1
|
Blaustein MP, Hamlyn JM. Sensational site: the sodium pump ouabain-binding site and its ligands. Am J Physiol Cell Physiol 2024; 326:C1120-C1177. [PMID: 38223926 PMCID: PMC11193536 DOI: 10.1152/ajpcell.00273.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
Cardiotonic steroids (CTS), used by certain insects, toads, and rats for protection from predators, became, thanks to Withering's trailblazing 1785 monograph, the mainstay of heart failure (HF) therapy. In the 1950s and 1960s, we learned that the CTS receptor was part of the sodium pump (NKA) and that the Na+/Ca2+ exchanger was critical for the acute cardiotonic effect of digoxin- and ouabain-related CTS. This "settled" view was upended by seven revolutionary observations. First, subnanomolar ouabain sometimes stimulates NKA while higher concentrations are invariably inhibitory. Second, endogenous ouabain (EO) was discovered in the human circulation. Third, in the DIG clinical trial, digoxin only marginally improved outcomes in patients with HF. Fourth, cloning of NKA in 1985 revealed multiple NKA α and β subunit isoforms that, in the rodent, differ in their sensitivities to CTS. Fifth, the NKA is a cation pump and a hormone receptor/signal transducer. EO binding to NKA activates, in a ligand- and cell-specific manner, several protein kinase and Ca2+-dependent signaling cascades that have widespread physiological effects and can contribute to hypertension and HF pathogenesis. Sixth, all CTS are not equivalent, e.g., ouabain induces hypertension in rodents while digoxin is antihypertensinogenic ("biased signaling"). Seventh, most common rodent hypertension models require a highly ouabain-sensitive α2 NKA and the elevated blood pressure is alleviated by EO immunoneutralization. These numerous phenomena are enabled by NKA's intricate structure. We have just begun to understand the endocrine role of the endogenous ligands and the broad impact of the ouabain-binding site on physiology and pathophysiology.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - John M Hamlyn
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
2
|
Socha MW, Chmielewski J, Pietrus M, Wartęga M. Endogenous Digitalis-like Factors as a Key Molecule in the Pathophysiology of Pregnancy-Induced Hypertension and a Potential Therapeutic Target in Preeclampsia. Int J Mol Sci 2023; 24:12743. [PMID: 37628922 PMCID: PMC10454430 DOI: 10.3390/ijms241612743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Preeclampsia (PE), the most severe presentation of hypertensive disorders of pregnancy, is the major cause of morbidity and mortality linked to pregnancy, affecting both mother and fetus. Despite advances in prophylaxis and managing PE, delivery of the fetus remains the only causative treatment available. Focus on complex pathophysiology brought the potential for new treatment options, and more conservative options allowing reduction of feto-maternal complications and sequelae are being investigated. Endogenous digitalis-like factors, which have been linked to the pathogenesis of preeclampsia since the mid-1980s, have been shown to play a role in the pathogenesis of various cardiovascular diseases, including congestive heart failure and chronic renal disease. Elevated levels of EDLF have been described in pregnancy complicated by hypertensive disorders and are currently being investigated as a therapeutic target in the context of a possible breakthrough in managing preeclampsia. This review summarizes mechanisms implicating EDLFs in the pathogenesis of preeclampsia and evidence for their potential role in treating this doubly life-threatening disease.
Collapse
Affiliation(s)
- Maciej W. Socha
- Department of Perinatology, Gynecology and Gynecologic Oncology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland
- Department of Obstetrics and Gynecology, St. Adalbert’s Hospital in Gdańsk, Copernicus Healthcare Entity, Jana Pawła II 50, 80-462 Gdańsk, Poland
| | - Jakub Chmielewski
- Department of Obstetrics and Gynecology, St. Adalbert’s Hospital in Gdańsk, Copernicus Healthcare Entity, Jana Pawła II 50, 80-462 Gdańsk, Poland
| | - Miłosz Pietrus
- Department of Gynecology and Obstetrics, Jagiellonian University Medical College, 31-501 Kraków, Poland
| | - Mateusz Wartęga
- Department of Pathophysiology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie- Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| |
Collapse
|
3
|
A Low Dose of Ouabain Alters the Metabolic Profile of Adult Rats Experiencing Intrauterine Growth Restriction in a Sex-Specific Manner. Reprod Sci 2022; 30:1594-1607. [PMID: 36333644 DOI: 10.1007/s43032-022-01118-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Intrauterine growth restriction (IUGR) increases the risk of type 2 diabetes mellitus (T2DM) and metabolic diseases. The pancreas of fetuses with IUGR is usually characterized by pancreatic dysplasia and reduced levels of insulin secretion caused by the diminished replication of β-cells. Previous studies showed that a low dose of ouabain could reduce the apoptosis of embryonic nephric cells during IUGR and partially restore the number of nephrons at birth. The rescued kidneys functioned well and decreased the prevalence of hypertension. Thus, we hypothesized that ouabain could rescue pancreatic development during IUGR and reduce the morbidity of T2DM and metabolic diseases. Maternal malnutrition was used to induce the IUGR model, and then a low dose of ouabain was administered to rats with IUGR during pregnancy. Throughout the experiment, we monitored the pattern of weight increase and evaluated the metabolic parameters in the offspring in different stages. Male, but not female, offspring in the IUGR group presented catch-up growth. Ouabain could benefit the impaired glucose tolerance of male offspring; however, this desirable effect was eliminated by aging. The insulin sensitivity was significantly impaired in male offspring with IUGR, but it was improved by ouabain, even during old age. However, in the female offspring, low birth weight appeared to be a beneficial factor even in old age; administering ouabain exacerbated these favorable effects. Our data suggested that IUGR influenced glucose metabolism in a sex-specific manner and ouabain treatment during pregnancy exerted strongly contrasting effects in male and female rats.
Collapse
|
4
|
El-Mallakh RS, Sampath VP, Horesh N, Lichtstein D. Endogenous Cardiac Steroids in Bipolar Disorder: State of the Art. Int J Mol Sci 2022; 23:ijms23031846. [PMID: 35163766 PMCID: PMC8836531 DOI: 10.3390/ijms23031846] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023] Open
Abstract
Bipolar disorder (BD) is a severe psychiatric illness with a poor prognosis and problematic, suboptimal, treatments. Treatments, borne of an understanding of the pathoetiologic mechanisms, need to be developed in order to improve outcomes. Dysregulation of cationic homeostasis is the most reproducible aspect of BD pathophysiology. Correction of ionic balance is the universal mechanism of action of all mood stabilizing medications. Endogenous sodium pump modulators (collectively known as endogenous cardiac steroids, ECS) are steroids which are synthesized in and released from the adrenal gland and brain. These compounds, by activating or inhibiting Na+, K+-ATPase activity and activating intracellular signaling cascades, have numerous effects on cell survival, vascular tone homeostasis, inflammation, and neuronal activity. For the past twenty years we have addressed the hypothesis that the Na+, K+-ATPase-ECS system may be involved in the etiology of BD. This is a focused review that presents a comprehensive model pertaining to the role of ECS in the etiology of BD. We propose that alterations in ECS metabolism in the brain cause numerous biochemical changes that underlie brain dysfunction and mood symptoms. This is based on both animal models and translational human results. There are data that demonstrate that excess ECS induce abnormal mood and activity in animals, while a specific removal of ECS with antibodies normalizes mood. There are also data indicating that circulating levels of ECS are lower in manic individuals, and that patients with BD are unable to upregulate synthesis of ECS under conditions that increase their elaboration in non-psychiatric controls. There is strong evidence for the involvement of ion dysregulation and ECS function in bipolar illness. Additional research is required to fully characterize these abnormalities and define future clinical directions.
Collapse
Affiliation(s)
- Rif S. El-Mallakh
- Mood Disorders Research Program, Depression Center, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Correspondence: (R.S.E.-M.); (D.L.)
| | - Vishnu Priya Sampath
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research, Israel-Canada, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel; (V.P.S.); (N.H.)
| | - Noa Horesh
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research, Israel-Canada, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel; (V.P.S.); (N.H.)
| | - David Lichtstein
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research, Israel-Canada, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel; (V.P.S.); (N.H.)
- Correspondence: (R.S.E.-M.); (D.L.)
| |
Collapse
|
5
|
Marck PV, Pessoa MT, Xu Y, Kutz LC, Collins DM, Yan Y, King C, Wang X, Duan Q, Cai L, Xie JX, Lingrel JB, Xie Z, Tian J, Pierre SV. Cardiac Oxidative Signaling and Physiological Hypertrophy in the Na/K-ATPase α1 s/sα2 s/s Mouse Model of High Affinity for Cardiotonic Steroids. Int J Mol Sci 2021; 22:ijms22073462. [PMID: 33801629 PMCID: PMC8036649 DOI: 10.3390/ijms22073462] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 11/25/2022] Open
Abstract
The Na/K-ATPase is the specific receptor for cardiotonic steroids (CTS) such as ouabain and digoxin. At pharmacological concentrations used in the treatment of cardiac conditions, CTS inhibit the ion-pumping function of Na/K-ATPase. At much lower concentrations, in the range of those reported for endogenous CTS in the blood, they stimulate hypertrophic growth of cultured cardiac myocytes through initiation of a Na/K-ATPase-mediated and reactive oxygen species (ROS)-dependent signaling. To examine a possible effect of endogenous concentrations of CTS on cardiac structure and function in vivo, we compared mice expressing the naturally resistant Na/K-ATPase α1 and age-matched mice genetically engineered to express a mutated Na/K-ATPase α1 with high affinity for CTS. In this model, total cardiac Na/K-ATPase activity, α1, α2, and β1 protein content remained unchanged, and the cardiac Na/K-ATPase dose–response curve to ouabain shifted to the left as expected. In males aged 3–6 months, increased α1 sensitivity to CTS resulted in a significant increase in cardiac carbonylated protein content, suggesting that ROS production was elevated. A moderate but significant increase of about 15% of the heart-weight-to-tibia-length ratio accompanied by an increase in the myocyte cross-sectional area was detected. Echocardiographic analyses did not reveal any change in cardiac function, and there was no fibrosis or re-expression of the fetal gene program. RNA sequencing analysis indicated that pathways related to energy metabolism were upregulated, while those related to extracellular matrix organization were downregulated. Consistent with a functional role of the latter, an angiotensin-II challenge that triggered fibrosis in the α1r/rα2s/s mouse failed to do so in the α1s/sα2s/s. Taken together, these results are indicative of a link between circulating CTS, Na/K-ATPase α1, ROS, and physiological cardiac hypertrophy in mice under baseline laboratory conditions.
Collapse
Affiliation(s)
- Pauline V. Marck
- Marshall Institute for Interdisciplinary Research, Huntington, WV 25703, USA; (P.V.M.); (M.T.P.); (Y.X.); (L.C.K.); (D.M.C.); (C.K.); (X.W.); (L.C.); (Z.X.); (J.T.)
| | - Marco T. Pessoa
- Marshall Institute for Interdisciplinary Research, Huntington, WV 25703, USA; (P.V.M.); (M.T.P.); (Y.X.); (L.C.K.); (D.M.C.); (C.K.); (X.W.); (L.C.); (Z.X.); (J.T.)
| | - Yunhui Xu
- Marshall Institute for Interdisciplinary Research, Huntington, WV 25703, USA; (P.V.M.); (M.T.P.); (Y.X.); (L.C.K.); (D.M.C.); (C.K.); (X.W.); (L.C.); (Z.X.); (J.T.)
| | - Laura C. Kutz
- Marshall Institute for Interdisciplinary Research, Huntington, WV 25703, USA; (P.V.M.); (M.T.P.); (Y.X.); (L.C.K.); (D.M.C.); (C.K.); (X.W.); (L.C.); (Z.X.); (J.T.)
| | - Dominic M. Collins
- Marshall Institute for Interdisciplinary Research, Huntington, WV 25703, USA; (P.V.M.); (M.T.P.); (Y.X.); (L.C.K.); (D.M.C.); (C.K.); (X.W.); (L.C.); (Z.X.); (J.T.)
| | - Yanling Yan
- Department of Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25755, USA;
| | - Cierra King
- Marshall Institute for Interdisciplinary Research, Huntington, WV 25703, USA; (P.V.M.); (M.T.P.); (Y.X.); (L.C.K.); (D.M.C.); (C.K.); (X.W.); (L.C.); (Z.X.); (J.T.)
| | - Xiaoliang Wang
- Marshall Institute for Interdisciplinary Research, Huntington, WV 25703, USA; (P.V.M.); (M.T.P.); (Y.X.); (L.C.K.); (D.M.C.); (C.K.); (X.W.); (L.C.); (Z.X.); (J.T.)
| | - Qiming Duan
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA;
| | - Liquan Cai
- Marshall Institute for Interdisciplinary Research, Huntington, WV 25703, USA; (P.V.M.); (M.T.P.); (Y.X.); (L.C.K.); (D.M.C.); (C.K.); (X.W.); (L.C.); (Z.X.); (J.T.)
| | - Jeffrey X. Xie
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Jerry B. Lingrel
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Huntington, WV 25703, USA; (P.V.M.); (M.T.P.); (Y.X.); (L.C.K.); (D.M.C.); (C.K.); (X.W.); (L.C.); (Z.X.); (J.T.)
| | - Jiang Tian
- Marshall Institute for Interdisciplinary Research, Huntington, WV 25703, USA; (P.V.M.); (M.T.P.); (Y.X.); (L.C.K.); (D.M.C.); (C.K.); (X.W.); (L.C.); (Z.X.); (J.T.)
| | - Sandrine V. Pierre
- Marshall Institute for Interdisciplinary Research, Huntington, WV 25703, USA; (P.V.M.); (M.T.P.); (Y.X.); (L.C.K.); (D.M.C.); (C.K.); (X.W.); (L.C.); (Z.X.); (J.T.)
- Correspondence: ; Tel.: +1-(304)-696-3505
| |
Collapse
|
6
|
El-Mallakh RS, Gao Y, You P. Role of endogenous ouabain in the etiology of bipolar disorder. Int J Bipolar Disord 2021; 9:6. [PMID: 33523310 PMCID: PMC7851255 DOI: 10.1186/s40345-020-00213-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
Background Bipolar disorder is a severe psychiatric illness with poor prognosis and problematic and suboptimal treatments. Understanding the pathoetiologic mechanisms may improve treatment and outcomes. Discussion Dysregulation of cationic homeostasis is the most reproducible aspect of bipolar pathophysiology. Correction of ionic balance is the universal mechanism of action of all mood stabilizing medications. Recent discoveries of the role of endogenous sodium pump modulators (which include ‘endogenous ouabain’) in regulation of sodium and potassium distribution, inflammation, and activation of key cellular second messenger systems that are important in cell survival, and the demonstration that these stress-responsive chemicals may be dysregulated in bipolar patients, suggest that these compounds may be candidates for the coupling of environmental stressors and illness onset. Specifically, individuals with bipolar disorder appear to be unable to upregulate endogenous ouabain under conditions that require it, and therefore may experience a relative deficiency of this important regulatory hormone. In the absence of elevated endogenous ouabain, neurons are unable to maintain their normal resting potential, become relatively depolarized, and are then susceptible to inappropriate activation. Furthermore, sodium pump activity appears to be necessary to prevent inflammatory signals within the central nervous system. Nearly all available data currently support this model, but additional studies are required to solidify the role of this system. Conclusion Endogenous ouabain dysregulation appears to be a reasonable candidate for understanding the pathophysiology of bipolar disorder.
Collapse
Affiliation(s)
- Rif S El-Mallakh
- Mood Disorders Research Program, Depression Center, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, 401 East Chestnut Street, Suite 610, Louisville, KY, 40202, USA.
| | - Yonglin Gao
- Mood Disorders Research Program, Depression Center, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, 401 East Chestnut Street, Suite 610, Louisville, KY, 40202, USA
| | - Pan You
- Xiamen Xianyue Hospital, 399 Xianyue Road, Xiamen, China
| |
Collapse
|
7
|
Chen L, Yue J, Zhou S, Hu Y, Li J. Ouabain Protects Nephrogenesis in Rats Experiencing Intrauterine Growth Restriction and Partially Restores Renal Function in Adulthood. Reprod Sci 2021; 28:186-196. [PMID: 32767217 DOI: 10.1007/s43032-020-00280-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
Intrauterine growth restriction (IUGR) is, in general, accompanied by a reduction of the nephron number, which increases the risk of hypertension and renal dysfunction. Studies have revealed that ouabain can partially restore the number of nephrons during IUGR. However, there is limited information regarding the melioration of nephric structure and function. We used maternal malnutrition to induce an IUGR model in rats. Subsequently, we used a mini-pump to administer ouabain to IUGR rats during pregnancy. Male offspring were divided randomly into two groups. One group was fed a normal diet, whereas the other was fed an isocaloric 8% high-salt diet. Maternal malnutrition led to a reduction in the birth weight and number of nephrons in offspring. At the end of a 40-week follow-up period, offspring from the IUGR group had high blood pressure and abnormal excretion of urinary protein; these parameters were exacerbated in offspring fed a high-salt diet. However, ouabain administration during pregnancy could partially restore the number of nephrons in IUGR offspring, normalize blood pressure, and reduce urinary protein excretion, even when challenged with a high-salt diet. Pathology findings revealed that IUGR, particularly following feeding of a high-salt diet, damaged the ultrastructure of glomeruli, but these harmful effects were ameliorated in offspring treated with ouabain. Collectively, our data suggest that ouabain could rescue nephrogenesis in IUGR newborns and protect (at least in part) the structure and function of the kidney during adulthood even when encountering unfavorable environmental challenges in subsequent life.
Collapse
Affiliation(s)
- Liang Chen
- Department of Gynecology, Jiangsu Province Hospital (The First Affiliated Hospital of Nanjing Medical University), 300 Guangzhou Road, Nanjing, 210000, China.
| | - Jing Yue
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital (The Affiliated Hospital of Nanjing University Medical School), Nanjing, China
| | - Shulin Zhou
- Department of Gynecology, Jiangsu Province Hospital (The First Affiliated Hospital of Nanjing Medical University), 300 Guangzhou Road, Nanjing, 210000, China
| | - Yali Hu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital (The Affiliated Hospital of Nanjing University Medical School), Nanjing, China
| | - Juan Li
- Department of Hematology, Nanjing Drum Tower Hospital (The Affiliated Hospital of Nanjing University Medical School), Nanjing, China
| |
Collapse
|
8
|
Wang X, Cai L, Xie JX, Cui X, Zhang J, Wang J, Chen Y, Larre I, Shapiro JI, Pierre SV, Wu D, Zhu GZ, Xie Z. A caveolin binding motif in Na/K-ATPase is required for stem cell differentiation and organogenesis in mammals and C. elegans. SCIENCE ADVANCES 2020; 6:eaaw5851. [PMID: 32537485 PMCID: PMC7253156 DOI: 10.1126/sciadv.aaw5851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/02/2020] [Indexed: 05/15/2023]
Abstract
Several signaling events have been recognized as essential for regulating cell lineage specification and organogenesis in animals. We find that the gain of an amino-terminal caveolin binding motif (CBM) in the α subunit of the Na/K-adenosine triphosphatase (ATPase) (NKA) is required for the early stages of organogenesis in both mice and Caenorhabditis elegans. The evolutionary gain of the CBM occurred at the same time as the acquisition of the binding sites for Na+/K+. Loss of this CBM does not affect cell lineage specification or the initiation of organogenesis, but arrests further organ development. Mechanistically, this CBM is essential for the dynamic operation of Wnt and the timely up-regulation of transcriptional factors during organogenesis. These results indicate that the NKA was evolved as a dual functional protein that works in concert with Wnt as a hitherto unrecognized common mechanism to enable stem cell differentiation and organogenesis in multicellular organisms within the animal kingdom.
Collapse
Affiliation(s)
- Xiaoliang Wang
- Marshall Institute for Interdisciplinary Research (MIIR) at Marshall University, Huntington, WV, USA
| | - Liquan Cai
- Marshall Institute for Interdisciplinary Research (MIIR) at Marshall University, Huntington, WV, USA
| | - Jeffrey X. Xie
- University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Xiaoyu Cui
- Marshall Institute for Interdisciplinary Research (MIIR) at Marshall University, Huntington, WV, USA
| | - Jue Zhang
- Marshall Institute for Interdisciplinary Research (MIIR) at Marshall University, Huntington, WV, USA
| | - Jiayan Wang
- Marshall Institute for Interdisciplinary Research (MIIR) at Marshall University, Huntington, WV, USA
| | - Yiliang Chen
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, USA
| | - Isabel Larre
- Marshall Institute for Interdisciplinary Research (MIIR) at Marshall University, Huntington, WV, USA
| | - Joseph I. Shapiro
- Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, USA
| | - Sandrine V. Pierre
- Marshall Institute for Interdisciplinary Research (MIIR) at Marshall University, Huntington, WV, USA
| | - Dianqing Wu
- Department of Pharmacology and Vascular Biology and Therapeutics, Yale School of Medicine, New Haven, CT, USA
| | - Guo-Zhang Zhu
- Marshall Institute for Interdisciplinary Research (MIIR) at Marshall University, Huntington, WV, USA
- Department of Biological Sciences, Marshall University, Huntington, WV, USA
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research (MIIR) at Marshall University, Huntington, WV, USA
| |
Collapse
|
9
|
Aperia A, Brismar H, Uhlén P. Mending Fences: Na,K-ATPase signaling via Ca 2+ in the maintenance of epithelium integrity. Cell Calcium 2020; 88:102210. [PMID: 32380435 DOI: 10.1016/j.ceca.2020.102210] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/18/2022]
Abstract
Na,K-ATPase is a ubiquitous multifunctional protein that acts both as an ion pump and as a signal transducer. The signaling function is activated by ouabain in non-toxic concentrations. In epithelial cells the ouabain-bound Na,K-ATPase connects with the inositol 1,4,5-trisphosphate receptor via a short linear motif to activate low frequency Ca2+ oscillations. Within a couple of minutes this ouabain mediated signal has resulted in phosphorylation or dephosphorylation of 2580 phospho-sites. Proteins that control cell proliferation and cell adhesion and calmodulin regulated proteins are enriched among the ouabain phosphor-regulated proteins. The inositol 1,4,5-trisphosphate receptor and the stromal interaction molecule, which are both essential for the initiation of Ca2+ oscillations, belong to the ouabain phosphor-regulated proteins. Downstream effects of the ouabain-evoked Ca2+ signal in epithelial cells include interference with the intrinsic mitochondrial apoptotic process and stimulation of embryonic growth processes. The dual function of Na,K-ATPase as an ion pump and a signal transducer is now well established and evaluation of the physiological and pathophysiological consequences of this universal signal emerges as an urgent topic for future studies.
Collapse
Affiliation(s)
- Anita Aperia
- Science for Life Laboratory, Dept of Women's and Children's Health, Karolinska Institutet, Sweden
| | - Hjalmar Brismar
- Science for Life Laboratory, Dept of Women's and Children's Health, Karolinska Institutet, Sweden; Science for Life Laboratory, Dept of Applied Physics, KTH Royal Institute of Technology, Sweden.
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Sweden
| |
Collapse
|
10
|
Blaustein MP, Hamlyn JM. Ouabain, endogenous ouabain and ouabain-like factors: The Na + pump/ouabain receptor, its linkage to NCX, and its myriad functions. Cell Calcium 2020; 86:102159. [PMID: 31986323 DOI: 10.1016/j.ceca.2020.102159] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 12/12/2022]
Abstract
In this brief review we discuss some aspects of the Na+ pump and its roles in mediating the effects of ouabain and endogenous ouabain (EO): i) in regulating the cytosolic Ca2+ concentration ([Ca2+]CYT) via Na/Ca exchange (NCX), and ii) in activating a number of protein kinase (PK) signaling cascades that control a myriad of cell functions. Importantly, [Ca2+]CYT and the other signaling pathways intersect at numerous points because of the influence of Ca2+ and calmodulin in modulating some steps in those other pathways. While both mechanisms operate in virtually all cells and tissues, this article focuses primarily on their functions in the cardiovascular system, the central nervous system (CNS) and the kidneys.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - John M Hamlyn
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
11
|
Leenen FHH, Wang HW, Hamlyn JM. Sodium pumps, ouabain and aldosterone in the brain: A neuromodulatory pathway underlying salt-sensitive hypertension and heart failure. Cell Calcium 2019; 86:102151. [PMID: 31954234 DOI: 10.1016/j.ceca.2019.102151] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/15/2019] [Indexed: 02/08/2023]
Abstract
Accumulating evidence obtained over the last three decades has revealed a neuroendocrine system in the brain that mediates long term increases in blood pressure. The system involves distinct ion transport pathways including the alpha-2 isoform of the Na,K pump and epithelial sodium channels, as well as critical hormone elements such as angiotensin II, aldosterone, mineralocorticoid receptors and endogenous ouabain. Activation of this system either by circulating or central sodium ions and/or angiotensin II leads to a cascading sequence of events that begins in the hypothalamus and involves the participation of several brain nuclei including the subfornical organ, supraoptic and paraventricular nuclei and the rostral ventral medulla. Key events include heightened aldosterone synthesis and mineralocorticoid receptor activation, upregulation of epithelial sodium channels, augmented synthesis and secretion of endogenous ouabain from hypothalamic magnocellular neurons, and sustained increases in sympathetic outflow. The latter step depends upon increased production of angiotensin II and the primary amplification of angiotensin II type I receptor signaling from the paraventricular nucleus to the rostral ventral lateral medulla. The transmission of sympathetic traffic is secondarily amplified in the periphery by increased short- and long-term potentiation in sympathetic ganglia and by sustained actions of endogenous ouabain in the vascular wall that augment expression of sodium calcium exchange, increase cytosolic Ca2+ and heighten myogenic tone and contractility. Upregulation of this multi-amplifier system participates in forms of hypertension where salt, angiotensin and/or aldosterone are elevated and contributes to adverse outcomes in heart failure.
Collapse
Affiliation(s)
- Frans H H Leenen
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Hong-Wei Wang
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - John M Hamlyn
- Department of Physiology, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
12
|
Panizza E, Zhang L, Fontana JM, Hamada K, Svensson D, Akkuratov EE, Scott L, Mikoshiba K, Brismar H, Lehtiö J, Aperia A. Ouabain-regulated phosphoproteome reveals molecular mechanisms for Na +, K +-ATPase control of cell adhesion, proliferation, and survival. FASEB J 2019; 33:10193-10206. [PMID: 31199885 PMCID: PMC6704450 DOI: 10.1096/fj.201900445r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ion pump Na+, K+-ATPase (NKA) is a receptor for the cardiotonic steroid ouabain. Subsaturating concentration of ouabain triggers intracellular calcium oscillations, stimulates cell proliferation and adhesion, and protects from apoptosis. However, it is controversial whether ouabain-bound NKA is considered a signal transducer. To address this question, we performed a global analysis of protein phosphorylation in COS-7 cells, identifying 2580 regulated phosphorylation events on 1242 proteins upon 10- and 20-min treatment with ouabain. Regulated phosphorylated proteins include the inositol triphosphate receptor and stromal interaction molecule, which are essential for initiating calcium oscillations. Hierarchical clustering revealed that ouabain triggers a structured phosphorylation response that occurs in a well-defined, time-dependent manner and affects specific cellular processes, including cell proliferation and cell-cell junctions. We additionally identify regulation of the phosphorylation of several calcium and calmodulin-dependent protein kinases (CAMKs), including 2 sites of CAMK type II-γ (CAMK2G), a protein known to regulate apoptosis. To verify the significance of this result, CAMK2G was knocked down in primary kidney cells. CAMK2G knockdown impaired ouabain-dependent protection from apoptosis upon treatment with high glucose or serum deprivation. In conclusion, we establish NKA as the coordinator of a broad, tightly regulated phosphorylation response in cells and define CAMK2G as a downstream effector of NKA.-Panizza, E., Zhang, L., Fontana, J. M., Hamada, K., Svensson, D., Akkuratov, E. E., Scott, L., Mikoshiba, K., Brismar, H., Lehtiö, J., Aperia, A. Ouabain-regulated phosphoproteome reveals molecular mechanisms for Na+, K+-ATPase control of cell adhesion, proliferation, and survival.
Collapse
Affiliation(s)
- Elena Panizza
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Liang Zhang
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Jacopo Maria Fontana
- Department of Applied Physics, Science for Life Laboratory, Royal Institute of Technology, Stockholm, Sweden
| | - Kozo Hamada
- Laboratory for Developmental Neurobiology, Brain Science Institute, Riken, Saitama, Japan
| | - Daniel Svensson
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Evgeny E Akkuratov
- Department of Applied Physics, Science for Life Laboratory, Royal Institute of Technology, Stockholm, Sweden
| | - Lena Scott
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, Brain Science Institute, Riken, Saitama, Japan
| | - Hjalmar Brismar
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.,Department of Applied Physics, Science for Life Laboratory, Royal Institute of Technology, Stockholm, Sweden
| | - Janne Lehtiö
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Anita Aperia
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
13
|
Ouabain reduces the expression of the adhesion molecule CD18 in neutrophils. Inflammopharmacology 2019; 28:787-793. [PMID: 31087249 DOI: 10.1007/s10787-019-00602-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/30/2019] [Indexed: 02/07/2023]
Abstract
Ouabain, a hormone that inhibits Na+/K+-ATPase, modulates many aspects of the inflammatory response. It has been previously demonstrated that ouabain inhibits neutrophil migration in several inflammation models in vivo, but little is known about the mechanisms underlying this effect. Thus, this work aimed to evaluate the effect of ouabain on molecules related to neutrophil migration. For this purpose, neutrophils obtained from mouse bone marrow were treated with ouabain (1, 10, and 100 nM) in vitro. Neutrophil viability was assessed by annexin V/propidium iodide staining. Ouabain treatment did not affect neutrophil viability at different times (2, 4, and 24 h). However, basal neutrophil viability was decreased after 4 h. Thus, we assessed the effect of ouabain on the adhesion molecule CD18, an integrin β2 chain protein, and on the chemokine receptor CXCR2 after 2 h of treatment. CD18 expression was reduced (by 30%) by 1 nM ouabain. However, the expression of CXCR2 on the neutrophil membrane was not affected by ouabain treatment (1, 10, and 100 nM). Moreover, ouabain (1, 10, and 100 nM) did not modulate the zymosan-induced secretion of CXCL1 (a chemokine receptor CXCR2 ligand) in macrophage cultures. These data suggest that the inhibitory effect of ouabain on neutrophil migration is related to reduced CD18 expression, indicating a novel mechanism of action.
Collapse
|
14
|
El-Mallakh RS, Brar KS, Yeruva RR. Cardiac Glycosides in Human Physiology and Disease: Update for Entomologists. INSECTS 2019; 10:E102. [PMID: 30974764 PMCID: PMC6523104 DOI: 10.3390/insects10040102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 12/12/2022]
Abstract
Cardiac glycosides, cardenolides and bufadienolides, are elaborated by several plant or animal species to prevent grazing or predation. Entomologists have characterized several insect species that have evolved the ability to sequester these glycosides in their tissues to reduce their palatability and, thus, reduce predation. Cardiac glycosides are known to interact with the sodium- and potassium-activated adenosine triphosphatase, or sodium pump, through a specific receptor-binding site. Over the last couple of decades, and since entomologic studies, it has become clear that mammals synthesize endogenous cardenolides that closely resemble or are identical to compounds of plant origin and those sequestered by insects. The most important of these are ouabain-like compounds. These compounds are essential for the regulation of normal ionic physiology in mammals. Importantly, at physiologic picomolar or nanomolar concentrations, endogenous ouabain, a cardenolide, stimulates the sodium pump, activates second messengers, and may even function as a growth factor. This is in contrast to the pharmacologic or toxic micromolar or milimolar concentrations achieved after consumption of exogenous cardenolides (by consuming medications, plants, or insects), which inhibit the pump and result in either a desired medical outcome, or the toxic consequence of sodium pump inhibition.
Collapse
Affiliation(s)
- Rif S El-Mallakh
- Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Kanwarjeet S Brar
- Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Rajashekar Reddy Yeruva
- Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
15
|
Banerjee M, Cui X, Li Z, Yu H, Cai L, Jia X, He D, Wang C, Gao T, Xie Z. Na/K-ATPase Y260 Phosphorylation-mediated Src Regulation in Control of Aerobic Glycolysis and Tumor Growth. Sci Rep 2018; 8:12322. [PMID: 30120256 PMCID: PMC6098021 DOI: 10.1038/s41598-018-29995-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/23/2018] [Indexed: 12/22/2022] Open
Abstract
We report here the identification of α1 Na/K-ATPase as a major regulator of the proto-oncogene Src kinase and the role of this regulation in control of Warburg effect and tumor growth. Specifically, we discovered Y260 in α1 Na/K-ATPase as a Src-specific phosphorylation and binding site and that Y260 phosphorylation is required for Src-mediated signal transduction in response to a number of stimuli including EGF. As such, it enables a dynamic control of aerobic glycolysis. However, such regulation appears to be lost or attenuated in human cancers as the expression of Na/K-ATPase α1 was significantly decreased in prostate, breast and kidney cancers, and further reduced in corresponding metastatic lesions in patient samples. Consistently, knockdown of α1 Na/K-ATPase led to a further increase in lactate production and the growth of tumor xenograft. These findings suggest that α1 Na/K-ATPase works as a tumor suppressor and that a loss of Na/K-ATPase-mediated Src regulation may lead to Warburg phenotype in cancer.
Collapse
Affiliation(s)
- Moumita Banerjee
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, 25703, USA
| | - Xiaoyu Cui
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, 25703, USA
| | - Zhichuan Li
- Department of Physiology and Pharmacology and Medicine, University of Toledo College of Medicine, Toledo, Ohio, 43614, USA
| | - Hui Yu
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, 25703, USA
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Liquan Cai
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, 25703, USA
| | - Xuelian Jia
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, 25703, USA
| | - Daheng He
- Department of Cancer Biostatistics, Markey Cancer Research Center, University of Kentucky, Lexington, Kentucky, 40536, USA
| | - Chi Wang
- Department of Cancer Biostatistics, Markey Cancer Research Center, University of Kentucky, Lexington, Kentucky, 40536, USA
| | - Tianyan Gao
- Department of Molecular and Cellular Biochemistry, Markey Cancer Research Center, University of Kentucky, Lexington, Kentucky, 40536, USA
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research (MIIR), Marshall University, Huntington, West Virginia, 25703, USA.
| |
Collapse
|
16
|
Marck PV, Pierre SV. Na/K-ATPase Signaling and Cardiac Pre/Postconditioning with Cardiotonic Steroids. Int J Mol Sci 2018; 19:ijms19082336. [PMID: 30096873 PMCID: PMC6121447 DOI: 10.3390/ijms19082336] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/05/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022] Open
Abstract
The first reports of cardiac Na/K-ATPase signaling, published 20 years ago, have opened several major fields of investigations into the cardioprotective action of low/subinotropic concentrations of cardiotonic steroids (CTS). This review focuses on the protective cardiac Na/K-ATPase-mediated signaling triggered by low concentrations of ouabain and other CTS, in the context of the enduring debate over the use of CTS in the ischemic heart. Indeed, as basic and clinical research continues to support effectiveness and feasibility of conditioning interventions against ischemia/reperfusion injury in acute myocardial infarction (AMI), the mechanistic information available to date suggests that unique features of CTS-based conditioning could be highly suitable, alone /or as a combinatory approach.
Collapse
Affiliation(s)
- Pauline V Marck
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, WV 25701, USA.
| | - Sandrine V Pierre
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, WV 25701, USA.
| |
Collapse
|
17
|
Lichtstein D, Ilani A, Rosen H, Horesh N, Singh SV, Buzaglo N, Hodes A. Na⁺, K⁺-ATPase Signaling and Bipolar Disorder. Int J Mol Sci 2018; 19:E2314. [PMID: 30087257 PMCID: PMC6121236 DOI: 10.3390/ijms19082314] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 02/07/2023] Open
Abstract
Bipolar disorder (BD) is a severe and common chronic mental illness characterized by recurrent mood swings between depression and mania. The biological basis of the disease is poorly understood and its treatment is unsatisfactory. Although in past decades the "monoamine hypothesis" has dominated our understanding of both the pathophysiology of depressive disorders and the action of pharmacological treatments, recent studies focus on the involvement of additional neurotransmitters/neuromodulators systems and cellular processes in BD. Here, evidence for the participation of Na⁺, K⁺-ATPase and its endogenous regulators, the endogenous cardiac steroids (ECS), in the etiology of BD is reviewed. Proof for the involvement of brain Na⁺, K⁺-ATPase and ECS in behavior is summarized and it is hypothesized that ECS-Na⁺, K⁺-ATPase-induced activation of intracellular signaling participates in the mechanisms underlying BD. We propose that the activation of ERK, AKT, and NFκB, resulting from ECS-Na⁺, K⁺-ATPase interaction, modifies neuronal activity and neurotransmission which, in turn, participate in the regulation of behavior and BD. These observations suggest Na⁺, K⁺-ATPase-mediated signaling is a potential target for drug development for the treatment of BD.
Collapse
Affiliation(s)
- David Lichtstein
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | - Asher Ilani
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | - Haim Rosen
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | - Noa Horesh
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | - Shiv Vardan Singh
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | - Nahum Buzaglo
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | - Anastasia Hodes
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
18
|
Role of endogenous digitalis-like factors in the clinical manifestations of severe preeclampsia: a sytematic review. Clin Sci (Lond) 2018; 132:1215-1242. [PMID: 29930141 DOI: 10.1042/cs20171499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/26/2018] [Accepted: 05/08/2018] [Indexed: 12/18/2022]
Abstract
Endogenous digitalis-like factor(s), originally proposed as a vasoconstrictor natriuretic hormone, was discovered in fetal and neonatal blood accidentally because it cross-reacts with antidigoxin antibodies (ADAs). Early studies using immunoassays with ADA identified the digoxin-like immuno-reactive factor(s) (EDLF) in maternal blood as well, and suggested it originated in the feto-placental unit. Mammalian digoxin-like factors have recently been identified as at least two classes of steroid compounds, plant derived ouabain (O), and several toad derived bufodienolides, most prominent being marinobufagenin (MBG). A synthetic pathway for MBG has been identified in mammalian placental tissue. Elevated maternal and fetal EDLF, O and MBG have been demonstrated in preeclampsia (PE), and inhibition of red cell membrane sodium, potassium ATPase (Na, K ATPase (NKA)) by EDLF is reversed by ADA fragments (ADA-FAB). Accordingly, maternal administration of a commercial ADA-antibody fragment (FAB) was tested in several anecdotal cases of PE, and two, small randomized, prospective, double-blind clinical trials. In the first randomized trial, ADA-FAB was administered post-partum, in the second antepartum. In the post-partum trial, ADA-FAB reduced use of antihypertensive drugs. In the second trial, there was no effect of ADA-FAB on blood pressure, but the fall in maternal creatinine clearance (CrCl) was prevented. In a secondary analysis using the pre-treatment maternal level of circulating Na, K ATPase (NKA) inhibitory activity (NKAI), ADA-FAB reduced the incidence of pulmonary edema and, unexpectedly, that of severe neonatal intraventricular hemorrhage (IVH). The fall in CrCl in patients given placebo was proportional to the circulating level of NKAI. The implications of these findings on the pathophysiology of the clinical manifestations PE are discussed, and a new model of the respective roles of placenta derived anti-angiogenic (AAG) factors (AAGFs) and EDLF is proposed.
Collapse
|
19
|
Kutz LC, Mukherji ST, Wang X, Bryant A, Larre I, Heiny JA, Lingrel JB, Pierre SV, Xie Z. Isoform-specific role of Na/K-ATPase α1 in skeletal muscle. Am J Physiol Endocrinol Metab 2018; 314:E620-E629. [PMID: 29438630 PMCID: PMC6032065 DOI: 10.1152/ajpendo.00275.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The distribution of Na/K-ATPase α-isoforms in skeletal muscle is unique, with α1 as the minor (15%) isoform and α2 comprising the bulk of the Na/K-ATPase pool. The acute and isoform-specific role of α2 in muscle performance and resistance to fatigue is well known, but the isoform-specific role of α1 has not been as thoroughly investigated. In vitro, we reported that α1 has a role in promoting cell growth that is not supported by α2. To assess whether α1 serves this isoform-specific trophic role in the skeletal muscle, we used Na/K-ATPase α1-haploinsufficient (α1+/-) mice. A 30% decrease of Na/K-ATPase α1 protein expression without change in α2 induced a modest yet significant decrease of 10% weight in the oxidative soleus muscle. In contrast, the mixed plantaris and glycolytic extensor digitorum longus weights were not significantly affected, likely because of their very low expression level of α1 compared with the soleus. The soleus mass reduction occurred without change in total Na/K-ATPase activity or glycogen metabolism. Serum analytes including K+, fat tissue mass, and exercise capacity were not altered in α1+/- mice. The impact of α1 content on soleus muscle mass is consistent with a Na/K-ATPase α1-specific role in skeletal muscle growth that cannot be fulfilled by α2. The preserved running capacity in α1+/- is in sharp contrast with previously reported consequences of genetic manipulation of α2. Taken together, these results lend further support to the concept of distinct isoform-specific functions of Na/K-ATPase α1 and α2 in skeletal muscle.
Collapse
Affiliation(s)
- Laura C Kutz
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia
| | - Shreya T Mukherji
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia
| | - Xiaoliang Wang
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia
| | - Amber Bryant
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia
| | - Isabel Larre
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia
| | - Judith A Heiny
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine , Cincinnati, Ohio
| | - Jerry B Lingrel
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine , Cincinnati, Ohio
| | - Sandrine V Pierre
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia
| |
Collapse
|
20
|
Cavalcante-Silva LHA, Lima ÉDA, Carvalho DCM, de Sales-Neto JM, Alves AKDA, Galvão JGFM, da Silva JSDF, Rodrigues-Mascarenhas S. Much More than a Cardiotonic Steroid: Modulation of Inflammation by Ouabain. Front Physiol 2017; 8:895. [PMID: 29176951 PMCID: PMC5686084 DOI: 10.3389/fphys.2017.00895] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/24/2017] [Indexed: 12/22/2022] Open
Abstract
Since the discovery of ouabain as a cardiotonic steroid hormone present in higher mammals, research about it has progressed rapidly and several of its physiological and pharmacological effects have been described. Ouabain can behave as a stress hormone and adrenal cortex is its main source. Direct effects of ouabain are originated due to the binding to its receptor, the Na+/K+-ATPase, on target cells. This interaction can promote Na+ transport blockade or even activation of signaling transduction pathways (e.g., EGFR/Src-Ras-ERK pathway activation), independent of ion transport. Besides the well-known effect of ouabain on the cardiovascular system and blood pressure control, compelling evidence indicates that ouabain regulates a number of immune functions. Inflammation is a tightly coordinated immunological function that is also affected by ouabain. Indeed, this hormone can modulate many inflammatory events such as cell migration, vascular permeability, and cytokine production. Moreover, ouabain also interferes on neuroinflammation. However, it is not clear how ouabain controls these events. In this brief review, we summarize the updates of ouabain effect on several aspects of peripheral and central inflammation, bringing new insights into ouabain functions on the immune system.
Collapse
Affiliation(s)
- Luiz H A Cavalcante-Silva
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Laboratório de Imunobiotecnologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Éssia de Almeida Lima
- Programa de Pós-Graduação em Biotecnologia, Laboratório de Imunobiotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Deyse C M Carvalho
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Laboratório de Imunobiotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - José M de Sales-Neto
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Laboratório de Imunobiotecnologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Anne K de Abreu Alves
- Programa de Pós-Graduação em Biotecnologia, Laboratório de Imunobiotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - José G F M Galvão
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Laboratório de Imunobiotecnologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Juliane S de França da Silva
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Laboratório de Imunobiotecnologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Sandra Rodrigues-Mascarenhas
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Laboratório de Imunobiotecnologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil.,Programa de Pós-Graduação em Biotecnologia, Laboratório de Imunobiotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil.,Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Laboratório de Imunobiotecnologia, Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Brazil
| |
Collapse
|
21
|
Blaustein MP. The pump, the exchanger, and the holy spirit: origins and 40-year evolution of ideas about the ouabain-Na + pump endocrine system. Am J Physiol Cell Physiol 2017; 314:C3-C26. [PMID: 28971835 DOI: 10.1152/ajpcell.00196.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Two prescient 1953 publications set the stage for the elucidation of a novel endocrine system: Schatzmann's report that cardiotonic steroids (CTSs) are all Na+ pump inhibitors, and Szent-Gyorgi's suggestion that there is an endogenous "missing screw" in heart failure that CTSs like digoxin may replace. In 1977 I postulated that an endogenous Na+ pump inhibitor acts as a natriuretic hormone and simultaneously elevates blood pressure (BP) in salt-dependent hypertension. This hypothesis was based on the idea that excess renal salt retention promoted the secretion of a CTS-like hormone that inhibits renal Na+ pumps and salt reabsorption. The hormone also inhibits arterial Na+ pumps, elevates myocyte Na+ and promotes Na/Ca exchanger-mediated Ca2+ gain. This enhances vasoconstriction and arterial tone-the hallmark of hypertension. Here I describe how those ideas led to the discovery that the CTS-like hormone is endogenous ouabain (EO), a key factor in the pathogenesis of hypertension and heart failure. Seminal observations that underlie the still-emerging picture of the EO-Na+ pump endocrine system in the physiology and pathophysiology of multiple organ systems are summarized. Milestones include: 1) cloning the Na+ pump isoforms and physiological studies of mutated pumps in mice; 2) discovery that Na+ pumps are also EO-triggered signaling molecules; 3) demonstration that ouabain, but not digoxin, is hypertensinogenic; 4) elucidation of EO's roles in kidney development and cardiovascular and renal physiology and pathophysiology; 5) discovery of "brain ouabain", a component of a novel hypothalamic neuromodulatory pathway; and 6) finding that EO and its brain receptors modulate behavior and learning.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Departments of Physiology and Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| |
Collapse
|
22
|
Cui X, Xie Z. Protein Interaction and Na/K-ATPase-Mediated Signal Transduction. Molecules 2017; 22:molecules22060990. [PMID: 28613263 PMCID: PMC6152704 DOI: 10.3390/molecules22060990] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 02/05/2023] Open
Abstract
The Na/K-ATPase (NKA), or Na pump, is a member of the P-type ATPase superfamily. In addition to pumping ions across cell membrane, it is engaged in assembly of multiple protein complexes in the plasma membrane. This assembly allows NKA to perform many non-pumping functions including signal transduction that are important for animal physiology and disease progression. This article will focus on the role of protein interaction in NKA-mediated signal transduction, and its potential utility as target for developing new therapeutics.
Collapse
Affiliation(s)
- Xiaoyu Cui
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA.
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA.
| |
Collapse
|
23
|
Wang X, Liu J, Drummond CA, Shapiro JI. Sodium potassium adenosine triphosphatase (Na/K-ATPase) as a therapeutic target for uremic cardiomyopathy. Expert Opin Ther Targets 2017; 21:531-541. [PMID: 28338377 PMCID: PMC5590225 DOI: 10.1080/14728222.2017.1311864] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/23/2017] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Clinically, patients with significant reductions in renal function present with cardiovascular dysfunction typically termed, uremic cardiomyopathy. It is a progressive series of cardiac pathophysiological changes, including left ventricular diastolic dysfunction and hypertrophy (LVH) which sometimes progress to left ventricular dilation (LVD) and systolic dysfunction in the setting of chronic kidney disease (CKD). Uremic cardiomyopathy is almost ubiquitous in patients afflicted with end stage renal disease (ESRD). Areas covered: This article reviews recent epidemiology, pathophysiology of uremic cardiomyopathy and provide a board overview of Na/K-ATPase research with detailed discussion on the mechanisms of Na/K-ATPase/Src/ROS amplification loop. We also present clinical and preclinical evidences as well as molecular mechanism of this amplification loop in the development of uremic cardiomyopathy. A potential therapeutic peptide that targets on this loop is discussed. Expert opinion: Current clinical treatment for uremic cardiomyopathy remains disappointing. Targeting the ROS amplification loop mediated by the Na/K-ATPase signaling function may provide a novel therapeutic target for uremic cardiomyopathy and related diseases. Additional studies of Na/K-ATPase and other strategies that regulate this loop will lead to new therapeutics.
Collapse
Affiliation(s)
- Xiaoliang Wang
- a Joan C Edwards School of Medicine at Marshall University , Huntington , WV , United States
- b University of Toledo College of Medicine and Life Sciences , Toledo , OH , United States
| | - Jiang Liu
- a Joan C Edwards School of Medicine at Marshall University , Huntington , WV , United States
| | - Christopher A Drummond
- b University of Toledo College of Medicine and Life Sciences , Toledo , OH , United States
| | - Joseph I Shapiro
- a Joan C Edwards School of Medicine at Marshall University , Huntington , WV , United States
| |
Collapse
|
24
|
Affiliation(s)
- John M Hamlyn
- From the Departments of Physiology (J.M.H., M.P.B.) and Medicine (M.P.B.), University of Maryland School of Medicine, Baltimore.
| | - Mordecai P Blaustein
- From the Departments of Physiology (J.M.H., M.P.B.) and Medicine (M.P.B.), University of Maryland School of Medicine, Baltimore.
| |
Collapse
|
25
|
Burlaka I, Nilsson LM, Scott L, Holtbäck U, Eklöf AC, Fogo AB, Brismar H, Aperia A. Prevention of apoptosis averts glomerular tubular disconnection and podocyte loss in proteinuric kidney disease. Kidney Int 2016; 90:135-48. [PMID: 27217195 PMCID: PMC6101029 DOI: 10.1016/j.kint.2016.03.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 02/19/2016] [Accepted: 03/10/2016] [Indexed: 01/09/2023]
Abstract
There is a great need for treatment that arrests progression of chronic kidney disease. Increased albumin in urine leads to apoptosis and fibrosis of podocytes and tubular cells and is a major cause of functional deterioration. There have been many attempts to target fibrosis, but because of the lack of appropriate agents, few have targeted apoptosis. Our group has described an ouabain-activated Na,K-ATPase/IP3R signalosome, which protects from apoptosis. Here we show that albumin uptake in primary rat renal epithelial cells is accompanied by a time- and dose-dependent mitochondrial accumulation of the apoptotic factor Bax, down-regulation of the antiapoptotic factor Bcl-xL and mitochondrial membrane depolarization. Ouabain opposes these effects and protects from apoptosis in albumin-exposed proximal tubule cells and podocytes. The efficacy of ouabain as an antiapoptotic and kidney-protective therapeutic tool was then tested in rats with passive Heymann nephritis, a model of proteinuric chronic kidney disease. Chronic ouabain treatment preserved renal function, protected from renal cortical apoptosis, up-regulated Bax, down-regulated Bcl-xL, and rescued from glomerular tubular disconnection and podocyte loss. Thus we have identified a novel clinically feasible therapeutic tool, which has the potential to protect from apoptosis and rescue from loss of functional tissue in chronic proteinuric kidney disease.
Collapse
Affiliation(s)
- Ievgeniia Burlaka
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Linnéa M Nilsson
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Solna, Sweden
| | - Lena Scott
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.
| | - Ulla Holtbäck
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Ann-Christine Eklöf
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Agnes B Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hjalmar Brismar
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden; Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Solna, Sweden
| | - Anita Aperia
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
26
|
Aperia A, Akkuratov EE, Fontana JM, Brismar H. Na+-K+-ATPase, a new class of plasma membrane receptors. Am J Physiol Cell Physiol 2016; 310:C491-5. [PMID: 26791490 DOI: 10.1152/ajpcell.00359.2015] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Na(+)-K(+)-ATPase (NKA) differs from most other ion transporters, not only in its capacity to maintain a steep electrochemical gradient across the plasma membrane, but also as a receptor for a family of cardiotonic steroids, to which ouabain belongs. Studies from many groups, performed during the last 15 years, have demonstrated that ouabain, a member of the cardiotonic steroid family, can activate a network of signaling molecules, and that NKA will also serve as a signal transducer that can provide a feedback loop between NKA and the mitochondria. This brief review summarizes the current knowledge and controversies with regard to the understanding of NKA signaling.
Collapse
Affiliation(s)
- Anita Aperia
- Science for Life Laboratory, Department of Women and Children's Health, Karolinska Institutet, Stockholm, Sweden; and
| | - Evgeny E Akkuratov
- Science for Life Laboratory, Department of Women and Children's Health, Karolinska Institutet, Stockholm, Sweden; and
| | - Jacopo Maria Fontana
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | - Hjalmar Brismar
- Science for Life Laboratory, Department of Women and Children's Health, Karolinska Institutet, Stockholm, Sweden; and Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
27
|
Endogenous Ouabain: An Old Cardiotonic Steroid as a New Biomarker of Heart Failure and a Predictor of Mortality after Cardiac Surgery. BIOMED RESEARCH INTERNATIONAL 2015; 2015:714793. [PMID: 26609532 PMCID: PMC4644558 DOI: 10.1155/2015/714793] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/05/2015] [Indexed: 12/17/2022]
Abstract
Cardiovascular diseases remain the main cause of mortality and morbidity worldwide; primary prevention is a priority for physicians. Biomarkers are useful tools able to identify high-risk individuals, guide treatments, and determine prognosis. Our aim is to investigate Endogenous Ouabain (EO), an adrenal stress hormone with hemodynamic effects, as a valuable biomarker of heart failure. In a population of 845 patients undergoing elective cardiac surgery, we have investigated the relationships between EO and echocardiography parameters/plasmatic biomarker of cardiac function. EO was found to be correlated negatively with left ventricular EF (p = 0.001), positively with Cardiac End-Diastolic Diameter (p = 0.047), and positively with plasmatic NT-proBNP level (p = 0.02). Moreover, a different plasmatic EO level (both preoperative and postoperative) was found according to NYHA class (p = 0.013). All these results have been replicated on an independent cohort of patients (147 subjects from US). Finally, a higher EO level in the immediate postoperative time was indicative of a more severe cardiological condition and it was associated with increased perioperative mortality risk (p = 0.023 for 30-day morality). Our data suggest that preoperative and postoperative plasmatic EO level identifies patients with a more severe cardiovascular presentation at baseline. These patients have a higher risk of morbidity and mortality after cardiac surgery.
Collapse
|
28
|
Ouabain rescues rat nephrogenesis during intrauterine growth restriction by regulating the complement and coagulation cascades and calcium signaling pathway. J Dev Orig Health Dis 2015; 7:91-101. [PMID: 26442628 DOI: 10.1017/s2040174415007242] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intrauterine growth restriction (IUGR) is associated with a reduction in the numbers of nephrons in neonates, which increases the risk of hypertension. Our previous study showed that ouabain protects the development of the embryonic kidney during IUGR. To explore this molecular mechanism, IUGR rats were induced by protein and calorie restriction throughout pregnancy, and ouabain was delivered using a mini osmotic pump. RNA sequencing technology was used to identify the differentially expressed genes (DEGs) of the embryonic kidneys. DEGs were submitted to the Database for Annotation and Visualization and Integrated Discovery, and gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted. Maternal malnutrition significantly reduced fetal weight, but ouabain treatment had no significant effect on body weight. A total of 322 (177 upregulated and 145 downregulated) DEGs were detected between control and the IUGR group. Meanwhile, 318 DEGs were found to be differentially expressed (180 increased and 138 decreased) between the IUGR group and the ouabain-treated group. KEGG pathway analysis indicated that maternal undernutrition mainly disrupts the complement and coagulation cascades and the calcium signaling pathway, which could be protected by ouabain treatment. Taken together, these two biological pathways may play an important role in nephrogenesis, indicating potential novel therapeutic targets against the unfavorable effects of IUGR.
Collapse
|
29
|
Hamlyn JM, Manunta P. Endogenous cardiotonic steroids in kidney failure: a review and an hypothesis. Adv Chronic Kidney Dis 2015; 22:232-44. [PMID: 25908473 DOI: 10.1053/j.ackd.2014.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/17/2014] [Accepted: 12/22/2014] [Indexed: 02/06/2023]
Abstract
In response to progressive nephron loss, volume and humoral signals in the circulation have increasing relevance. These signals, including plasma sodium, angiotensin II, and those related to volume status, activate a slow neuromodulatory pathway within the central nervous system (CNS). The slow CNS pathway includes specific receptors for angiotensin II, mineralocorticoids, and endogenous ouabain (EO). Stimulation of the pathway leads to elevated sympathetic nervous system activity (SNA) and increased circulating EO. The sustained elevation of circulating EO (or ouabain) stimulates central and peripheral mechanisms that amplify the impact of SNA on vascular tone. These include changes in synaptic plasticity in the brain and sympathetic ganglia that increase preganglionic tone and amplify ganglionic transmission, amplification of the impact of SNA on arterial tone in the vascular wall, and the reprogramming of calcium signaling proteins in arterial myocytes. These increase SNA, raise basal and evoked arterial tone, and elevate blood pressure (BP). In the setting of CKD, we suggest that sustained activation/elevation of the slow CNS pathway, plasma EO, and the cardiotonic steroid marinobufagenin, comprises a feed-forward system that raises BP and accelerates kidney and cardiac damage. Block of the slow CNS pathway and/or circulating EO and marinobufagenin may reduce BP and slow the progression to ESRD.
Collapse
|