1
|
Tan Z, Hall P, Mack M, Snelgrove SL, Kitching AR, Hickey MJ. Both Classical and Non-Classical Monocytes Patrol Glomerular Capillaries and Promote Acute Glomerular Inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:89-101. [PMID: 39117108 DOI: 10.1016/j.ajpath.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024]
Abstract
Monocyte patrolling of the vasculature has been ascribed primarily to the non-classical monocyte subset. However, a recent study of the glomerular microvasculature provided evidence that both classical and non-classical monocytes undergo periods of intravascular retention and migration. Despite this, whether these subsets contribute differentially to acute glomerular inflammation is unknown. This study used glomerular multiphoton intravital microscopy to investigate the capacity of classical and non-classical monocytes to patrol the glomerular microvasculature and promote acute, neutrophil-dependent glomerular inflammation. In imaging experiments in monocyte reporter Cx3cr1gfp/+ mice, co-staining with anti-Ly6B or anti-Ly6C revealed that both non-classical monocytes [CX3 chemokine receptor 1-green fluorescent protein positive (CX3CR1-GFP+)] and classical monocytes (CX3CR1-GFP+ and Ly6B+ or Ly6C+) underwent prolonged (>10 minutes) retention and migration in the glomerular microvasculature. On induction of acute glomerulonephritis, these behaviors were increased in classical, but not non-classical, monocytes. Using non-classical monocyte-deficient Csf1rCreNr4a1fl/fl mice, or anti-CCR2 to deplete classical monocytes, the removal of either subset reduced neutrophil retention and activation in acutely inflamed glomeruli, while the depletion of both subsets, via anti-CCR2 treatment in Csf1rCreNr4a1fl/fl mice, led to further reductions in neutrophil activity. In contrast, in a model of CD4+ T cell-dependent glomerulonephritis, the depletion of either monocyte subset failed to alter neutrophil responses. These findings indicate that both classical and non-classical monocytes patrol the glomerular microvasculature and promote neutrophil responses in acutely inflamed glomeruli.
Collapse
Affiliation(s)
- ZheHao Tan
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - Pam Hall
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - Matthias Mack
- Department of Internal Medicine II-Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Sarah L Snelgrove
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia; Departments of Nephrology and Pediatric Nephrology, Monash Medical Centre, Clayton, Victoria, Australia
| | - Michael J Hickey
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia.
| |
Collapse
|
2
|
Wei S, Shen H, Zhang Y, Liu C, Li S, Yao J, Jin Z, Yu H. Integrative analysis of single-cell and bulk transcriptome data reveal the significant role of macrophages in lupus nephritis. Arthritis Res Ther 2024; 26:84. [PMID: 38610007 PMCID: PMC11010324 DOI: 10.1186/s13075-024-03311-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
OBJECTIVE We attempted to identify abnormal immune cell components and signaling pathways in lupus nephritis (LN) and to identify potential therapeutic targets. METHODS Differentially expressed genes (DEGs) between LN and normal kidney tissues were identified from bulk transcriptome data, and functional annotation was performed. The phenotypic changes in macrophages and aberrant intercellular signaling communications within immune cells were imputed from LN scRNA-seq data using trajectory analysis and verified using immunofluorescence staining. Finally, lentivirus-mediated overexpression of LGALS9, the gene encoding Galectin 9, in THP-1 cells was used to study the functional effect of this gene on monocytic cells. RESULTS From bulk transcriptome data, a significant activation of interferon (IFN) signaling was observed, and its intensity showed a significantly positive correlation with the abundance of infiltrating macrophages in LN. Analysis of scRNA-seq data revealed 17 immune cell clusters, with macrophages showing the highest enrichment of intercellular signal communication in LN. Trajectory analysis revealed macrophages in LN undergo a phenotypic change from inflammatory patrolling macrophages to phagocytic and then to antigen-presenting macrophages, and secrete various pro-inflammatory factors and complement components. LGALS9 was found significantly upregulated in macrophages in LN, which was confirmed by the immunofluorescence assay. Gene functional study showed that LGALS9 overexpression in THP-1 cells significantly elicited pro-inflammatory activation, releasing multiple immune cell chemoattractants. CONCLUSION Our results present an important pathophysiological role for macrophages in LN, and our preliminary results demonstrate significant pro-inflammatory effects of LGALS9 gene in LN macrophages.
Collapse
Affiliation(s)
- Shuping Wei
- Department of Ultrasound, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
| | - Haiyun Shen
- Department of Ultrasound, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
| | - Yidan Zhang
- Department of Ultrasound, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
| | - Chunrui Liu
- Department of Ultrasound, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
| | - Shoushan Li
- Department of oncology, The Siyang Hospital of Chinese Traditional Medicine, 15 Jiefangbei Road, Zhongxing district, Siyang country, Suqian, 223798, Jiangsu, PR China
| | - Jing Yao
- Department of Ultrasound, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
| | - Zhibin Jin
- Department of Ultrasound, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China.
| | - Hongliang Yu
- Department of oncology, The Siyang Hospital of Chinese Traditional Medicine, 15 Jiefangbei Road, Zhongxing district, Siyang country, Suqian, 223798, Jiangsu, PR China.
- Department of radiation oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing, 210007, Jiangsu, PR China.
| |
Collapse
|
3
|
Mazzieri A, Porcellati F, Timio F, Reboldi G. Molecular Targets of Novel Therapeutics for Diabetic Kidney Disease: A New Era of Nephroprotection. Int J Mol Sci 2024; 25:3969. [PMID: 38612779 PMCID: PMC11012439 DOI: 10.3390/ijms25073969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Diabetic kidney disease (DKD) is a chronic microvascular complication in patients with diabetes mellitus (DM) and the leading cause of end-stage kidney disease (ESKD). Although glomerulosclerosis, tubular injury and interstitial fibrosis are typical damages of DKD, the interplay of different processes (metabolic factors, oxidative stress, inflammatory pathway, fibrotic signaling, and hemodynamic mechanisms) appears to drive the onset and progression of DKD. A growing understanding of the pathogenetic mechanisms, and the development of new therapeutics, is opening the way for a new era of nephroprotection based on precision-medicine approaches. This review summarizes the therapeutic options linked to specific molecular mechanisms of DKD, including renin-angiotensin-aldosterone system blockers, SGLT2 inhibitors, mineralocorticoid receptor antagonists, glucagon-like peptide-1 receptor agonists, endothelin receptor antagonists, and aldosterone synthase inhibitors. In a new era of nephroprotection, these drugs, as pillars of personalized medicine, can improve renal outcomes and enhance the quality of life for individuals with DKD.
Collapse
Affiliation(s)
- Alessio Mazzieri
- Diabetes Clinic, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (A.M.), (F.P.)
| | - Francesca Porcellati
- Diabetes Clinic, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (A.M.), (F.P.)
| | - Francesca Timio
- Division of Nephrology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy;
| | - Gianpaolo Reboldi
- Division of Nephrology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy;
| |
Collapse
|
4
|
Nachiappa Ganesh R, Garcia G, Truong L. Monocytes and Macrophages in Kidney Disease and Homeostasis. Int J Mol Sci 2024; 25:3763. [PMID: 38612574 PMCID: PMC11012230 DOI: 10.3390/ijms25073763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The monocyte-macrophage lineage of inflammatory cells is characterized by significant morphologic and functional plasticity. Macrophages have broad M1 and M2 phenotype subgroups with distinctive functions and dual reno-toxic and reno-protective effects. Macrophages are a major contributor to injury in immune-complex-mediated, as well as pauci-immune, glomerulonephritis. Macrophages are also implicated in tubulointerstitial and vascular disease, though there have not been many human studies. Patrolling monocytes in the intravascular compartment have been reported in auto-immune injury in the renal parenchyma, manifesting as acute kidney injury. Insights into the pathogenetic roles of macrophages in renal disease suggest potentially novel therapeutic and prognostic biomarkers and targeted therapy. This review provides a concise overview of the macrophage-induced pathogenetic mechanism as a background for the latest findings about macrophages' roles in different renal compartments and common renal diseases.
Collapse
Affiliation(s)
- Rajesh Nachiappa Ganesh
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA;
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Gabriela Garcia
- Department of Medicine, Renal Division, University of Colorado, Anschutz Medical Campus, Aurora, CO 605006, USA;
| | - Luan Truong
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA;
| |
Collapse
|
5
|
Huang S, Carter-Cusack D, Maxwell E, Patkar OL, Irvine KM, Hume DA. Genetic and Immunohistochemistry Tools to Visualize Rat Macrophages In Situ. Methods Mol Biol 2024; 2713:99-115. [PMID: 37639117 DOI: 10.1007/978-1-0716-3437-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Macrophages contribute to many aspects of development and homeostasis, innate and acquired immunity, immunopathology, and tissue repair. Every tissue contains an abundant resident macrophage population. Inflammatory stimuli promote the recruitment of monocytes from the blood and their adaptation promotes the removal of the stimulus and subsequent restoration of normal tissue architecture. Dysregulation of this response leads to chronic inflammation and tissue injury. In many tissues, their differentiation and survival are dependent on the colony stimulating factor 1 receptor (CSF1R) signalling axis, which is highly conserved across all vertebrates. Complete loss of either CSF1R or its cognate ligands, colony stimulating factor 1 (CSF1), and interleukin 34 (IL-34), results in the loss of many tissue-resident macrophage populations. This provides a useful paradigm to study macrophages.There are many tools used to visualize tissue-resident macrophages and their precursors, monocytes, in mice and humans. Particularly in mice there are genetic tools available to delete, enhance and manipulate monocytes and macrophages and their gene products to gain insight into phenotype and function. The laboratory rat has many advantages as an experimental model for the understanding of human disease, but the analytical resources are currently more limited than in mice. Here, we describe available genetic models, antibodies, and immunohistochemistry (IHC) methods that may be used to visualize tissue-resident macrophages in rats.
Collapse
Affiliation(s)
- Stephen Huang
- Mater Research Institute-UQ, Translational Research Institute, Woolloongabba, Brisbane, QLD, Australia
| | - Dylan Carter-Cusack
- Mater Research Institute-UQ, Translational Research Institute, Woolloongabba, Brisbane, QLD, Australia
| | - Emma Maxwell
- Mater Research Institute-UQ, Translational Research Institute, Woolloongabba, Brisbane, QLD, Australia
| | - Omkar L Patkar
- Mater Research Institute-UQ, Translational Research Institute, Woolloongabba, Brisbane, QLD, Australia
| | - Katharine M Irvine
- Mater Research Institute-UQ, Translational Research Institute, Woolloongabba, Brisbane, QLD, Australia.
| | - David A Hume
- Mater Research Institute-UQ, Translational Research Institute, Woolloongabba, Brisbane, QLD, Australia.
| |
Collapse
|
6
|
Mejia-Vilet JM, Turner-Stokes T, Houssiau F, Rovin BH. Kidney involvement in systemic lupus erythematosus: From the patient assessment to a tailored treatment. Best Pract Res Clin Rheumatol 2023; 37:101925. [PMID: 38151362 DOI: 10.1016/j.berh.2023.101925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023]
Abstract
In the last few years, several studies have provided new evidence for the diagnosis, management, and follow-up of patients with lupus nephritis. Evidence showing dissociation between clinical and histological findings has prompted reevaluation of the role of the kidney biopsy as a tool for diagnosis and follow-up. In therapeutics, four immunosuppressive schemes now have supporting evidence for use as initial therapy. Current challenges include individualized selection of the best immunosuppressive regimen, an unmet need for non-invasive biomarkers of disease activity to inform treatment responses and guide subsequent therapy, holistic patient management in this complex, multisystem disease, and ultimately the development of more targeted therapies directed at specific effector pathways driving glomerular inflammation and damage in order to improve treatment response. In this communication, we review the diagnostic and therapeutic approach to lupus nephritis, as well as evaluation of response to therapy and disease control.
Collapse
Affiliation(s)
- Juan M Mejia-Vilet
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Tabitha Turner-Stokes
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - Frederic Houssiau
- Pôle de Pathologies Rhumatismales Inflammatoires et Systémiques, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain and Service de Rhumatologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Brad H Rovin
- Division of Nephrology, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
7
|
Jackson WD, Giacomassi C, Ward S, Owen A, Luis TC, Spear S, Woollard KJ, Johansson C, Strid J, Botto M. TLR7 activation at epithelial barriers promotes emergency myelopoiesis and lung antiviral immunity. eLife 2023; 12:e85647. [PMID: 37566453 PMCID: PMC10465127 DOI: 10.7554/elife.85647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 08/10/2023] [Indexed: 08/12/2023] Open
Abstract
Monocytes are heterogeneous innate effector leukocytes generated in the bone marrow and released into circulation in a CCR2-dependent manner. During infection or inflammation, myelopoiesis is modulated to rapidly meet the demand for more effector cells. Danger signals from peripheral tissues can influence this process. Herein we demonstrate that repetitive TLR7 stimulation via the epithelial barriers drove a potent emergency bone marrow monocyte response in mice. This process was unique to TLR7 activation and occurred independently of the canonical CCR2 and CX3CR1 axes or prototypical cytokines. The monocytes egressing the bone marrow had an immature Ly6C-high profile and differentiated into vascular Ly6C-low monocytes and tissue macrophages in multiple organs. They displayed a blunted cytokine response to further TLR7 stimulation and reduced lung viral load after RSV and influenza virus infection. These data provide insights into the emergency myelopoiesis likely to occur in response to the encounter of single-stranded RNA viruses at barrier sites.
Collapse
Affiliation(s)
- William D Jackson
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
| | - Chiara Giacomassi
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
| | - Sophie Ward
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
| | - Amber Owen
- National Heart and Lung Institute, Imperial College LondonLondonUnited Kingdom
| | - Tiago C Luis
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
| | - Sarah Spear
- Division of Cancer, Department of Surgery and Cancer, Imperial College LondonLondonUnited Kingdom
| | - Kevin J Woollard
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
| | - Cecilia Johansson
- National Heart and Lung Institute, Imperial College LondonLondonUnited Kingdom
| | - Jessica Strid
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
| | - Marina Botto
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
8
|
Preuß SL, Oehrl S, Zhang H, Döbel T, Engel U, Young JL, Spatz JP, Schäkel K. Immune complex-induced haptokinesis in human non-classical monocytes. Front Immunol 2023; 14:1078241. [PMID: 36936904 PMCID: PMC10014541 DOI: 10.3389/fimmu.2023.1078241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Formation and deposition of immune complexes (ICs) are hallmarks of various autoimmune diseases. Detection of ICs by IC receptors on leukocytes induces downstream signaling and shapes the local immune response. In many cases the pathological relevance of ICs is not well understood. We here show that ICs induce a distinct migratory response, i.e. haptokinesis in 6-sulfo LacNAc+ monocytes (slanMo) and in non-classical monocytes (ncMo) but not in intermediate (imMo) and classical monocytes (cMo). Using live imaging combined with automated cell tracking, we show that the main features of IC-dependent haptokinesis are elongation of the cell body, actin polarization at the leading edge, and highly directional migration. We find that CD16-dependent signaling mediates haptokinesis as blocking of CD16 or blocking SYK-signaling inhibited the migratory response. The activity of the metalloproteinase ADAM17 also modifies IC-dependent haptokinesis, likely at least partially via cleavage of CD16. Furthermore, using matrices with defined ligand spacing, we show that ligand density impacts the magnitude of the migratory response. Taken together, we have demonstrated that ICs induce a specific migratory response in ncMo but not in other monocyte subsets. Therefore, our work lays the groundwork for the investigation of IC-dependent haptokinesis in ncMo as a potential pathomechanism in IC-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Sophie L. Preuß
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephanie Oehrl
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hao Zhang
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Döbel
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ulrike Engel
- Nikon Imaging Center, Heidelberg University, Heidelberg, Germany
| | - Jennifer L. Young
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, Germany
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Biomedical Engineering Department, National University of Singapore, Singapore, Singapore
| | - Joachim P. Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, Germany
- Department of Biophysical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Knut Schäkel
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
- *Correspondence: Knut Schäkel,
| |
Collapse
|
9
|
Prendecki M, McAdoo SP, Turner‐Stokes T, Garcia‐Diaz A, Orriss I, Woollard KJ, Behmoaras J, Cook HT, Unwin R, Pusey CD, Aitman TJ, Tam FWK. Glomerulonephritis and autoimmune vasculitis are independent of P2RX7 but may depend on alternative inflammasome pathways. J Pathol 2022; 257:300-313. [PMID: 35239186 PMCID: PMC9322550 DOI: 10.1002/path.5890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 11/09/2022]
Abstract
P2RX7, an ionotropic receptor for extracellular adenosine triphosphate (ATP), is expressed on immune cells, including macrophages, monocytes, and dendritic cells and is upregulated on nonimmune cells following injury. P2RX7 plays a role in many biological processes, including production of proinflammatory cytokines such as interleukin (IL)-1β via the canonical inflammasome pathway. P2RX7 has been shown to be important in inflammation and fibrosis and may also play a role in autoimmunity. We have developed and phenotyped a novel P2RX7 knockout (KO) inbred rat strain and, taking advantage of the human-resembling unique histopathological features of rat models of glomerulonephritis, we induced three models of disease: nephrotoxic nephritis, experimental autoimmune glomerulonephritis, and experimental autoimmune vasculitis. We found that deletion of P2RX7 does not protect rats from models of experimental glomerulonephritis or the development of autoimmunity. Notably, treatment with A-438079, a P2RX7 antagonist, was equally protective in WKY WT and P2RX7 KO rats, revealing its 'off-target' properties. We identified a novel ATP/P2RX7/K+ efflux-independent and caspase-1/8-dependent pathway for the production of IL-1β in rat dendritic cells, which was absent in macrophages. Taken together, these results comprehensively establish that inflammation and autoimmunity in glomerulonephritis is independent of P2RX7 and reveals the off-target properties of drugs previously known as selective P2RX7 antagonists. Rat mononuclear phagocytes may be able to utilise an 'alternative inflammasome' pathway to produce IL-1β independently of P2RX7, which may account for the susceptibility of P2RX7 KO rats to inflammation and autoimmunity in glomerulonephritis. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Maria Prendecki
- Centre for Inflammatory Disease, Department of Immunology and InflammationImperial College London, Hammersmith CampusLondonUK
| | - Stephen P McAdoo
- Centre for Inflammatory Disease, Department of Immunology and InflammationImperial College London, Hammersmith CampusLondonUK
| | - Tabitha Turner‐Stokes
- Centre for Inflammatory Disease, Department of Immunology and InflammationImperial College London, Hammersmith CampusLondonUK
| | - Ana Garcia‐Diaz
- Centre for Inflammatory Disease, Department of Immunology and InflammationImperial College London, Hammersmith CampusLondonUK
| | - Isabel Orriss
- Department of Comparative Biomedical SciencesRoyal Veterinary CollegeLondonUK
| | - Kevin J Woollard
- Centre for Inflammatory Disease, Department of Immunology and InflammationImperial College London, Hammersmith CampusLondonUK,Present address:
Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZenecaCambridgeUK
| | - Jacques Behmoaras
- Centre for Inflammatory Disease, Department of Immunology and InflammationImperial College London, Hammersmith CampusLondonUK,Programme in Cardiovascular and Metabolic Disorders and Centre for Computational Biology, Duke‐NUS Medical School SingaporeSingapore
| | - H Terence Cook
- Centre for Inflammatory Disease, Department of Immunology and InflammationImperial College London, Hammersmith CampusLondonUK
| | - Robert Unwin
- Department of Renal Medicine, Division of MedicineUniversity College LondonLondonUK,Present address:
Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZenecaCambridgeUK
| | - Charles D Pusey
- Centre for Inflammatory Disease, Department of Immunology and InflammationImperial College London, Hammersmith CampusLondonUK
| | - Timothy J Aitman
- Centre for Genomic & Experimental MedicineInstitute of Genetics and Molecular Medicine, University of EdinburghEdinburghUK
| | - Frederick WK Tam
- Centre for Inflammatory Disease, Department of Immunology and InflammationImperial College London, Hammersmith CampusLondonUK
| |
Collapse
|
10
|
Hofherr A, Williams J, Gan LM, Söderberg M, Hansen PBL, Woollard KJ. Targeting inflammation for the treatment of Diabetic Kidney Disease: a five-compartment mechanistic model. BMC Nephrol 2022; 23:208. [PMID: 35698028 PMCID: PMC9190142 DOI: 10.1186/s12882-022-02794-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/20/2022] [Indexed: 12/25/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of kidney failure worldwide. Mortality and morbidity associated with DKD are increasing with the global prevalence of type 2 diabetes. Chronic, sub-clinical, non-resolving inflammation contributes to the pathophysiology of renal and cardiovascular disease associated with diabetes. Inflammatory biomarkers correlate with poor renal outcomes and mortality in patients with DKD. Targeting chronic inflammation may therefore offer a route to novel therapeutics for DKD. However, the DKD patient population is highly heterogeneous, with varying etiology, presentation and disease progression. This heterogeneity is a challenge for clinical trials of novel anti-inflammatory therapies. Here, we present a conceptual model of how chronic inflammation affects kidney function in five compartments: immune cell recruitment and activation; filtration; resorption and secretion; extracellular matrix regulation; and perfusion. We believe that the rigorous alignment of pathophysiological insights, appropriate animal models and pathology-specific biomarkers may facilitate a mechanism-based shift from recruiting ‘all comers’ with DKD to stratification of patients based on the principal compartments of inflammatory disease activity.
Collapse
Affiliation(s)
- Alexis Hofherr
- Research and Early Clinical Development, Cardiovascular, Renal and Metabolism, AstraZeneca, BioPharmaceuticals R&D, Gothenburg, Sweden. .,Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Julie Williams
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolic, AstraZeneca, BioPharmaceuticals R&D, Gothenburg, UK
| | - Li-Ming Gan
- Research and Early Clinical Development, Cardiovascular, Renal and Metabolism, AstraZeneca, BioPharmaceuticals R&D, Gothenburg, Sweden.,Department of Molecular and Clinical Medicine, Department of Cardiology, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Magnus Söderberg
- Cardiovascular, Renal and Metabolic Safety, Clinical Pharmacology and Safety Sciences, AstraZeneca, BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Pernille B L Hansen
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolic, AstraZeneca, BioPharmaceuticals R&D, Gothenburg, UK.,Wallenberg Center for Molecular and Translational Medicine, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kevin J Woollard
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolic, AstraZeneca, BioPharmaceuticals R&D, Gothenburg, UK. .,Centre for Inflammatory Disease, Imperial College London, London, UK.
| |
Collapse
|
11
|
Mysore V, Tahir S, Furuhashi K, Arora J, Rosetti F, Cullere X, Yazbeck P, Sekulic M, Lemieux ME, Raychaudhuri S, Horwitz BH, Mayadas TN. Monocytes transition to macrophages within the inflamed vasculature via monocyte CCR2 and endothelial TNFR2. J Exp Med 2022; 219:e20210562. [PMID: 35404389 PMCID: PMC9006314 DOI: 10.1084/jem.20210562] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 11/16/2021] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Monocytes undergo phenotypic and functional changes in response to inflammatory cues, but the molecular signals that drive different monocyte states remain largely undefined. We show that monocytes acquire macrophage markers upon glomerulonephritis and may be derived from CCR2+CX3CR1+ double-positive monocytes, which are preferentially recruited, dwell within glomerular capillaries, and acquire proinflammatory characteristics in the nephritic kidney. Mechanistically, the transition to immature macrophages begins within the vasculature and relies on CCR2 in circulating cells and TNFR2 in parenchymal cells, findings that are recapitulated in vitro with monocytes cocultured with TNF-TNFR2-activated endothelial cells generating CCR2 ligands. Single-cell RNA sequencing of cocultures defines a CCR2-dependent monocyte differentiation path associated with the acquisition of immune effector functions and generation of CCR2 ligands. Immature macrophages are detected in the urine of lupus nephritis patients, and their frequency correlates with clinical disease. In conclusion, CCR2-dependent functional specialization of monocytes into macrophages begins within the TNF-TNFR2-activated vasculature and may establish a CCR2-based autocrine, feed-forward loop that amplifies renal inflammation.
Collapse
Affiliation(s)
- Vijayashree Mysore
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Suhail Tahir
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Kazuhiro Furuhashi
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Jatin Arora
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Florencia Rosetti
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Xavier Cullere
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Pascal Yazbeck
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Miroslav Sekulic
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | | | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Centre for Genetics and Genomics Versus Arthritis, The University of Manchester, Manchester, UK
| | - Bruce H. Horwitz
- Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Tanya N. Mayadas
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
12
|
Rousselle A, Sonnemann J, Amann K, Mildner A, Lodka D, Kling L, Bieringer M, Schneider U, Leutz A, Enghard P, Kettritz R, Schreiber A. CSF2-dependent monocyte education in the pathogenesis of ANCA-induced glomerulonephritis. Ann Rheum Dis 2022; 81:1162-1172. [PMID: 35418479 PMCID: PMC9279749 DOI: 10.1136/annrheumdis-2021-221984] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/01/2022] [Indexed: 12/15/2022]
Abstract
Objectives Myeloid cell activation by antineutrophil cytoplasmic antibody (ANCA) is pivotal for necrotising vasculitis, including necrotising crescentic glomerulonephritis (NCGN). In contrast to neutrophils, the contribution of classical monocyte (CM) and non-classical monocyte (NCM) remains poorly defined. We tested the hypothesis that CMs contribute to antineutrophil cytoplasmic antibody-associated vasculitis (AAV) and that colony-stimulating factor-2 (CSF2, granulocyte-macrophage colony-stimulating factor (GM-CSF)) is an important monocyte-directed disease modifier. Methods Myeloperoxidase (MPO)-immunised MPO−/− mice were transplanted with haematopoietic cells from wild-type (WT) mice, C–C chemokine receptor 2 (CCR2)−/− mice to abrogate CM, or transcription factor CCAAT–enhancer-binding protein beta (C/EBPβ)−/− mice to reduce NCM, respectively. Monocytes were stimulated with CSF2, and CSF2 receptor subunit beta (CSF2rb)-deficient mice were used. Urinary monocytes and CSF2 were quantified and kidney Csf2 expression was analysed. CSF2-blocking antibody was used in the nephrotoxic nephritis (NTN) model. Results Compared with WT mice, CCR2−/− chimeric mice showed reduced circulating CM and were protected from NCGN. C/EBPβ−/− chimeric mice lacked NCM but developed NCGN similar to WT chimeric mice. Kidney and urinary CSF2 were upregulated in AAV mice. CSF2 increased the ability of ANCA-stimulated monocytes to generate interleukin-1β and to promote TH17 effector cell polarisation. CSF2rb−/− chimeric mice harboured reduced numbers of kidney TH17 cells and were protected from NCGN. CSF2 neutralisation reduced renal damage in the NTN model. Finally, patients with active AAV displayed increased urinary CM numbers, CSF2 levels and expression of GM-CSF in infiltrating renal cells. Conclusions CMs but not NCMs are important for inducing kidney damage in AAV. CSF2 is a crucial pathological factor by modulating monocyte proinflammatory functions and thereby TH17 cell polarisation.
Collapse
Affiliation(s)
- Anthony Rousselle
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Janis Sonnemann
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kerstin Amann
- Department of Nephropathology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Alexander Mildner
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Dörte Lodka
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lovis Kling
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Bieringer
- Department of Cardiology and Nephrology, HELIOS Klinik Berlin-Buch, Berlin, Germany
| | - Udo Schneider
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Achim Leutz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Philipp Enghard
- Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ralph Kettritz
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Adrian Schreiber
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany .,Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
13
|
Kitching AR, Hickey MJ. Immune cell behaviour and dynamics in the kidney - insights from in vivo imaging. Nat Rev Nephrol 2022; 18:22-37. [PMID: 34556836 DOI: 10.1038/s41581-021-00481-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 02/08/2023]
Abstract
The actions of immune cells within the kidney are of fundamental importance in kidney homeostasis and disease. In disease settings such as acute kidney injury, anti-neutrophil cytoplasmic antibody-associated vasculitis, lupus nephritis and renal transplant rejection, immune cells resident within the kidney and those recruited from the circulation propagate inflammatory responses with deleterious effects on the kidney. As in most forms of inflammation, intravital imaging - particularly two-photon microscopy - has been critical to our understanding of immune cell responses in the renal microvasculature and interstitium, enabling visualization of immune cell dynamics over time rather than statically. These studies have demonstrated differences in the recruitment and function of these cells from those in more conventional vascular beds, and provided a wealth of information on the actions of blood-borne immune cells such as neutrophils, monocytes and T cells, as well as kidney-resident mononuclear phagocytes, in a range of diseases affecting different kidney compartments. In particular, in vivo imaging has furthered our understanding of leukocyte function within the glomerulus in acute glomerulonephritis, and in the tubulointerstitium and interstitial microvasculature during acute kidney injury and following transplantation, revealing mechanisms of immune surveillance, antigen presentation and inflammation in the kidney.
Collapse
Affiliation(s)
- A Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia. .,Departments of Nephrology and Paediatric Nephrology, Monash Medical Centre, Clayton, Victoria, Australia.
| | - Michael J Hickey
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| |
Collapse
|
14
|
Prendecki M, Gulati K, Turner-Stokes T, Bhangal G, Chiappo D, Woollard K, Cook HT, Tam FW, Roufosse C, Pusey CD, McAdoo SP. Characterisation of an enhanced preclinical model of experimental MPO-ANCA autoimmune vasculitis. J Pathol 2021; 255:107-119. [PMID: 34124781 DOI: 10.1002/path.5746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/01/2021] [Accepted: 06/11/2021] [Indexed: 11/11/2022]
Abstract
Experimental autoimmune vasculitis (EAV) is a model of antineutrophil cytoplasm antibody (ANCA)-associated vasculitis (AAV) induced by immunisation of susceptible rat strains with myeloperoxidase (MPO). Animals develop circulating MPO-ANCA, pulmonary haemorrhage, and glomerulonephritis, although renal injury is mild and recovers spontaneously without treatment. In this study we aimed to augment the severity of glomerulonephritis. Following induction of EAV on day 0, a sub-nephritogenic dose of nephrotoxic serum (NTS) containing heterologous antibodies to glomerular basement membrane was administered on day 14. This resulted in a significant increase in disease severity at day 28 compared to MPO immunisation alone - with more urinary abnormalities, infiltrating glomerular leucocytes, and crescent formation that progressed to glomerular and tubulointerstitial scarring by day 56, recapitulating important features of human disease. Importantly, the glomerulonephritis remained pauci-immune, and was strictly dependent on the presence of autoimmunity to MPO, as there was no evidence of renal disease following administration of sub-nephritogenic NTS alone or after immunisation with a control protein in place of MPO. Detailed phenotyping of glomerular leucocytes identified an early infiltrate of non-classical monocytes following NTS administration that, in the presence of autoimmunity to MPO, may initiate the subsequent influx of classical monocytes which augment glomerular injury. We also showed that this model can be used to test novel therapeutics by using a small molecule kinase inhibitor (fostamatinib) that rapidly attenuated both glomerular and pulmonary injury over a 4-day treatment period. We believe that this enhanced model of MPO-AAV will prove useful for the study of glomerular leucocyte behaviour and novel therapeutics in AAV in the future. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Maria Prendecki
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Kavita Gulati
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Tabitha Turner-Stokes
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Gurjeet Bhangal
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Derick Chiappo
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Kevin Woollard
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - H Terence Cook
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Frederick Wk Tam
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Candice Roufosse
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Charles D Pusey
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Stephen P McAdoo
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK
| |
Collapse
|
15
|
Martins JR, Haenni D, Bugarski M, Polesel M, Schuh C, Hall AM. Intravital kidney microscopy: entering a new era. Kidney Int 2021; 100:527-535. [PMID: 34015315 DOI: 10.1016/j.kint.2021.02.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/01/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
The development of intravital imaging with multiphoton microscopy has had a major impact on kidney research. It provides the unique opportunity to visualize dynamic behavior of cells and organelles in their native environment and to relate this to the complex 3-dimensional structure of the organ. Moreover, changes in cell/organelle function can be followed in real time in response to physiological interventions or disease-causing insults. However, realizing the enormous potential of this exciting approach has necessitated overcoming several substantial practical hurdles. In this article, we outline the nature of these challenges and how a variety of technical advances have provided effective solutions. In particular, improvements in laser/microscope technology, fluorescent probes, transgenic animals, and abdominal windows are collectively making previously opaque processes visible. Meanwhile, the rise of machine learning-based image analysis is facilitating the rapid generation of large amounts of quantitative data, amenable to deeper statistical interrogation. Taken together, the increased capabilities of multiphoton imaging are opening up huge new possibilities to study structure-function relationships in the kidney in unprecedented detail. In addition, they are yielding important new insights into cellular mechanisms of tissue damage, repair, and adaptive remodeling during disease states. Thus, intravital microscopy is truly entering an exciting new era in translational kidney research.
Collapse
Affiliation(s)
- Joana R Martins
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Dominik Haenni
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland; Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Milica Bugarski
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | | | - Claus Schuh
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Andrew M Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland; Department of Nephrology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
16
|
Kiefer J, Zeller J, Bogner B, Hörbrand IA, Lang F, Deiss E, Winninger O, Fricke M, Kreuzaler S, Smudde E, Huber-Lang M, Peter K, Woollard KJ, Eisenhardt SU. An Unbiased Flow Cytometry-Based Approach to Assess Subset-Specific Circulating Monocyte Activation and Cytokine Profile in Whole Blood. Front Immunol 2021; 12:641224. [PMID: 33981302 PMCID: PMC8108699 DOI: 10.3389/fimmu.2021.641224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Monocytes are the third most frequent type of leukocytes in humans, linking innate and adaptive immunity and are critical drivers in many inflammatory diseases. Based on the differential expression of surface antigens, three monocytic subpopulations have been suggested in humans and two in rats with varying inflammatory and phenotype characteristics. Potential intervention strategies that aim to manipulate these cells require an in-depth understanding of monocyte behavior under different conditions. However, monocytes are highly sensitive to their specific activation state and expression of surface markers, which can change during cell isolation and purification. Thus, there is an urgent need for an unbiased functional analysis of activation in monocyte subtypes, which is not affected by the isolation procedure. Here, we present a flow cytometry-based protocol for evaluating subset-specific activation and cytokine expression of circulating blood monocytes both in humans and rats using small whole blood samples (50 - 100 μL). In contrast to previously described monocyte isolation and flow cytometry visualization methods, the presented approach virtually leaves monocyte subsets in a resting state or fixes them in their current state and allows for an unbiased functional endpoint analysis without prior cell isolation. This protocol is a comprehensive tool for studying differential monocyte regulation in the inflammatory and allogeneic immune response in vitro and vivo.
Collapse
Affiliation(s)
- Jurij Kiefer
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Medical Faculty of the University of Freiburg, Freiburg, Germany
| | - Johannes Zeller
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Medical Faculty of the University of Freiburg, Freiburg, Germany
| | - Balázs Bogner
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Medical Faculty of the University of Freiburg, Freiburg, Germany
| | - Isabel A Hörbrand
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Medical Faculty of the University of Freiburg, Freiburg, Germany
| | - Friederike Lang
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Medical Faculty of the University of Freiburg, Freiburg, Germany
| | - Emil Deiss
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Medical Faculty of the University of Freiburg, Freiburg, Germany
| | - Oscar Winninger
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Medical Faculty of the University of Freiburg, Freiburg, Germany
| | - Mark Fricke
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Medical Faculty of the University of Freiburg, Freiburg, Germany
| | - Sheena Kreuzaler
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Medical Faculty of the University of Freiburg, Freiburg, Germany
| | - Eva Smudde
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Medical Faculty of the University of Freiburg, Freiburg, Germany
| | - Markus Huber-Lang
- Department of Traumatology, Hand, Plastic, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology, Department of Cardiometabolic Health, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Kevin J Woollard
- Centre of Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Steffen U Eisenhardt
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Medical Faculty of the University of Freiburg, Freiburg, Germany
| |
Collapse
|