1
|
Terzo C, Gembillo G, Cernaro V, Longhitano E, Calabrese V, Casuscelli C, Peritore L, Santoro D. Investigational new drugs for the treatment of chronic renal failure: an overview of the literature. Expert Opin Investig Drugs 2024; 33:319-334. [PMID: 38429874 DOI: 10.1080/13543784.2024.2326624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/29/2024] [Indexed: 03/03/2024]
Abstract
INTRODUCTION Chronic kidney disease (CKD) is widespread throughout the world, with a high social and health impact. It is considered a 'silent killer' for its sudden onset without symptoms in the early stages of the disease. The main goal of nephrologists is to slow the progression of kidney disease and treat the associated symptoms with a range of new medications. AREAS COVERED The aim of this systematic review is to analyze the new investigational drugs for the treatment of chronic renal failure. Data were obtained from the available scientific literature and from the ClinicalTrials.gov website. EXPERT OPINION Among the drugs currently being researched, SGLT2 inhibitors appear to be the most promising drugs for the treatment of CKD, has they have slower progression of CKD and protection of cardiorenal function. An important role in the future of CKD treatment is played by autologous cell-therapy, which appears to be a new frontier in the treatment of CKD. Other therapeutic strategies are currently being investigated and have been shown to slow the progression of CKD. However, further studies are needed to determine whether these approaches may offer benefits in slowing the progression of CKD in the near future.
Collapse
Affiliation(s)
- Chiara Terzo
- Department of Clinical and Experimental Medicine, University of Messina, AOU G. Martino PAD B, Messina, Italy
| | - Guido Gembillo
- Department of Clinical and Experimental Medicine, University of Messina, AOU G. Martino PAD B, Messina, Italy
| | - Valeria Cernaro
- Department of Clinical and Experimental Medicine, University of Messina, AOU G. Martino PAD B, Messina, Italy
| | - Elisa Longhitano
- Department of Clinical and Experimental Medicine, University of Messina, AOU G. Martino PAD B, Messina, Italy
| | - Vincenzo Calabrese
- Department of Clinical and Experimental Medicine, University of Messina, AOU G. Martino PAD B, Messina, Italy
| | - Chiara Casuscelli
- Department of Clinical and Experimental Medicine, University of Messina, AOU G. Martino PAD B, Messina, Italy
| | - Luigi Peritore
- Department of Clinical and Experimental Medicine, University of Messina, AOU G. Martino PAD B, Messina, Italy
| | - Domenico Santoro
- Department of Clinical and Experimental Medicine, University of Messina, AOU G. Martino PAD B, Messina, Italy
| |
Collapse
|
2
|
Xu C, Liu X, Zhai X, Wang G, Qin W, Cheng Z, Chen Z. CDDO-Me ameliorates podocyte injury through anti-oxidative stress and regulation of actin cytoskeleton in adriamycin nephropathy. Biomed Pharmacother 2023; 167:115617. [PMID: 37801905 DOI: 10.1016/j.biopha.2023.115617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023] Open
Abstract
Podocyte injury is the common initiating event in focal segmental glomerulosclerosis (FSGS). Oxidative stress and inflammation mediate podocyte injury in FSGS. NRF2 pathway regulates the constitutive and inducible transcription of various genes that encode antioxidant proteins and anti-inflammatory proteins and have pivotal roles in the defense against cellular oxidative stress. In this study, we used adriamycin-induced nephropathy (ADR) in mice as a model of FSGS to confirm that CDDO-Me treatment ameliorated adriamycin-induced kidney damage by improving renal function and kidney histology. CDDO-Me inhibited the level of oxidative stress, inflammation, and apoptosis in adriamycin-induced podocyte injury by activating NRF2 pathway in vivo and in vitro. Furthermore, CDDO-Me stabled the cytoskeleton by regulating NRF2/srGAP2a pathway. Together, these findings show that by activating NRF2 pathway, CDDO-Me could be a therapeutic strategy to prevent the adverse effects of adriamycin-induced podocyte injury.
Collapse
Affiliation(s)
- Cheng Xu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China; Department of Nephrology, The Second Hospital of Jilin University, Nanguan District, Changchun 130041, Jilin, China
| | - Xing Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xiuwen Zhai
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Gang Wang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Weisong Qin
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zheng Cheng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.
| | - Zhaohong Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.
| |
Collapse
|
3
|
Kim B, Kim R, Kim HJ, Kim Y, Park SJ, Lee EH, Kim J, Kim J, Choi JW, Park JH, Park KD. Optimization and evaluation of pyridinyl vinyl sulfones as Nrf2 activator for the antioxidant and anti-inflammatory effects. Eur J Med Chem 2023; 256:115433. [PMID: 37187090 DOI: 10.1016/j.ejmech.2023.115433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023]
Abstract
Many studies have reported that chalcone-based compounds exhibit biological activities such as anticancer, antioxidant, anti-inflammatory and neuroprotective effects. Among the published chalcone derivatives, (E)-1-(3-methoxypyridin-2-yl)-3-(2-(trifluoromethyl)phenyl)prop-2-en-1-one (VEDA-1209), which is currently undergoing preclinical study, was selected as a starting compound for the development of new nuclear factor erythroid 2-related factor 2 (Nrf2) activators. Based on our previous knowledge, we attempted to redesign and synthesize VEDA-1209 derivatives by introducing the pyridine ring and sulfone moiety to ameliorate its Nrf2 efficacy and drug-like properties. Among the synthesized compounds, (E)-3-chloro-2-(2-((3-methoxypyridin-2-yl)sulfonyl)vinyl) pyridine (10e) was found to have approximately 16-folds higher Nrf2 activating effects than VEDA-1209 (10e: EC50 = 37.9 nM vs VEDA-1209: EC50 = 625 nM) in functional cell-based assay. In addition, 10e effectively improved drug-like properties such as CYP inhibition probability and metabolic stability. Finally, 10e demonstrated excellent antioxidant and anti-inflammatory effects in BV-2 microglial cells and significantly restored spatial memory deficits in lipopolysaccharide (LPS)-induced neuroinflammatory mouse models.
Collapse
Affiliation(s)
- Byungeun Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Rium Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Hyeon Jeong Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yoowon Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sun Jun Park
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Cureverse Co., Ltd., KIST, 1st Floor, H2 Building, Seoul, 02792, Republic of Korea
| | - Elijah Hwejin Lee
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Jushin Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jaehwan Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Ji Won Choi
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Cureverse Co., Ltd., KIST, 1st Floor, H2 Building, Seoul, 02792, Republic of Korea.
| | - Jong-Hyun Park
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Ki Duk Park
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
4
|
Gregorio VD, Caparali B, Shojaei A, Ricardo S, Barua M. Alport Syndrome: Clinical Spectrum and Therapeutic Advances. Kidney Med 2023; 5:100631. [PMID: 37122389 PMCID: PMC10131117 DOI: 10.1016/j.xkme.2023.100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Alport syndrome is a hereditary disorder characterized by kidney disease, ocular abnormalities, and sensorineural hearing loss. Work in understanding the cause of Alport syndrome and the molecular composition of the glomerular basement membrane ultimately led to the identification of COL4A3, COL4A4 (both on chromosome 2q36), and COL4A5 (chromosome Xq22), encoding the α3, α4, and α5 chains of type IV collagen, as the responsible genes. Subsequent studies suggested that autosomal recessive Alport syndrome and males with X-linked Alport syndrome have more severe disease, whereas autosomal dominant Alport syndrome and females with X-linked Alport syndrome have more variability. Variant type is also influential-protein-truncating variants in autosomal recessive Alport syndrome or males with X-linked Alport syndrome often present with severe symptoms, characterized by kidney failure, extrarenal manifestations, and lack of the α3-α4-α5(IV) network. By contrast, mild-moderate forms from missense variants display α3-α4-α5(IV) in the glomerular basement membrane and are associated with protracted kidney involvement without extrarenal manifestations. Regardless of type, therapeutic intervention for kidney involvement is focused on early initiation of angiotensin-converting enzyme inhibitors. There are several therapies under investigation including sodium/glucose cotransporter 2 inhibitors, aminoglycoside analogs, endothelin type A antagonists, lipid-modifying drugs, and hydroxychloroquine, although targeting the underlying defect through gene therapy remains in preclinical stages.
Collapse
|
5
|
Katz LS, Brill G, Zhang P, Kumar A, Baumel-Alterzon S, Honig LB, Gómez-Banoy N, Karakose E, Tanase M, Doridot L, Alvarsson A, Davenport B, Wang P, Lambertini L, Stanley SA, Homann D, Stewart AF, Lo JC, Herman MA, Garcia-Ocaña A, Scott DK. Maladaptive positive feedback production of ChREBPβ underlies glucotoxic β-cell failure. Nat Commun 2022; 13:4423. [PMID: 35908073 PMCID: PMC9339008 DOI: 10.1038/s41467-022-32162-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/18/2022] [Indexed: 01/05/2023] Open
Abstract
Preservation and expansion of β-cell mass is a therapeutic goal for diabetes. Here we show that the hyperactive isoform of carbohydrate response-element binding protein (ChREBPβ) is a nuclear effector of hyperglycemic stress occurring in β-cells in response to prolonged glucose exposure, high-fat diet, and diabetes. We show that transient positive feedback induction of ChREBPβ is necessary for adaptive β-cell expansion in response to metabolic challenges. Conversely, chronic excessive β-cell-specific overexpression of ChREBPβ results in loss of β-cell identity, apoptosis, loss of β-cell mass, and diabetes. Furthermore, β-cell "glucolipotoxicity" can be prevented by deletion of ChREBPβ. Moreover, ChREBPβ-mediated cell death is mitigated by overexpression of the alternate CHREBP gene product, ChREBPα, or by activation of the antioxidant Nrf2 pathway in rodent and human β-cells. We conclude that ChREBPβ, whether adaptive or maladaptive, is an important determinant of β-cell fate and a potential target for the preservation of β-cell mass in diabetes.
Collapse
Affiliation(s)
- Liora S Katz
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Gabriel Brill
- Pharmacologic Sciences Department, Stony Brook University, Stony Brook, NY, USA
| | - Pili Zhang
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Anil Kumar
- Metabolic Phenotyping Core, University of Utah, 15N 2030 E, 585, Radiobiology building, Room 151, Salt Lake City, UT, 84112, USA
| | - Sharon Baumel-Alterzon
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Lee B Honig
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Nicolás Gómez-Banoy
- Weill Center for Metabolic Health and Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Esra Karakose
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Marius Tanase
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Ludivine Doridot
- Institut Cochin, Université de Paris, INSERM, CNRS, F-75014, Paris, France
| | - Alexandra Alvarsson
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
- Alpenglow Biosciences, Inc., 98103, Seattle, WA, USA
| | - Bennett Davenport
- 12800 East 19th Ave, Anschutz Medical Campus, Room P18-9403, University of Colorado, Aurora, CO, 80045, USA
| | - Peng Wang
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Luca Lambertini
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Sarah A Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Dirk Homann
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Andrew F Stewart
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - James C Lo
- Weill Center for Metabolic Health and Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Mark A Herman
- Division of Endocrinology and Metabolism and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
- Section of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, One Baylor Plaza, MS: 185, R614, 77030, Houston, TX, USA
| | - Adolfo Garcia-Ocaña
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Donald K Scott
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA.
| |
Collapse
|
6
|
Baumel-Alterzon S, Katz LS, Brill G, Jean-Pierre C, Li Y, Tse I, Biswal S, Garcia-Ocaña A, Scott DK. Nrf2 Regulates β-Cell Mass by Suppressing β-Cell Death and Promoting β-Cell Proliferation. Diabetes 2022; 71:989-1011. [PMID: 35192689 PMCID: PMC9044139 DOI: 10.2337/db21-0581] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/15/2022] [Indexed: 01/05/2023]
Abstract
Finding therapies that can protect and expand functional β-cell mass is a major goal of diabetes research. Here, we generated β-cell-specific conditional knockout and gain-of-function mouse models and used human islet transplant experiments to examine how manipulating Nrf2 levels affects β-cell survival, proliferation, and mass. Depletion of Nrf2 in β-cells results in decreased glucose-stimulated β-cell proliferation ex vivo and decreased adaptive β-cell proliferation and β-cell mass expansion after a high-fat diet in vivo. Nrf2 protects β-cells from apoptosis after a high-fat diet. Nrf2 loss of function decreases Pdx1 abundance and insulin content. Activating Nrf2 in a β-cell-specific manner increases β-cell proliferation and mass and improves glucose tolerance. Human islets transplanted under the kidney capsule of immunocompromised mice and treated systemically with bardoxolone methyl, an Nrf2 activator, display increased β-cell proliferation. Thus, by managing reactive oxygen species levels, Nrf2 regulates β-cell mass and is an exciting therapeutic target for expanding and protecting β-cell mass in diabetes.
Collapse
Affiliation(s)
- Sharon Baumel-Alterzon
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Liora S. Katz
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Gabriel Brill
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Clairete Jean-Pierre
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yansui Li
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Isabelle Tse
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Shyam Biswal
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD
| | - Adolfo Garcia-Ocaña
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Donald K. Scott
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
7
|
Wang D, Wang C, Hao X, Carter G, Carter R, Welch WJ, Wilcox CS. Activation of Nrf2 in Mice Causes Early Microvascular Cyclooxygenase-Dependent Oxidative Stress and Enhanced Contractility. Antioxidants (Basel) 2022; 11:antiox11050845. [PMID: 35624708 PMCID: PMC9137799 DOI: 10.3390/antiox11050845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 12/05/2022] Open
Abstract
Nuclear factor erythroid factor E2-related factor 2 (Nrf2) transcribes antioxidant genes that reduce the blood pressure (BP), yet its activation with tert-butylhydroquinone (tBHQ) in mice infused with angiotensin II (Ang II) increased mean arterial pressure (MAP) over the first 4 days of the infusion. Since tBHQ enhanced cyclooxygenase (COX) 2 expression in vascular smooth muscle cells (VSMCs), we tested the hypothesis that tBHQ administration during an ongoing Ang II infusion causes an early increase in microvascular COX-dependent reactive oxygen species (ROS) and contractility. Mesenteric microarteriolar contractility was assessed on a myograph, and ROS by RatioMaster™. Three days of oral tBHQ administration during the infusion of Ang II increased the mesenteric microarteriolar mRNA for p47phox, the endothelin type A receptor and thromboxane A2 synthase, and increased the excretion of 8-isoprostane F2α and the microarteriolar ROS and contractions to a thromboxane A2 (TxA2) agonist (U-46,619) and endothelin 1 (ET1). These were all prevented in Nrf2 knockout mice. Moreover, the increases in ROS and contractility were prevented in COX1 knockout mice with blockade of COX2 and by blockade of thromboxane prostanoid receptors (TPRs). In conclusion, the activation of Nrf2 over 3 days of Ang II infusion enhances microarteriolar ROS and contractility, which are dependent on COX1, COX2 and TPRs. Therefore, the blockade of these pathways may diminish the early adverse cardiovascular disease events that have been recorded during the initiation of Nrf2 therapy.
Collapse
Affiliation(s)
- Dan Wang
- Division of Nephrology and Hypertension and Hypertension Center, Georgetown University, Washington, DC 20007, USA
| | - Cheng Wang
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Xueqin Hao
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang 471023, China
| | - Gabriela Carter
- Division of Nephrology and Hypertension and Hypertension Center, Georgetown University, Washington, DC 20007, USA
| | - Rafaela Carter
- Division of Nephrology and Hypertension and Hypertension Center, Georgetown University, Washington, DC 20007, USA
| | - William J Welch
- Division of Nephrology and Hypertension and Hypertension Center, Georgetown University, Washington, DC 20007, USA
| | - Christopher S Wilcox
- Division of Nephrology and Hypertension and Hypertension Center, Georgetown University, Washington, DC 20007, USA
| |
Collapse
|
8
|
Kim MJ, Jeon JH. Recent Advances in Understanding Nrf2 Agonism and Its Potential Clinical Application to Metabolic and Inflammatory Diseases. Int J Mol Sci 2022; 23:ijms23052846. [PMID: 35269986 PMCID: PMC8910922 DOI: 10.3390/ijms23052846] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is a major component of cell damage and cell fat, and as such, it occupies a central position in the pathogenesis of metabolic disease. Nuclear factor-erythroid-derived 2-related factor 2 (Nrf2), a key transcription factor that coordinates expression of genes encoding antioxidant and detoxifying enzymes, is regulated primarily by Kelch-like ECH-associated protein 1 (Keap1). However, involvement of the Keap1–Nrf2 pathway in tissue and organism homeostasis goes far beyond protection from cellular stress. In this review, we focus on evidence for Nrf2 pathway dysfunction during development of several metabolic/inflammatory disorders, including diabetes and diabetic complications, obesity, inflammatory bowel disease, and autoimmune diseases. We also review the beneficial role of current molecular Nrf2 agonists and summarize their use in ongoing clinical trials. We conclude that Nrf2 is a promising target for regulation of numerous diseases associated with oxidative stress and inflammation. However, more studies are needed to explore the role of Nrf2 in the pathogenesis of metabolic/inflammatory diseases and to review safety implications before therapeutic use in clinical practice.
Collapse
Affiliation(s)
- Min-Ji Kim
- Department of Endocrinology in Internal Medicine, Kyungpook National University Hospital, Daegu 41944, Korea;
| | - Jae-Han Jeon
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea
- Correspondence: ; Tel.: +82-(53)-200-3182; Fax: +82-(53)-200-3155
| |
Collapse
|
9
|
Lee J, Pandey AK, Venkatesh S, Thilagavathi J, Honda T, Singh K, Suzuki CK. Inhibition of mitochondrial LonP1 protease by allosteric blockade of ATP binding and hydrolysis via CDDO and its derivatives. J Biol Chem 2022; 298:101719. [PMID: 35151690 PMCID: PMC8921294 DOI: 10.1016/j.jbc.2022.101719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 12/01/2022] Open
Abstract
The mitochondrial protein LonP1 is an ATP-dependent protease that mitigates cell stress and calibrates mitochondrial metabolism and energetics. Biallelic mutations in the LONP1 gene are known to cause a broad spectrum of diseases, and LonP1 dysregulation is also implicated in cancer and age-related disorders. Despite the importance of LonP1 in health and disease, specific inhibitors of this protease are unknown. Here, we demonstrate that 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO) and its -methyl and -imidazole derivatives reversibly inhibit LonP1 by a noncompetitive mechanism, blocking ATP-hydrolysis and thus proteolysis. By contrast, we found that CDDO-anhydride inhibits the LonP1 ATPase competitively. Docking of CDDO derivatives in the cryo-EM structure of LonP1 shows these compounds bind a hydrophobic pocket adjacent to the ATP-binding site. The binding site of CDDO derivatives was validated by amino acid substitutions that increased LonP1 inhibition and also by a pathogenic mutation that causes cerebral, ocular, dental, auricular and skeletal (CODAS) syndrome, which ablated inhibition. CDDO failed to inhibit the ATPase activity of the purified 26S proteasome, which like LonP1 belongs to the AAA+ superfamily of ATPases Associated with diverse cellular Activities, suggesting that CDDO shows selectivity within this family of ATPases. Furthermore, we show that noncytotoxic concentrations of CDDO derivatives in cultured cells inhibited LonP1, but not the 26S proteasome. Taken together, these findings provide insights for future development of LonP1-specific inhibitors with chemotherapeutic potential.
Collapse
Affiliation(s)
- Jae Lee
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers - New Jersey Medical School, Newark, New Jersey, USA
| | - Ashutosh K Pandey
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers - New Jersey Medical School, Newark, New Jersey, USA
| | - Sundararajan Venkatesh
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers - New Jersey Medical School, Newark, New Jersey, USA
| | - Jayapalraja Thilagavathi
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers - New Jersey Medical School, Newark, New Jersey, USA
| | - Tadashi Honda
- Department of Chemistry and Institution of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York, USA
| | - Kamal Singh
- Christopher Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA; Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA; Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Carolyn K Suzuki
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers - New Jersey Medical School, Newark, New Jersey, USA.
| |
Collapse
|
10
|
Mima A. Mitochondria-targeted drugs for diabetic kidney disease. Heliyon 2022; 8:e08878. [PMID: 35265754 PMCID: PMC8899696 DOI: 10.1016/j.heliyon.2022.e08878] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/17/2022] [Accepted: 01/30/2022] [Indexed: 12/15/2022] Open
|
11
|
Nuclear factor erythroid 2-related factor 2 as a treatment target of kidney diseases. Curr Opin Nephrol Hypertens 2021; 29:128-135. [PMID: 31592832 DOI: 10.1097/mnh.0000000000000556] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor which regulates a wider range of downstream pathways than previously thought. This review focuses on the novel findings about the internal regulatory mechanisms of Nrf2, the expanding understanding of its role in maintaining cellular homeostasis and the attempts to broaden the clinical application of its activators. RECENT FINDINGS Nrf2 is in charge of the maintenance of cellular homeostasis under stress and there exist the internal regulatory mechanisms for Nrf2 which have recently been elucidated. New downstream pathways of Nrf2 have been discovered, including the defense against ferroptosis, the latest concept of cell death. Several Nrf2 activators are at various stages of clinical development and are being tested in clinical trials for chronic kidney disease (CKD) including diabetic kidney disease, Alport syndrome, autosomal dominant polycystic kidney disease and focal segmental glomerulosclerosis. SUMMARY Nrf2 has been gathering attention as an emerging treatment target of chronic diseases which have oxidative stress and inflammation as their pathogenesis including CKD. Basic and clinical studies are under way to establish its role as a target for treatment of those diseases.
Collapse
|
12
|
Liebman SE, Le TH. Eat Your Broccoli: Oxidative Stress, NRF2, and Sulforaphane in Chronic Kidney Disease. Nutrients 2021; 13:nu13010266. [PMID: 33477669 PMCID: PMC7831909 DOI: 10.3390/nu13010266] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/31/2020] [Accepted: 01/15/2021] [Indexed: 12/16/2022] Open
Abstract
The mainstay of therapy for chronic kidney disease is control of blood pressure and proteinuria through the use of angiotensin-converting enzyme inhibitors (ACE-Is) or angiotensin receptor blockers (ARBs) that were introduced more than 20 years ago. Yet, many chronic kidney disease (CKD) patients still progress to end-stage kidney disease—the ultimate in failed prevention. While increased oxidative stress is a major molecular underpinning of CKD progression, no treatment modality specifically targeting oxidative stress has been established clinically. Here, we review the influence of oxidative stress in CKD, and discuss regarding the role of the Nrf2 pathway in kidney disease from studies using genetic and pharmacologic approaches in animal models and clinical trials. We will then focus on the promising therapeutic potential of sulforaphane, an isothiocyanate derived from cruciferous vegetables that has garnered significant attention over the past decade for its potent Nrf2-activating effect, and implications for precision medicine.
Collapse
|
13
|
Baumel-Alterzon S, Katz LS, Brill G, Garcia-Ocaña A, Scott DK. Nrf2: The Master and Captain of Beta Cell Fate. Trends Endocrinol Metab 2021; 32:7-19. [PMID: 33243626 PMCID: PMC7746592 DOI: 10.1016/j.tem.2020.11.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 02/07/2023]
Abstract
Prolonged hyperglycemia is toxic to pancreatic β cells, generating excessive reactive oxygen species, defective glucose-stimulated insulin secretion, decreased insulin production, and eventually β cell death and diabetes. Nrf2 is a master regulator of cellular responses to counteract dangerous levels of oxidative stress. Maintenance of β cell mass depends on Nrf2 to promote the survival, function, and proliferation of β cells. Indeed, Nrf2 activation decreases inflammation, increases insulin sensitivity, reduces body weight, and preserves β cell mass. Therefore, numerous pharmacological activators of Nrf2 are being tested in clinical trials for the treatment of diabetes and diabetic complications. Modulating Nrf2 activity in β cells is a promising therapeutic approach for the treatment of diabetes.
Collapse
Affiliation(s)
- Sharon Baumel-Alterzon
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Liora S Katz
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gabriel Brill
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo Garcia-Ocaña
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donald K Scott
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
14
|
Bersie-Larson LM, Gyoneva L, Goodman DJ, Dorfman KD, Segal Y, Barocas VH. Glomerular filtration and podocyte tensional homeostasis: importance of the minor type IV collagen network. Biomech Model Mechanobiol 2020; 19:2433-2442. [PMID: 32462439 PMCID: PMC7606712 DOI: 10.1007/s10237-020-01347-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/13/2020] [Indexed: 03/05/2023]
Abstract
The minor type IV collagen chain, which is a significant component of the glomerular basement membrane in healthy individuals, is known to assemble into large structures (supercoils) that may contribute to the mechanical stability of the collagen network and the glomerular basement membrane as a whole. The absence of the minor chain, as in Alport syndrome, leads to glomerular capillary demise and eventually to kidney failure. An important consideration in this problem is that the glomerular capillary wall must be strong enough to withstand the filtration pressure and porous enough to permit filtration at reasonable pressures. In this work, we propose a coupled feedback loop driven by filtration demand and tensional homeostasis of the podocytes forming the outer portion of the glomerular capillary wall. Briefly, the deposition of new collagen increases the stiffness of basement membrane, helping to stress shield the podocytes, but the new collagen also decreases the permeability of the basement membrane, requiring an increase in capillary transmural pressure drop to maintain filtration; the resulting increased pressure outweighs the increased glomerular basement membrane stiffness and puts a net greater stress demand on the podocytes. This idea is explored by developing a multiscale simulation of the capillary wall, in which a macroscopic (µm scale) continuum model is connected to a set of microscopic (nm scale) fiber network models representing the collagen network and the podocyte cytoskeleton. The model considers two cases: healthy remodeling, in which the presence of the minor chain allows the collagen volume fraction to be increased by thickening fibers, and Alport syndrome remodeling, in which the absence of the minor chain allows collagen volume fraction to be increased only by adding new fibers to the network. The permeability of the network is calculated based on previous models of flow through a fiber network, and it is updated for different fiber radii and volume fractions. The analysis shows that the minor chain allows a homeostatic balance to be achieved in terms of both filtration and cell tension. Absent the minor chain, there is a fundamental change in the relation between the two effects, and the system becomes unstable. This result suggests that mechanobiological or mechanoregulatory therapies may be possible for Alport syndrome and other minor chain collagen diseases of the kidney.
Collapse
Affiliation(s)
- Lauren M Bersie-Larson
- Department of Biomedical Engineering, University of Minnesota, 7-105 Nils Hasselmo Hall, 312 Church St SE, Minneapolis, MN, 55455, USA
| | - Lazarina Gyoneva
- Department of Biomedical Engineering, University of Minnesota, 7-105 Nils Hasselmo Hall, 312 Church St SE, Minneapolis, MN, 55455, USA
| | - Daniel J Goodman
- Department of Biomedical Engineering, University of Minnesota, 7-105 Nils Hasselmo Hall, 312 Church St SE, Minneapolis, MN, 55455, USA
| | - Kevin D Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Yoav Segal
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - Victor H Barocas
- Department of Biomedical Engineering, University of Minnesota, 7-105 Nils Hasselmo Hall, 312 Church St SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
15
|
K. Rangan G, Raghubanshi A, Chaitarvornkit A, Chandra AN, Gardos R, Munt A, Read MN, Saravanabavan S, Zhang JQ, Wong AT. Current and emerging treatment options to prevent renal failure due to autosomal dominant polycystic kidney disease. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1804859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gopala K. Rangan
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead, Australia
| | - Aarya Raghubanshi
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | - Alissa Chaitarvornkit
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
- Faculty of Engineering, The University of Sydney, Camperdown, Australia
| | - Ashley N. Chandra
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | | | - Alexandra Munt
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead, Australia
| | - Mark N. Read
- The School of Computer Science and the Westmead Initiative, The University of Sydney, Westmead, Australia
| | - Sayanthooran Saravanabavan
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | - Jennifer Q.J. Zhang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | - Annette T.Y. Wong
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead, Australia
| |
Collapse
|
16
|
Rush BM, Bondi CD, Stocker SD, Barry KM, Small SA, Ong J, Jobbagy S, Stolz DB, Bastacky SI, Chartoumpekis DV, Kensler TW, Tan RJ. Genetic or pharmacologic Nrf2 activation increases proteinuria in chronic kidney disease in mice. Kidney Int 2020; 99:102-116. [PMID: 32818518 DOI: 10.1016/j.kint.2020.07.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
The nuclear factor erythroid 2-related factor 2 (Nrf2) pathway upregulates key cellular defenses. Clinical trials are utilizing pharmacologic Nrf2 inducers such as bardoxolone methyl to treat chronic kidney disease, but Nrf2 activation has been linked to a paradoxical increase in proteinuria. To understand this effect, we examined genetically engineered mice with elevated Nrf2 signaling due to reduced expression of the Nrf2 inhibitor, Kelch-like ECH-associated protein 1 (Keap1). These Keap1FA/FA mice lacked baseline proteinuria but exhibited increased proteinuria in experimental models evoked by adriamycin, angiotensin II, or protein overload. After injury, Keap1FA/FA mice had increased glomerulosclerosis, nephrin disruption and shedding, podocyte injury, foot process effacement, and interstitial fibrosis. Keap1FA/FA mice also had higher daytime blood pressures and lower heart rates measured by radiotelemetry. Conversely, Nrf2 knockout mice were protected from proteinuria. We also examined the pharmacologic Nrf2 inducer CDDO-Im. Compared to angiotensin II alone, the combination of angiotensin II and CDDO-Im significantly increased proteinuria, a phenomenon not observed in Nrf2 knockout mice. This effect was not accompanied by additional increases in blood pressure. Finally, Nrf2 was found to be upregulated in the glomeruli of patients with focal segmental glomerulosclerosis, diabetic nephropathy, fibrillary glomerulonephritis, and membranous nephropathy. Thus, our studies demonstrate that Nrf2 induction in mice may exacerbate proteinuria in chronic kidney disease.
Collapse
Affiliation(s)
- Brittney M Rush
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Corry D Bondi
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sean D Stocker
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kacie M Barry
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sarah A Small
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jason Ong
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Soma Jobbagy
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sheldon I Bastacky
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dionysios V Chartoumpekis
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Thomas W Kensler
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Roderick J Tan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
17
|
Abstract
BACKGROUND Glomerulosclerosis represents the final stage of glomerular injury during the course of kidney disease and can result from a primary disturbance in disorders like focal segmental glomerulosclerosis or a secondary response to tubulointerstitial disease. Overall, primary focal glomerulosclerosis (FSGS), the focus of this review, accounts for 10-20% of patients of all ages who progress to end stage kidney disease. There are no FDA approved therapeutic options that effectively prevent or delay the onset of kidney failure. AREAS COVERED Current immunosuppressive therapy and conservative management including inhibitors of the renin-angiotensin-aldosterone axis and sodium-glucose cotransporter are reviewed. FSGS is now recognized to represent a heterogeneous entity with multiple underlying disease mechanisms. Therefore, novel approaches targeting the podocyte cytoskeleton, immunological, inflammatory, hemodynamic and metabolic pathways are highlighted. EXPERT OPINION A number of factors are driving the development of drugs to treat focal segmental glomerulosclerosis in particular and glomerulosclerosis in general including growing awareness of the burden of chronic kidney disease, improved scientific understanding of the mechanism of injury, and the development of noninvasive profiles to identify subgroups of patients with discrete mechanisms of glomerular injury.
Collapse
Affiliation(s)
- Howard Trachtman
- Department of Pediatrics, Division of Nephrology, NYU Langone Health , New York, NY, USA
| |
Collapse
|
18
|
Abstract
The KEAP1-NRF2 pathway is the principal protective response to oxidative and electrophilic stresses. Under homeostatic conditions, KEAP1 forms part of an E3 ubiquitin ligase, which tightly regulates the activity of the transcription factor NRF2 by targeting it for ubiquitination and proteasome-dependent degradation. In response to stress, an intricate molecular mechanism facilitated by sensor cysteines within KEAP1 allows NRF2 to escape ubiquitination, accumulate within the cell, and translocate to the nucleus, where it can promote its antioxidant transcription program. Recent advances have revealed that KEAP1 contains multiple stress sensors and inactivation modalities, which together allow diverse cellular inputs, from oxidative stress and cellular metabolites to dysregulated autophagy, to regulate NRF2 activity. This integration of the KEAP1-NRF2 system into multiple cellular signaling and metabolic pathways places NRF2 activation as a critical regulatory node in many disease phenotypes and suggests that the pharmaceutical modulation of NRF2's cytoprotective activity will be beneficial for human health in a broad range of noncommunicable diseases.
Collapse
|
19
|
Torra R, Furlano M. New therapeutic options for Alport syndrome. Nephrol Dial Transplant 2020; 34:1272-1279. [PMID: 31190059 DOI: 10.1093/ndt/gfz131] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/31/2019] [Indexed: 12/12/2022] Open
Abstract
Alport syndrome (AS) is the most frequent inherited kidney disease after autosomal dominant polycystic kidney disease. It has three different patterns of inheritance-autosomal dominant, autosomal recessive and X-linked-which in part explains the wide spectrum of disease, ranging from isolated microhaematuria to end-stage renal disease early in life. The search for a treatment for AS is being pursued vigorously, not only because of the obvious unmet need but also because AS is a rare disease and any drug approved will have an orphan drug designation with its various benefits. Moreover, AS patients are quite young with very few comorbidities, which facilitates clinical trials. This review identifies the particularities of each pattern of inheritance but focuses mainly on new drugs or therapeutic targets for the disease. Most treatment-related investigations are directed not at the main abnormality in AS, namely collagen IV composition, but rather at the associated inflammation and fibrosis. Thus, AS may serve as a proof of concept for numerous drugs of potential value in many diseases that cause chronic kidney disease.
Collapse
Affiliation(s)
- Roser Torra
- Inherited Renal Disorders, Nephrology Department, Fundació Puigvert, REDINREN, IIB Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mónica Furlano
- Inherited Renal Disorders, Nephrology Department, Fundació Puigvert, REDINREN, IIB Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Ramos AM, Fernández-Fernández B, Pérez-Gómez MV, Carriazo Julio SM, Sanchez-Niño MD, Sanz A, Ruiz-Ortega M, Ortiz A. Design and optimization strategies for the development of new drugs that treat chronic kidney disease. Expert Opin Drug Discov 2019; 15:101-115. [PMID: 31736379 DOI: 10.1080/17460441.2020.1690450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Chronic kidney disease (CKD) is characterized by increased risks of progression to end-stage kidney disease requiring dialysis and cardiovascular mortality, predicted to be among the five top causes of death by 2040. Only the design and optimization of novel strategies to develop new drugs to treat CKD will contain this trend. Current therapy for CKD includes nonspecific therapy targeting proteinuria and/or hypertension and cause-specific therapies for diabetic kidney disease, autosomal dominant polycystic kidney disease, glomerulonephritides, Fabry nephropathy, hemolytic uremic syndrome and others.Areas covered: Herein, the authors review the literature on new drugs under development for CKD as well as novel design and development strategies.Expert opinion: New therapies for CKD have become a healthcare priority. Emerging therapies undergoing clinical trials are testing expanded renin-angiotensin system blockade with double angiotensin receptor/endothelin receptor blockers, SGLT2 inhibition, and targeting inflammation, the immune response, fibrosis and the Nrf2 transcription factor. Emerging therapeutic targets include cell senescence, complement activation, Klotho expression preservation and microbiota. Novel approaches include novel model systems that can be personalized (e.g. organoids), unbiased systems biology-based identification of new therapeutic targets, drug databases that speed up drug identification and repurposing, nanomedicines that improve drug delivery and RNA targeting to expand the number of targetable proteins.
Collapse
Affiliation(s)
- Adrián M Ramos
- Laboratory of Nephrology and Hypertension, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz Fernández-Fernández
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain.,Nephrology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Vanessa Pérez-Gómez
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sol María Carriazo Julio
- Nephrology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Dolores Sanchez-Niño
- Laboratory of Nephrology and Hypertension, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Sanz
- Laboratory of Nephrology and Hypertension, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Ruiz-Ortega
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain.,Laboratory of Renal and Vascular Pathology and Diabetes, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid and Cellular Biology in Renal Diseases Laboratory, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Ortiz
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Fundación Renal Iñigo Álvarez de Toledo IRSIN C/José Abascal, Madrid, Spain
| |
Collapse
|
21
|
Wyler E, Franke V, Menegatti J, Kocks C, Boltengagen A, Praktiknjo S, Walch-Rückheim B, Bosse J, Rajewsky N, Grässer F, Akalin A, Landthaler M. Single-cell RNA-sequencing of herpes simplex virus 1-infected cells connects NRF2 activation to an antiviral program. Nat Commun 2019; 10:4878. [PMID: 31653857 PMCID: PMC6814756 DOI: 10.1038/s41467-019-12894-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 09/26/2019] [Indexed: 01/10/2023] Open
Abstract
Herpesvirus infection initiates a range of perturbations in the host cell, which remain poorly understood at the level of individual cells. Here, we quantify the transcriptome of single human primary fibroblasts during the first hours of lytic infection with HSV-1. By applying a generalizable analysis scheme, we define a precise temporal order of early viral gene expression and propose a set-wise emergence of viral genes. We identify host cell genes and pathways relevant for infection by combining three different computational approaches: gene and pathway overdispersion analysis, prediction of cell-state transition probabilities, as well as future cell states. One transcriptional program, which correlates with increased resistance to infection, implicates the transcription factor NRF2. Consequently, Bardoxolone methyl and Sulforaphane, two known NRF2 agonists, impair virus production, suggesting that NRF2 activation restricts viral infection. Our study provides insights into early stages of HSV-1 infection and serves as a general blueprint for the investigation of heterogeneous cell states in virus infection.
Collapse
Affiliation(s)
- Emanuel Wyler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Vedran Franke
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Jennifer Menegatti
- Institute of Virology, Saarland University Medical School, Kirrbergerstrasse Haus, 4766421, Homburg/Saar, Germany
| | - Christine Kocks
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Anastasiya Boltengagen
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Samantha Praktiknjo
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Barbara Walch-Rückheim
- Institute of Virology and Center of Human und Molecular Biology, Saarland University, Saarbrücken, Germany
| | - Jens Bosse
- Heinrich Pette Institute (HPI), Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Nikolaus Rajewsky
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Friedrich Grässer
- Institute of Virology, Saarland University Medical School, Kirrbergerstrasse Haus, 4766421, Homburg/Saar, Germany
| | - Altuna Akalin
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125, Berlin, Germany.
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125, Berlin, Germany.
- IRI Life Sciences, Institute für Biologie, Humboldt Universität zu Berlin, Philippstraße 13, 10115, Berlin, Germany.
| |
Collapse
|
22
|
Cheng D, Gao L, Su S, Sargsyan D, Wu R, Raskin I, Kong AN. Moringa Isothiocyanate Activates Nrf2: Potential Role in Diabetic Nephropathy. AAPS J 2019; 21:31. [PMID: 30783799 PMCID: PMC6647035 DOI: 10.1208/s12248-019-0301-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/17/2019] [Indexed: 01/11/2023] Open
Abstract
Moringa isothiocyanate (MIC-1) is the main active isothiocyanate found in Moringa oleifera, a plant consumed as diet and traditional herbal medicine. Compared to sulforaphane (SFN), MICs are less studied and most work have focused on its anti-inflammatory activity. The purpose of this study is to better understand the Nrf2-ARE antioxidant activity of MIC-1 and its potential in diabetic nephropathy. MIC-1 showed little toxicity from 1.25-5 μM. MIC-1 activated Nrf2-ARE at similar levels to SFN. MIC-1 also increased gene expression of downstream Nrf2 genes NQO1, HO-1, and GCLC. Protein expression of HO-1 and GCLC was elevated in MIC-1-treated cells versus control. MIC-1 suppressed pro-inflammatory cytokines in LPS-stimulated macrophages. MIC-1 reduced levels of reactive oxygen species in high glucose (HG)-treated human renal proximal tubule HK-2 cells. RNA-seq was performed to examine the transcriptome in HK-2 cells exposed to HG with or without MIC-1. Ingenuity Pathway Analysis (IPA) of RNA-seq on HK-2 cells exposed to HG identified TGFβ1 and NQO1 regulation as potentially impacted and treatment of HG-exposed HK-2 cells with MIC-1 reversed the gene expression of these two pathways. Results implicate that the transcriptional regulator TGFβ1 signaling is activated by HG and that MIC-1 can inhibit HG-stimulated TGFβ1 activation. In summary, MIC-1 activates Nrf2-ARE signaling, increases expression of Nrf2 target genes, and suppresses inflammation, while also reducing oxidative stress and possibly TGFβ1 signaling in high glucose induced renal cells. Taken together, it appears that one potential therapeutic strategy for managing DN and is currently under development in clinic is Nrf2 activation.
Collapse
Affiliation(s)
- David Cheng
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 228, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Linbo Gao
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 228, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Shan Su
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 228, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Davit Sargsyan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 228, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 228, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Ilya Raskin
- Department of Plant Biology & Pathology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, 08901, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 228, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA.
| |
Collapse
|
23
|
Vanholder R, Van Laecke S, Glorieux G, Verbeke F, Castillo-Rodriguez E, Ortiz A. Deleting Death and Dialysis: Conservative Care of Cardio-Vascular Risk and Kidney Function Loss in Chronic Kidney Disease (CKD). Toxins (Basel) 2018; 10:E237. [PMID: 29895722 PMCID: PMC6024824 DOI: 10.3390/toxins10060237] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/11/2018] [Indexed: 02/07/2023] Open
Abstract
The uremic syndrome, which is the clinical expression of chronic kidney disease (CKD), is a complex amalgam of accelerated aging and organ dysfunctions, whereby cardio-vascular disease plays a capital role. In this narrative review, we offer a summary of the current conservative (medical) treatment options for cardio-vascular and overall morbidity and mortality risk in CKD. Since the progression of CKD is also associated with a higher cardio-vascular risk, we summarize the interventions that may prevent the progression of CKD as well. We pay attention to established therapies, as well as to novel promising options. Approaches that have been considered are not limited to pharmacological approaches but take into account lifestyle measures and diet as well. We took as many randomized controlled hard endpoint outcome trials as possible into account, although observational studies and post hoc analyses were included where appropriate. We also considered health economic aspects. Based on this information, we constructed comprehensive tables summarizing the available therapeutic options and the number and kind of studies (controlled or not, contradictory outcomes or not) with regard to each approach. Our review underscores the scarcity of well-designed large controlled trials in CKD. Nevertheless, based on the controlled and observational data, a therapeutic algorithm can be developed for this complex and multifactorial condition. It is likely that interventions should be aimed at targeting several modifiable factors simultaneously.
Collapse
Affiliation(s)
- Raymond Vanholder
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, 9000 Ghent, Belgium.
| | - Steven Van Laecke
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, 9000 Ghent, Belgium.
| | - Griet Glorieux
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, 9000 Ghent, Belgium.
| | - Francis Verbeke
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, 9000 Ghent, Belgium.
| | | | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain.
| |
Collapse
|
24
|
|