA levels of selected target genes. A database of CAKUT-associated rare CNV regions, created by literature mining, was used for mapping of the miRNA precursors. miRNAs and miRNA families, most frequently affected by rare CAKUT-associated CNVs, have been subjected to bioinformatic analysis. CNV burden analysis was performed to identify chromosomes with over/underrepresentation of miRNA genes in rare CNVs associated with CAKUT. A functional study was performed on HEK293 MIR484+/- KO and HEK293 WT cell lines, followed by the analysis of relative miRNA and mRNA target gene levels. 80% of CAKUT patients with underlying rare CNV had at least one miRNA gene overlapping the identified CNV. Network analysis of the most frequently affected miRNAs has revealed the dominant regulation of the two miRNAs, hsa-miR-484 and hsa-miR-185-5p. Additionally, miR-548 family members have shown substantial enrichment in rare CNVs in CAKUT. An over/underrepresentation of miRNA genes in rare CNVs associated with CAKUT was observed in multiple chromosomes, such as chr16, chr20, and chr21. A significant 0.37 fold downregulation of hsa-miR-484, followed by a notable upregulation of MDM2 and APAF1 and downregulation of NOTCH3 was detected in HEK293 MIR484+/- KO compared to HEK293 WT cell lines, supporting the study hypothesis. miRNA genes are frequently affected by rare CNVs in CAKUT patients. Understanding the potential of CNV-affected miRNAs to participate in CAKUT as genetic drivers represent a crucial implication for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Kristina Mitrovic
- grid.7149.b0000 0001 2166 9385Department of Radiobiology and Molecular Genetics, “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivan Zivotic
- grid.7149.b0000 0001 2166 9385Department of Radiobiology and Molecular Genetics, “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivana Kolic
- grid.7149.b0000 0001 2166 9385Department of Radiobiology and Molecular Genetics, “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ana Djordjevic
- grid.7149.b0000 0001 2166 9385Department of Radiobiology and Molecular Genetics, “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena Zakula
- grid.7149.b0000 0001 2166 9385Department of Molecular Biology and Endocrinology, “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena Filipovic Trickovic
- grid.7149.b0000 0001 2166 9385Department of Physical Chemistry, “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Maja Zivkovic
- grid.7149.b0000 0001 2166 9385Department of Radiobiology and Molecular Genetics, “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Stankovic
- grid.7149.b0000 0001 2166 9385Department of Radiobiology and Molecular Genetics, “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivan Jovanovic
- grid.7149.b0000 0001 2166 9385Department of Radiobiology and Molecular Genetics, “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
15
|
Kumar P, Zadjali F, Yao Y, Köttgen M, Hofherr A, Gross KW, Mehta D, Bissler JJ. Single Gene Mutations in Pkd1 or Tsc2 Alter Extracellular Vesicle Production and Trafficking. BIOLOGY 2022; 11:biology11050709. [PMID: 35625437 PMCID: PMC9139108 DOI: 10.3390/biology11050709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/20/2022] [Accepted: 04/30/2022] [Indexed: 12/17/2022]
Abstract
Simple Summary Extracellular vesicles shed from primary cilia may be involved in renal cystogenesis. The disruption of the Pkd1 gene in our cell culture system increased the production of EVs in a similar way that occurs when the Tsc2 gene is disrupted. Disruption of the primary cilia depresses EV production, and this may be the reason that the combined Kif3A/Pkd1 mutant mouse has a less severe phenotype than the Pkd1 mutant alone. We initiated studies aimed at understanding the renal trafficking of renally-derived EVs and found that single gene disruptions can alter the EV kinetics based on dye tracking studies. These results raise the possibility that EV features, such as cargo, dose, tissue half-life, and targeting, may be involved in the disease process, and these features may also be fertile targets for diagnostic, prognostic, and therapeutic investigation. Abstract Patients with autosomal dominant polycystic kidney disease (ADPKD) and tuberous sclerosis complex (TSC) are born with normal or near-normal kidneys that later develop cysts and prematurely lose function. Both renal cystic diseases appear to be mediated, at least in part, by disease-promoting extracellular vesicles (EVs) that induce genetically intact cells to participate in the renal disease process. We used centrifugation and size exclusion chromatography to isolate the EVs for study. We characterized the EVs using tunable resistive pulse sensing, dynamic light scattering, transmission electron microscopy, and Western blot analysis. We performed EV trafficking studies using a dye approach in both tissue culture and in vivo studies. We have previously reported that loss of the Tsc2 gene significantly increased EV production and here demonstrate that the loss of the Pkd1 gene also significantly increases EV production. Using a cell culture system, we also show that loss of either the Tsc2 or Pkd1 gene results in EVs that exhibit an enhanced uptake by renal epithelial cells and a prolonged half-life. Loss of the primary cilia significantly reduces EV production in renal collecting duct cells. Cells that have a disrupted Pkd1 gene produce EVs that have altered kinetics and a prolonged half-life, possibly impacting the duration of the EV cargo effect on the recipient cell. These results demonstrate the interplay between primary cilia and EVs and support a role for EVs in polycystic kidney disease pathogenesis.
Collapse
Affiliation(s)
- Prashant Kumar
- Department of Pediatrics, Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (P.K.); (F.Z.); (Y.Y.)
- Children’s Foundation Research Institute (CFRI), Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
- US FDA National Center for Toxicological Research, Jefferson, AR 72079, USA;
| | - Fahad Zadjali
- Department of Pediatrics, Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (P.K.); (F.Z.); (Y.Y.)
- Children’s Foundation Research Institute (CFRI), Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
- Department of Clinical Biochemistry, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Ying Yao
- Department of Pediatrics, Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (P.K.); (F.Z.); (Y.Y.)
- Children’s Foundation Research Institute (CFRI), Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | - Michael Köttgen
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (M.K.); (A.H.)
- CIBSS—Centre for Integrative Biological Signaling Studies, 79104 Freiburg, Germany
| | - Alexis Hofherr
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (M.K.); (A.H.)
| | - Kenneth W. Gross
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Darshan Mehta
- US FDA National Center for Toxicological Research, Jefferson, AR 72079, USA;
| | - John J. Bissler
- Department of Pediatrics, Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (P.K.); (F.Z.); (Y.Y.)
- Children’s Foundation Research Institute (CFRI), Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
- Pediatric Medicine Department, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Correspondence:
| |
Collapse
|
16
|
Nardozi D, Palumbo S, Khan AUM, Sticht C, Bieback K, Sadeghi S, Kluth MA, Keese M, Gretz N. Potential Therapeutic Effects of Long-Term Stem Cell Administration: Impact on the Gene Profile and Kidney Function of PKD/Mhm (Cy/+) Rats. J Clin Med 2022; 11:jcm11092601. [PMID: 35566725 PMCID: PMC9102853 DOI: 10.3390/jcm11092601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
Cystic kidney disease (CKD) is a heterogeneous group of genetic disorders and one of the most common causes of end-stage renal disease. Here, we investigate the potential effects of long-term human stem cell treatment on kidney function and the gene expression profile of PKD/Mhm (Cy/+) rats. Human adipose-derived stromal cells (ASC) and human skin-derived ABCB5+ stromal cells (2 × 106) were infused intravenously or intraperitoneally monthly, over 6 months. Additionally, ASC and ABCB5+-derived conditioned media were administrated intraperitoneally. The gene expression profile results showed a significant reprogramming of metabolism-related pathways along with downregulation of the cAMP, NF-kB and apoptosis pathways. During the experimental period, we measured the principal renal parameters as well as renal function using an innovative non-invasive transcutaneous device. All together, these analyses show a moderate amelioration of renal function in the ABCB5+ and ASC-treated groups. Additionally, ABCB5+ and ASC-derived conditioned media treatments lead to milder but still promising improvements. Even though further analyses have to be performed, the preliminary results obtained in this study can lay the foundations for a novel therapeutic approach with the application of cell-based therapy in CKD.
Collapse
Affiliation(s)
- Daniela Nardozi
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 68167 Mannheim, Germany; (D.N.); (S.P.); (A.u.M.K.); (C.S.)
- Vascular Surgery, University Hospital Mannheim, 68167 Mannheim, Germany;
| | - Stefania Palumbo
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 68167 Mannheim, Germany; (D.N.); (S.P.); (A.u.M.K.); (C.S.)
| | - Arif ul Maula Khan
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 68167 Mannheim, Germany; (D.N.); (S.P.); (A.u.M.K.); (C.S.)
| | - Carsten Sticht
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 68167 Mannheim, Germany; (D.N.); (S.P.); (A.u.M.K.); (C.S.)
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunoscience, German Red Cross Blood Service Baden-Württemberg—Hessen, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Samar Sadeghi
- RHEACELL GmbH & Co.KG/TICEBA GmbH, 69120 Heidelberg, Germany; (S.S.); (M.A.K.)
| | - Mark Andreas Kluth
- RHEACELL GmbH & Co.KG/TICEBA GmbH, 69120 Heidelberg, Germany; (S.S.); (M.A.K.)
| | - Michael Keese
- Vascular Surgery, University Hospital Mannheim, 68167 Mannheim, Germany;
| | - Norbert Gretz
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 68167 Mannheim, Germany; (D.N.); (S.P.); (A.u.M.K.); (C.S.)
- Correspondence:
| |
Collapse
|
17
|
Miura S, Niida Y, Hashizume C, Fujii A, Takagaki Y, Kusama K, Akazawa S, Minami T, Mukai T, Furuichi K, Tsuchishima M, Ueda N, Takamura H, Koya D, Ito T. Novel PKD2 Missense Mutation p.Ile424Ser in an Individual with Multiple Hepatic Cysts: A Case Report. MEDICINES 2022; 9:medicines9040025. [PMID: 35447873 PMCID: PMC9031803 DOI: 10.3390/medicines9040025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 11/23/2022]
Abstract
We report a novel missense mutation, p.Ile424Ser, in the PKD2 gene of an autosomal dominant polycystic kidney disease (ADPKD) patient with multiple liver cysts. A 57-year-old woman presented to our university hospital with abdominal fullness, decreasing appetite, and dyspnea for three months. A percutaneous drainage of hepatic cysts was performed with no significant symptomatic relief. A computed tomography (CT) scan revealed a hepatic cyst in the lateral portion of the liver with appreciable compression of the stomach. Prior to this admission, the patient had undergone three drainage procedures with serial CT-based follow-up of the cysts over the past 37 years. With a presumptive diagnosis of extrarenal manifestation of ADPKD, we performed both a hepatic cystectomy and a hepatectomy. Because the patient reported a family history of hepatic cysts, we conducted a postoperative genetic analysis. A novel missense mutation, p.Ile424Ser, was detected in the PKD2 gene. Mutations in either the PKD1 or PKD2 genes account for most cases of ADPKD. To the extent of our knowledge, this point mutation has not been reported in the general population. Our in-silico analysis suggests a hereditary likely pathogenic mutation.
Collapse
Affiliation(s)
- Seiko Miura
- Department of General and Gastrointestinal Surgery, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku 920-0293, Ishikawa, Japan; (N.U.); (H.T.)
- Women’s Health Center, the Department of General Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku 920-0293, Ishikawa, Japan; (K.K.); (S.A.); (M.T.)
- Correspondence:
| | - Yo Niida
- Department of Advanced Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku 920-0293, Ishikawa, Japan;
| | - Chieko Hashizume
- Department of Hepatology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku 920-0293, Ishikawa, Japan;
| | - Ai Fujii
- Department of Nephrology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku 920-0293, Ishikawa, Japan; (A.F.); (K.F.)
| | - Yuta Takagaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku 920-0293, Ishikawa, Japan; (Y.T.); (D.K.)
| | - Kahoru Kusama
- Women’s Health Center, the Department of General Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku 920-0293, Ishikawa, Japan; (K.K.); (S.A.); (M.T.)
| | - Sumiyo Akazawa
- Women’s Health Center, the Department of General Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku 920-0293, Ishikawa, Japan; (K.K.); (S.A.); (M.T.)
| | - Tetsuya Minami
- Department of Radiology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku 920-0293, Ishikawa, Japan;
| | - Tsuyoshi Mukai
- Department of Gastroenterological Endoscopy, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku 920-0293, Ishikawa, Japan; (T.M.); (T.I.)
| | - Kengo Furuichi
- Department of Nephrology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku 920-0293, Ishikawa, Japan; (A.F.); (K.F.)
| | - Mutsumi Tsuchishima
- Women’s Health Center, the Department of General Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku 920-0293, Ishikawa, Japan; (K.K.); (S.A.); (M.T.)
- Department of Hepatology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku 920-0293, Ishikawa, Japan;
| | - Nobuhiko Ueda
- Department of General and Gastrointestinal Surgery, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku 920-0293, Ishikawa, Japan; (N.U.); (H.T.)
| | - Hiroyuki Takamura
- Department of General and Gastrointestinal Surgery, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku 920-0293, Ishikawa, Japan; (N.U.); (H.T.)
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku 920-0293, Ishikawa, Japan; (Y.T.); (D.K.)
| | - Tohru Ito
- Department of Gastroenterological Endoscopy, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku 920-0293, Ishikawa, Japan; (T.M.); (T.I.)
| |
Collapse
|
18
|
Decuypere JP, Van Giel D, Janssens P, Dong K, Somlo S, Cai Y, Mekahli D, Vennekens R. Interdependent Regulation of Polycystin Expression Influences Starvation-Induced Autophagy and Cell Death. Int J Mol Sci 2021; 22:ijms222413511. [PMID: 34948309 PMCID: PMC8706473 DOI: 10.3390/ijms222413511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is mainly caused by deficiency of polycystin-1 (PC1) or polycystin-2 (PC2). Altered autophagy has recently been implicated in ADPKD progression, but its exact regulation by PC1 and PC2 remains unclear. We therefore investigated cell death and survival during nutritional stress in mouse inner medullary collecting duct cells (mIMCDs), either wild-type (WT) or lacking PC1 (PC1KO) or PC2 (PC2KO), and human urine-derived proximal tubular epithelial cells (PTEC) from early-stage ADPKD patients with PC1 mutations versus healthy individuals. Basal autophagy was enhanced in PC1-deficient cells. Similarly, following starvation, autophagy was enhanced and cell death reduced when PC1 was reduced. Autophagy inhibition reduced cell death resistance in PC1KO mIMCDs to the WT level, implying that PC1 promotes autophagic cell survival. Although PC2 expression was increased in PC1KO mIMCDs, PC2 knockdown did not result in reduced autophagy. PC2KO mIMCDs displayed lower basal autophagy, but more autophagy and less cell death following chronic starvation. This could be reversed by overexpression of PC1 in PC2KO. Together, these findings indicate that PC1 levels are partially coupled to PC2 expression, and determine the transition from renal cell survival to death, leading to enhanced survival of ADPKD cells during nutritional stress.
Collapse
Affiliation(s)
- Jean-Paul Decuypere
- Laboratory of Pediatrics, PKD Research Group, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (D.V.G.); (P.J.); (D.M.)
- Correspondence: ; Tel.: +32-16340102
| | - Dorien Van Giel
- Laboratory of Pediatrics, PKD Research Group, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (D.V.G.); (P.J.); (D.M.)
- Laboratory of Ion Channel Research, Biomedical Sciences Group, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium;
| | - Peter Janssens
- Laboratory of Pediatrics, PKD Research Group, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (D.V.G.); (P.J.); (D.M.)
- Department of Nephrology, University Hospitals Brussels, 1090 Brussels, Belgium
| | - Ke Dong
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA; (K.D.); (S.S.); (Y.C.)
| | - Stefan Somlo
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA; (K.D.); (S.S.); (Y.C.)
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yiqiang Cai
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA; (K.D.); (S.S.); (Y.C.)
| | - Djalila Mekahli
- Laboratory of Pediatrics, PKD Research Group, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (D.V.G.); (P.J.); (D.M.)
- Department of Pediatric Nephrology, University Hospital of Leuven, 3000 Leuven, Belgium
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, Biomedical Sciences Group, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium;
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| |
Collapse
|
19
|
Li Q, Wang Y, Deng W, Liu Y, Geng J, Yan Z, Li F, Chen B, Li Z, Xia R, Zeng W, Liu R, Xu J, Xiong F, Wu CL, Miao Y. Heterogeneity of cell composition and origin identified by single-cell transcriptomics in renal cysts of patients with autosomal dominant polycystic kidney disease. Theranostics 2021; 11:10064-10073. [PMID: 34815804 PMCID: PMC8581434 DOI: 10.7150/thno.57220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 10/20/2021] [Indexed: 12/18/2022] Open
Abstract
Rationale: Renal cysts in patients with autosomal dominant polycystic kidney disease (ADPKD) can originate from any nephron segments, including proximal tubules (PT), the loop of Henle (LOH), distal tubules (DT), and collecting ducts (CD). Previous studies mostly used limited cell markers and failed to identify cells negative for these markers. Therefore, the cell composition and origin of ADPKD cyst are still unclear, and mechanisms of cystogenesis of different origins await further exploration. Methods: We performed single-cell RNA sequencing for the normal kidney tissue and seven cysts derived from superficial or deep layers of the polycystic kidney from an ADPKD patient. Results: Twelve cell types were identified and analyzed. We found that a renal cyst could be derived either from CD or both PT and LOH. Gene set variation analysis (GSVA) showed that epithelial mesenchymal transition (EMT), TNFA signaling via the NFKB pathways, and xenobiotic metabolism were significantly activated in PT-derived cyst epithelial cells while robust expression of genes involved in G2M Checkpoint, mTORC1 signaling, E2F Targets, MYC Targets V1, MYC Targets V2 were observed in CD-derived cells. Conclusion: Our results revealed that a single cyst could originate from CD or both PT and LOH, suggesting heterogeneity of polycystic composition and origin. Furthermore, cyst epithelial cells with different origins have different gene set activation.
Collapse
|
20
|
Booij TH, Leonhard WN, Bange H, Yan K, Fokkelman M, Plugge AJ, Veraar KAM, Dauwerse JG, van Westen GJP, van de Water B, Price LS, Peters DJM. In vitro 3D phenotypic drug screen identifies celastrol as an effective in vivo inhibitor of polycystic kidney disease. J Mol Cell Biol 2021; 12:644-653. [PMID: 31065693 PMCID: PMC7683017 DOI: 10.1093/jmcb/mjz029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 02/05/2019] [Accepted: 03/10/2019] [Indexed: 01/09/2023] Open
Abstract
Polycystic kidney disease (PKD) is a prevalent genetic disorder, characterized by the formation of kidney cysts that progressively lead to kidney failure. The currently available drug tolvaptan is not well tolerated by all patients and there remains a strong need for alternative treatments. The signaling rewiring in PKD that drives cyst formation is highly complex and not fully understood. As a consequence, the effects of drugs are sometimes difficult to predict. We previously established a high throughput microscopy phenotypic screening method for quantitative assessment of renal cyst growth. Here, we applied this 3D cyst growth phenotypic assay and screened 2320 small drug-like molecules, including approved drugs. We identified 81 active molecules that inhibit cyst growth. Multi-parametric phenotypic profiling of the effects on 3D cultured cysts discriminated molecules that showed preferred pharmacological effects above genuine toxicological properties. Celastrol, a triterpenoid from Tripterygium Wilfordii, was identified as a potent inhibitor of cyst growth in vitro. In an in vivo iKspCre-Pkd1lox,lox mouse model for PKD, celastrol inhibited the growth of renal cysts and maintained kidney function.
Collapse
Affiliation(s)
- Tijmen H Booij
- Division of Toxicology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands.,NEXUS Personalized Health Technologies, ETH Zürich, Switzerland
| | - Wouter N Leonhard
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | | | - Kuan Yan
- OcellO B.V., Leiden, The Netherlands
| | - Michiel Fokkelman
- Division of Toxicology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Anna J Plugge
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Kimberley A M Veraar
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Johannes G Dauwerse
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Gerard J P van Westen
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden, The Netherlands
| | - Bob van de Water
- Division of Toxicology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Leo S Price
- Division of Toxicology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands.,OcellO B.V., Leiden, The Netherlands
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| |
Collapse
|
21
|
Myram S, Venzac B, Lapin B, Battistella A, Cayrac F, Cinquin B, Cavaniol C, Gropplero G, Bonnet I, Demolombe S, Descroix S, Coscoy S. A Multitubular Kidney-on-Chip to Decipher Pathophysiological Mechanisms in Renal Cystic Diseases. Front Bioeng Biotechnol 2021; 9:624553. [PMID: 34124016 PMCID: PMC8188354 DOI: 10.3389/fbioe.2021.624553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a major renal pathology provoked by the deletion of PKD1 or PKD2 genes leading to local renal tubule dilation followed by the formation of numerous cysts, ending up with renal failure in adulthood. In vivo, renal tubules are tightly packed, so that dilating tubules and expanding cysts may have mechanical influence on adjacent tubules. To decipher the role of this coupling between adjacent tubules, we developed a kidney-on-chip reproducing parallel networks of tightly packed tubes. This original microdevice is composed of cylindrical hollow tubes of physiological dimensions, parallel and closely packed with 100-200 μm spacing, embedded in a collagen I matrix. These multitubular systems were properly colonized by different types of renal cells with long-term survival, up to 2 months. While no significant tube dilation over time was observed with Madin-Darby Canine Kidney (MDCK) cells, wild-type mouse proximal tubule (PCT) cells, or with PCT Pkd1 +/- cells (with only one functional Pkd1 allele), we observed a typical 1.5-fold increase in tube diameter with isogenic PCT Pkd1 -/- cells, an ADPKD cellular model. This tube dilation was associated with an increased cell proliferation, as well as a decrease in F-actin stress fibers density along the tube axis. With this kidney-on-chip model, we also observed that for larger tube spacing, PCT Pkd1 -/- tube deformations were not spatially correlated with adjacent tubes whereas for shorter spacing, tube deformations were increased between adjacent tubes. Our device reveals the interplay between tightly packed renal tubes, constituting a pioneering tool well-adapted to further study kidney pathophysiology.
Collapse
Affiliation(s)
- Sarah Myram
- Institut Curie, Université PSL (Paris Sciences & Lettres), Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
| | - Bastien Venzac
- Institut Curie, Université PSL (Paris Sciences & Lettres), Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
| | - Brice Lapin
- Institut Curie, Université PSL (Paris Sciences & Lettres), Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
| | - Aude Battistella
- Institut Curie, Université PSL (Paris Sciences & Lettres), Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
| | - Fanny Cayrac
- Institut Curie, Université PSL (Paris Sciences & Lettres), Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
| | - Bertrand Cinquin
- Institut Pierre-Gilles de Gennes, IPGG Technology Platform, UMS 3750 CNRS, Paris, France
| | - Charles Cavaniol
- Institut Curie, Université PSL (Paris Sciences & Lettres), Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
- Fluigent SA, France
| | - Giacomo Gropplero
- Institut Curie, Université PSL (Paris Sciences & Lettres), Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
| | - Isabelle Bonnet
- Institut Curie, Université PSL (Paris Sciences & Lettres), Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
| | - Sophie Demolombe
- Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, Valbonne, France
| | - Stéphanie Descroix
- Institut Curie, Université PSL (Paris Sciences & Lettres), Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
| | - Sylvie Coscoy
- Institut Curie, Université PSL (Paris Sciences & Lettres), Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
| |
Collapse
|
22
|
Lanktree MB, Haghighi A, di Bari I, Song X, Pei Y. Insights into Autosomal Dominant Polycystic Kidney Disease from Genetic Studies. Clin J Am Soc Nephrol 2021; 16:790-799. [PMID: 32690722 PMCID: PMC8259493 DOI: 10.2215/cjn.02320220] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Autosomal dominant polycystic kidney disease is the most common monogenic cause of ESKD. Genetic studies from patients and animal models have informed disease pathobiology and strongly support a "threshold model" in which cyst formation is triggered by reduced functional polycystin dosage below a critical threshold within individual tubular epithelial cells due to (1) germline and somatic PKD1 and/or PKD2 mutations, (2) mutations of genes (e.g., SEC63, SEC61B, GANAB, PRKCSH, DNAJB11, ALG8, and ALG9) in the endoplasmic reticulum protein biosynthetic pathway, or (3) somatic mosaicism. Genetic testing has the potential to provide diagnostic and prognostic information in cystic kidney disease. However, mutation screening of PKD1 is challenging due to its large size and complexity, making it both costly and labor intensive. Moreover, conventional Sanger sequencing-based genetic testing is currently limited in elucidating the causes of atypical polycystic kidney disease, such as within-family disease discordance, atypical kidney imaging patterns, and discordant disease severity between total kidney volume and rate of eGFR decline. In addition, environmental factors, genetic modifiers, and somatic mosaicism also contribute to disease variability, further limiting prognostication by mutation class in individual patients. Recent innovations in next-generation sequencing are poised to transform and extend molecular diagnostics at reasonable costs. By comprehensive screening of multiple cystic disease and modifier genes, targeted gene panel, whole-exome, or whole-genome sequencing is expected to improve both diagnostic and prognostic accuracy to advance personalized medicine in autosomal dominant polycystic kidney disease.
Collapse
Affiliation(s)
- Matthew B. Lanktree
- Division of Nephrology, St. Joseph Healthcare Hamilton and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Amirreza Haghighi
- Division of Nephrology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Ighli di Bari
- Division of Nephrology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Xuewen Song
- Division of Nephrology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - York Pei
- Division of Nephrology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Arroyo J, Escobar-Zarate D, Wells HH, Constans MM, Thao K, Smith JM, Sieben CJ, Martell MR, Kline TL, Irazabal MV, Torres VE, Hopp K, Harris PC. The genetic background significantly impacts the severity of kidney cystic disease in the Pkd1 RC/RC mouse model of autosomal dominant polycystic kidney disease. Kidney Int 2021; 99:1392-1407. [PMID: 33705824 DOI: 10.1016/j.kint.2021.01.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 12/19/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), primarily due to PKD1 or PKD2 mutations, causes progressive kidney cyst development and kidney failure. There is significant intrafamilial variability likely due to the genetic background and environmental/lifestyle factors; variability that can be modeled in PKD mice. Here, we characterized mice homozygous for the PKD1 hypomorphic allele, p.Arg3277Cys (Pkd1RC/RC), inbred into the BALB/cJ (BC) or the 129S6/SvEvTac (129) strains, plus F1 progeny bred with the previously characterized C57BL/6J (B6) model; F1(BC/B6) or F1(129/B6). By one-month cystic disease in both the BC and 129 Pkd1RC/RC mice was more severe than in B6 and continued with more rapid progression to six to nine months. Thereafter, the expansive disease stage plateaued/declined, coinciding with increased fibrosis and a clear decline in kidney function. Greater severity correlated with more inter-animal and inter-kidney disease variability, especially in the 129-line. Both F1 combinations had intermediate disease severity, more similar to B6 but progressive from one-month of age. Mild biliary dysgenesis, and an early switch from proximal tubule to collecting duct cysts, was seen in all backgrounds. Preclinical testing with a positive control, tolvaptan, employed the F1(129/B6)-Pkd1RC/RC line, which has moderately progressive disease and limited isogenic variability. Magnetic resonance imaging was utilized to randomize animals and provide total kidney volume endpoints; complementing more traditional data. Thus, we show how genetic background can tailor the Pkd1RC/RC model to address different aspects of pathogenesis and disease modification, and describe a possible standardized protocol for preclinical testing.
Collapse
Affiliation(s)
- Jennifer Arroyo
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Harrison H Wells
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Megan M Constans
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Ka Thao
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Jessica M Smith
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Cynthia J Sieben
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Madeline R Martell
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Timothy L Kline
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Maria V Irazabal
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Katharina Hopp
- Division of Renal Diseases and Hypertension, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA.
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
24
|
Theodorakopoulou M, Raptis V, Loutradis C, Sarafidis P. Hypoxia and Endothelial Dysfunction in Autosomal-Dominant Polycystic Kidney Disease. Semin Nephrol 2020; 39:599-612. [PMID: 31836042 DOI: 10.1016/j.semnephrol.2019.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is the most prevalent inherited kidney disease, characterized by growth of bilateral renal cysts, hypertension, and multiple extrarenal complications that eventually can lead to renal failure. It is caused by mutations in PKD1 or PKD2 genes encoding the proteins polycystin-1 and polycystin-2, respectively. Over the past few years, studies investigating the role of primary cilia and polycystins, present not only on the surface of renal tubular cells but also on vascular endothelial cells, have advanced our understanding of the pathogenesis of ADPKD and have shown that mechanisms other than cyst formation also contribute to renal functional decline in this disease. Among them, increased oxidative stress, endothelial dysfunction, and hypoxia may play central roles because they occur early in the disease process and precede the onset of hypertension and renal functional decline. Endothelial dysfunction is linked to higher asymmetric dimethylarginine levels and reduced nitric oxide bioavailability, which would cause regional vasoconstriction and impaired renal blood flow. The resulting hypoxia would increase the levels of hypoxia-inducible-transcription factor 1α and other angiogenetic factors, which, in turn, may drive cyst growth. In this review, we summarize the existing evidence for roles of endothelial dysfunction, oxidative stress, and hypoxia in the pathogenesis of ADPKD.
Collapse
Affiliation(s)
- Marieta Theodorakopoulou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasileios Raptis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Charalampos Loutradis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pantelis Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece..
| |
Collapse
|
25
|
Yoon YM, Go G, Yun CW, Lim JH, Lee JH, Lee SH. Melatonin Suppresses Renal Cortical Fibrosis by Inhibiting Cytoskeleton Reorganization and Mitochondrial Dysfunction through Regulation of miR-4516. Int J Mol Sci 2020; 21:ijms21155323. [PMID: 32727098 PMCID: PMC7432329 DOI: 10.3390/ijms21155323] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022] Open
Abstract
Renal fibrosis, a major risk factor for kidney failure, can lead to chronic kidney disease (CKD) and is caused by cytoskeleton reorganization and mitochondrial dysfunction. In this study, we investigated the potential of melatonin treatment to reduce renal fibrosis by recovering the cytoskeleton reorganization and mitochondrial dysfunction. We found that miR-4516 expression was downregulated in the renal cortex of CKD mice and P-cresol-treated TH1 cells. Decreased miR-4516 expression stimulated cytoskeleton reorganization and mitochondrial dysfunction, and induced renal fibrosis. Melatonin treatment suppressed fibrosis by inhibiting cytoskeleton reorganization and restoring mitochondrial function via increased miR-4516 expression. More specifically, melatonin treatment increased miR-4516 expression while decreasing ITGA9 expression, thereby inhibiting cytoskeleton reorganization. In addition, increased expression of miR-4516 by melatonin treatment reduced ROS formation and restored mitochondrial function. These findings suggest that melatonin may be a promising treatment for patients with CKD having renal fibrosis. Moreover, regulation of miR-4516 expression may be a novel strategy for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Yeo Min Yoon
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (Y.M.Y.); (C.W.Y.); (J.H.L.); (J.H.L.)
| | - Gyeongyun Go
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea;
| | - Chul Won Yun
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (Y.M.Y.); (C.W.Y.); (J.H.L.); (J.H.L.)
| | - Ji Ho Lim
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (Y.M.Y.); (C.W.Y.); (J.H.L.); (J.H.L.)
| | - Jun Hee Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (Y.M.Y.); (C.W.Y.); (J.H.L.); (J.H.L.)
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea;
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (Y.M.Y.); (C.W.Y.); (J.H.L.); (J.H.L.)
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea;
- Correspondence: ; Tel.: +82-2-709-9029
| |
Collapse
|
26
|
Molecular pathways involved in injury-repair and ADPKD progression. Cell Signal 2020; 72:109648. [PMID: 32320858 DOI: 10.1016/j.cellsig.2020.109648] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/29/2022]
Abstract
The major hallmark of Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the formation of many fluid-filled cysts in the kidneys, which ultimately impairs the normal renal structure and function, leading to end-stage renal disease (ESRD). A large body of evidence suggests that injury-repair mechanisms are part of ADPKD progression. Once cysts have been formed, proliferation and fluid secretion contribute to the cyst size increase, which eventually causes stress on the surrounding tissue resulting in local injury and fibrosis. In addition, renal injury can cause or accelerate cyst formation. In this review, we will describe the various mechanisms activated during renal injury and tissue repair and show how they largely overlap with the molecular mechanisms activated during PKD progression. In particular, we will discuss molecular mechanisms such as proliferation, inflammation, cell differentiation, cytokines and growth factors secretion, which are activated following the renal injury to allow the remodelling of the tissue and a proper organ repair. We will also underline how, in a context of PKD-related gene mutations, aberrant or chronic activation of these developmental pathways and repair/remodelling mechanisms results in exacerbation of the disease.
Collapse
|
27
|
Viau A, Baaziz M, Aka A, Mazloum M, Nguyen C, Kuehn EW, Terzi F, Bienaimé F. Tubular STAT3 Limits Renal Inflammation in Autosomal Dominant Polycystic Kidney Disease. J Am Soc Nephrol 2020; 31:1035-1049. [PMID: 32238474 DOI: 10.1681/asn.2019090959] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/19/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The inactivation of the ciliary proteins polycystin 1 or polycystin 2 leads to autosomal dominant polycystic kidney disease (ADPKD). Although signaling by primary cilia and interstitial inflammation both play a critical role in the disease, the reciprocal interactions between immune and tubular cells are not well characterized. The transcription factor STAT3, a component of the cilia proteome that is involved in crosstalk between immune and nonimmune cells in various tissues, has been suggested as a factor fueling ADPKD progression. METHOD To explore how STAT3 intersects with cilia signaling, renal inflammation, and cyst growth, we used conditional murine models involving postdevelopmental ablation of Pkd1, Stat3, and cilia, as well as cultures of cilia-deficient or STAT3-deficient tubular cell lines. RESULTS Our findings indicate that, although primary cilia directly modulate STAT3 activation in vitro, the bulk of STAT3 activation in polycystic kidneys occurs through an indirect mechanism in which primary cilia trigger macrophage recruitment to the kidney, which in turn promotes Stat3 activation. Surprisingly, although inactivating Stat3 in Pkd1-deficient tubules slightly reduced cyst burden, it resulted in a massive infiltration of the cystic kidneys by macrophages and T cells, precluding any improvement of kidney function. We also found that Stat3 inactivation led to increased expression of the inflammatory chemokines CCL5 and CXCL10 in polycystic kidneys and cultured tubular cells. CONCLUSIONS STAT3 appears to repress the expression of proinflammatory cytokines and restrict immune cell infiltration in ADPKD. Our findings suggest that STAT3 is not a critical driver of cyst growth in ADPKD but rather plays a major role in the crosstalk between immune and tubular cells that shapes disease expression.
Collapse
Affiliation(s)
- Amandine Viau
- Growth and Signaling Department, Institut National de la Santé et de la Recherche Médicale (INSERM) U1151, Institute Necker Enfants Malades, Paris, France.,Paris University, Paris, France
| | - Maroua Baaziz
- Growth and Signaling Department, Institut National de la Santé et de la Recherche Médicale (INSERM) U1151, Institute Necker Enfants Malades, Paris, France.,Paris University, Paris, France
| | - Amandine Aka
- Growth and Signaling Department, Institut National de la Santé et de la Recherche Médicale (INSERM) U1151, Institute Necker Enfants Malades, Paris, France.,Paris University, Paris, France
| | - Manal Mazloum
- Growth and Signaling Department, Institut National de la Santé et de la Recherche Médicale (INSERM) U1151, Institute Necker Enfants Malades, Paris, France.,Paris University, Paris, France
| | - Clément Nguyen
- Growth and Signaling Department, Institut National de la Santé et de la Recherche Médicale (INSERM) U1151, Institute Necker Enfants Malades, Paris, France.,Paris University, Paris, France
| | - E Wolfgang Kuehn
- Renal Department, University Medical Center, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Biological Signaling Studies (BIOSS), Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Fabiola Terzi
- Growth and Signaling Department, Institut National de la Santé et de la Recherche Médicale (INSERM) U1151, Institute Necker Enfants Malades, Paris, France.,Paris University, Paris, France
| | - Frank Bienaimé
- Growth and Signaling Department, Institut National de la Santé et de la Recherche Médicale (INSERM) U1151, Institute Necker Enfants Malades, Paris, France .,Paris University, Paris, France.,Department of Physiology, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
28
|
The role of DNA damage as a therapeutic target in autosomal dominant polycystic kidney disease. Expert Rev Mol Med 2019; 21:e6. [PMID: 31767049 DOI: 10.1017/erm.2019.6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic kidney disease and is caused by heterozygous germ-line mutations in either PKD1 (85%) or PKD2 (15%). It is characterised by the formation of numerous fluid-filled renal cysts and leads to adult-onset kidney failure in ~50% of patients by 60 years. Kidney cysts in ADPKD are focal and sporadic, arising from the clonal proliferation of collecting-duct principal cells, but in only 1-2% of nephrons for reasons that are not clear. Previous studies have demonstrated that further postnatal reductions in PKD1 (or PKD2) dose are required for kidney cyst formation, but the exact triggering factors are not clear. A growing body of evidence suggests that DNA damage, and activation of the DNA damage response pathway, are altered in ciliopathies. The aims of this review are to: (i) analyse the evidence linking DNA damage and renal cyst formation in ADPKD; (ii) evaluate the advantages and disadvantages of biomarkers to assess DNA damage in ADPKD and finally, (iii) evaluate the potential effects of current clinical treatments on modifying DNA damage in ADPKD. These studies will address the significance of DNA damage and may lead to a new therapeutic approach in ADPKD.
Collapse
|
29
|
Formica C, Malas T, Balog J, Verburg L, 't Hoen PAC, Peters DJM. Characterisation of transcription factor profiles in polycystic kidney disease (PKD): identification and validation of STAT3 and RUNX1 in the injury/repair response and PKD progression. J Mol Med (Berl) 2019; 97:1643-1656. [PMID: 31773180 PMCID: PMC6920240 DOI: 10.1007/s00109-019-01852-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 01/12/2023]
Abstract
Abstract Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic renal disease, caused in the majority of the cases by a mutation in either the PKD1 or the PKD2 gene. ADPKD is characterised by a progressive increase in the number and size of cysts, together with fibrosis and distortion of the renal architecture, over the years. This is accompanied by alterations in a complex network of signalling pathways. However, the underlying molecular mechanisms are not well characterised. Previously, we defined the PKD Signature, a set of genes typically dysregulated in PKD across different disease models from a meta-analysis of expression profiles. Given the importance of transcription factors (TFs) in modulating disease, we focused in this paper on characterising TFs from the PKD Signature. Our results revealed that out of the 1515 genes in the PKD Signature, 92 were TFs with altered expression in PKD, and 32 of those were also implicated in tissue injury/repair mechanisms. Validating the dysregulation of these TFs by qPCR in independent PKD and injury models largely confirmed these findings. STAT3 and RUNX1 displayed the strongest activation in cystic kidneys, as demonstrated by chromatin immunoprecipitation (ChIP) followed by qPCR. Using immunohistochemistry, we showed a dramatic increase of expression after renal injury in mice and cystic renal tissue of mice and humans. Our results suggest a role for STAT3 and RUNX1 and their downstream targets in the aetiology of ADPKD and indicate that the meta-analysis approach is a viable strategy for new target discovery in PKD. Key messages We identified a list of transcription factors (TFs) commonly dysregulated in ADPKD. Out of the 92 TFs identified in the PKD Signature, 35% are also involved in injury/repair processes. STAT3 and RUNX1 are the most significantly dysregulated TFs after injury and during PKD progression. STAT3 and RUNX1 activity is increased in cystic compared to non-cystic mouse kidneys. Increased expression of STAT3 and RUNX1 is observed in the nuclei of renal epithelial cells, also in human ADPKD samples.
Electronic supplementary material The online version of this article (10.1007/s00109-019-01852-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chiara Formica
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333, ZC, Leiden, The Netherlands
| | - Tareq Malas
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333, ZC, Leiden, The Netherlands
| | - Judit Balog
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333, ZC, Leiden, The Netherlands
| | - Lotte Verburg
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333, ZC, Leiden, The Netherlands.,Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center Nijmegen, Geert Grooteplein Zuid 26/28, 6525, GA, Nijmegen, The Netherlands
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333, ZC, Leiden, The Netherlands.
| |
Collapse
|
30
|
Gewin LS, Summers ME, Harral JW, Gaskill CF, Khodo SN, Neelisetty S, Sullivan TM, Hopp K, Reese JJ, Klemm DJ, Kon V, Ess KC, Shi W, Majka SM. Inactivation of Tsc2 in Abcg2 lineage-derived cells drives the appearance of polycystic lesions and fibrosis in the adult kidney. Am J Physiol Renal Physiol 2019; 317:F1201-F1210. [PMID: 31461347 PMCID: PMC6879939 DOI: 10.1152/ajprenal.00629.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 08/07/2019] [Accepted: 08/22/2019] [Indexed: 02/08/2023] Open
Abstract
Tuberous sclerosis complex 2 (TSC2), or tuberin, is a pivotal regulator of the mechanistic target of rapamycin signaling pathway that controls cell survival, proliferation, growth, and migration. Loss of Tsc2 function manifests in organ-specific consequences, the mechanisms of which remain incompletely understood. Recent single cell analysis of the kidney has identified ATP-binding cassette G2 (Abcg2) expression in renal proximal tubules of adult mice as well as a in a novel cell population. The impact in adult kidney of Tsc2 knockdown in the Abcg2-expressing lineage has not been evaluated. We engineered an inducible system in which expression of truncated Tsc2, lacking exons 36-37 with an intact 3' region and polycystin 1, is driven by Abcg2. Here, we demonstrate that selective expression of Tsc2fl36-37 in the Abcg2pos lineage drives recombination in proximal tubule epithelial and rare perivascular mesenchymal cells, which results in progressive proximal tubule injury, impaired kidney function, formation of cystic lesions, and fibrosis in adult mice. These data illustrate the critical importance of Tsc2 function in the Abcg2-expressing proximal tubule epithelium and mesenchyme during the development of cystic lesions and remodeling of kidney parenchyma.
Collapse
Affiliation(s)
- Leslie S Gewin
- Division of Nephrology and Hypertension or Allergy, Department of Medicine, Pulmonary, and Critical Care Medicine, Vanderbilt University, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Department of Medicine, Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Megan E Summers
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Julie W Harral
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Christa F Gaskill
- Division of Nephrology and Hypertension or Allergy, Department of Medicine, Pulmonary, and Critical Care Medicine, Vanderbilt University, Nashville, Tennessee
| | - Stellor Nlandu Khodo
- Division of Nephrology and Hypertension or Allergy, Department of Medicine, Pulmonary, and Critical Care Medicine, Vanderbilt University, Nashville, Tennessee
| | - Surekha Neelisetty
- Division of Nephrology and Hypertension or Allergy, Department of Medicine, Pulmonary, and Critical Care Medicine, Vanderbilt University, Nashville, Tennessee
| | - Timothy M Sullivan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Katharina Hopp
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Aurora, Colorado
| | - J Jeffrey Reese
- Division of Nephrology or Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Dwight J Klemm
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Valentina Kon
- Division of Nephrology or Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kevin C Ess
- Division of Pediatric Neurology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Wei Shi
- Children's Hospital of Los Angeles, Developmental Biology and Regenerative Medicine Program at the Saban Research Institute, Los Angeles, California
| | - Susan M Majka
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Aurora, Colorado
| |
Collapse
|
31
|
Formica C, Happé H, Veraar KA, Vortkamp A, Scharpfenecker M, McNeill H, Peters DJ. Four-jointed knock-out delays renal failure in an ADPKD model with kidney injury. J Pathol 2019; 249:114-125. [PMID: 31038742 PMCID: PMC6772084 DOI: 10.1002/path.5286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/19/2019] [Accepted: 04/26/2019] [Indexed: 12/28/2022]
Abstract
Autosomal Dominant Polycystic Kidney Disease is characterised by the development of fluid‐filled cysts in the kidneys which lead to end‐stage renal disease (ESRD). In the majority of cases, the disease is caused by a mutation in the Pkd1 gene. In a previous study, we demonstrated that renal injury can accelerate cyst formation in Pkd1 knock‐out (KO) mice. In that study, we found that after injury four‐jointed (Fjx1), an upstream regulator of planar cell polarity and the Hippo pathway, was aberrantly expressed in Pkd1 KO mice compared to WT. Therefore, we hypothesised a role for Fjx1 in injury/repair and cyst formation. We generated single and double deletion mice for Pkd1 and Fjx1, and we induced toxic renal injury using the nephrotoxic compound 1,2‐dichlorovinyl‐cysteine. We confirmed that nephrotoxic injury can accelerate cyst formation in Pkd1 mutant mice. This caused Pkd1 KO mice to reach ESRD significantly faster; unexpectedly, double KO mice survived significantly longer. Cyst formation was comparable in both models, but we found significantly less fibrosis and macrophage infiltration in double KO mice. Taken together, these data suggest that Fjx1 disruption protects the cystic kidneys against kidney failure by reducing inflammation and fibrosis. Moreover, we describe, for the first time, an interesting (yet unidentified) mechanism that partially discriminates cyst growth from fibrogenesis. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Chiara Formica
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Hester Happé
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Kimberley Am Veraar
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrea Vortkamp
- Department of Developmental Biology, Centre of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | | | - Helen McNeill
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Dorien Jm Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
32
|
Abstract
Cystic kidneys are common causes of end-stage renal disease, both in children and in adults. Autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD) are cilia-related disorders and the two main forms of monogenic cystic kidney diseases. ADPKD is a common disease that mostly presents in adults, whereas ARPKD is a rarer and often more severe form of polycystic kidney disease (PKD) that usually presents perinatally or in early childhood. Cell biological and clinical research approaches have expanded our knowledge of the pathogenesis of ADPKD and ARPKD and revealed some mechanistic overlap between them. A reduced 'dosage' of PKD proteins is thought to disturb cell homeostasis and converging signalling pathways, such as Ca2+, cAMP, mechanistic target of rapamycin, WNT, vascular endothelial growth factor and Hippo signalling, and could explain the more severe clinical course in some patients with PKD. Genetic diagnosis might benefit families and improve the clinical management of patients, which might be enhanced even further with emerging therapeutic options. However, many important questions about the pathogenesis of PKD remain. In this Primer, we provide an overview of the current knowledge of PKD and its treatment.
Collapse
Affiliation(s)
- Carsten Bergmann
- Department of Medicine, University Hospital Freiburg, Freiburg, Germany.
| | - Lisa M. Guay-Woodford
- Center for Translational Science, Children’s National Health System, Washington, DC, USA
| | - Peter C. Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Shigeo Horie
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Dorien J. M. Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Vicente E. Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
33
|
Comparative transcriptomics of shear stress treated Pkd1−/− cells and pre-cystic kidneys reveals pathways involved in early polycystic kidney disease. Biomed Pharmacother 2018; 108:1123-1134. [DOI: 10.1016/j.biopha.2018.07.178] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 02/08/2023] Open
|
34
|
De Rechter S, Bammens B, Schaefer F, Liebau MC, Mekahli D. Unmet needs and challenges for follow-up and treatment of autosomal dominant polycystic kidney disease: the paediatric perspective. Clin Kidney J 2018; 11:i14-i26. [PMID: 30581562 PMCID: PMC6295604 DOI: 10.1093/ckj/sfy088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/27/2018] [Indexed: 12/11/2022] Open
Abstract
Awareness is growing that the clinical course of autosomal dominant polycystic kidney disease (ADPKD) already begins in childhood, with a broad range of both symptomatic and asymptomatic features. Knowing that parenchymal destruction with cyst formation and growth starts early in life, it seems reasonable to assume that early intervention may yield the best chances for preserving renal outcome. Interventions may involve lifestyle modifications, hypertension control and the use of disease-modifying treatments once these become available for the paediatric population with an acceptable risk and side-effect profile. Until then, screening of at-risk children is controversial and not generally recommended since this might cause psychosocial and financial harm. Also, the clinical and research communities are facing important questions as to the nature of potential interventions and their optimal indications and timing. Indeed, challenges include the identification and validation of indicators, both measuring and predicting disease progression from childhood, and the discrimination of slow from rapid progressors in the paediatric population. This discrimination will improve both the cost-effectiveness and benefit-to-risk ratio of therapies. Furthermore, we will need to define outcome measures, and to evaluate the possibility of a potential therapeutic window of opportunity in childhood. The recently established international register ADPedKD will help in elucidating these questions. In this review, we provide an overview of the current knowledge on paediatric ADPKD as a future therapeutic target population and its unmet challenges.
Collapse
Affiliation(s)
- Stéphanie De Rechter
- Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
- PKD Research Group, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Bert Bammens
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
- Department of Nephrology, Dialysis and Renal Transplantation, University Hospital of Leuven, Leuven, Belgium
| | - Franz Schaefer
- Division of Pediatric Nephrology, Centre for Pediatrics and Adolescent Medicine, Heidelberg University Medical Centre, Heidelberg, Germany
| | - Max C Liebau
- Department of Pediatrics and Center for Molecular Medicine, University Hospital of Cologne, Cologne, Germany
| | - Djalila Mekahli
- Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
- PKD Research Group, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
35
|
Shi H, Leonhard WN, Sijbrandi NJ, van Steenbergen MJ, Fens MHAM, van de Dikkenberg JB, Toraño JS, Peters DJM, Hennink WE, Kok RJ. Folate-dactolisib conjugates for targeting tubular cells in polycystic kidneys. J Control Release 2018; 293:113-125. [PMID: 30472374 DOI: 10.1016/j.jconrel.2018.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/14/2018] [Accepted: 11/20/2018] [Indexed: 12/22/2022]
Abstract
The aim of the present study was to develop folic acid (FA) conjugates which can deliver the kinase inhibitor dactolisib to the kidneys via folate receptor-mediated uptake in tubular epithelial cells. Dactolisib is a dual inhibitor of phosphatidylinositol 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) and is considered an attractive agent for treatment of polycystic kidney disease. The ethylenediamine platinum(II) linker, herein called Lx, was employed to couple dactolisib via coordination chemistry to thiol-containing FA-spacer adducts to yield FA-Lx-dactolisib conjugates. The dye lissamine was coupled via similar linker chemistry to folate to yield fluorescent FA-Lx-lissamine conjugates. Three different spacers (PEG5-Cys, PEG27-Cys or an Asp-Arg-Asp-Asp-Cys peptide spacer) were used to compare the influence of hydrophilicity and charged groups in the spacer on interaction with target cells and in vivo organ distribution of the final conjugates. The purity and identity of the final products were confirmed by UPLC and LC-MS analysis, respectively. FA-Lx-dactolisib conjugates were stable in serum and culture medium, while dactolisib was released from the conjugates in the presence of glutathione. All three type of conjugates were internalized efficiently by HK-2 cells and uptake could be blocked by an excess of folic acid in the medium, demonstrating FR mediated uptake. FA-Lx-dactolisib conjugates showed nanomolar inhibition of the PI3K pathway (Akt phosphorylation) and mTOR pathway (S6 phosphorylation) in cultured kidney epithelial cells (HK-2 cells). After intraperitoneal administration, all three types conjugates accumulated extensively in kidneys of iKsp-Pkd1del mice with polycystic kidney disease. In conclusion, folate conjugates were successfully prepared by platinum(II) coordination chemistry and accumulated in a target-specific manner in kidney cells and polycystic kidneys. The folate conjugate of dactolisib thus may have potential for targeted therapy of polycystic kidney disease.
Collapse
Affiliation(s)
- Haili Shi
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Wouter N Leonhard
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Mies J van Steenbergen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Marcel H A M Fens
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Joep B van de Dikkenberg
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Javier Sastre Toraño
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Robbert Jan Kok
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
36
|
Kenter AT, van Rossum-Fikkert SE, Salih M, Verhagen PCMS, van Leenders GJLH, Demmers JAA, Jansen G, Gribnau J, Zietse R, Hoorn EJ. Identifying cystogenic paracrine signaling molecules in cyst fluid of patients with polycystic kidney disease. Am J Physiol Renal Physiol 2018; 316:F204-F213. [PMID: 30403162 DOI: 10.1152/ajprenal.00470.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In autosomal dominant polycystic kidney disease (ADPKD) paracrine signaling molecules in cyst fluid can induce proliferation and cystogenesis of neighboring renal epithelial cells. However, the identity of this cyst-inducing factor is still unknown. The aim of this study was to identify paracrine signaling proteins in cyst fluid using a 3D in vitro cystogenesis assay. We collected cyst fluid from 15 ADPKD patients who underwent kidney or liver resection (55 cysts from 13 nephrectomies, 5 cysts from 2 liver resections). For each sample, the ability to induce proliferation and cyst formation was tested using the cystogenesis assay (RPTEC/TERT1 cells in Matrigel with cyst fluid added for 14 days). Kidney cyst fluid induced proliferation and cyst growth of renal epithelial cells in a dose-dependent fashion. Liver cyst fluid also induced cystogenesis. Using size exclusion chromatography, 56 cyst fluid fractions were obtained of which only the fractions between 30 and 100 kDa showed cystogenic potential. Mass spectrometry analysis of samples that tested positive or negative in the assay identified 43 candidate cystogenic proteins. Gene ontology analysis showed an enrichment for proteins classified as enzymes, immunity proteins, receptors, and signaling proteins. A number of these proteins have previously been implicated in ADPKD, including secreted frizzled-related protein 4, S100A8, osteopontin, and cysteine rich with EGF-like domains 1. In conclusion, both kidney and liver cyst fluids contain paracrine signaling molecules that drive cyst formation. Using size exclusion chromatography and mass spectrometry, we procured a candidate list for future studies. Ultimately, cystogenic paracrine signaling molecules may be targeted to abrogate cystogenesis in ADPKD.
Collapse
Affiliation(s)
- Annegien T Kenter
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam , The Netherlands.,Department of Cell Biology, Erasmus Medical Center, Rotterdam , The Netherlands.,Department of Developmental Biology, Erasmus Medical Center, Rotterdam , The Netherlands
| | | | - Mahdi Salih
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam , The Netherlands
| | | | | | | | - Gert Jansen
- Department of Cell Biology, Erasmus Medical Center, Rotterdam , The Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus Medical Center, Rotterdam , The Netherlands
| | - Robert Zietse
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam , The Netherlands
| | - Ewout J Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam , The Netherlands
| |
Collapse
|
37
|
Raptis V, Loutradis C, Sarafidis PA. Renal injury progression in autosomal dominant polycystic kidney disease: a look beyond the cysts. Nephrol Dial Transplant 2018; 33:1887-1895. [DOI: 10.1093/ndt/gfy023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Affiliation(s)
- Vasileios Raptis
- Section of Nephrology and Hypertension, 1st Department of Medicine, AHEPA Hospital, Thessaloniki, Greece
| | - Charalampos Loutradis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pantelis A Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
38
|
Raman A, Parnell SC, Zhang Y, Reif GA, Dai Y, Khanna A, Daniel E, White C, Vivian JL, Wallace DP. Periostin overexpression in collecting ducts accelerates renal cyst growth and fibrosis in polycystic kidney disease. Am J Physiol Renal Physiol 2018; 315:F1695-F1707. [PMID: 30332313 DOI: 10.1152/ajprenal.00246.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In polycystic kidney disease (PKD), persistent activation of cell proliferation and matrix production contributes to cyst growth and fibrosis, leading to progressive deterioration of renal function. Previously, we showed that periostin, a matricellular protein involved in tissue repair, is overexpressed by cystic epithelial cells of PKD kidneys. Periostin binds αVβ3-integrins and activates integrin-linked kinase (ILK), leading to Akt/mammalian target of rapamycin (mTOR)-mediated proliferation of human PKD cells. By contrast, periostin does not stimulate the proliferation of normal human kidney cells. This difference in the response to periostin is due to elevated expression of αVβ3-integrins by cystic cells. To determine whether periostin accelerates cyst growth and fibrosis, we generated mice with conditional overexpression of periostin in the collecting ducts (CDs). Ectopic CD expression of periostin was not sufficient to induce cyst formation or fibrosis in wild-type mice. However, periostin overexpression in pcy/pcy ( pcy) kidneys significantly increased mTOR activity, cell proliferation, cyst growth, and interstitial fibrosis; and accelerated the decline in renal function. Moreover, CD-specific overexpression of periostin caused a decrease in the survival of pcy mice. These pathological changes were accompanied by increased renal expression of vimentin, α-smooth muscle actin, and type I collagen. We also found that periostin increased gene expression of pathways involved in repair, including integrin and growth factor signaling and ECM production, and it stimulated focal adhesion kinase, Rho GTPase, cytoskeletal reorganization, and migration of PKD cells. These results suggest that periostin stimulates signaling pathways involved in an abnormal tissue repair process that contributes to cyst growth and fibrosis in PKD.
Collapse
Affiliation(s)
- Archana Raman
- The Jared Grantham Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center , Kansas City, Kansas
| | - Stephen C Parnell
- The Jared Grantham Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas.,Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas
| | - Yan Zhang
- The Jared Grantham Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas.,Department of Internal Medicine, University of Kansas Medical Center , Kansas City, Kansas
| | - Gail A Reif
- The Jared Grantham Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas.,Department of Internal Medicine, University of Kansas Medical Center , Kansas City, Kansas
| | - Yuqiao Dai
- The Jared Grantham Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas.,Department of Internal Medicine, University of Kansas Medical Center , Kansas City, Kansas
| | - Aditi Khanna
- The Jared Grantham Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas.,Department of Internal Medicine, University of Kansas Medical Center , Kansas City, Kansas
| | - Emily Daniel
- The Jared Grantham Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas.,Department of Internal Medicine, University of Kansas Medical Center , Kansas City, Kansas
| | - Corey White
- The Jared Grantham Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas.,Department of Internal Medicine, University of Kansas Medical Center , Kansas City, Kansas
| | - Jay L Vivian
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center , Kansas City, Kansas
| | - Darren P Wallace
- The Jared Grantham Kidney Institute, University of Kansas Medical Center , Kansas City, Kansas.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center , Kansas City, Kansas.,Department of Internal Medicine, University of Kansas Medical Center , Kansas City, Kansas
| |
Collapse
|
39
|
Yang Y, Chen M, Zhou J, Lv J, Song S, Fu L, Chen J, Yang M, Mei C. Interactions between Macrophages and Cyst-Lining Epithelial Cells Promote Kidney Cyst Growth in Pkd1-Deficient Mice. J Am Soc Nephrol 2018; 29:2310-2325. [PMID: 30042193 DOI: 10.1681/asn.2018010074] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 06/21/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Autosomal-dominant polycystic kidney disease (ADPKD) is the leading inherited renal disease worldwide. The proproliferative function of macrophages is associated with late-stage cyst enlargement in mice with PKD; however, the way in which macrophages act on cyst-lining epithelial cells (CLECs) has not been well elucidated. METHODS We generated a rapid-onset PKD mouse model by inactivating Pkd1 on postnatal day 10 (P10) and compared cell proliferation and differential gene expression in kidney tissues of the PKD mice and wild-type (WT) littermates. RESULTS The cystic phenotype was dominant from P18. A distinct peak in cell proliferation in polycystic kidneys during P22-P30 was closely related to late-stage cyst growth. Comparisons of gene expression profiles in kidney tissues at P22 and P30 in PKD and WT mice revealed that arginine metabolism was significantly activated; 204 differentially expressed genes (DEGs), including Arg1, an arginine metabolism-associated gene, were identified in late-stage polycystic kidneys. The Arg1-encoded protein, arginase-1 (ARG1), was predominantly expressed in macrophages in a time-dependent manner. Multiple-stage macrophage depletion verified that macrophages expressing high ARG1 levels accounted for late-stage cyst enlargement, and inhibiting ARG1 activity significantly retarded cyst growth and effectively lowered the proliferative indices in polycystic kidneys. In vitro experiments revealed that macrophages stimulated CLEC proliferation, and that L-lactic acid, primarily generated by CLECs, significantly upregulated ARG1 expression and increased polyamine synthesis in macrophages. CONCLUSIONS Interactions between macrophages and CLECs promote cyst growth. ARG1 is a key molecule involved in this process and is a potential therapeutic target to help delay ADPKD progression.
Collapse
Affiliation(s)
- Yang Yang
- Division of Nephrology, Kidney Institution of Chinese People's Liberation Army (PLA), Chang Zheng Hospital, The Second Military Medical University, Shanghai, China.,Division of Nephrology, Kidney Diagnostic and Therapeutic Center of PLA, Beidaihe Sanatorium of PLA, Qinhuangdao, China; and
| | - Meihan Chen
- Division of Nephrology, Kidney Institution of Chinese People's Liberation Army (PLA), Chang Zheng Hospital, The Second Military Medical University, Shanghai, China
| | - Jie Zhou
- Division of Nephrology, Kidney Institution of Chinese People's Liberation Army (PLA), Chang Zheng Hospital, The Second Military Medical University, Shanghai, China
| | - Jiayi Lv
- Division of Nephrology, Kidney Institution of Chinese People's Liberation Army (PLA), Chang Zheng Hospital, The Second Military Medical University, Shanghai, China
| | - Shuwei Song
- Division of Nephrology, Kidney Institution of Chinese People's Liberation Army (PLA), Chang Zheng Hospital, The Second Military Medical University, Shanghai, China
| | - LiLi Fu
- Division of Nephrology, Kidney Institution of Chinese People's Liberation Army (PLA), Chang Zheng Hospital, The Second Military Medical University, Shanghai, China
| | - Jiejian Chen
- Division of Nephrology, Kidney Institution of Chinese People's Liberation Army (PLA), Chang Zheng Hospital, The Second Military Medical University, Shanghai, China.,Department of Nephrology, The 175th Hospital of PLA, Zhangzhou, China
| | - Ming Yang
- Division of Nephrology, Kidney Institution of Chinese People's Liberation Army (PLA), Chang Zheng Hospital, The Second Military Medical University, Shanghai, China
| | - Changlin Mei
- Division of Nephrology, Kidney Institution of Chinese People's Liberation Army (PLA), Chang Zheng Hospital, The Second Military Medical University, Shanghai, China;
| |
Collapse
|
40
|
Verschuren EHJ, Mohammed SG, Leonhard WN, Overmars-Bos C, Veraar K, Hoenderop JGJ, Bindels RJM, Peters DJM, Arjona FJ. Polycystin-1 dysfunction impairs electrolyte and water handling in a renal precystic mouse model for ADPKD. Am J Physiol Renal Physiol 2018; 315:F537-F546. [PMID: 29767557 DOI: 10.1152/ajprenal.00622.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The PKD1 gene encodes polycystin-1 (PC1), a mechanosensor triggering intracellular responses upon urinary flow sensing in kidney tubular cells. Mutations in PKD1 lead to autosomal dominant polycystic kidney disease (ADPKD). The involvement of PC1 in renal electrolyte handling remains unknown since renal electrolyte physiology in ADPKD patients has only been characterized in cystic ADPKD. We thus studied the renal electrolyte handling in inducible kidney-specific Pkd1 knockout (iKsp- Pkd1-/-) mice manifesting a precystic phenotype. Serum and urinary electrolyte determinations indicated that iKsp- Pkd1-/- mice display reduced serum levels of magnesium (Mg2+), calcium (Ca2+), sodium (Na+), and phosphate (Pi) compared with control ( Pkd1+/+) mice and renal Mg2+, Ca2+, and Pi wasting. In agreement with these electrolyte disturbances, downregulation of key genes for electrolyte reabsorption in the thick ascending limb of Henle's loop (TA;, Cldn16, Kcnj1, and Slc12a1), distal convoluted tubule (DCT; Trpm6 and Slc12a3) and connecting tubule (CNT; Calb1, Slc8a1, and Atp2b4) was observed in kidneys of iKsp- Pkd1-/- mice compared with controls. Similarly, decreased renal gene expression of markers for TAL ( Umod) and DCT ( Pvalb) was observed in iKsp- Pkd1-/- mice. Conversely, mRNA expression levels in kidney of genes encoding solute and water transporters in the proximal tubule ( Abcg2 and Slc34a1) and collecting duct ( Aqp2, Scnn1a, and Scnn1b) remained comparable between control and iKsp- Pkd1-/- mice, although a water reabsorption defect was observed in iKsp- Pkd1-/- mice. In conclusion, our data indicate that PC1 is involved in renal Mg2+, Ca2+, and water handling and its dysfunction, resulting in a systemic electrolyte imbalance characterized by low serum electrolyte concentrations.
Collapse
Affiliation(s)
- Eric H J Verschuren
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Sami G Mohammed
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Wouter N Leonhard
- Department of Human Genetics, Leiden University Medical Centre , Leiden , The Netherlands
| | - Caro Overmars-Bos
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Kimberly Veraar
- Department of Human Genetics, Leiden University Medical Centre , Leiden , The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Centre , Leiden , The Netherlands
| | - Francisco J Arjona
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands
| |
Collapse
|
41
|
Li A, Xu Y, Fan S, Meng J, Shen X, Xiao Q, Li Y, Zhang L, Zhang X, Wu G, Liang C, Wu D. Canonical Wnt inhibitors ameliorate cystogenesis in a mouse ortholog of human ADPKD. JCI Insight 2018. [PMID: 29515026 DOI: 10.1172/jci.insight.95874] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) can be caused by mutations in the PKD1 or PKD2 genes. The PKD1 gene product is a Wnt cell-surface receptor. We previously showed that a lack of the PKD2 gene product, PC2, increases β-catenin signaling in mouse embryonic fibroblasts, kidney renal epithelia, and isolated renal collecting duct cells. However, it remains unclear whether β-catenin signaling plays a role in polycystic kidney disease phenotypes or if a Wnt inhibitor can halt cyst formation in ADPKD disease models. Here, using genetic and pharmacologic approaches, we demonstrated that the elevated β-catenin signaling caused by PC2 deficiency contributes significantly to disease phenotypes in a mouse ortholog of human ADPKD. Pharmacologically inhibiting β-catenin stability or the production of mature Wnt protein, or genetically reducing the expression of Ctnnb1 (which encodes β-catenin), suppressed the formation of renal cysts, improved renal function, and extended survival in ADPKD mice. Our study clearly demonstrates the importance of β-catenin signaling in disease phenotypes associated with Pkd2 mutation. It also describes the effects of two Wnt inhibitors, XAV939 and LGK974, on various Wnt signaling targets as a potential therapeutic modality for ADPKD, for which there is currently no effective therapy.
Collapse
Affiliation(s)
- Ao Li
- Anhui Province PKD Center, Institute and Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.,Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yuchen Xu
- Anhui Province PKD Center, Institute and Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Song Fan
- Anhui Province PKD Center, Institute and Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Jialin Meng
- Anhui Province PKD Center, Institute and Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Xufeng Shen
- Anhui Province PKD Center, Institute and Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Qian Xiao
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yuan Li
- State Key Laboratory of Molecular Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Zhang
- Anhui Province PKD Center, Institute and Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Xiansheng Zhang
- Anhui Province PKD Center, Institute and Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Guanqing Wu
- Anhui Province PKD Center, Institute and Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.,State Key Laboratory of Molecular Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chaozhao Liang
- Anhui Province PKD Center, Institute and Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Dianqing Wu
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
42
|
Lanktree MB, Chapman AB. New treatment paradigms for ADPKD: moving towards precision medicine. Nat Rev Nephrol 2017; 13:750-768. [DOI: 10.1038/nrneph.2017.127] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Li A, Fan S, Xu Y, Meng J, Shen X, Mao J, Zhang L, Zhang X, Moeckel G, Wu D, Wu G, Liang C. Rapamycin treatment dose-dependently improves the cystic kidney in a new ADPKD mouse model via the mTORC1 and cell-cycle-associated CDK1/cyclin axis. J Cell Mol Med 2017; 21:1619-1635. [PMID: 28244683 PMCID: PMC5543471 DOI: 10.1111/jcmm.13091] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/15/2016] [Indexed: 01/10/2023] Open
Abstract
Although translational research into autosomal dominant polycystic kidney disease (ADPKD) and its pathogenesis has made considerable progress, there is presently lack of standardized animal model for preclinical trials. In this study, we developed an orthologous mouse model of human ADPKD by cross‐mating Pkd2 conditional‐knockout mice (Pkd2f3) to Cre transgenic mice in which Cre is driven by a spectrum of kidney‐related promoters. By systematically characterizing the mouse model, we found that Pkd2f3/f3 mice with a Cre transgene driven by the mouse villin‐1 promoter (Vil‐Cre;Pkd2f3/f3) develop overt cysts in the kidney, liver and pancreas and die of end‐stage renal disease (ESRD) at 4–6 months of age. To determine whether these Vil‐Cre;Pkd2f3/f3 mice were suitable for preclinical trials, we treated the mice with the high‐dose mammalian target of rapamycin (mTOR) inhibitor rapamycin. High‐dose rapamycin significantly increased the lifespan, lowered the cystic index and kidney/body weight ratio and improved renal function in Vil‐Cre;Pkd2f3/f3 mice in a time‐ and dose‐dependent manner. In addition, we further found that rapamycin arrested aberrant epithelial‐cell proliferation in the ADPKD kidney by down‐regulating the cell‐cycle‐associated cyclin‐dependent kinase 1 (CDK1) and cyclins, namely cyclin A, cyclin B, cyclin D1 and cyclin E, demonstrating a direct link between mTOR signalling changes and the polycystin‐2 dysfunction in cystogenesis. Our newly developed ADPKD model provides a practical platform for translating in vivo preclinical results into ADPKD therapies. The newly defined molecular mechanism by which rapamycin suppresses proliferation via inhibiting abnormally elevated CDK1 and cyclins offers clues to new molecular targets for ADPKD treatment.
Collapse
Affiliation(s)
- Ao Li
- Department of Urology, PKD Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.,State Key Laboratory of Molecular Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Song Fan
- Department of Urology, PKD Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yuchen Xu
- Department of Urology, PKD Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Jialin Meng
- Department of Urology, PKD Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Xufeng Shen
- Department of Urology, PKD Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Jun Mao
- Department of Urology, PKD Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Li Zhang
- Department of Urology, PKD Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Xiansheng Zhang
- Department of Urology, PKD Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Gilbert Moeckel
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Dianqing Wu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Guanqing Wu
- Department of Urology, PKD Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.,State Key Laboratory of Molecular Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chaozhao Liang
- Department of Urology, PKD Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
44
|
Malas TB, Formica C, Leonhard WN, Rao P, Granchi Z, Roos M, Peters DJM, 't Hoen PAC. Meta-analysis of polycystic kidney disease expression profiles defines strong involvement of injury repair processes. Am J Physiol Renal Physiol 2017; 312:F806-F817. [PMID: 28148532 DOI: 10.1152/ajprenal.00653.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/30/2017] [Accepted: 01/30/2017] [Indexed: 12/25/2022] Open
Abstract
Polycystic kidney disease (PKD) is a major cause of end-stage renal disease. The disease mechanisms are not well understood and the pathogenesis toward renal failure remains elusive. In this study, we present the first RNASeq analysis of a Pkd1-mutant mouse model in a combined meta-analysis with other published PKD expression profiles. We introduce the PKD Signature, a set of 1,515 genes that are commonly dysregulated in PKD studies. We show that the signature genes include many known and novel PKD-related genes and functions. Moreover, genes with a role in injury repair, as evidenced by expression data and/or automated literature analysis, were significantly enriched in the PKD Signature, with 35% of the PKD Signature genes being directly implicated in injury repair. NF-κB signaling, epithelial-mesenchymal transition, inflammatory response, hypoxia, and metabolism were among the most prominent injury or repair-related biological processes with a role in the PKD etiology. Novel PKD genes with a role in PKD and in injury were confirmed in another Pkd1-mutant mouse model as well as in animals treated with a nephrotoxic agent. We propose that compounds that can modulate the injury-repair response could be valuable drug candidates for PKD treatment.
Collapse
Affiliation(s)
- Tareq B Malas
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands; and
| | - Chiara Formica
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands; and
| | - Wouter N Leonhard
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands; and
| | | | | | - Marco Roos
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands; and
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands; and
| | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands; and
| |
Collapse
|
45
|
Sweeney WE, Avner ED. Emerging Therapies for Childhood Polycystic Kidney Disease. Front Pediatr 2017; 5:77. [PMID: 28473970 PMCID: PMC5395658 DOI: 10.3389/fped.2017.00077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/30/2017] [Indexed: 12/28/2022] Open
Abstract
Cystic kidney diseases comprise a varied collection of hereditary disorders, where renal cysts comprise a major element of their pleiotropic phenotype. In pediatric patients, the term polycystic kidney disease (PKD) commonly refers to two specific hereditary diseases, autosomal recessive polycystic kidney disease (ARPKD) and autosomal dominant polycystic kidney disease (ADPKD). Remarkable progress has been made in understanding the complex molecular and cellular mechanisms of renal cyst formation in ARPKD and ADPKD. One of the most important discoveries is that both the genes and proteins products of ARPKD and ADPKD interact in a complex network of genetic and functional interactions. These interactions and the shared phenotypic abnormalities of ARPKD and ADPKD, the "cystic phenotypes" suggest that many of the therapies developed and tested for ADPKD may be effective in ARPKD as well. Successful therapeutic interventions for childhood PKD will, therefore, be guided by knowledge of these molecular interactions, as well as a number of clinical parameters, such as the stage of the disease and the rate of disease progression.
Collapse
Affiliation(s)
- William E Sweeney
- Department of Pediatrics, Medical College of Wisconsin, Children's Research Institute, Children's Hospital Health System of Wisconsin, Milwaukee, WI, USA
| | - Ellis D Avner
- Department of Pediatrics, Medical College of Wisconsin, Children's Research Institute, Children's Hospital Health System of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
46
|
Leonhard WN, Kunnen SJ, Plugge AJ, Pasternack A, Jianu SBT, Veraar K, El Bouazzaoui F, Hoogaars WMH, Ten Dijke P, Breuning MH, De Heer E, Ritvos O, Peters DJM. Inhibition of Activin Signaling Slows Progression of Polycystic Kidney Disease. J Am Soc Nephrol 2016; 27:3589-3599. [PMID: 27020852 PMCID: PMC5118473 DOI: 10.1681/asn.2015030287] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 02/10/2016] [Indexed: 12/31/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), characterized by the formation of numerous kidney cysts, is caused by PKD1 or PKD2 mutations and affects 0.1% of the population. Although recent clinical studies indicate that reduction of cAMP levels slows progression of PKD, this finding has not led to an established safe and effective therapy for patients, indicating the need to find new therapeutic targets. The role of TGF-β in PKD is not clearly understood, but nuclear accumulation of phosphorylated SMAD2/3 in cyst-lining cells suggests the involvement of TGF-β signaling in this disease. In this study, we ablated the TGF-β type 1 receptor (also termed activin receptor-like kinase 5) in renal epithelial cells of PKD mice, which had little to no effect on the expression of SMAD2/3 target genes or the progression of PKD. Therefore, we investigated whether alternative TGF-β superfamily ligands account for SMAD2/3 activation in cystic epithelial cells. Activins are members of the TGF-β superfamily and drive SMAD2/3 phosphorylation via activin receptors, but activins have not been studied in the context of PKD. Mice with PKD had increased expression of activin ligands, even at early stages of disease. In addition, treatment with a soluble activin receptor IIB fusion (sActRIIB-Fc) protein, which acts as a soluble trap to sequester activin ligands, effectively inhibited cyst formation in three distinct mouse models of PKD. These data point to activin signaling as a key pathway in PKD and a promising target for therapy.
Collapse
Affiliation(s)
| | | | | | - Arja Pasternack
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland; and
| | | | | | | | - Willem M H Hoogaars
- Department of Human Movement Sciences, Faculty of Behavior and Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute, Amsterdam, The Netherlands
| | - Peter Ten Dijke
- Molecular Cell Biology and Cancer Genomics Centre Netherlands at the Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Olli Ritvos
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland; and
| | | |
Collapse
|
47
|
Leonhard WN, Happe H, Peters DJM. Variable Cyst Development in Autosomal Dominant Polycystic Kidney Disease: The Biologic Context. J Am Soc Nephrol 2016; 27:3530-3538. [PMID: 27493259 PMCID: PMC5118495 DOI: 10.1681/asn.2016040425] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Patients with autosomal dominant polycystic kidney disease (ADPKD) typically carry a mutation in either the PKD1 or PKD2 gene, which leads to massive cyst formation in both kidneys. However, the large intrafamilial variation in the progression rate of ADPKD suggests involvement of additional factors other than the type of mutation. The identification of these factors will increase our understanding of ADPKD and could ultimately help in the development of a clinically relevant therapy. Our review addresses the mechanisms by which various biologic processes influence cyst formation and cyst growth, thereby explaining an important part of the inter- and intrafamilial variability in ADPKD. Numerous studies from many laboratories provide compelling evidence for the influence on cyst formation by spatiotemporal gene inactivation, the genetic context, the metabolic status, the presence of existing cysts, and whether the kidneys were challenged by renal injury. Collectively, a solid basis is provided for the concept that the probability of cyst formation is determined by functional PKD protein levels and the biologic context. We model these findings in a graphic representation called the cystic probability landscape, providing a robust conceptual understanding of why cells sometimes do or do not form cysts.
Collapse
Affiliation(s)
- Wouter N Leonhard
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Hester Happe
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
48
|
Rogers KA, Moreno SE, Smith LA, Husson H, Bukanov NO, Ledbetter SR, Budman Y, Lu Y, Wang B, Ibraghimov-Beskrovnaya O, Natoli TA. Differences in the timing and magnitude of Pkd1 gene deletion determine the severity of polycystic kidney disease in an orthologous mouse model of ADPKD. Physiol Rep 2016; 4:4/12/e12846. [PMID: 27356569 PMCID: PMC4926022 DOI: 10.14814/phy2.12846] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/07/2016] [Indexed: 12/24/2022] Open
Abstract
Development of a disease‐modifying therapy to treat autosomal dominant polycystic kidney disease (ADPKD) requires well‐characterized preclinical models that accurately reflect the pathology and biochemical changes associated with the disease. Using a Pkd1 conditional knockout mouse, we demonstrate that subtly altering the timing and extent of Pkd1 deletion can have a significant impact on the origin and severity of kidney cyst formation. Pkd1 deletion on postnatal day 1 or 2 results in cysts arising from both the cortical and medullary regions, whereas deletion on postnatal days 3–8 results in primarily medullary cyst formation. Altering the extent of Pkd1 deletion by modulating the tamoxifen dose produces dose‐dependent changes in the severity, but not origin, of cystogenesis. Limited Pkd1 deletion produces progressive kidney cystogenesis, accompanied by interstitial fibrosis and loss of kidney function. Cyst growth occurs in two phases: an early, rapid growth phase, followed by a later, slow growth period. Analysis of biochemical pathway changes in cystic kidneys reveals dysregulation of the cell cycle, increased proliferation and apoptosis, activation of Mek‐Erk, Akt‐mTOR, and Wnt‐β‐catenin signaling pathways, and altered glycosphingolipid metabolism that resemble the biochemical changes occurring in human ADPKD kidneys. These pathways are normally active in neonatal mouse kidneys until repressed around 3 weeks of age; however, they remain active following Pkd1 deletion. Together, this work describes the key parameters to accurately model the pathological and biochemical changes associated with ADPKD in a conditional mouse model.
Collapse
Affiliation(s)
- Kelly A Rogers
- Department of Rare Renal Disease Research, Sanofi-Genzyme R&D Center, Framingham, Massachusetts
| | - Sarah E Moreno
- Department of Rare Renal Disease Research, Sanofi-Genzyme R&D Center, Framingham, Massachusetts
| | - Laurie A Smith
- Department of Rare Renal Disease Research, Sanofi-Genzyme R&D Center, Framingham, Massachusetts
| | - Hervé Husson
- Department of Rare Renal Disease Research, Sanofi-Genzyme R&D Center, Framingham, Massachusetts
| | - Nikolay O Bukanov
- Department of Rare Renal Disease Research, Sanofi-Genzyme R&D Center, Framingham, Massachusetts
| | - Steven R Ledbetter
- Department of Rare Renal Disease Research, Sanofi-Genzyme R&D Center, Framingham, Massachusetts
| | - Yeva Budman
- Department of Analytical Research and Development, Sanofi Corporation, Waltham, Massachusetts
| | - Yuefeng Lu
- Department of Biostatistics and Programming, Sanofi-Genzyme R&D Center, Framingham, Massachusetts
| | - Bing Wang
- Department of Analytical Research and Development, Sanofi Corporation, Waltham, Massachusetts
| | | | - Thomas A Natoli
- Department of Rare Renal Disease Research, Sanofi-Genzyme R&D Center, Framingham, Massachusetts
| |
Collapse
|
49
|
Rangan GK, Lopez-Vargas P, Nankivell BJ, Tchan M, Tong A, Tunnicliffe DJ, Savige J. Autosomal Dominant Polycystic Kidney Disease: A Path Forward. Semin Nephrol 2016; 35:524-37. [PMID: 26718155 DOI: 10.1016/j.semnephrol.2015.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the commonest inherited cause of renal failure in adults, and is due to loss-of-function mutations in either the PKD1 or PKD2 genes, which encode polycystin-1 and polycystin-2, respectively. These proteins have an essential role in maintaining the geometric structure of the distal collecting duct in the kidney in adult life, and their dysfunction predisposes to renal cyst formation. The typical renal phenotype of ADPKD is the insidious development of hundreds of renal cysts, which form in childhood and grow progressively through life, causing end-stage kidney failure in the fifth decade in about half affected by the mutation. Over the past 2 decades, major advances in genetics and disease pathogenesis have led to well-conducted randomized controlled trials, and observational studies that have resulted in an accumulation of evidence-based data, and raise hope that the lifetime risk of kidney failure due to ADPKD will be progressively curtailed during this century. This review will provide a contemporary summary of the current state of the field in disease pathogenesis and therapeutics, and also briefly highlights the importance of clinical practice guidelines, patient perspectives, patient-reported outcomes, uniform trial reporting, and health-economics in ADPKD.
Collapse
Affiliation(s)
- Gopala K Rangan
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead, Sydney, Australia; Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Westmead, Sydney, Australia.
| | - Pamela Lopez-Vargas
- Sydney School of Public Health, The University of Sydney, Sydney, Australia; Centre for Kidney Research, The Children's Hospital at Westmead, Sydney, Australia
| | - Brian J Nankivell
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead, Sydney, Australia; Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Westmead, Sydney, Australia
| | - Michel Tchan
- Department of Genetic Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, Australia
| | - Allison Tong
- Sydney School of Public Health, The University of Sydney, Sydney, Australia; Centre for Kidney Research, The Children's Hospital at Westmead, Sydney, Australia
| | - David J Tunnicliffe
- Sydney School of Public Health, The University of Sydney, Sydney, Australia; Centre for Kidney Research, The Children's Hospital at Westmead, Sydney, Australia
| | - Judy Savige
- The University of Melbourne, Department of Medicine, Melbourne Health and Northern Health, Melbourne, Australia; Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| |
Collapse
|
50
|
Abstract
It is 20 years since the identification of PKD1, the major gene mutated in autosomal dominant polycystic kidney disease (ADPKD), followed closely by the cloning of PKD2. These major breakthroughs have led in turn to a period of intense investigation into the function of the two proteins encoded, polycystin-1 and polycystin-2, and how defects in either protein lead to cyst formation and nonrenal phenotypes. In this review, we summarize the major findings in this area and present a current model of how the polycystin proteins function in health and disease.
Collapse
|