1
|
Ye Y, Li M, Chen W, Wang H, He X, Liu N, Guo Z, Zheng C. Natural polysaccharides as promising reno-protective agents for the treatment of various kidney injury. Pharmacol Res 2024; 207:107301. [PMID: 39009291 DOI: 10.1016/j.phrs.2024.107301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/13/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
Renal injury, a prevalent clinical outcome with multifactorial etiology, imposes a substantial burden on society. Currently, there remains a lack of effective management and treatments. Extensive research has emphasized the diverse biological effects of natural polysaccharides, which exhibit promising potential for mitigating renal damage. This review commences with the pathogenesis of four common renal diseases and the shared mechanisms underlying renal injury. The renoprotective roles of polysaccharides in vivo and in vitro are summarized in the following five aspects: anti-oxidative stress effects, anti-apoptotic effects, anti-inflammatory effects, anti-fibrotic effects, and gut modulatory effects. Furthermore, we explore the structure-activity relationship and bioavailability of polysaccharides in relation to renal injury, as well as investigate their utility as biomaterials for alleviating renal injury. The clinical experiments of polysaccharides applied to patients with chronic kidney disease are also reviewed. Broadly, this review provides a comprehensive perspective on the research direction of natural polysaccharides in the context of renal injury, with the primary aim to serve as a reference for the clinical development of polysaccharides as pharmaceuticals and prebiotics for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Yufei Ye
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China; Department of Nephrology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Maoting Li
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China; Department of Nephrology, Naval Medical Center of PLA, Second Military Medical University/Naval Medical University, 338 West Huaihai Road, Shanghai 200052, China
| | - Wei Chen
- Department of Nephrology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Hongrui Wang
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Xuhui He
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Nanmei Liu
- Department of Nephrology, Naval Medical Center of PLA, Second Military Medical University/Naval Medical University, 338 West Huaihai Road, Shanghai 200052, China.
| | - Zhiyong Guo
- Department of Nephrology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Chengjian Zheng
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China.
| |
Collapse
|
2
|
Wang B, Xiong Y, Deng X, Wang Y, Gong S, Yang S, Yang B, Yang Y, Leng Y, Li W, Li W. The role of intercellular communication in diabetic nephropathy. Front Immunol 2024; 15:1423784. [PMID: 39238645 PMCID: PMC11374600 DOI: 10.3389/fimmu.2024.1423784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024] Open
Abstract
Diabetic nephropathy, a common and severe complication of diabetes, is the leading cause of end-stage renal disease, ultimately leading to renal failure and significantly affecting the prognosis and lives of diabetics worldwide. However, the complexity of its developmental mechanisms makes treating diabetic nephropathy a challenging task, necessitating the search for improved therapeutic targets. Intercellular communication underlies the direct and indirect influence and interaction among various cells within a tissue. Recently, studies have shown that beyond traditional communication methods, tunnel nanotubes, exosomes, filopodial tip vesicles, and the fibrogenic niche can influence pathophysiological changes in diabetic nephropathy by disrupting intercellular communication. Therefore, this paper aims to review the varied roles of intercellular communication in diabetic nephropathy, focusing on recent advances in this area.
Collapse
Affiliation(s)
- Bihan Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yonghong Xiong
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinqi Deng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunhao Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Siyuan Gong
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Songyuan Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baichuan Yang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuhang Yang
- The First Clinical College of Wuhan University, Wuhan, China
| | - Yan Leng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenyuan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Atiakshin D, Morozov S, Dlin V, Kostin A, Volodkin A, Ignatyuk M, Kuzovleva G, Baiko S, Chekmareva I, Chesnokova S, Elieh-Ali-Komi D, Buchwalow I, Tiemann M. Renal Mast Cell-Specific Proteases in the Pathogenesis of Tubulointerstitial Fibrosis. J Histochem Cytochem 2024; 72:495-515. [PMID: 39263893 PMCID: PMC11529666 DOI: 10.1369/00221554241274878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/19/2024] [Indexed: 09/13/2024] Open
Abstract
Chronic kidney disease is detected in 8-15% of the world's population. Along with fibrotic changes, it can lead to a complete loss of organ function. Therefore, a better understanding of the onset of the pathological process is required. To address this issue, we examined the interaction between mast cells (MCs) and cells in fibrous and intact regions, focusing on the role of MC proteases such as tryptase, chymase, and carboxypeptidase A3 (CPA3). MCs appear to be involved in the development of inflammatory and fibrotic changes through the targeted secretion of tryptase, chymase, and CPA3 to the vascular endothelium, nephron epithelium, interstitial cells, and components of intercellular substances. Protease-based phenotyping of renal MCs showed that tryptase-positive MCs were the most common phenotype at all anatomic sites. The infiltration of MC in different anatomic sites of the kidney with an associated release of protease content was accompanied by a loss of contact between the epithelium and the basement membrane, indicating the active participation of MCs in the formation and development of fibrogenic niches in the kidney. These findings may contribute to the development of novel strategies for the treatment of tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Dmitrii Atiakshin
- RUDN University, Moscow, Russian Federation
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, Voronezh, Russia
| | - Sergey Morozov
- Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russian Federation
| | - Vladimir Dlin
- Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russian Federation
| | | | | | | | - Galina Kuzovleva
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Sergey Baiko
- Belarusian State Medical University, Minsk, Belarus
| | | | | | - Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology, Berlin, Germany
| | - Igor Buchwalow
- RUDN University, Moscow, Russian Federation
- Institute for Hematopathology, Hamburg, Germany
| | | |
Collapse
|
4
|
Long Y, Song D, Xiao L, Xiang Y, Li D, Sun X, Hong X, Hou FF, Fu H, Liu Y. m 6A RNA methylation drives kidney fibrosis by upregulating β-catenin signaling. Int J Biol Sci 2024; 20:3185-3200. [PMID: 38904026 PMCID: PMC11186362 DOI: 10.7150/ijbs.96233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024] Open
Abstract
N6-methyladenosine (m6A) methylation plays a crucial role in various biological processes and the pathogenesis of human diseases. However, its role and mechanism in kidney fibrosis remain elusive. In this study, we show that the overall level of m6A methylated RNA was upregulated and the m6A methyltransferase METTL3 was induced in kidney tubular epithelial cells in mouse models and human kidney biopsies of chronic kidney disease (CKD). Proximal tubule-specific knockout of METTL3 in mice protected kidneys against developing fibrotic lesions after injury. Conversely, overexpression of METTL3 aggravated kidney fibrosis in vivo. Through bioinformatics analysis and experimental validation, we identified β-catenin mRNA as a major target of METTL3-mediated m6A modification, which could be recognized by a specific m6A reader, the insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3). METTL3 stabilized β-catenin mRNA, increased β-catenin protein and induced its downstream profibrotic genes, whereas either knockdown of IGF2BP3 or inhibiting β-catenin signaling abolished its effects. Collectively, these results indicate that METTL3 promotes kidney fibrosis by stimulating the m6A modification of β-catenin mRNA, leading to its stabilization and its downstream profibrotic genes expression. Our findings suggest that targeting METTL3/IGF2BP3/β-catenin pathway may be a novel strategy for the treatment of fibrotic CKD.
Collapse
Affiliation(s)
- Yinyi Long
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dongyan Song
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liuyan Xiao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yadie Xiang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dier Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoli Sun
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xue Hong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| |
Collapse
|
5
|
Zhao X, Li Y, Yu J, Teng H, Wu S, Wang Y, Zhou H, Li F. Role of mitochondria in pathogenesis and therapy of renal fibrosis. Metabolism 2024; 155:155913. [PMID: 38609039 DOI: 10.1016/j.metabol.2024.155913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/18/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Renal fibrosis, specifically tubulointerstitial fibrosis, represents the predominant pathological consequence observed in the context of progressive chronic kidney conditions. The pathogenesis of renal fibrosis encompasses a multifaceted interplay of mechanisms, including but not limited to interstitial fibroblast proliferation, activation, augmented production of extracellular matrix (ECM) components, and impaired ECM degradation. Notably, mitochondria, the intracellular organelles responsible for orchestrating biological oxidation processes in mammalian cells, assume a pivotal role within this intricate milieu. Mitochondrial dysfunction, when manifest, can incite a cascade of events, including inflammatory responses, perturbed mitochondrial autophagy, and associated processes, ultimately culminating in the genesis of renal fibrosis. This comprehensive review endeavors to furnish an exegesis of mitochondrial pathophysiology and biogenesis, elucidating the precise mechanisms through which mitochondrial aberrations contribute to the onset and progression of renal fibrosis. We explored how mitochondrial dysfunction, mitochondrial cytopathy and mitochondrial autophagy mediate ECM deposition and renal fibrosis from a multicellular perspective of mesangial cells, endothelial cells, podocytes, macrophages and fibroblasts. Furthermore, it succinctly encapsulates the most recent advancements in the realm of mitochondrial-targeted therapeutic strategies aimed at mitigating renal fibrosis.
Collapse
Affiliation(s)
- Xiaodong Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yunkuo Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Jinyu Yu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Haolin Teng
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Shouwang Wu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Faping Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
6
|
Pan S, Yuan T, Xia Y, Yu W, Zhou X, Cheng F. Role of Histone Modifications in Kidney Fibrosis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:888. [PMID: 38929505 PMCID: PMC11205584 DOI: 10.3390/medicina60060888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024]
Abstract
Chronic kidney disease (CKD) is characterized by persistent kidney dysfunction, ultimately resulting in end-stage renal disease (ESRD). Renal fibrosis is a crucial pathological feature of CKD and ESRD. However, there is no effective treatment for this condition. Despite the complex molecular mechanisms involved in renal fibrosis, increasing evidence highlights the crucial role of histone modification in its regulation. The reversibility of histone modifications offers promising avenues for therapeutic strategies to block or reverse renal fibrosis. Therefore, a comprehensive understanding of the regulatory implications of histone modifications in fibrosis may provide novel insights into more effective and safer therapeutic approaches. This review highlights the regulatory mechanisms and recent advances in histone modifications in renal fibrosis, particularly histone methylation and histone acetylation. The aim is to explore the potential of histone modifications as targets for treating renal fibrosis.
Collapse
Affiliation(s)
| | | | | | | | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.P.); (T.Y.); (Y.X.); (W.Y.)
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.P.); (T.Y.); (Y.X.); (W.Y.)
| |
Collapse
|
7
|
Bao YN, Yang Q, Shen XL, Yu WK, Zhou L, Zhu QR, Shan QY, Wang ZC, Cao G. Targeting tumor suppressor p53 for organ fibrosis therapy. Cell Death Dis 2024; 15:336. [PMID: 38744865 PMCID: PMC11094089 DOI: 10.1038/s41419-024-06702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Fibrosis is a reparative and progressive process characterized by abnormal extracellular matrix deposition, contributing to organ dysfunction in chronic diseases. The tumor suppressor p53 (p53), known for its regulatory roles in cell proliferation, apoptosis, aging, and metabolism across diverse tissues, appears to play a pivotal role in aggravating biological processes such as epithelial-mesenchymal transition (EMT), cell apoptosis, and cell senescence. These processes are closely intertwined with the pathogenesis of fibrotic disease. In this review, we briefly introduce the background and specific mechanism of p53, investigate the pathogenesis of fibrosis, and further discuss p53's relationship and role in fibrosis affecting the kidney, liver, lung, and heart. In summary, targeting p53 represents a promising and innovative therapeutic approach for the prevention and treatment of organ fibrosis.
Collapse
Affiliation(s)
- Yi-Ni Bao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Xin-Lei Shen
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Wen-Kai Yu
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Li Zhou
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Qing-Ru Zhu
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Qi-Yuan Shan
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Zhi-Chao Wang
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
8
|
Gui Y, Fu H, Palanza Z, Tao J, Lin YH, Min W, Qiao Y, Bonin C, Hargis G, Wang Y, Yang P, Kreutzer DL, Wang Y, Liu Y, Yu Y, Liu Y, Zhou D. Fibroblast expression of transmembrane protein smoothened governs microenvironment characteristics after acute kidney injury. J Clin Invest 2024; 134:e165836. [PMID: 38713523 PMCID: PMC11213467 DOI: 10.1172/jci165836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/02/2024] [Indexed: 05/09/2024] Open
Abstract
The smoothened (Smo) receptor facilitates hedgehog signaling between kidney fibroblasts and tubules during acute kidney injury (AKI). Tubule-derived hedgehog is protective in AKI, but the role of fibroblast-selective Smo is unclear. Here, we report that Smo-specific ablation in fibroblasts reduced tubular cell apoptosis and inflammation, enhanced perivascular mesenchymal cell activities, and preserved kidney function after AKI. Global proteomics of these kidneys identified extracellular matrix proteins, and nidogen-1 glycoprotein in particular, as key response markers to AKI. Intriguingly, Smo was bound to nidogen-1 in cells, suggesting that loss of Smo could affect nidogen-1 accessibility. Phosphoproteomics revealed that the 'AKI protector' Wnt signaling pathway was activated in these kidneys. Mechanistically, nidogen-1 interacted with integrin β1 to induce Wnt in tubules to mitigate AKI. Altogether, our results support that fibroblast-selective Smo dictates AKI fate through cell-matrix interactions, including nidogen-1, and offers a robust resource and path to further dissect AKI pathogenesis.
Collapse
Affiliation(s)
- Yuan Gui
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Haiyan Fu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zachary Palanza
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Jianling Tao
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Yi-Han Lin
- National Center for Advancing Translational Sciences, Rockville, Maryland, USA
| | - Wenjian Min
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | | | - Christopher Bonin
- University of Connecticut, School of Medicine, Farmington, Connecticut, USA
| | - Geneva Hargis
- University of Connecticut, School of Medicine, Farmington, Connecticut, USA
| | - Yuanyuan Wang
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | | | - Yanlin Wang
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Yansheng Liu
- Yale Cancer Biology Institute, Yale University, West Haven, Connecticut, USA
- Department of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Yanbao Yu
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Youhua Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dong Zhou
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| |
Collapse
|
9
|
He M, Liu Z, Li L, Liu Y. Cell-cell communication in kidney fibrosis. Nephrol Dial Transplant 2024; 39:761-769. [PMID: 38040652 PMCID: PMC11494227 DOI: 10.1093/ndt/gfad257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Indexed: 12/03/2023] Open
Abstract
Kidney fibrosis is a common outcome of a wide variety of chronic kidney diseases, in which virtually all kinds of renal resident and infiltrating cells are involved. As such, well-orchestrated intercellular communication is of vital importance in coordinating complex actions during renal fibrogenesis. Cell-cell communication in multicellular organisms is traditionally assumed to be mediated by direct cell contact or soluble factors, including growth factors, cytokines and chemokines, through autocrine, paracrine, endocrine and juxtacrine signaling mechanisms. Growing evidence also demonstrates that extracellular vesicles, lipid bilayer-encircled particles naturally released from almost all types of cells, can act as a vehicle to transfer a diverse array of biomolecules including proteins, mRNA, miRNA and lipids to mediate cell-cell communication. We recently described a new mode of intercellular communication via building a special extracellular niche by insoluble matricellular proteins. Kidney cells, upon injury, produce and secrete different matricellular proteins, which incorporate into the local extracellular matrix network, and regulate the behavior, trajectory and fate of neighboring cells in a spatially confined fashion. This extracellular niche-mediated cell-cell communication is unique in that it restrains the crosstalk between cells within a particular locality. Detailed delineation of this unique manner of intercellular communication will help to elucidate the mechanism of kidney fibrosis and could offer novel insights in developing therapeutic intervention.
Collapse
Affiliation(s)
- Meizhi He
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Zhao Liu
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Li Li
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| |
Collapse
|
10
|
Reiss AB, Jacob B, Zubair A, Srivastava A, Johnson M, De Leon J. Fibrosis in Chronic Kidney Disease: Pathophysiology and Therapeutic Targets. J Clin Med 2024; 13:1881. [PMID: 38610646 PMCID: PMC11012936 DOI: 10.3390/jcm13071881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Chronic kidney disease (CKD) is a slowly progressive condition characterized by decreased kidney function, tubular injury, oxidative stress, and inflammation. CKD is a leading global health burden that is asymptomatic in early stages but can ultimately cause kidney failure. Its etiology is complex and involves dysregulated signaling pathways that lead to fibrosis. Transforming growth factor (TGF)-β is a central mediator in promoting transdifferentiation of polarized renal tubular epithelial cells into mesenchymal cells, resulting in irreversible kidney injury. While current therapies are limited, the search for more effective diagnostic and treatment modalities is intensive. Although biopsy with histology is the most accurate method of diagnosis and staging, imaging techniques such as diffusion-weighted magnetic resonance imaging and shear wave elastography ultrasound are less invasive ways to stage fibrosis. Current therapies such as renin-angiotensin blockers, mineralocorticoid receptor antagonists, and sodium/glucose cotransporter 2 inhibitors aim to delay progression. Newer antifibrotic agents that suppress the downstream inflammatory mediators involved in the fibrotic process are in clinical trials, and potential therapeutic targets that interfere with TGF-β signaling are being explored. Small interfering RNAs and stem cell-based therapeutics are also being evaluated. Further research and clinical studies are necessary in order to avoid dialysis and kidney transplantation.
Collapse
Affiliation(s)
- Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (B.J.); (A.Z.); (A.S.); (M.J.); (J.D.L.)
| | | | | | | | | | | |
Collapse
|
11
|
Brandt S, Bernhardt A, Häberer S, Wolters K, Gehringer F, Reichardt C, Krause A, Geffers R, Kahlfuß S, Jeron A, Bruder D, Lindquist JA, Isermann B, Mertens PR. Comparative Analysis of Acute Kidney Injury Models and Related Fibrogenic Responses: Convergence on Methylation Patterns Regulated by Cold Shock Protein. Cells 2024; 13:367. [PMID: 38474331 DOI: 10.3390/cells13050367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/02/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Fibrosis is characterized by excessive extracellular matrix formation in solid organs, disrupting tissue architecture and function. The Y-box binding protein-1 (YB-1) regulates fibrosis-related genes (e.g., Col1a1, Mmp2, and Tgfβ1) and contributes significantly to disease progression. This study aims to identify fibrogenic signatures and the underlying signaling pathways modulated by YB-1. METHODS Transcriptomic changes associated with matrix gene patterns in human chronic kidney diseases and murine acute injury models were analyzed with a focus on known YB-1 targets. Ybx1-knockout mouse strains (Ybx1ΔRosaERT+TX and Ybx1ΔLysM) were subjected to various kidney injury models. Fibrosis patterns were characterized by histopathological staining, transcriptome analysis, qRT-PCR, methylation analysis, zymography, and Western blotting. RESULTS Integrative transcriptomic analyses revealed that YB-1 is involved in several fibrogenic signatures related to the matrisome, the WNT, YAP/TAZ, and TGFß pathways, and regulates Klotho expression. Changes in the methylation status of the Klotho promoter by specific methyltransferases (DNMT) are linked to YB-1 expression, extending to other fibrogenic genes. Notably, kidney-resident cells play a significant role in YB-1-modulated fibrogenic signaling, whereas infiltrating myeloid immune cells have a minimal impact. CONCLUSIONS YB-1 emerges as a master regulator of fibrogenesis, guiding DNMT1 to fibrosis-related genes. This highlights YB-1 as a potential target for epigenetic therapies interfering in this process.
Collapse
Affiliation(s)
- Sabine Brandt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Anja Bernhardt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Saskia Häberer
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Katharina Wolters
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Fabian Gehringer
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Charlotte Reichardt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Anna Krause
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Sascha Kahlfuß
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Institute of Medical Microbiology, Infection Control and Prevention, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Andreas Jeron
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Institute of Medical Microbiology, Infection Control and Prevention, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Research Group Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Dunja Bruder
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Institute of Medical Microbiology, Infection Control and Prevention, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Research Group Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Jonathan A Lindquist
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, 04103 Leipzig, Germany
| | - Peter R Mertens
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
| |
Collapse
|
12
|
Wang M, Wang J, Wang L, Feng X, Qian Y, Ye C, Wang C. Icariside II prevents kidney fibrosis development in chronic kidney disease by promoting fatty acid oxidation. Phytother Res 2024; 38:839-855. [PMID: 38081477 DOI: 10.1002/ptr.8085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 02/15/2024]
Abstract
Renal interstitial fibrosis (RIF) is the main pathological basis for the progression of chronic kidney disease (CKD), however, effective interventions are limited. Here, we investigated the effect of Icariside II (ICA-II) on RIF and explored the underlying mechanisms. Rats receiving 5/6 ablation and infarction (A/I) surgery were gavaged with ICA-II (5 or 10 mg/kg) for 8 weeks. In vitro, TGF-β1-stimulated NRK-52E cells were treated with ICA-II and (or) oleic acid, etomoxir, ranolazine, fenofibrate, and GW6471. The effects of ICA-II on RIF, fatty acid oxidation, lipid deposition, and mitochondrial function were determined by immunoblotting, Oil red O staining, colorimetric, and fluorometric assays. Using adeno-associated virus injection and co-culture methods, we further determined mechanisms of ICA-II anti-RIF. ICA-II ameliorated the fibrotic responses in vivo and in vitro. RNA-seq analysis indicated that ICA-II regulated fatty acid degradation and PPAR pathway in 5/6 (A/I) kidneys. ICA-II attenuated lipid accumulation and up-regulated expression of PPARα, CPT-1α, Acaa2, and Acadsb proteins in vivo and in vitro. Compared to ICA-II treatment, ICA-II combined with Etomoxir exacerbated mitochondrial dysfunction and fibrotic responses in TGF-β-treated NRK-52E cells. Importantly, we determined that ICA-II improved lipid metabolism, fatty acid oxidation, mitochondrial function, and RIF by restoring PPARα. Co-culture revealed that ICA-II decreased the expression of Fibronectin, Collagen-I, α-SMA, and PCNA proteins in NRK-49F cells by restoring PPARα of renal tubular cells. ICA-II may serve as a promising therapeutic agent for RIF in 5/6 (A/I) rats, which may be important for the prevention and treatment of CKD.
Collapse
Affiliation(s)
- Meng Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Wang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Lingchen Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoxuan Feng
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiling Qian
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chaoyang Ye
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
13
|
Li L, Huang J, Liu Y. The extracellular matrix glycoprotein fibrillin-1 in health and disease. Front Cell Dev Biol 2024; 11:1302285. [PMID: 38269088 PMCID: PMC10806136 DOI: 10.3389/fcell.2023.1302285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
Fibrillin-1 (FBN1) is a large, cysteine-rich, calcium binding extracellular matrix glycoprotein encoded by FBN1 gene. It serves as a structural component of microfibrils and provides force-bearing mechanical support in elastic and nonelastic connective tissue. As such, mutations in the FBN1 gene can cause a wide variety of genetic diseases such as Marfan syndrome, an autosomal dominant disorder characterized by ocular, skeletal and cardiovascular abnormalities. FBN1 also interacts with numerous microfibril-associated proteins, growth factors and cell membrane receptors, thereby mediating a wide range of biological processes such as cell survival, proliferation, migration and differentiation. Dysregulation of FBN1 is involved in the pathogenesis of many human diseases, such as cancers, cardiovascular disorders and kidney diseases. Paradoxically, both depletion and overexpression of FBN1 upregulate the bioavailability and signal transduction of TGF-β via distinct mechanisms in different settings. In this review, we summarize the structure and expression of FBN1 and present our current understanding of the functional role of FBN1 in various human diseases. This knowledge will allow to develop better strategies for therapeutic intervention of FBN1 related diseases.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Junxin Huang
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| |
Collapse
|
14
|
Riesmeijer SA, Kamali Z, Ng M, Drichel D, Piersma B, Becker K, Layton TB, Nanchahal J, Nothnagel M, Vaez A, Hennies HC, Werker PMN, Furniss D, Nolte IM. A genome-wide association meta-analysis implicates Hedgehog and Notch signaling in Dupuytren's disease. Nat Commun 2024; 15:199. [PMID: 38172110 PMCID: PMC10764787 DOI: 10.1038/s41467-023-44451-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
Dupuytren's disease (DD) is a highly heritable fibrotic disorder of the hand with incompletely understood etiology. A number of genetic loci, including Wnt signaling members, have been previously identified. Our overall aim was to identify novel genetic loci, to prioritize genes within the loci for functional studies, and to assess genetic correlation with associated disorders. We performed a meta-analysis of six DD genome-wide association studies from three European countries and extensive bioinformatic follow-up analyses. Leveraging 11,320 cases and 47,023 controls, we identified 85 genome-wide significant single nucleotide polymorphisms in 56 loci, of which 11 were novel, explaining 13.3-38.1% of disease variance. Gene prioritization implicated the Hedgehog and Notch signaling pathways. We also identified a significant genetic correlation with frozen shoulder. The pathways identified highlight the potential for new therapeutic targets and provide a basis for additional mechanistic studies for a common disorder that can severely impact hand function.
Collapse
Affiliation(s)
- Sophie A Riesmeijer
- University of Groningen, University Medical Center Groningen, Department of Plastic Surgery, Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands.
| | - Zoha Kamali
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands
- Department of bioinformatics, School of Advanced Medical Technologies, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Michael Ng
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Science, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Dmitriy Drichel
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
- Faculty of Medicine and the Cologne University Hospital, Cologne, Germany
| | - Bram Piersma
- University of Groningen, Groningen, The Netherlands
| | - Kerstin Becker
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | | | | | - Michael Nothnagel
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
- Faculty of Medicine and the Cologne University Hospital, Cologne, Germany
| | - Ahmad Vaez
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands
- Department of bioinformatics, School of Advanced Medical Technologies, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hans Christian Hennies
- Faculty of Medicine and the Cologne University Hospital, Cologne, Germany
- Department of Biological Sciences, University of Huddersfield, Huddersfield, UK
| | - Paul M N Werker
- University of Groningen, University Medical Center Groningen, Department of Plastic Surgery, Groningen, The Netherlands
| | - Dominic Furniss
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Science, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Ilja M Nolte
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands
| |
Collapse
|
15
|
Song L, Zhang W, Tang SY, Luo SM, Xiong PY, Liu JY, Hu HC, Chen YQ, Jia B, Yan QH, Tang SQ, Huang W. Natural products in traditional Chinese medicine: molecular mechanisms and therapeutic targets of renal fibrosis and state-of-the-art drug delivery systems. Biomed Pharmacother 2024; 170:116039. [PMID: 38157643 DOI: 10.1016/j.biopha.2023.116039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
Renal fibrosis (RF) is the end stage of several chronic kidney diseases. Its series of changes include excessive accumulation of extracellular matrix, epithelial-mesenchymal transition (EMT) of renal tubular cells, fibroblast activation, immune cell infiltration, and renal cell apoptosis. RF can eventually lead to renal dysfunction or even renal failure. A large body of evidence suggests that natural products in traditional Chinese medicine (TCM) have great potential for treating RF. In this article, we first describe the recent advances in RF treatment by several natural products and clarify their mechanisms of action. They can ameliorate the RF disease phenotype, which includes apoptosis, endoplasmic reticulum stress, and EMT, by affecting relevant signaling pathways and molecular targets, thereby delaying or reversing fibrosis. We also present the roles of nanodrug delivery systems, which have been explored to address the drawback of low oral bioavailability of natural products. This may provide new ideas for using natural products for RF treatment. Finally, we provide new insights into the clinical prospects of herbal natural products.
Collapse
Affiliation(s)
- Li Song
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Zhang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shi-Yun Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Si-Min Luo
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China
| | - Pei-Yu Xiong
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jun-Yu Liu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Heng-Chang Hu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ying-Qi Chen
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China
| | - Bo Jia
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qian-Hua Yan
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, China.
| | - Song-Qi Tang
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China.
| | - Wei Huang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
16
|
Abedsaeidi M, Hojjati F, Tavassoli A, Sahebkar A. Biology of Tenascin C and its Role in Physiology and Pathology. Curr Med Chem 2024; 31:2706-2731. [PMID: 37021423 DOI: 10.2174/0929867330666230404124229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/25/2023] [Accepted: 02/10/2023] [Indexed: 04/07/2023]
Abstract
Tenascin-C (TNC) is a multimodular extracellular matrix (ECM) protein hexameric with several molecular forms (180-250 kDa) produced by alternative splicing at the pre-mRNA level and protein modifications. The molecular phylogeny indicates that the amino acid sequence of TNC is a well-conserved protein among vertebrates. TNC has binding partners, including fibronectin, collagen, fibrillin-2, periostin, proteoglycans, and pathogens. Various transcription factors and intracellular regulators tightly regulate TNC expression. TNC plays an essential role in cell proliferation and migration. Unlike embryonic tissues, TNC protein is distributed over a few tissues in adults. However, higher TNC expression is observed in inflammation, wound healing, cancer, and other pathological conditions. It is widely expressed in a variety of human malignancies and is recognized as a pivotal factor in cancer progression and metastasis. Moreover, TNC increases both pro-and anti-inflammatory signaling pathways. It has been identified as an essential factor in tissue injuries such as damaged skeletal muscle, heart disease, and kidney fibrosis. This multimodular hexameric glycoprotein modulates both innate and adaptive immune responses regulating the expression of numerous cytokines. Moreover, TNC is an important regulatory molecule that affects the onset and progression of neuronal disorders through many signaling pathways. We provide a comprehensive overview of the structural and expression properties of TNC and its potential functions in physiological and pathological conditions.
Collapse
Affiliation(s)
- Malihehsadat Abedsaeidi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Farzaneh Hojjati
- Division of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Amin Tavassoli
- Division of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Li X, Shan J, Chen X, Cui H, Wen G, Yu Y. Decellularized diseased tissues: current state-of-the-art and future directions. MedComm (Beijing) 2023; 4:e399. [PMID: 38020712 PMCID: PMC10661834 DOI: 10.1002/mco2.399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 12/01/2023] Open
Abstract
Decellularized matrices derived from diseased tissues/organs have evolved in the most recent years, providing novel research perspectives for understanding disease occurrence and progression and providing accurate pseudo models for developing new disease treatments. Although decellularized matrix maintaining the native composition, ultrastructure, and biomechanical characteristics of extracellular matrix (ECM), alongside intact and perfusable vascular compartments, facilitates the construction of bioengineered organ explants in vitro and promotes angiogenesis and tissue/organ regeneration in vivo, the availability of healthy tissues and organs for the preparation of decellularized ECM materials is limited. In this paper, we review the research advancements in decellularized diseased matrices. Considering that current research focuses on the matrices derived from cancers and fibrotic organs (mainly fibrotic kidney, lungs, and liver), the pathological characterizations and the applications of these diseased matrices are mainly discussed. Additionally, a contrastive analysis between the decellularized diseased matrices and decellularized healthy matrices, along with the development in vitro 3D models, is discussed in this paper. And last, we have provided the challenges and future directions in this review. Deep and comprehensive research on decellularized diseased tissues and organs will promote in-depth exploration of source materials in tissue engineering field, thus providing new ideas for clinical transformation.
Collapse
Affiliation(s)
- Xiang Li
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jianyang Shan
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xin Chen
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- College of Fisheries and Life ScienceShanghai Ocean UniversityShanghaiChina
| | - Haomin Cui
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Gen Wen
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yaling Yu
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
18
|
Li L, Lu M, Peng Y, Huang J, Tang X, Chen J, Li J, Hong X, He M, Fu H, Liu R, Hou FF, Zhou L, Liu Y. Oxidatively stressed extracellular microenvironment drives fibroblast activation and kidney fibrosis. Redox Biol 2023; 67:102868. [PMID: 37690165 PMCID: PMC10497796 DOI: 10.1016/j.redox.2023.102868] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023] Open
Abstract
Kidney fibrosis is associated with tubular injury, oxidative stress and activation of interstitial fibroblasts. However, whether these events are somehow connected is poorly understood. In this study, we show that glutathione peroxidase-3 (GPX3) depletion in renal tubular epithelium after kidney injury plays a central role in orchestrating an oxidatively stressed extracellular microenvironment, which drives interstitial fibroblast activation and proliferation. Through transcriptional profiling by RNA-sequencing, we found that the expression of GPX3 was down-regulated in various models of chronic kidney disease (CKD), which was correlated with induction of nicotinamide adenine dinucleotide phosphate (NAPDH) oxidase-4 (NOX4). By using decellularized extracellular matrix (ECM) scaffold, we demonstrated that GPX3-depleted extracellular microenvironment spontaneously induced NOX4 expression and reactive oxygen species (ROS) production in renal fibroblasts and triggered their activation and proliferation. Activation of NOX4 by advanced oxidation protein products (AOPPs) mimicked the loss of GPX3, increased the production of ROS, stimulated fibroblast activation and proliferation, and activated protein kinase C-α (PKCα)/mitogen-activated protein kinase (MAPK)/signal transducer and activator of transcription 3 (STAT3) signaling. Silencing NOX4 or inhibition of MAPK with small molecule inhibitors hampered fibroblast activation and proliferation. In mouse model of CKD, knockdown of NOX4 repressed renal fibroblast activation and proliferation and alleviated kidney fibrosis. These results indicate that loss of GPX3 orchestrates an oxidatively stressed extracellular microenvironment, which promotes fibroblast activation and proliferation through a cascade of signal transduction. Our studies underscore the crucial role of extracellular microenvironment in driving fibroblast activation and kidney fibrosis.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Meizhi Lu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yiling Peng
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junxin Huang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoman Tang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Chen
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Jing Li
- Department of Cardiology, The 924th Hospital of Chinese People's Liberation Army Joint Service Support Force, Guilin, China
| | - Xue Hong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meizhi He
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruiyuan Liu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
19
|
Zeng X, Zhou X, Zhou J, Zhou H, Hong X, Li D, Xiang Y, Zhong M, Chen Y, Liang D, Fu H. Limonin mitigates cisplatin-induced acute kidney injury through metabolic reprogramming. Biomed Pharmacother 2023; 167:115531. [PMID: 37741252 DOI: 10.1016/j.biopha.2023.115531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/06/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a known complication of cisplatin administration; currently, there are no effective ways to prevent it. Therefore, it largely limited the use of cisplatin in chemotherapy in the clinic. In this study, we reported that Limonin, a triterpenoid compound extracted from citrus, alleviated cisplatin-induced AKI through metabolic reprogramming in the diseased kidneys. METHODS Cisplatin was employed to induce AKI in mice. Three groups were set up: Sham, cisplatin + vehicle, and cisplatin + Limonin. Using UHPLC-TOF/MS, we conducted metabolomics to profile the kidneys' endogenous metabolites and metabolic pathways. A network pharmacological method was performed to identify the targets of Limonin on AKI. The human proximal tubular epithelial cell line (HK-2) was applied for in vitro studies. RESULTS Limonin preserved serum creatinine and blood urea nitrogen levels after cisplatin-induced AKI. Employing metabolomics, we identified 33 endogenous differentially expressed metabolites and 7 significantly disturbed metabolic pathways in the diseased kidneys within three groups. After AKI, Limonin significantly reduced linoleic acid and its downstream product, arachidonic acid, thus exerting a protective effect on the kidney. The network pharmacological method identified CYP3A4 as a key target of Limonin in treating AKI, while CYP3A4 also serve as a mediator of arachidonic acid metabolism. In vitro, Limonin markedly reduced the level of arachidonic acid and HK-2 cell apoptosis triggered by cisplatin, mainly related to the targeted inhibition of CYP3A4-mediated arachidonic acid metabolism. CONCLUSION Limonin ameliorates cisplatin-induced AKI by inhibiting CYP3A4 activity to regulate arachidonic acid metabolism, ultimately preserving kidney function.
Collapse
Affiliation(s)
- Xi Zeng
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xianke Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiayi Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hong Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xue Hong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dier Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yadie Xiang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Menghua Zhong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yudan Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dongning Liang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
20
|
Bale S, Verma P, Varga J, Bhattacharyya S. Extracellular Matrix-Derived Damage-Associated Molecular Patterns (DAMP): Implications in Systemic Sclerosis and Fibrosis. J Invest Dermatol 2023; 143:1877-1885. [PMID: 37452808 DOI: 10.1016/j.jid.2023.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/24/2023] [Accepted: 04/07/2023] [Indexed: 07/18/2023]
Abstract
Damage-associated molecular patterns (DAMPs) are intracellular molecules released under cellular stress or recurring tissue injury, which serve as endogenous ligands for toll-like receptors (TLRs). Such DAMPs are either actively secreted by immune cells or passively released into the extracellular environment from damaged cells or generated as alternatively spliced mRNA variants of extracellular matrix (ECM) glycoproteins. When recognized by pattern recognition receptors (PRRs) such as TLRs, DAMPs trigger innate immune responses. Currently, the best-characterized PRRs include, in addition to TLRs, nucleotide-binding oligomerization domain-like receptors, RIG-I-like RNA helicases, C-type lectin receptors, and many more. Systemic sclerosis (SSc) is a chronic autoimmune condition characterized by inflammation and progressive fibrosis in multiple organs. Using an unbiased survey for SSc-associated DAMPs, we have identified the ECM glycoproteins fibronectin-containing extra domain A and tenascin C as the most highly upregulated in SSc skin and lung biopsies. These DAMPs activate TLR4 on resident stromal cells to elicit profibrotic responses and sustained myofibroblasts activation resulting in progressive fibrosis. This review summarizes the current understanding of the complex functional roles of DAMPs in the progression and failure of resolution of fibrosis in general, with a particular focus on SSc, and considers viable therapeutic approaches targeting DAMPs.
Collapse
Affiliation(s)
- Swarna Bale
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Priyanka Verma
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - John Varga
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Swati Bhattacharyya
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
21
|
Pang X, Hou X, Hu C, Lu S, Gan H, Yang H, Xiang S, Zhou J, Gao H, Chen S. Tenascin-C promotes the proliferation and fibrosis of mesangial cells in diabetic nephropathy through the β-catenin pathway. Int Urol Nephrol 2023; 55:2507-2516. [PMID: 36964321 DOI: 10.1007/s11255-023-03547-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/02/2023] [Indexed: 03/26/2023]
Abstract
OBJECTIVE To mechanistically assess the involvement of tenascin-C (TNC) in diabetic nephropathy (DN). METHODS Renal specimens from DN patients were histopathologically examined, and their TNC expression patterns were evaluated via immunohistochemistry. Additionally, the hereditarily diabetic C57BL/KsJ db/db mice were induced to develop DN via adaptive feeding, and then their renal levels of TNC and β-catenin were assessed via western blotting and immunohistochemistry. Furthermore, the TNC and β-catenin levels in primary rat mesangial cells (RMCs) cultured with high glucose levels were assessed via western blotting. In parallel, RMCs cultured with TNC in the presence or absence of the β-catenin blocker ICG-001 were analyzed for their fibronectin and collagen I levels via immunostaining, and for their fibronectin, α-SMA, vimentin, PDGFR-β, PCNA, and β-catenin levels via western blotting. RESULTS The TNC levels in the specimens were associated with the pathological classification. In these DN specimens, TNC protein was highly detected in the MCs and slightly in the tubulointerstitium. Renal TNC (P < 0.05) and β-catenin (P < 0.001) were upregulated in db/db vs. db/m mice. High-glucose treatment upregulated TNC (P < 0.01) and β-catenin (P < 0.05) in RMCs. TNC treatment upregulated fibronectin (P < 0.05), α-SMA (P < 0.01), vimentin (P < 0.05), PCNA (P < 0.05), and β-catenin (P < 0.05) in RMCs, as assessed via western blotting. Immunohistochemical analysis confirmed the fibronectin upregulation and showed collagen I upregulation. Western-blot results also showed that levels of fibronectin (P < 0.001), α-SMA (P < 0.01), vimentin (P < 0.001), PCNA (P < 0.05), PDGFR-β (P < 0.05), and β-catenin (P < 0.01) were lower in RMCs co-treated with TNC and ICG-001 than in TNC-treated cells. Immunofluorescence analysis confirmed the decreased fibronectin level and showed that the collagen I level was also decreased by ICG-001. CONCLUSION TNC is upregulated in DN and induces MC proliferation and fibrosis through the β-catenin pathway.
Collapse
Affiliation(s)
- Xinxin Pang
- Division of Nephrology, Henan Provincial Hospital of Traditional Chinese Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Xiaotao Hou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Renal Pathology, King Medical Diagnostics Center, Guangzhou, China
| | - Chengxiao Hu
- Division of Nephrology, Shenzhen Hospital, Hong Kong University, Shenzhen, China
| | - Shilong Lu
- Division of Nephrology, Ruikang Hospital, Guangxi University of Traditional Chinese Medicine, Guangxi Integrated Chinese and Western Medicine Clinical Research Center for Kidney Disease, Nanning, 530000, China
| | - Huifang Gan
- Division of Nephrology, Ruikang Hospital, Guangxi University of Traditional Chinese Medicine, Guangxi Integrated Chinese and Western Medicine Clinical Research Center for Kidney Disease, Nanning, 530000, China
| | - Huifei Yang
- Fuda Cancer Hospital, Jinan University, Guangzhou, China
| | - Shaowei Xiang
- Division of Nephrology, Ruikang Hospital, Guangxi University of Traditional Chinese Medicine, Guangxi Integrated Chinese and Western Medicine Clinical Research Center for Kidney Disease, Nanning, 530000, China
| | - Jun Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hongjun Gao
- Division of Urology, Ruikang Hospital, Guangxi University of Traditional Chinese Medicine, Guangxi Integrated Chinese and Western Medicine Clinical Research Center for Kidney Disease, Nanning, 530000, China.
| | - Shuangqin Chen
- Division of Nephrology, Ruikang Hospital, Guangxi University of Traditional Chinese Medicine, Guangxi Integrated Chinese and Western Medicine Clinical Research Center for Kidney Disease, Nanning, 530000, China.
| |
Collapse
|
22
|
Ryan CN, Pugliese E, Shologu N, Gaspar D, Rooney P, Islam MN, O'Riordan A, Biggs MJ, Griffin MD, Zeugolis DI. Physicochemical cues are not potent regulators of human dermal fibroblast trans-differentiation. BIOMATERIALS AND BIOSYSTEMS 2023; 11:100079. [PMID: 37720487 PMCID: PMC10499661 DOI: 10.1016/j.bbiosy.2023.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/25/2023] [Accepted: 05/29/2023] [Indexed: 09/19/2023] Open
Abstract
Due to their inherent plasticity, dermal fibroblasts hold great promise in regenerative medicine. Although biological signals have been well-established as potent regulators of dermal fibroblast function, it is still unclear whether physiochemical cues can induce dermal fibroblast trans-differentiation. Herein, we evaluated the combined effect of surface topography, substrate rigidity, collagen type I coating and macromolecular crowding in human dermal fibroblast cultures. Our data indicate that tissue culture plastic and collagen type I coating increased cell proliferation and metabolic activity. None of the assessed in vitro microenvironment modulators affected cell viability. Anisotropic surface topography induced bidirectional cell morphology, especially on more rigid (1,000 kPa and 130 kPa) substrates. Macromolecular crowding increased various collagen types, but not fibronectin, deposition. Macromolecular crowding induced globular extracellular matrix deposition, independently of the properties of the substrate. At day 14 (longest time point assessed), macromolecular crowding downregulated tenascin C (in 9 out of the 14 groups), aggrecan (in 13 out of the 14 groups), osteonectin (in 13 out of the 14 groups), and collagen type I (in all groups). Overall, our data suggest that physicochemical cues (such surface topography, substrate rigidity, collagen coating and macromolecular crowding) are not as potent as biological signals in inducing dermal fibroblast trans-differentiation.
Collapse
Affiliation(s)
- Christina N.M. Ryan
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, University of Galway, Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Eugenia Pugliese
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, University of Galway, Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Naledi Shologu
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, University of Galway, Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Diana Gaspar
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, University of Galway, Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Peadar Rooney
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Md Nahidul Islam
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), School of Medicine, Biomedical Sciences Building, University of Galway, Galway, Ireland
- Discipline of Biochemistry, School of Natural Sciences, University of Galway, Galway, Ireland
| | - Alan O'Riordan
- Tyndall National Institute, University College Cork (UCC), Cork, Ireland
| | - Manus J. Biggs
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Matthew D. Griffin
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI), School of Medicine, Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, University of Galway, Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
23
|
Balic A, Perver D, Pagella P, Rehrauer H, Stadlinger B, Moor AE, Vogel V, Mitsiadis TA. Extracellular matrix remodelling in dental pulp tissue of carious human teeth through the prism of single-cell RNA sequencing. Int J Oral Sci 2023; 15:30. [PMID: 37532703 PMCID: PMC10397277 DOI: 10.1038/s41368-023-00238-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 08/04/2023] Open
Abstract
Carious lesions are bacteria-caused destructions of the mineralised dental tissues, marked by the simultaneous activation of immune responses and regenerative events within the soft dental pulp tissue. While major molecular players in tooth decay have been uncovered during the past years, a detailed map of the molecular and cellular landscape of the diseased pulp is still missing. In this study we used single-cell RNA sequencing analysis, supplemented with immunostaining, to generate a comprehensive single-cell atlas of the pulp of carious human teeth. Our data demonstrated modifications in the various cell clusters within the pulp of carious teeth, such as immune cells, mesenchymal stem cells (MSC) and fibroblasts, when compared to the pulp of healthy human teeth. Active immune response in the carious pulp tissue is accompanied by specific changes in the fibroblast and MSC clusters. These changes include the upregulation of genes encoding extracellular matrix (ECM) components, including COL1A1 and Fibronectin (FN1), and the enrichment of the fibroblast cluster with myofibroblasts. The incremental changes in the ECM composition of carious pulp tissues were further confirmed by immunostaining analyses. Assessment of the Fibronectin fibres under mechanical strain conditions showed a significant tension reduction in carious pulp tissues, compared to the healthy ones. The present data demonstrate molecular, cellular and biomechanical alterations in the pulp of human carious teeth, indicative of extensive ECM remodelling, reminiscent of fibrosis observed in other organs. This comprehensive atlas of carious human teeth can facilitate future studies of dental pathologies and enable comparative analyses across diseased organs.
Collapse
Affiliation(s)
- Anamaria Balic
- Orofacial Development and Regeneration, Institute of Oral Biology, Centre of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Dilara Perver
- Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zurich, Zurich, Switzerland
| | - Pierfrancesco Pagella
- Orofacial Development and Regeneration, Institute of Oral Biology, Centre of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Bernd Stadlinger
- Clinic of Cranio-Maxillofacial and Oral Surgery, University of Zurich, Zurich, Switzerland
| | - Andreas E Moor
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Viola Vogel
- Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zurich, Zurich, Switzerland
| | - Thimios A Mitsiadis
- Orofacial Development and Regeneration, Institute of Oral Biology, Centre of Dental Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
24
|
Bernhardt A, Krause A, Reichardt C, Steffen H, Isermann B, Völker U, Hammer E, Geffers R, Philipsen L, Dhjamandi K, Ahmad S, Brandt S, Lindquist JA, Mertens PR. Excessive sodium chloride ingestion promotes inflammation and kidney fibrosis in aging mice. Am J Physiol Cell Physiol 2023; 325:C456-C470. [PMID: 37399499 DOI: 10.1152/ajpcell.00230.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
In aging kidneys, a decline of function resulting from extracellular matrix (ECM) deposition and organ fibrosis is regarded as "physiological." Whether a direct link between high salt intake and fibrosis in aging kidney exists autonomously from arterial hypertension is unclear. This study explores kidney intrinsic changes (inflammation, ECM derangement) induced by a high-salt diet (HSD) in a murine model lacking arterial hypertension. The contribution of cold shock Y-box binding protein (YB-1) as a key orchestrator of organ fibrosis to the observed differences is determined by comparison with a knockout strain (Ybx1ΔRosaERT+TX). Comparisons of tissue from mice fed with normal-salt diet (NSD, standard chow) or high-salt diet (HSD, 4% NaCl in chow; 1% NaCl in water) for up to 16 mo revealed that with HSD tubular cell numbers decrease and tubulointerstitial scarring [periodic acid-Schiff (PAS), Masson's trichrome, Sirius red staining] prevails. In Ybx1ΔRosaERT+TX animals tubular cell damage, a loss of cell contacts with profound tubulointerstitial alterations, and tubular cell senescence was seen. A distinct tubulointerstitial distribution of fibrinogen, collagen type VI, and tenascin-C was detected under HSD, transcriptome analyses determined patterns of matrisome regulation. Temporal increase of immune cell infiltration was seen under HSD of wild type, but not Ybx1ΔRosaERT+TX animals. In vitro Ybx1ΔRosaERT+TX bone marrow-derived macrophages exhibited a defect in polarization (IL-4/IL-13) and abrogated response to sodium chloride. Taken together, HSD promotes progressive kidney fibrosis with premature cell aging, ECM deposition, and immune cell recruitment that is exacerbated in Ybx1ΔRosaERT+TX animals.NEW & NOTEWORTHY Short-term experimental studies link excessive sodium ingestion with extracellular matrix accumulation and inflammatory cell recruitment, yet long-term data are scarce. Our findings with a high-salt diet over 16 mo in aging mice pinpoints to a decisive tipping point after 12 mo with tubular stress response, skewed matrisome transcriptome, and immune cell infiltration. Cell senescence was aggravated in knockout animals for cold shock Y-box binding protein (YB-1), suggesting a novel protective protein function.
Collapse
Affiliation(s)
- Anja Bernhardt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany
| | - Anna Krause
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany
| | - Charlotte Reichardt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany
| | - Hannes Steffen
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
| | - Uwe Völker
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Elke Hammer
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lars Philipsen
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Kristin Dhjamandi
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany
| | - Sohail Ahmad
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany
| | - Sabine Brandt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany
| | - Jonathan A Lindquist
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany
| | - Peter R Mertens
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
25
|
Peng Y, Li L, Shang J, Zhu H, Liao J, Hong X, Hou FF, Fu H, Liu Y. Macrophage promotes fibroblast activation and kidney fibrosis by assembling a vitronectin-enriched microenvironment. Theranostics 2023; 13:3897-3913. [PMID: 37441594 PMCID: PMC10334827 DOI: 10.7150/thno.85250] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Background: Renal infiltration of inflammatory cells including macrophages is a crucial event in kidney fibrogenesis. However, how macrophage regulates fibroblast activation in the fibrotic kidney remains elusive. In this study, we show that macrophages promoted fibroblast activation by assembling a vitronectin (Vtn)-enriched, extracellular microenvironment. Methods: We prepared decellularized kidney tissue scaffold (KTS) from normal and fibrotic kidney after unilateral ischemia-reperfusion injury (UIRI) and carried out an unbiased quantitative proteomics analysis. NRK-49F cells were seeded on macrophage-derived extracellular matrix (ECM) scaffold. Genetic Vtn knockout (Vtn-/-) mice and chronic kidney disease (CKD) model with overexpression of Vtn were used to corroborate a role of Vtn/integrin αvβ5/Src in kidney fibrosis. Results: Vtn was identified as one of the most upregulated proteins in the decellularized kidney tissue scaffold from fibrotic kidney by mass spectrometry. Furthermore, Vtn was upregulated in the kidney of mouse models of CKD and primarily expressed and secreted by activated macrophages. Urinary Vtn levels were elevated in CKD patients and inversely correlated with kidney function. Genetic ablation or knockdown of Vtn protected mice from developing kidney fibrosis after injury. Conversely, overexpression of Vtn exacerbated renal fibrotic lesions and aggravated renal insufficiency. We found that macrophage-derived, Vtn-enriched extracellular matrix scaffold promoted fibroblast activation and proliferation. In vitro, Vtn triggered fibroblast activation by stimulating integrin αvβ5 and Src kinase signaling. Either blockade of αvβ5 with neutralizing antibody or pharmacological inhibition of Src by Saracatinib abolished Vtn-induced fibroblast activation. Moreover, Saracatinib dose-dependently ameliorated Vtn-induced kidney fibrosis in vivo. These results demonstrate that macrophage induces fibroblast activation by assembling a Vtn-enriched extracellular microenvironment, which triggers integrin αvβ5 and Src kinase signaling. Conclusion: Our findings uncover a novel mechanism by which macrophages contribute to kidney fibrosis via assembling a Vtn-enriched extracellular niche and suggest that disrupting fibrogenic microenvironment could be a therapeutic strategy for fibrotic CKD.
Collapse
Affiliation(s)
- Yiling Peng
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University
| | - Li Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University
| | - Jingyue Shang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University
| | - Haili Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University
| | - Jinlin Liao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University
| | - Xue Hong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University
- Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University
- Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University
- Guangdong Provincial Institute of Nephrology, Guangzhou, China
| |
Collapse
|
26
|
Lindquist JA, Bernhardt A, Reichardt C, Sauter E, Brandt S, Rana R, Lindenmeyer MT, Philipsen L, Isermann B, Zhu C, Mertens PR. Cold Shock Domain Protein DbpA Orchestrates Tubular Cell Damage and Interstitial Fibrosis in Inflammatory Kidney Disease. Cells 2023; 12:1426. [PMID: 37408260 DOI: 10.3390/cells12101426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 07/07/2023] Open
Abstract
DNA-binding protein A (DbpA) belongs to the Y-box family of cold shock domain proteins that exert transcriptional and translational activities in the cell via their ability to bind and regulate mRNA. To investigate the role of DbpA in kidney disease, we utilized the murine unilateral ureter obstruction (UUO) model, which recapitulates many features of obstructive nephropathy seen in humans. We observed that DbpA protein expression is induced within the renal interstitium following disease induction. Compared with wild-type animals, obstructed kidneys from Ybx3-deficient mice are protected from tissue injury, with a significant reduction in the number of infiltrating immune cells as well as in extracellular matrix deposition. RNAseq data from UUO kidneys show that Ybx3 is expressed by activated fibroblasts, which reside within the renal interstitium. Our data support a role for DbpA in orchestrating renal fibrosis and suggest that strategies targeting DbpA may be a therapeutic option to slow disease progression.
Collapse
Affiliation(s)
- Jonathan A Lindquist
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Anja Bernhardt
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Charlotte Reichardt
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Eva Sauter
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Sabine Brandt
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Rajiv Rana
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, 04103 Leipzig, Germany
| | - Maja T Lindenmeyer
- Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Lars Philipsen
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, 04103 Leipzig, Germany
| | - Cheng Zhu
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou 310058, China
| | - Peter R Mertens
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| |
Collapse
|
27
|
Huang R, Fu P, Ma L. Kidney fibrosis: from mechanisms to therapeutic medicines. Signal Transduct Target Ther 2023; 8:129. [PMID: 36932062 PMCID: PMC10023808 DOI: 10.1038/s41392-023-01379-7] [Citation(s) in RCA: 134] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
Chronic kidney disease (CKD) is estimated to affect 10-14% of global population. Kidney fibrosis, characterized by excessive extracellular matrix deposition leading to scarring, is a hallmark manifestation in different progressive CKD; However, at present no antifibrotic therapies against CKD exist. Kidney fibrosis is identified by tubule atrophy, interstitial chronic inflammation and fibrogenesis, glomerulosclerosis, and vascular rarefaction. Fibrotic niche, where organ fibrosis initiates, is a complex interplay between injured parenchyma (like tubular cells) and multiple non-parenchymal cell lineages (immune and mesenchymal cells) located spatially within scarring areas. Although the mechanisms of kidney fibrosis are complicated due to the kinds of cells involved, with the help of single-cell technology, many key questions have been explored, such as what kind of renal tubules are profibrotic, where myofibroblasts originate, which immune cells are involved, and how cells communicate with each other. In addition, genetics and epigenetics are deeper mechanisms that regulate kidney fibrosis. And the reversible nature of epigenetic changes including DNA methylation, RNA interference, and chromatin remodeling, gives an opportunity to stop or reverse kidney fibrosis by therapeutic strategies. More marketed (e.g., RAS blockage, SGLT2 inhibitors) have been developed to delay CKD progression in recent years. Furthermore, a better understanding of renal fibrosis is also favored to discover biomarkers of fibrotic injury. In the review, we update recent advances in the mechanism of renal fibrosis and summarize novel biomarkers and antifibrotic treatment for CKD.
Collapse
Affiliation(s)
- Rongshuang Huang
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Fu
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Liang Ma
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
28
|
Proteomic landscape of the extracellular matrix in the fibrotic kidney. Kidney Int 2023; 103:1063-1076. [PMID: 36805449 DOI: 10.1016/j.kint.2023.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/14/2023] [Accepted: 01/20/2023] [Indexed: 02/19/2023]
Abstract
The extracellular matrix (ECM) is a complex three-dimensional network of proteins surrounding cells, forming a niche that controls cell adhesion, proliferation, migration and differentiation. The ECM network provides an architectural scaffold for surrounding cells and undergoes dynamic changes in composition and contents during the evolution of chronic kidney disease (CKD). Here, we unveiled the proteomic landscape of the ECM by delineating proteome-wide and ECM-specific alterations in normal and fibrotic kidneys. Decellularized kidney tissue scaffolds were made and subjected to proteomic profiling by liquid chromatography with tandem mass spectrometry. A total of 172 differentially expressed proteins were identified in these scaffolds from mice with CKD. Through bioinformatics analysis and experimental validation, we identified a core set of nine signature proteins, which could play a role in establishing an oxidatively stressed, profibrotic, proinflammatory and antiangiogenetic microenvironment. Among these nine proteins, glutathione peroxidase 3 (GPX3) was the only protein with downregulated expression during CKD. Knockdown of GPX3 in vivo augmented ECM expression and aggravated kidney fibrotic lesions after obstructive injury. Transcriptomic profiling revealed that GPX3 depletion resulted in an altered expression of the genes enriched in hypoxia pathway. Knockdown of GPX3 induced NADPH oxidase 2 expression, promoted kidney generation of reactive oxygen species and activated p38 mitogen-activated protein kinase. Conversely, overexpression of exogenous GPX3 alleviated kidney fibrosis, inhibited NADPH oxidase 2 and p38 mitogen-activated protein kinase. These findings suggest that oxidative stress is a pivotal element of the fibrogenic microenvironment. Thus, our studies represent a comprehensive proteomic characterization of the ECM in the fibrotic kidney and provide novel insights into molecular composition of the fibrogenic microenvironment.
Collapse
|
29
|
Song D, Shang J, Long Y, Zhong M, Li L, Chen J, Xiang Y, Tan H, Zhu H, Hong X, Hou FF, Fu H, Liu Y. Insulin-like growth factor 2 mRNA-binding protein 3 promotes kidney injury by regulating β-catenin signaling. JCI Insight 2023; 8:162060. [PMID: 36520532 PMCID: PMC9977311 DOI: 10.1172/jci.insight.162060] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Wnt/β-catenin is a developmental signaling pathway that plays a crucial role in driving kidney fibrosis after injury. Activation of β-catenin is presumed to be regulated through the posttranslational protein modification. Little is known about whether β-catenin is also subjected to regulation at the posttranscriptional mRNA level. Here, we report that insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) plays a pivotal role in regulating β-catenin. IGF2BP3 was upregulated in renal tubular epithelium of various animal models and patients with chronic kidney disease. IGF2BP3 not only was a direct downstream target of Wnt/β-catenin but also was obligatory for transducing Wnt signal. In vitro, overexpression of IGF2BP3 in kidney tubular cells induced fibrotic responses, whereas knockdown of endogenous IGF2BP3 prevented the expression of injury and fibrosis markers in tubular cells after Wnt3a stimulation. In vivo, exogenous IGF2BP3 promoted β-catenin activation and aggravated kidney fibrosis, while knockdown of IGF2BP3 ameliorated renal fibrotic lesions after obstructive injury. RNA immunoprecipitation and mRNA stability assays revealed that IGF2BP3 directly bound to β-catenin mRNA and stabilized it against degradation. Furthermore, knockdown of IGF2BP3 in tubular cells accelerated β-catenin mRNA degradation in vitro. These studies demonstrate that IGF2BP3 promotes β-catenin signaling and drives kidney fibrosis, which may be mediated through stabilizing β-catenin mRNA. Our findings uncover a previously underappreciated dimension of the complex regulation of Wnt/β-catenin signaling and suggest a potential target for therapeutic intervention of fibrotic kidney diseases.
Collapse
Affiliation(s)
- Dongyan Song
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingyue Shang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yinyi Long
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Menghua Zhong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiongcheng Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yadie Xiang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huishi Tan
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haili Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xue Hong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
30
|
Matrix protein Tenascin-C promotes kidney fibrosis via STAT3 activation in response to tubular injury. Cell Death Dis 2022; 13:1044. [PMID: 36522320 PMCID: PMC9755308 DOI: 10.1038/s41419-022-05496-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Accumulating evidence indicates that the extracellular matrix (ECM) is not only a consequence of fibrosis, but also contributes to the progression of fibrosis, by creating a profibrotic microenvironment. Tenascin-C (TNC) is an ECM glycoprotein that contains multiple functional domains. We showed that following kidney injury, TNC was markedly induced in fibrotic areas in the kidney from both mouse models and humans with kidney diseases. Genetically deletion of TNC in mice significantly attenuated unilateral ureteral obstruction-induced kidney fibrosis. Further studies showed that TNC promoted the proliferation of kidney interstitial cells via STAT3 activation. TNC-expressing cells in fibrotic kidney were activated fibroblast 2 (Act.Fib2) subpopulation, according to a previously generated single nucleus RNA-seq dataset profiling kidney of mouse UUO model at day 14. To identify and characterize TNC-expressing cells, we generated a TNC-promoter-driven CreER2-IRES-eGFP knock-in mouse line and found that the TNC reporter eGFP was markedly induced in cells around injured tubules that had lost epithelial markers, suggesting TNC was induced in response to epithelium injury. Most of the eGFP-positive cells were both NG2 and PDGFRβ positive. These cells did not carry markers of progenitor cells or macrophages. In conclusion, this study provides strong evidence that matrix protein TNC contributes to kidney fibrosis. TNC pathway may serve as a potential therapeutic target for interstitial fibrosis and the progression of chronic kidney disease.
Collapse
|
31
|
Inhibition of platelet-derived growth factor pathway suppresses tubulointerstitial injury in renal congestion. J Hypertens 2022; 40:1935-1949. [PMID: 35983805 PMCID: PMC9451920 DOI: 10.1097/hjh.0000000000003191] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Increased central venous pressure in congestive heart failure is responsible for renal dysfunction, which is mediated by renal venous congestion. Pericyte detachment from capillaries after renal congestion might trigger renal fibrogenesis via pericyte-myofibroblast transition (PMT). Platelet-derived growth factor receptors (PDGFRs), which are PMT indicators, were upregulated in our recently established renal congestion model. This study was designed to determine whether inhibition of the PDGFR pathway could suppress tubulointerstitial injury after renal congestion. METHODS The inferior vena cava between the renal veins was ligated in male Sprague-Dawley rats, inducing congestion only in the left kidney. Imatinib mesylate or vehicle were injected intraperitoneally daily from 1 day before the operation. Three days after the surgery, the effect of imatinib was assessed by physiological, morphological and molecular methods. The inhibition of PDGFRs against transforming growth factor-β1 (TGFB1)-induced fibrosis was also tested in human pericyte cell culture. RESULTS Increased kidney weight and renal fibrosis were observed in the congested kidneys. Upstream inferior vena cava (IVC) pressure immediately increased to around 20 mmHg after IVC ligation in both the imatinib and saline groups. Although vasa recta dilatation and pericyte detachment under renal congestion were maintained, imatinib ameliorated the increased kidney weight and suppressed renal fibrosis around the vasa recta. TGFB1-induced elevation of fibrosis markers in human pericytes was suppressed by PDGFR inhibitors at the transcriptional level. CONCLUSION The activation of the PDGFR pathway after renal congestion was responsible for renal congestion-induced fibrosis. This mechanism could be a candidate therapeutic target for renoprotection against renal congestion-induced tubulointerstitial injury.
Collapse
|
32
|
Yilmaz A, Loustau T, Salomé N, Poilil Surendran S, Li C, Tucker RP, Izzi V, Lamba R, Koch M, Orend G. Advances on the roles of tenascin-C in cancer. J Cell Sci 2022; 135:276631. [PMID: 36102918 PMCID: PMC9584351 DOI: 10.1242/jcs.260244] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The roles of the extracellular matrix molecule tenascin-C (TNC) in health and disease have been extensively reviewed since its discovery over 40 years ago. Here, we will describe recent insights into the roles of TNC in tumorigenesis, angiogenesis, immunity and metastasis. In addition to high levels of expression in tumors, and during chronic inflammation, and bacterial and viral infection, TNC is also expressed in lymphoid organs. This supports potential roles for TNC in immunity control. Advances using murine models with engineered TNC levels were instrumental in the discovery of important functions of TNC as a danger-associated molecular pattern (DAMP) molecule in tissue repair and revealed multiple TNC actions in tumor progression. TNC acts through distinct mechanisms on many different cell types with immune cells coming into focus as important targets of TNC in cancer. We will describe how this knowledge could be exploited for cancer disease management, in particular for immune (checkpoint) therapies.
Collapse
Affiliation(s)
- Alev Yilmaz
- The Tumor Microenvironment Laboratory, INSERM U1109, Hôpital Civil, Institut d'Hématologie et d'Immunologie 1 , 1 Place de l'Hôpital, 67091 Strasbourg , France
- Université Strasbourg 2 , 67000 Strasbourg , France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) 3 , 67000 Strasbourg , France
| | - Thomas Loustau
- The Tumor Microenvironment Laboratory, INSERM U1109, Hôpital Civil, Institut d'Hématologie et d'Immunologie 1 , 1 Place de l'Hôpital, 67091 Strasbourg , France
- Université Strasbourg 2 , 67000 Strasbourg , France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) 3 , 67000 Strasbourg , France
| | - Nathalie Salomé
- The Tumor Microenvironment Laboratory, INSERM U1109, Hôpital Civil, Institut d'Hématologie et d'Immunologie 1 , 1 Place de l'Hôpital, 67091 Strasbourg , France
- Université Strasbourg 2 , 67000 Strasbourg , France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) 3 , 67000 Strasbourg , France
| | - Suchithra Poilil Surendran
- The Tumor Microenvironment Laboratory, INSERM U1109, Hôpital Civil, Institut d'Hématologie et d'Immunologie 1 , 1 Place de l'Hôpital, 67091 Strasbourg , France
- Université Strasbourg 2 , 67000 Strasbourg , France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) 3 , 67000 Strasbourg , France
| | - Chengbei Li
- The Tumor Microenvironment Laboratory, INSERM U1109, Hôpital Civil, Institut d'Hématologie et d'Immunologie 1 , 1 Place de l'Hôpital, 67091 Strasbourg , France
- Université Strasbourg 2 , 67000 Strasbourg , France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) 3 , 67000 Strasbourg , France
| | - Richard P. Tucker
- University of California at Davis 4 Department of Cell Biology and Human Anatomy , , 95616 Davis, CA , USA
| | - Valerio Izzi
- University of Oulu 5 Faculty of Biochemistry and Molecular Medicine , , FI-90014 Oulu , Finland
- University of Oulu 6 Faculty of Medicine , , FI-90014 Oulu , Finland
| | - Rijuta Lamba
- University of Oulu 5 Faculty of Biochemistry and Molecular Medicine , , FI-90014 Oulu , Finland
- University of Oulu 6 Faculty of Medicine , , FI-90014 Oulu , Finland
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Research, Center for Biochemistry, Center for Molecular Medicine Cologne (CMMC) 7 , Faculty of Medicine and , Joseph-Stelzmann-Str. 52, 50931 Cologne , Germany
- University Hospital Cologne, University of Cologne 7 , Faculty of Medicine and , Joseph-Stelzmann-Str. 52, 50931 Cologne , Germany
| | - Gertraud Orend
- The Tumor Microenvironment Laboratory, INSERM U1109, Hôpital Civil, Institut d'Hématologie et d'Immunologie 1 , 1 Place de l'Hôpital, 67091 Strasbourg , France
- Université Strasbourg 2 , 67000 Strasbourg , France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) 3 , 67000 Strasbourg , France
| |
Collapse
|
33
|
Sun C, Zou H, Yang Z, Yang M, Chen X, Huang Y, Fan W, Yuan R. Proteomics and phosphoproteomics analysis of vitreous in idiopathic epiretinal membrane patients. Proteomics Clin Appl 2022; 16:e2100128. [PMID: 35510950 DOI: 10.1002/prca.202100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/18/2022] [Accepted: 05/02/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE The purpose of the present study was to characterize the idiopathic epiretinal membrane (iERM) through proteomics and phosphoproteomics analysis to facilitate the diagnosis and treatment of iERM. EXPERIMENTAL DESIGN The vitreous of 25 patients with an iERM and 15 patients with an idiopathic macular hole were analyzed by proteomic and phosphoproteomic analysis based on tandem mass tag. PRM was used to verify the differential proteins. RESULTS Proteomic analysis identified a total of 878 proteins, including 50 differential proteins. Tenascin-C, galectin-3-binding protein, glucose-6-phosphate isomerase, neuroserpin, collagen alpha-1(XI) chain, and collagen alpha-1(II) chain were verified to be upregulated in iERM by PRM. Phosphoproteomic analysis identified a total of 401 phosphorylation sites on 213 proteins, including 27 differential phosphorylation sites on 24 proteins. Mitogen-activated protein kinase-activated protein kinase (MAPKAPK)3 and MAPKAPK5 were predicted as the major kinases in the vitreous of iERM. Twenty-six of the differential proteins and phosphorylated proteins may be closely related to fibrosis in iERM. CONCLUSION AND CLINICAL RELEVANCE Our results indicated the potential biomarkers or therapeutic targets for iERM, provided key kinases that may be involved in iERM. Fibrosis plays an essential role in iERM, and further exploration of related differential proteins has important clinical significance.
Collapse
Affiliation(s)
- Chao Sun
- Department of Ophthalmology, the Second Affiliated Hospital of Army Medical University, Chongqing, PR China
| | - Huan Zou
- Department of Ophthalmology, the Second Affiliated Hospital of Army Medical University, Chongqing, PR China
| | - Zhouquan Yang
- Department of Ophthalmology, the Second Affiliated Hospital of Army Medical University, Chongqing, PR China
| | - Mei Yang
- Department of Ophthalmology, the Second Affiliated Hospital of Army Medical University, Chongqing, PR China
| | - Xiaofan Chen
- Department of Ophthalmology, the Second Affiliated Hospital of Army Medical University, Chongqing, PR China
| | - Yanming Huang
- Department of Ophthalmology, the Second Affiliated Hospital of Army Medical University, Chongqing, PR China
| | - Wei Fan
- Department of Ophthalmology, the Second Affiliated Hospital of Army Medical University, Chongqing, PR China
| | - Rongdi Yuan
- Department of Ophthalmology, the Second Affiliated Hospital of Army Medical University, Chongqing, PR China
| |
Collapse
|
34
|
Zheng Y, Lei L, Liang S, Ai J, Deng X, Li YQ, Zhang TP, Pu SB, Ren YS. Protective Effect of Fresh/Dry Dandelion Extracts on APAP-Overdose-Induced Acute Liver Injury. Chin J Integr Med 2022; 28:683-692. [PMID: 34816363 DOI: 10.1007/s11655-021-3295-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2020] [Indexed: 10/19/2022]
Abstract
OBJECITVIE To compare the liver protective activity of fresh/dried dandelion extracts against acetaminophen (APAP)-induced hepatotoxicity. METHODS Totally 90 Kunming mice were randomly divided into 10 groups according to body weight (9 mice for each group). The mice in the normal control and model (vehicle control) groups were administered sodium carboxymethyl cellulose (CMC-Na, 0.5%) only. Administration groups were pretreated with high and low-dose dry dandelion extract (1,000 or 500 g fresh herb dried and then decocted into 120 mL solution, DDE-H and DDE-L); low-, medium- and high-dose dandelion juice (250, 500, 1,000 g/120 mL, DJ-L, DJ-M, and DJ-H); fresh dandelions evaporation juice water (120 mL, DEJW); dry dandelion extract dissolved by pure water (1 kg/120 mL, DDED-PW); dry dandelion extract dissolved by DEJW (120 g/120 mL, DDED-DEJW) by oral gavage for 7 days at the dosage of 0.5 mL solution/10 g body weight; after that, except normal control group, all other groups were intraperitonealy injected with 350 mg/kg APAP to induce liver injury. Twenty hours after APAP administration, serum and liver tissue were collected and serum alanine aminotransferase (AST), aspartate transaminase (ALT), alkaline phosphatase (AKP), malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD) activities were quantified by biochemical kits; tumor necrosis factor (TNF-α), interleukin (IL)-2, and IL-1 β contents in liver tissue were determined by enzyme linked immunosorbent assay kits. Histopathological changes in liver tissues were observed by hematoxylin and eosin staining; TUNEL Assay and Hoechst 33258 staining were applied for cell apoptosis evaluation. The expressions of heme oxygenase-1 (HO-1), nuclear factor erythroid-2-related factor 2 (Nrf-2), caspase-9, B-cell leukemia/lymphoma 2 (Bcl-2), Bax and p-JNK were determined by Western blot analysis. RESULTS Pretreatment with fresh dandelion juice (FDJ, including DJ-L, DJ-M, DJ-H, DEJW and DDED-DEJW) significantly decreased the levels of serum ALT, AST, AKP, TNF-α and IL-1β compared with vehicle control group (P<0.05 or P<0.01). Additionally, compared with the vehicle control group, FDJ decreased the levels of hepatic MDA and restored GSH levels and SOD activity in livers (P<0.05 or P<0.01). FDJ inhibited the overexpression of pro-inflammatory factors including cyclooxygenase-2 and inducible nitric oxide synthase in the liver tissues (P<0.05 or P<0.01). Furthermore, Western blot analysis revealed that FDJ pretreatment inhibited activation of apoptotic signaling pathways via decreasing of Bax, and caspase-9 and JNK protein expression, and inhibited activation of JNK pathway (P<0.05 or P<0.01). Liver histopathological observation provided further evidence that FDJ pretreatment significantly inhibited APAP-induced hepatocyte necrosis, inflammatory cell infiltration and congestion. CONCLUSIONS FDJ pretreatment protects against APAP-induced hepatic injury by activating the Nrf-2/HO-1 pathway and inhibition of the intrinsic apoptosis pathway, and the effect of fresh dandelion extracts was superior to dried dandelion extracts in APAP hepatotoxicity model mice.
Collapse
Affiliation(s)
- Yao Zheng
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Lei Lei
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Shuai Liang
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Jiao Ai
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Xin Deng
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Yan-Qiu Li
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Tian-Pei Zhang
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Shi-Biao Pu
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Yong-Shen Ren
- School of Pharmaceutical Science, South-Central University for Nationalities, Wuhan, 430074, China.
| |
Collapse
|
35
|
Tenascin-C in fibrosis in multiple organs: Translational implications. Semin Cell Dev Biol 2022; 128:130-136. [PMID: 35400564 PMCID: PMC10119770 DOI: 10.1016/j.semcdb.2022.03.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/17/2022] [Accepted: 03/14/2022] [Indexed: 12/28/2022]
Abstract
Systemic sclerosis (SSc, scleroderma) is a complex disease with a pathogenic triad of autoimmunity, vasculopathy, and fibrosis involving the skin and multiple internal organs [1]. Because fibrosis accounts for as much as 45% of all deaths worldwide and appears to be increasing in prevalence [2], understanding its pathogenesis and progression is an urgent scientific challenge. Fibroblasts and myofibroblasts are the key effector cells executing physiologic tissue repair on one hand, and pathological fibrogenesis leading to chronic fibrosing conditions on the other. Recent studies identify innate immune signaling via toll-like receptors (TLRs) as a key driver of persistent fibrotic response in SSc. Repeated injury triggers the in-situ generation of "damage-associated molecular patterns" (DAMPs) or danger signals. Sensing of these danger signals by TLR4 on resident cells elicits potent stimulatory effects on fibrotic gene expression and myofibroblast differentiation triggering the self-limited tissue repair response to self-sustained pathological fibrosis characteristic of SSc. Our unbiased survey for DAMPs associated with SSc identified extracellular matrix glycoprotein tenascin-C as one of the most highly up-regulated ECM proteins in SSc skin and lung biopsies [3,4]. Furthermore, tenascin C is responsible for driving sustained fibroblasts activation, thereby progression of fibrosis [3]. This review summarizes recent studies examining the regulation and complex functional role of tenascin C, presenting tenascin-TLR4 axis in pathological fibrosis, and novel anti-fibrotic approaches targeting their signaling.
Collapse
|
36
|
The fibrogenic niche in kidney fibrosis: components and mechanisms. Nat Rev Nephrol 2022; 18:545-557. [PMID: 35788561 DOI: 10.1038/s41581-022-00590-z] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 02/08/2023]
Abstract
Kidney fibrosis, characterized by excessive deposition of extracellular matrix (ECM) that leads to tissue scarring, is the final common outcome of a wide variety of chronic kidney diseases. Rather than being distributed uniformly across the kidney parenchyma, renal fibrotic lesions initiate at certain focal sites in which the fibrogenic niche is formed in a spatially confined fashion. This niche provides a unique tissue microenvironment that is orchestrated by a specialized ECM network consisting of de novo-induced matricellular proteins. Other structural elements of the fibrogenic niche include kidney resident and infiltrated inflammatory cells, extracellular vesicles, soluble factors and metabolites. ECM proteins in the fibrogenic niche recruit soluble factors including WNTs and transforming growth factor-β from the extracellular milieu, creating a distinctive profibrotic microenvironment. Studies using decellularized ECM scaffolds from fibrotic kidneys show that the fibrogenic niche autonomously promotes fibroblast proliferation, tubular injury, macrophage activation and endothelial cell depletion, pathological features that recapitulate key events in the pathogenesis of chronic kidney disease. The concept of the fibrogenic niche represents a paradigm shift in understanding of the mechanism of kidney fibrosis that could lead to the development of non-invasive biomarkers and novel therapies not only for chronic kidney disease, but also for fibrotic diseases of other organs.
Collapse
|
37
|
Xiang Z, Liqing Y, Qingqing Y, Qiang H, Hongbo C. Retard or exacerbate: Role of long non-coding RNA growth arrest-specific 5 in the fibrosis. Cytokine Growth Factor Rev 2022; 67:89-104. [DOI: 10.1016/j.cytogfr.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022]
|
38
|
von Horn C, Zlatev H, Kaths M, Paul A, Minor T. Controlled Oxygenated Rewarming Compensates for Cold Storage-induced Dysfunction in Kidney Grafts. Transplantation 2022; 106:973-978. [PMID: 34172643 PMCID: PMC9038242 DOI: 10.1097/tp.0000000000003854] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/29/2021] [Accepted: 05/10/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Normothermic machine perfusion (NMP) provides a promising strategy for preservation and conditioning of marginal organ grafts. However, at present, high logistic effort limits normothermic renal perfusion to a short, postponed machine perfusion at site of the recipient transplant center. Thus, organ preservation during transportation still takes place under hypothermic conditions, leading to significantly reduced efficacy of NMP. Recently, it was shown that gentle and controlled warming up of cold stored kidneys compensates for hypothermic induced damage in comparison to end ischemic NMP. This study aims to compare controlled oxygenated rewarming (COR) with continuous upfront normothermic perfusion in a porcine model of transplantation. METHODS Following exposure to 30 min of warm ischemia, kidneys (n = 6/group) were removed and either cold stored for 8 h (cold storage [CS]), cold stored for 6 h with subsequent controlled rewarming up to 35 °C for 2 h (COR), or directly subjected to 8 h of continuous NMP. Kidney function was evaluated using a preclinical autotransplant model with follow-up for 7 d. RESULTS NMP and COR both improved renal function in comparison to CS and displayed similar serum creatinine and urea levels during follow-up. COR resulted in less tenascin C expression in the tissue compared with CS, indicating reduced proinflammatory upregulation in the graft by gentle rewarming. CONCLUSIONS COR seems to be a potential alternative in clinical application of NMP, thereby providing logistic ease and usability.
Collapse
Affiliation(s)
- Charlotte von Horn
- Department for Surgical Research, University Hospital Essen, Essen, Germany
| | - Hristo Zlatev
- Department for Surgical Research, University Hospital Essen, Essen, Germany
- Clinic for General, Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Moritz Kaths
- Clinic for General, Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Andreas Paul
- Clinic for General, Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Thomas Minor
- Department for Surgical Research, University Hospital Essen, Essen, Germany
| |
Collapse
|
39
|
Yan M, Liu S, Zhang M, Lai L, Xie Q, Hao CM. Mesangial Cell-Derived Tenascin-C Contributes to Mesangial Cell Proliferation and Matrix Protein Production in IgA Nephropathy. Nephrology (Carlton) 2022; 27:458-466. [PMID: 35213087 DOI: 10.1111/nep.14031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/30/2022]
Abstract
AIM Tenascin-C (TNC), a non-structural extracellular matrix glycoprotein, is transiently expressed during development or after injury, playing an important role in injury and repair process. The potential role of TNC in the pathogenesis of IgA nephropathy (IgAN) remains to be clarified. METHODS Immunohistochemistry staining for TNC was conducted on paraffin-embedded slices from renal biopsies of 107 IgAN patients, and correlation analysis was made between mesangial TNC expression and clinic-pathological parameters. In situ hybridization for TNC mRNA was further performed to figure out the cells that express TNC within glomeruli. In vitro experiments were also carried out on mouse mesangial cells (SV40 MES13) to elucidate the effect of TNC on mesangial cells. RESULTS TNC was expressed in the mesangial area of IgAN, as well as in fibrotic regions. Correlation analysis showed that higher mesangial TNC was associated with higher level of proteinuria, lower eGFR and more serious pathological lesions (MEST score). In situ hybridization revealed that abundant TNC mRNA expression was observed in the affected glomeruli of IgAN, but not in minimal change disease (MCD). Moreover, TNC mRNA co-localized with PDGFRβ mRNA, but not with PODXL mRNA, suggesting that TNC mRNA was expressed in the mesangial cells within glomeruli in IgAN. In vitro experiments showed that exogenous TNC promoted matrix protein production and mesangial cell proliferation, which was attenuated by an EGFR inhibitor. CONCLUSION Taken together, these results suggest that mesangial cell-derived TNC contributes to mesangial matrix expansion and mesangial cell proliferation, which is a potential therapeutic target in IgAN.
Collapse
Affiliation(s)
- Minhua Yan
- Division of Nephrology, Huashan Hospital, Fudan University, 12 Wulumuqi Road (middle), Shanghai, China
| | - Shaojun Liu
- Division of Nephrology, Huashan Hospital, Fudan University, 12 Wulumuqi Road (middle), Shanghai, China
| | - Min Zhang
- Division of Nephrology, Huashan Hospital, Fudan University, 12 Wulumuqi Road (middle), Shanghai, China
| | - Lingyun Lai
- Division of Nephrology, Huashan Hospital, Fudan University, 12 Wulumuqi Road (middle), Shanghai, China
| | - Qionghong Xie
- Division of Nephrology, Huashan Hospital, Fudan University, 12 Wulumuqi Road (middle), Shanghai, China
| | - Chuan-Ming Hao
- Division of Nephrology, Huashan Hospital, Fudan University, 12 Wulumuqi Road (middle), Shanghai, China
| |
Collapse
|
40
|
Moretti L, Stalfort J, Barker TH, Abebayehu D. The interplay of fibroblasts, the extracellular matrix, and inflammation in scar formation. J Biol Chem 2022; 298:101530. [PMID: 34953859 PMCID: PMC8784641 DOI: 10.1016/j.jbc.2021.101530] [Citation(s) in RCA: 146] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
Various forms of fibrosis, comprising tissue thickening and scarring, are involved in 40% of deaths across the world. Since the discovery of scarless functional healing in fetuses prior to a certain stage of development, scientists have attempted to replicate scarless wound healing in adults with little success. While the extracellular matrix (ECM), fibroblasts, and inflammatory mediators have been historically investigated as separate branches of biology, it has become increasingly necessary to consider them as parts of a complex and tightly regulated system that becomes dysregulated in fibrosis. With this new paradigm, revisiting fetal scarless wound healing provides a unique opportunity to better understand how this highly regulated system operates mechanistically. In the following review, we navigate the four stages of wound healing (hemostasis, inflammation, repair, and remodeling) against the backdrop of adult versus fetal wound healing, while also exploring the relationships between the ECM, effector cells, and signaling molecules. We conclude by singling out recent findings that offer promising leads to alter the dynamics between the ECM, fibroblasts, and inflammation to promote scarless healing. One factor that promises to be significant is fibroblast heterogeneity and how certain fibroblast subpopulations might be predisposed to scarless healing. Altogether, reconsidering fetal wound healing by examining the interplay of the various factors contributing to fibrosis provides new research directions that will hopefully help us better understand and address fibroproliferative diseases, such as idiopathic pulmonary fibrosis, liver cirrhosis, systemic sclerosis, progressive kidney disease, and cardiovascular fibrosis.
Collapse
Affiliation(s)
- Leandro Moretti
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Jack Stalfort
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Thomas Harrison Barker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Daniel Abebayehu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
41
|
Xu Y, Li N, Gao J, Shang D, Zhang M, Mao X, Chen R, Zheng J, Shan Y, Chen M, Xie Q, Hao CM. Elevated Serum Tenascin-C Predicts Mortality in Critically Ill Patients With Multiple Organ Dysfunction. Front Med (Lausanne) 2021; 8:759273. [PMID: 34901073 PMCID: PMC8661593 DOI: 10.3389/fmed.2021.759273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Multiple organ dysfunction is a complex and lethal clinical feature with heterogeneous causes and is usually characterized by tissue injury of multiple organs. Tenascin-C (TNC) is a matricellular protein that is rarely expressed in most of the adult tissues, but re-induced following injury. This study aimed to evaluate serum TNC in predicting mortality in critically ill patients with multiple organ dysfunction. Methods: Adult critically ill patients with at least two organs dysfunction and an increase of Sequential Organ Failure Assess (SOFA) score ≥ 2 points within 7 days were prospectively enrolled into two independent cohorts. The emergency (derivation) cohort was a consecutive series and the patients were from Emergency Department. The inpatient (validation) cohort was a convenience series and the patients were from medical wards. Their serum samples at the first 24 h after enrollment were collected and subjected to TNC measurement using ELISA. The association between serum TNC level and 28-day all-cause mortality was investigated, and then the predictive value of serum TNC was analyzed. Results: A total of 110 patients with a median age of 64 years (53, 73) were enrolled in the emergency cohort. Compared to the survivors, serum TNC in the non-survivors was significantly higher (467.7 vs. 197.5 ng/ml, p < 0.001). Multivariate logistic regression analysis revealed that the association between serum TNC and 28-day mortality was independent of sepsis or critical illness scores such as SOFA, Acute Physiology and Chronic Health Evaluation (APACHE II), and Simplified Acute Physiology Score (SAPS II), respectively (p < 0.001 for each). The area under receiver operating characteristic curve of serum TNC for predicting mortality was 0.803 (0.717-0.888) (p < 0.001), similar with SOFA 0.808 (0.725-0.891), APACHE II 0.762 (0.667-0.857), and SAPS II 0.779 (0.685-0.872). The optimal cut-off value of serum TNC was 298.2 ng/ml. Kaplan-Meier analysis showed that the survival of patients with serum TNC ≥ 300 ng/ml was significantly worse than that of patients with serum TNC < 300 ng/ml. This result was validated in the inpatient cohort. The sensitivity and specificity of serum TNC ≥ 300 ng/ml for predicting mortality were 74.3 and 74.7% in the emergency cohort, and 63.0 and 70.1% in the inpatient cohort, respectively. Conclusion: Serum TNC was associated with mortality in critically ill patients with multiple organ dysfunction, and would be used as a prognostic tool for predicting mortality in this population.
Collapse
Affiliation(s)
- Yunyu Xu
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Nanyang Li
- Department of Emergency, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiamin Gao
- Department of Emergency, Huashan Hospital, Fudan University, Shanghai, China
| | - Da Shang
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Zhang
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoyi Mao
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruiying Chen
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianming Zheng
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Shan
- Department of Emergency, Huashan Hospital, Fudan University, Shanghai, China
| | - Mingquan Chen
- Department of Emergency, Huashan Hospital, Fudan University, Shanghai, China
| | - Qionghong Xie
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuan-Ming Hao
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Fu H, Gui Y, Liu S, Wang Y, Bastacky SI, Qiao Y, Zhang R, Bonin C, Hargis G, Yu Y, Kreutzer DL, Biswas PS, Zhou Y, Wang Y, Tian XJ, Liu Y, Zhou D. The hepatocyte growth factor/c-met pathway is a key determinant of the fibrotic kidney local microenvironment. iScience 2021; 24:103112. [PMID: 34622165 PMCID: PMC8479790 DOI: 10.1016/j.isci.2021.103112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/20/2021] [Accepted: 09/08/2021] [Indexed: 11/25/2022] Open
Abstract
The kidney local microenvironment (KLM) plays a critical role in the pathogenesis of kidney fibrosis. However, the composition and regulation of a fibrotic KLM remain unclear. Through a multidisciplinary approach, we investigated the roles of the hepatocyte growth factor/c-met signaling pathway in regulating KLM formation in various chronic kidney disease (CKD) models. We performed a retrospective analysis of single-cell RNA sequencing data and determined that tubular epithelial cells and macrophages are two major cell populations in a fibrotic kidney. We then created a mathematical model that predicted loss of c-met in tubular cells would cause greater responses to injury than loss of c-met in macrophages. By generating c-met conditional knockout mice, we validated that loss of c-met influences epithelial plasticity, myofibroblast activation, and extracellular matrix synthesis/degradation, which ultimately determined the characteristics of the fibrotic KLM. Our findings open the possibility of designing effective therapeutic strategies to retard CKD.
Collapse
Affiliation(s)
- Haiyan Fu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuan Gui
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Yuanyuan Wang
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Sheldon Ira Bastacky
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Yi Qiao
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Rong Zhang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Christopher Bonin
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Geneva Hargis
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Yanbao Yu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Donald L. Kreutzer
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Partha Sarathi Biswas
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Yanjiao Zhou
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Yanlin Wang
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Xiao-Jun Tian
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Youhua Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Dong Zhou
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| |
Collapse
|
43
|
Tonti OR, Larson H, Lipp SN, Luetkemeyer CM, Makam M, Vargas D, Wilcox SM, Calve S. Tissue-specific parameters for the design of ECM-mimetic biomaterials. Acta Biomater 2021; 132:83-102. [PMID: 33878474 PMCID: PMC8434955 DOI: 10.1016/j.actbio.2021.04.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/18/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023]
Abstract
The extracellular matrix (ECM) is a complex network of biomolecules that mechanically and biochemically directs cell behavior and is crucial for maintaining tissue function and health. The heterogeneous organization and composition of the ECM varies within and between tissue types, directing mechanics, aiding in cell-cell communication, and facilitating tissue assembly and reassembly during development, injury and disease. As technologies like 3D printing rapidly advance, researchers are better able to recapitulate in vivo tissue properties in vitro; however, tissue-specific variations in ECM composition and organization are not given enough consideration. This is in part due to a lack of information regarding how the ECM of many tissues varies in both homeostatic and diseased states. To address this gap, we describe the components and organization of the ECM, and provide examples for different tissues at various states of disease. While many aspects of ECM biology remain unknown, our goal is to highlight the complexity of various tissues and inspire engineers to incorporate unique components of the native ECM into in vitro platform design and fabrication. Ultimately, we anticipate that the use of biomaterials that incorporate key tissue-specific ECM will lead to in vitro models that better emulate human pathologies. STATEMENT OF SIGNIFICANCE: Biomaterial development primarily emphasizes the engineering of new materials and therapies at the expense of identifying key parameters of the tissue that is being emulated. This can be partially attributed to the difficulty in defining the 3D composition, organization, and mechanics of the ECM within different tissues and how these material properties vary as a function of homeostasis and disease. In this review, we highlight a range of tissues throughout the body and describe how ECM content, cell diversity, and mechanical properties change in diseased tissues and influence cellular behavior. Accurately mimicking the tissue of interest in vitro by using ECM specific to the appropriate state of homeostasis or pathology in vivo will yield results more translatable to humans.
Collapse
Affiliation(s)
- Olivia R Tonti
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Hannah Larson
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Sarah N Lipp
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Callan M Luetkemeyer
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Megan Makam
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Diego Vargas
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Sean M Wilcox
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Sarah Calve
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States.
| |
Collapse
|
44
|
Yan H, Xu J, Xu Z, Yang B, Luo P, He Q. Defining therapeutic targets for renal fibrosis: Exploiting the biology of pathogenesis. Biomed Pharmacother 2021; 143:112115. [PMID: 34488081 DOI: 10.1016/j.biopha.2021.112115] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 01/14/2023] Open
Abstract
Renal fibrosis is a failed wound-healing process of the kidney tissue after chronic, sustained injury, which is a common pathway and pathological marker of virtually every type of chronic kidney disease (CKD), regardless of cause. However, there is a lack of effective treatment specifically targeting against renal fibrosis per se to date. The main pathological feature of renal fibrosis is the massive activation and proliferation of renal fibroblasts and the excessive synthesis and secretion of extracellular matrix (ECM) deposited in the renal interstitium, leading to structural damage, impairment of renal function, and eventually end-stage renal disease. In this review, we summarize recent advancements regarding the participation and interaction of many types of kidney residents and infiltrated cells during renal fibrosis, attempt to comprehensively discuss the mechanism of renal fibrosis from the cellular level and conclude by highlighting novel therapeutic targets and approaches for development of new treatments for patients with renal fibrosis.
Collapse
Affiliation(s)
- Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiangxin Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
45
|
Boer CG, Hatzikotoulas K, Southam L, Stefánsdóttir L, Zhang Y, Coutinho de Almeida R, Wu TT, Zheng J, Hartley A, Teder-Laving M, Skogholt AH, Terao C, Zengini E, Alexiadis G, Barysenka A, Bjornsdottir G, Gabrielsen ME, Gilly A, Ingvarsson T, Johnsen MB, Jonsson H, Kloppenburg M, Luetge A, Lund SH, Mägi R, Mangino M, Nelissen RRGHH, Shivakumar M, Steinberg J, Takuwa H, Thomas LF, Tuerlings M, Babis GC, Cheung JPY, Kang JH, Kraft P, Lietman SA, Samartzis D, Slagboom PE, Stefansson K, Thorsteinsdottir U, Tobias JH, Uitterlinden AG, Winsvold B, Zwart JA, Davey Smith G, Sham PC, Thorleifsson G, Gaunt TR, Morris AP, Valdes AM, Tsezou A, Cheah KSE, Ikegawa S, Hveem K, Esko T, Wilkinson JM, Meulenbelt I, Lee MTM, van Meurs JBJ, Styrkársdóttir U, Zeggini E. Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations. Cell 2021; 184:4784-4818.e17. [PMID: 34450027 PMCID: PMC8459317 DOI: 10.1016/j.cell.2021.07.038] [Citation(s) in RCA: 187] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/26/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022]
Abstract
Osteoarthritis affects over 300 million people worldwide. Here, we conduct a genome-wide association study meta-analysis across 826,690 individuals (177,517 with osteoarthritis) and identify 100 independently associated risk variants across 11 osteoarthritis phenotypes, 52 of which have not been associated with the disease before. We report thumb and spine osteoarthritis risk variants and identify differences in genetic effects between weight-bearing and non-weight-bearing joints. We identify sex-specific and early age-at-onset osteoarthritis risk loci. We integrate functional genomics data from primary patient tissues (including articular cartilage, subchondral bone, and osteophytic cartilage) and identify high-confidence effector genes. We provide evidence for genetic correlation with phenotypes related to pain, the main disease symptom, and identify likely causal genes linked to neuronal processes. Our results provide insights into key molecular players in disease processes and highlight attractive drug targets to accelerate translation.
Collapse
Affiliation(s)
- Cindy G Boer
- Department of Internal Medicine, Erasmus MC, Medical Center, 3015CN Rotterdam, the Netherlands
| | - Konstantinos Hatzikotoulas
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Lorraine Southam
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | | | - Yanfei Zhang
- Genomic Medicine Institute, Geisinger Health System, Danville, PA 17822, USA
| | - Rodrigo Coutinho de Almeida
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Postzone S05-P Leiden University Medical Center, 2333ZC Leiden, the Netherlands
| | - Tian T Wu
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jie Zheng
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - April Hartley
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; Musculoskeletal Research Unit, Translation Health Sciences, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol BS10 5NB, UK
| | - Maris Teder-Laving
- Estonian Genome Center, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Anne Heidi Skogholt
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Eleni Zengini
- 4(th) Psychiatric Department, Dromokaiteio Psychiatric Hospital, 12461 Athens, Greece
| | - George Alexiadis
- 1(st) Department of Orthopaedics, KAT General Hospital, 14561 Athens, Greece
| | - Andrei Barysenka
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | | | - Maiken E Gabrielsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Arthur Gilly
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Thorvaldur Ingvarsson
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland; Department of Orthopedic Surgery, Akureyri Hospital, 600 Akureyri, Iceland
| | - Marianne B Johnsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0316 Oslo, Norway; Research and Communication Unit for Musculoskeletal Health (FORMI), Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0424 Oslo, Norway
| | - Helgi Jonsson
- Department of Medicine, Landspitali The National University Hospital of Iceland, 108 Reykjavik, Iceland; Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Margreet Kloppenburg
- Departments of Rheumatology and Clinical Epidemiology, Leiden University Medical Center, 9600, 23OORC Leiden, the Netherlands
| | - Almut Luetge
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | | | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, Kings College London, London SE1 7EH, UK
| | - Rob R G H H Nelissen
- Department of Orthopaedics, Leiden University Medical Center, 9600, 23OORC Leiden, the Netherlands
| | - Manu Shivakumar
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julia Steinberg
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW 1340, Australia
| | - Hiroshi Takuwa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo 108-8639, Japan; Department of Orthopedic Surgery, Shimane University, Shimane 693-8501, Japan
| | - Laurent F Thomas
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; BioCore-Bioinformatics Core Facility, Norwegian University of Science and Technology, 7491 Trondheim, Norway; Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
| | - Margo Tuerlings
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Postzone S05-P Leiden University Medical Center, 2333ZC Leiden, the Netherlands
| | - George C Babis
- 2(nd) Department of Orthopaedics, National and Kapodistrian University of Athens, Medical School, Nea Ionia General Hospital Konstantopouleio, 14233 Athens, Greece
| | - Jason Pui Yin Cheung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jae Hee Kang
- Department of Medicine, Brigham and Women's Hospital, 181 Longwood Ave, Boston, MA 02115, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | - Steven A Lietman
- Musculoskeletal Institute, Geisinger Health System, Danville, PA 17822, USA
| | - Dino Samartzis
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, China; Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - P Eline Slagboom
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Postzone S05-P Leiden University Medical Center, 2333ZC Leiden, the Netherlands
| | - Kari Stefansson
- deCODE Genetics/Amgen Inc., 102 Reykjavik, Iceland; Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen Inc., 102 Reykjavik, Iceland; Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Jonathan H Tobias
- Musculoskeletal Research Unit, Translation Health Sciences, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol BS10 5NB, UK; MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus MC, Medical Center, 3015CN Rotterdam, the Netherlands
| | - Bendik Winsvold
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway; Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway; Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
| | - John-Anker Zwart
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway; Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - George Davey Smith
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Pak Chung Sham
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | - Tom R Gaunt
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, University of Manchester, Manchester M13 9LJ, UK
| | - Ana M Valdes
- Faculty of Medicine and Health Sciences, School of Medicine, University of Nottingham, Nottingham, Nottinghamshire NG5 1PB, UK
| | - Aspasia Tsezou
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, Larissa 411 10, Greece
| | - Kathryn S E Cheah
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo 108-8639, Japan
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway; HUNT Research Center, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7600 Levanger, Norway
| | - Tõnu Esko
- Estonian Genome Center, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - J Mark Wilkinson
- Department of Oncology and Metabolism and Healthy Lifespan Institute, University of Sheffield, Sheffield S10 2RX, UK
| | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Postzone S05-P Leiden University Medical Center, 2333ZC Leiden, the Netherlands
| | - Ming Ta Michael Lee
- Genomic Medicine Institute, Geisinger Health System, Danville, PA 17822, USA; Institute of Biomedical Sciences, Academia Sinica, 115 Taipei, Taiwan
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus MC, Medical Center, 3015CN Rotterdam, the Netherlands
| | | | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; TUM School of Medicine, Technical University of Munich and Klinikum Rechts der Isar, 81675 Munich, Germany.
| |
Collapse
|
46
|
Sun K, Xie Q, Hao CM. Mechanisms of Scarring in Focal Segmental Glomerulosclerosis. KIDNEY DISEASES (BASEL, SWITZERLAND) 2021; 7:350-358. [PMID: 34604342 PMCID: PMC8443927 DOI: 10.1159/000517108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/27/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Focal segmental glomerulosclerosis (FSGS) is a histologic pattern characterized by focal glomerular scarring, which often progresses to systemic and diffuse glomerulosclerosis. Previous studies have emphasized that the initiation of classic FSGS occurs in podocytes. The dysfunction and loss of podocytes have been associated with the development of proteinuria and the progression of various diseases. In addition, primary, secondary, and genetic FSGS are caused by different mechanisms of podocyte injury. SUMMARY The potential sources and mechanism of podocyte supplementation are the focus of our current research. Increasing attention has been paid to the role played by parietal epithelial cells (PECs) during the progression of FSGS. PECs are not only the primary influencing factors in glomerulosclerosis lesions but also have repair abilities, which remain a focus of debate. Notably, other resident glomerular cells also play significant roles in the progression of this disease. KEY MESSAGE In this review, we focus on the mechanism of scarring in FSGS and discuss current and potential therapeutic strategies.
Collapse
Affiliation(s)
- Ke Sun
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qionghong Xie
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuan-Ming Hao
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
- Nephrology Division, Vanderbilt University Medical Center School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
47
|
Tan N, Sun CX, Zhu HJ, Li DY, Huang SG, He SD. Baicalin attenuates adriamycin-induced nephrotic syndrome by regulating fibrosis procession and inflammatory reaction. Genes Genomics 2021; 43:1011-1021. [PMID: 34129194 DOI: 10.1007/s13258-021-01107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/19/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Baicalin has anti-inflammatory, antibacterial, blood platelet aggregation-inhibiting, free oxygen radical-clearing, and endotoxin-decreasing properties. However, its molecular mechanism involved in the treatment of Adriamycin-induced nephrotic syndrome (NS) is still unclear. OBJECTIVE This study aimed to explore the effects of baicalin on Adriamycin-induced nephrotic syndrome (NS) and to characterize the genes involved in this progression. METHODS We established Adriamycin-induced NS model in 32 rats and used six rats in Sham group. Urinary total protein content and creatinine serum were assessed as physiological indicators. H&E staining was used to observe the pathological changes. We determined gene expression profiles using transcriptome sequencing in the rat kidney tissues from Sham, Adriamycin, and Adriamycin + baicalin groups. KEGG was carried out to analyze the enriched pathways of differentially expressed genes among these groups. RESULTS Baicalin treatment relieved renal injury in NS rats. Expression of 363 genes was significantly different between the Adriamycin and Adriamycin + baicalin M groups. Most of the differentially expressed genes were enriched in pathways involved in epithelial-mesenchymal transition (EMT), fibrosis, apoptosis, and inflammation. CONCLUSIONS Overall, these data suggest that Adriamycin-induced NS can be attenuated by baicalin through the suppression of fibrosis-related genes and inflammatory reactions. Baicalin is a potential drug candidate for the treatment of NS, and the identified genes represent potential therapeutic targets.
Collapse
Affiliation(s)
- Ning Tan
- Traditional Chinese Medicine Department of Rheumatism, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), 89 Taoyuan Road, Nanshan District, Shenzhen, 518052, Guangdong, China
| | - Chen-Xia Sun
- Traditional Chinese Medicine Department of Rheumatism, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), 89 Taoyuan Road, Nanshan District, Shenzhen, 518052, Guangdong, China
| | - Hui-Jun Zhu
- Traditional Chinese Medicine Department of Rheumatism, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), 89 Taoyuan Road, Nanshan District, Shenzhen, 518052, Guangdong, China
| | - De-Yu Li
- Traditional Chinese Medicine Department of Rheumatism, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), 89 Taoyuan Road, Nanshan District, Shenzhen, 518052, Guangdong, China
| | - Sheng-Guang Huang
- Traditional Chinese Medicine Department of Rheumatism, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), 89 Taoyuan Road, Nanshan District, Shenzhen, 518052, Guangdong, China
| | - Shou-Di He
- Traditional Chinese Medicine Department of Rheumatism, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), 89 Taoyuan Road, Nanshan District, Shenzhen, 518052, Guangdong, China.
| |
Collapse
|
48
|
Mafuika SN, Naicker T. The role of Tenascin-C in HIV associated pre-eclampsia. Pregnancy Hypertens 2021; 25:156-160. [PMID: 34146831 DOI: 10.1016/j.preghy.2021.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Pre-eclampsia (PE) accounts for 14.8% of maternal deaths in South Africa. Tenascin C (TN-C) is an anti-inflammatory cytokine expressed in the extracellular matrix and may be dysregulated in the hyperinflammatory PE microenvironment. MATERIAL AND METHODS This study examined serum TN-C in normotensive pregnant (n = 36) and pre-eclamptic (n = 36) HIV positive and negative women using an immunoassay. RESULTS TN-C was significantly upregulated in PE vs normotensive pregnant women (p = 0.0075) and HIV-positive vs negative pregnant women (p = 0.0009). TN-C levels across all groups was statistically different (p < 0.0001). CONCLUSION This study demonstrates an elevation of TN-C in HIV-associated PE. The potential benefit of TN-C as a biomarker to detect PE development requires investigation.
Collapse
Affiliation(s)
- Seke Nzau Mafuika
- Discipline of Optics and Imaging, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Thajasvarie Naicker
- Discipline of Optics and Imaging, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
49
|
Wang J, Lin S, Brown JM, van Wagoner D, Fiocchi C, Rieder F. Novel mechanisms and clinical trial endpoints in intestinal fibrosis. Immunol Rev 2021; 302:211-227. [PMID: 33993489 DOI: 10.1111/imr.12974] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022]
Abstract
The incidence of inflammatory bowel diseases (IBD) worldwide has resulted in a global public health challenge. Intestinal fibrosis leading to stricture formation and bowel obstruction is a frequent complication in Crohn's disease (CD), and the lack of anti-fibrotic therapies makes elucidation of fibrosis mechanisms a priority. Progress has shown that mesenchymal cells, cytokines, microbial products, and mesenteric adipocytes are jointly implicated in the pathogenesis of intestinal fibrosis. This recent information puts prevention or reversal of intestinal strictures within reach through innovative therapies validated by reliable clinical trial endpoints. Here, we review the role of immune and non-immune components of the pathogenesis of intestinal fibrosis, including new cell clusters, cytokine networks, host-microbiome interactions, creeping fat, and their translation for endpoint development in anti-fibrotic clinical trials.
Collapse
Affiliation(s)
- Jie Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, China.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Sinan Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jonathan Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - David van Wagoner
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Claudio Fiocchi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
50
|
Takeo M, Asakawa K, Toyoshima KE, Ogawa M, Tong J, Irié T, Yanagisawa M, Sato A, Tsuji T. Expansion and characterization of epithelial stem cells with potential for cyclical hair regeneration. Sci Rep 2021; 11:1173. [PMID: 33568688 PMCID: PMC7876088 DOI: 10.1038/s41598-020-80624-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022] Open
Abstract
In mammals, organ induction occurs only during embryonic development except for hair follicles (HFs). However, HF-resident epithelial stem cells (HFSCs), which are responsible for repetitive HF regeneration, are not fully characterized. Here, we establish in vitro culture systems that are capable of controlling the ability of HFSCs to regenerate HFs. Based on a method that precisely controlled the number of HFs for regeneration, functional analysis revealed that CD34/CD49f/integrin β5 (Itgβ5)-triple-positive (CD34+/CD49f+/Itgβ5+) cells have multipotency and functional significance for continual hair regeneration. In native HFs, these cells reside in the uppermost area of the bulge region, which is surrounded by tenascin in mice and humans. This study unveils the subpopulation of HFSCs responsible for long-term hair cycling of HFs regenerated from bioengineered HF germ, suggesting the presence of functional heterogeneity among bulge HFSCs and the utility of our culture system to achieve HF regenerative therapy.
Collapse
Affiliation(s)
- Makoto Takeo
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology (CDB) and RIKEN Center for Biosystems Dynamics Research (BDR), Hyogo, 650-0047, Japan
| | - Kyosuke Asakawa
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology (CDB) and RIKEN Center for Biosystems Dynamics Research (BDR), Hyogo, 650-0047, Japan
| | - Koh-Ei Toyoshima
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology (CDB) and RIKEN Center for Biosystems Dynamics Research (BDR), Hyogo, 650-0047, Japan.,Organ Technologies Inc., Tokyo, 101-0048, Japan
| | - Miho Ogawa
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology (CDB) and RIKEN Center for Biosystems Dynamics Research (BDR), Hyogo, 650-0047, Japan.,Organ Technologies Inc., Tokyo, 101-0048, Japan
| | - JingJing Tong
- Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, Hyogo, 669-1337, Japan
| | - Tarou Irié
- Division of Anatomical and Cellular Pathology, Department of Pathology, Iwate Medical University, Iwate, 028-3694, Japan
| | - Masayuki Yanagisawa
- Department of Plastic and Aesthetic Surgery, School of Medicine, Kitasato University, Kanagawa, 252-0375, Japan
| | - Akio Sato
- Department of Plastic and Reconstructive Surgery, School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - Takashi Tsuji
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology (CDB) and RIKEN Center for Biosystems Dynamics Research (BDR), Hyogo, 650-0047, Japan. .,Organ Technologies Inc., Tokyo, 101-0048, Japan. .,Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, Hyogo, 669-1337, Japan. .,Department of Plastic and Aesthetic Surgery, School of Medicine, Kitasato University, Kanagawa, 252-0375, Japan. .,Department of Plastic and Reconstructive Surgery, School of Medicine, Keio University, Tokyo, 160-8582, Japan.
| |
Collapse
|