1
|
Zhao Q, Huang Y, Fu N, Cui C, Peng X, Kang H, Xiao J, Ke G. Podocyte senescence: from molecular mechanisms to therapeutics. Ren Fail 2024; 46:2398712. [PMID: 39248407 PMCID: PMC11385655 DOI: 10.1080/0886022x.2024.2398712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
As an important component of the glomerular filtration membrane, the state of the podocytes is closely related to kidney function, they are also key cells involved in aging and play a central role in the damage caused by renal aging. Therefore, understanding the aging process of podocytes will allow us to understand their susceptibility to injury and identify targeted protective mechanisms. In fact, the process of physiological aging itself can induce podocyte senescence. Pathological stresses, such as oxidative stress, mitochondrial damage, secretion of senescence-associated secretory phenotype, reduced autophagy, oncogene activation, altered transcription factors, DNA damage response, and other factors, play a crucial role in inducing premature senescence and accelerating aging. Senescence-associated-β-galactosidase (SA-β-gal) is a marker of aging, and β-hydroxybutyric acid treatment can reduce SA-β-gal activity to alleviate cellular senescence and damage. In addition, CCAAT/enhancer-binding protein-α, transforming growth factor-β signaling, glycogen synthase kinase-3β, cycle-dependent kinase, programmed cell death protein 1, and plasminogen activator inhibitor-1 are closely related to aging. The absence or elevation of these factors can affect aging through different mechanisms. Podocyte injury is not an independent process, and injured podocytes interact with the surrounding epithelial cells or other kidney cells to mediate the injury or loss of podocytes. In this review, we discuss the manifestations, molecular mechanisms, biomarkers, and therapeutic drugs for podocyte senescence. We included elamipretide, lithium, calorie restriction, rapamycin; and emerging treatment strategies, such as gene and immune therapies. More importantly, we summarize how podocyte interact with other kidney cells.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongzhang Huang
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ningying Fu
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Caixia Cui
- Department of Nephrology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Xuan Peng
- Department of Nephrology, Affiliated Hospital/Clinical Medical College of Chengdu University, Chengdu, China
| | - Haiyan Kang
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jie Xiao
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guibao Ke
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Unger Avila P, Padvitski T, Leote AC, Chen H, Saez-Rodriguez J, Kann M, Beyer A. Gene regulatory networks in disease and ageing. Nat Rev Nephrol 2024; 20:616-633. [PMID: 38867109 DOI: 10.1038/s41581-024-00849-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 06/14/2024]
Abstract
The precise control of gene expression is required for the maintenance of cellular homeostasis and proper cellular function, and the declining control of gene expression with age is considered a major contributor to age-associated changes in cellular physiology and disease. The coordination of gene expression can be represented through models of the molecular interactions that govern gene expression levels, so-called gene regulatory networks. Gene regulatory networks can represent interactions that occur through signal transduction, those that involve regulatory transcription factors, or statistical models of gene-gene relationships based on the premise that certain sets of genes tend to be coexpressed across a range of conditions and cell types. Advances in experimental and computational technologies have enabled the inference of these networks on an unprecedented scale and at unprecedented precision. Here, we delineate different types of gene regulatory networks and their cell-biological interpretation. We describe methods for inferring such networks from large-scale, multi-omics datasets and present applications that have aided our understanding of cellular ageing and disease mechanisms.
Collapse
Affiliation(s)
- Paula Unger Avila
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Tsimafei Padvitski
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Ana Carolina Leote
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - He Chen
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Julio Saez-Rodriguez
- Faculty of Medicine and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg University, Heidelberg, Germany
| | - Martin Kann
- Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Andreas Beyer
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
- Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
| |
Collapse
|
3
|
Almalki WH, Salman Almujri S. Oxidative stress and senescence in aging kidneys: the protective role of SIRT1. EXCLI JOURNAL 2024; 23:1030-1067. [PMID: 39391060 PMCID: PMC11464868 DOI: 10.17179/excli2024-7519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/07/2024] [Indexed: 10/12/2024]
Abstract
Aging leads to a gradual decline in kidney function, making the kidneys increasingly vulnerable to various diseases. Oxidative stress, together with cellular senescence, has been established as paramount in promoting the aging process of the kidney. Oxidative stress, defined as an imbalance between ROS formation and antioxidant defense mechanisms, has been implicated in the kidney's cellular injury, inflammation, and premature senescence. Concurrently, the accumulation of SCs in the kidney also exacerbates oxidative stress via the secretion of pro-inflammatory and tissue-damaging factors as the senescence-associated secretory phenotype (SASP). Recently, SIRT1, a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase, has been pivotal in combating oxidative stress and cellular senescence in the aging kidney. SIRT1 acts as a potential antioxidant molecule through myriad pathways that influence diverse transcription factors and enzymes essential in maintaining redox homeostasis. SIRT1 promotes longevity and renal health by modulating the acetylation of cell cycle and senescence pathways. This review covers the complex relationship between oxidative stress and cellular senescence in the aging kidney, emphasizing the protective role of SIRT1. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Aseer, Saudi Arabia
| |
Collapse
|
4
|
Solovev I, Sergeeva A, Geraskina A, Shaposhnikov M, Vedunova M, Borysova O, Moskalev A. Aging and physiological barriers: mechanisms of barrier integrity changes and implications for age-related diseases. Mol Biol Rep 2024; 51:917. [PMID: 39158744 DOI: 10.1007/s11033-024-09833-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
The phenomenon of compartmentalization is one of the key traits of life. Biological membranes and histohematic barriers protect the internal environment of the cell and organism from endogenous and exogenous impacts. It is known that the integrity of these barriers decreases with age due to the loss of homeostasis, including age-related gene expression profile changes and the abnormal folding/assembly, crosslinking, and cleavage of barrier-forming macromolecules in addition to morphological changes in cells and tissues. The critical molecular and cellular mechanisms involved in physiological barrier integrity maintenance and aging-associated changes in their functioning are reviewed on different levels: molecular, organelle, cellular, tissue (histohematic, epithelial, and endothelial barriers), and organ one (skin). Biogerontology, which studies physiological barriers in the aspect of age, is still in its infancy; data are being accumulated, but there is no talk of the synthesis of complex theories yet. This paper mainly presents the mechanisms that will become targets of anti-aging therapy only in the future, possibly: pharmacological, cellular, and gene therapies, including potential geroprotectors, hormetins, senomorphic drugs, and senolytics.
Collapse
Affiliation(s)
- Ilya Solovev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st, Syktyvkar, 167982, Russian Federation
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp, Syktyvkar, 167001, Russian Federation
| | - Alena Sergeeva
- Lobachevsky State University, Nizhny Novgorod, 603022, Russian Federation
| | | | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st, Syktyvkar, 167982, Russian Federation
| | - Maria Vedunova
- Laboratory of genetics and epigenetics of aging, Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Moscow, 129226, Russian Federation
| | | | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st, Syktyvkar, 167982, Russian Federation.
- Lobachevsky State University, Nizhny Novgorod, 603022, Russian Federation.
- Laboratory of genetics and epigenetics of aging, Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Moscow, 129226, Russian Federation.
| |
Collapse
|
5
|
Zhan T, Zou Y, Han Z, Tian X, Chen M, Liu J, Yang X, Zhu Q, Liu M, Chen W, Chen M, Huang X, Tan J, Liu W, Tian X. Single-cell sequencing combined with spatial transcriptomics reveals that the IRF7 gene in M1 macrophages inhibits the occurrence of pancreatic cancer by regulating lipid metabolism-related mechanisms. Clin Transl Med 2024; 14:e1799. [PMID: 39118300 PMCID: PMC11310283 DOI: 10.1002/ctm2.1799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
AIM The main focus of this study is to explore the molecular mechanism of IRF7 regulation on RPS18 transcription in M1-type macrophages in pancreatic adenocarcinoma (PAAD) tissue, as well as the transfer of RPS18 by IRF7 via exosomes to PAAD cells and the regulation of ILF3 expression. METHODS By utilising single-cell RNA sequencing (scRNA-seq) data and spatial transcriptomics (ST) data from the Gene Expression Omnibus database, we identified distinct cell types with significant expression differences in PAAD tissue. Among these cell types, we identified those closely associated with lipid metabolism. The differentially expressed genes within these cell types were analysed, and target genes relevant to prognosis were identified. Flow cytometry was employed to assess the expression levels of target genes in M1 and M2 macrophages. Cell lines with target gene knockout were constructed using CRISPR/Cas9 editing technology, and cell lines with target gene knockdown and overexpression were established using lentiviral vectors. Additionally, a co-culture model of exosomes derived from M1 macrophages with PAAD cells was developed. The impact of M1 macrophage-derived exosomes on the lipid metabolism of PAAD cells in the model was evaluated through metabolomics analysis. The effects of M1 macrophage-derived exosomes on the viability, proliferation, division, migration and apoptosis of PAAD cells were assessed using MTT assay, flow cytometry, EdU assay, wound healing assay, Transwell assay and TUNEL staining. Furthermore, a mouse PAAD orthotopic implantation model was established, and bioluminescence imaging was utilised to assess the influence of M1 macrophage-derived exosomes on the intratumoural formation capacity of PAAD cells, as well as measuring tumour weight and volume. The expression of proliferation-associated proteins in tumour tissues was examined using immunohistochemistry. RESULTS Through combined analysis of scRNA-seq and ST technologies, we discovered a close association between M1 macrophages in PAAD samples and lipid metabolism signals, as well as a negative correlation between M1 macrophages and cancer cells. The construction of a prognostic risk score model identified RPS18 and IRF7 as two prognostically relevant genes in M1 macrophages, exhibiting negative and positive correlations, respectively. Mechanistically, it was found that IRF7 in M1 macrophages can inhibit the transcription of RPS18, reducing the transfer of RPS18 to PAAD cells via exosomes, consequently affecting the expression of ILF3 in PAAD cells. IRF7/RPS18 in M1 macrophages can also suppress lipid metabolism, cell viability, proliferation, migration, invasion and intratumoural formation capacity of PAAD cells, while promoting cell apoptosis. CONCLUSION Overexpression of IRF7 in M1 macrophages may inhibit RPS18 transcription, reduce the transfer of RPS18 from M1 macrophage-derived exosomes to PAAD cells, thereby suppressing ILF3 expression in PAAD cells, inhibiting the lipid metabolism pathway, and curtailing the viability, proliferation, migration, invasion of PAAD cells, as well as enhancing cell apoptosis, ultimately inhibiting tumour formation in PAAD cells in vivo. Targeting IRF7/RPS18 in M1 macrophages could represent a promising immunotherapeutic approach for PAAD in the future.
Collapse
Affiliation(s)
- Ting Zhan
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Yanli Zou
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Zheng Han
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - XiaoRong Tian
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Mengge Chen
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jiaxi Liu
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Xiulin Yang
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Qingxi Zhu
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Meng Liu
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Wei Chen
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Mingtao Chen
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Xiaodong Huang
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jie Tan
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Weijie Liu
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Xia Tian
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| |
Collapse
|
6
|
Phillips PCA, de Sousa Loreto Aresta Branco M, Cliff CL, Ward JK, Squires PE, Hills CE. Targeting senescence to prevent diabetic kidney disease: Exploring molecular mechanisms and potential therapeutic targets for disease management. Diabet Med 2024:e15408. [PMID: 38995865 DOI: 10.1111/dme.15408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND/AIMS As a microvascular complication, diabetic kidney disease is the leading cause of chronic kidney disease and end-stage renal disease worldwide. While the underlying pathophysiology driving transition of diabetic kidney disease to renal failure is yet to be fully understood, recent studies suggest that cellular senescence is central in disease development and progression. Consequently, understanding the molecular mechanisms which initiate and drive senescence in response to the diabetic milieu is crucial in developing targeted therapies that halt progression of renal disease. METHODS To understand the mechanistic pathways underpinning cellular senescence in the context of diabetic kidney disease, we reviewed the literature using PubMed for English language articles that contained key words related to senescence, inflammation, fibrosis, senescence-associated secretory phenotype (SASP), autophagy, and diabetes. RESULTS Aberrant accumulation of metabolically active senescent cells is a notable event in the progression of diabetic kidney disease. Through autocrine- and paracrine-mediated mechanisms, resident senescent cells potentiate inflammation and fibrosis through increased expression and secretion of pro-inflammatory cytokines, chemoattractants, recruitment of immune cells, myofibroblast activation, and extracellular matrix remodelling. Compounds that eliminate senescent cells and/or target the SASP - including senolytic and senomorphics drugs - demonstrate promising results in reducing the senescent cell burden and associated pro-inflammatory effect. CONCLUSIONS Here we evidence the link between senescence and diabetic kidney disease and highlight underlying molecular mechanisms and potential therapeutic targets that could be exploited to delay disease progression and improve outcomes for individuals with the disease. Trials are now required to translate their therapeutic potential to a clinical setting.
Collapse
Affiliation(s)
| | | | | | - Joanna Kate Ward
- Joseph Banks Laboratories, College of Health and Science, Lincoln, UK
| | | | | |
Collapse
|
7
|
Zhang Y, Yu C, Li X. Kidney Aging and Chronic Kidney Disease. Int J Mol Sci 2024; 25:6585. [PMID: 38928291 PMCID: PMC11204319 DOI: 10.3390/ijms25126585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The process of aging inevitably leads to an increase in age-related comorbidities, including chronic kidney disease (CKD). In many aspects, CKD can be considered a state of accelerated and premature aging. Aging kidney and CKD have numerous common characteristic features, ranging from pathological presentation and clinical manifestation to underlying mechanisms. The shared mechanisms underlying the process of kidney aging and the development of CKD include the increase in cellular senescence, the decrease in autophagy, mitochondrial dysfunction, and the alterations of epigenetic regulation, suggesting the existence of potential therapeutic targets that are applicable to both conditions. In this review, we provide a comprehensive overview of the common characteristics between aging kidney and CKD, encompassing morphological changes, functional alterations, and recent advancements in understanding the underlying mechanisms. Moreover, we discuss potential therapeutic strategies for targeting senescent cells in both the aging process and CKD.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Chen Yu
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, China;
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
8
|
McKinzie SR, Kaverina N, Schweickart RA, Chaney CP, Eng DG, Pereira BMV, Kestenbaum B, Pippin JW, Wessely O, Shankland SJ. Podocytes from hypertensive and obese mice acquire an inflammatory, senescent, and aged phenotype. Am J Physiol Renal Physiol 2024; 326:F644-F660. [PMID: 38420674 PMCID: PMC11208020 DOI: 10.1152/ajprenal.00417.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
Patients with hypertension or obesity can develop glomerular dysfunction characterized by injury and depletion of podocytes. To better understand the molecular processes involved, young mice were treated with either deoxycorticosterone acetate (DOCA) or fed a high-fat diet (HFD) to induce hypertension or obesity, respectively. The transcriptional changes associated with these phenotypes were measured by unbiased bulk mRNA sequencing of isolated podocytes from experimental models and their respective controls. Key findings were validated by immunostaining. In addition to a decrease in canonical proteins and reduced podocyte number, podocytes from both hypertensive and obese mice exhibited a sterile inflammatory phenotype characterized by increases in NLR family pyrin domain containing 3 (NLRP3) inflammasome, protein cell death-1, and Toll-like receptor pathways. Finally, although the mice were young, podocytes in both models exhibited increased expression of senescence and aging genes, including genes consistent with a senescence-associated secretory phenotype. However, there were differences between the hypertension- and obesity-associated senescence phenotypes. Both show stress-induced podocyte senescence characterized by increased p21 and p53. Moreover, in hypertensive mice, this is superimposed upon age-associated podocyte senescence characterized by increased p16 and p19. These results suggest that senescence, aging, and inflammation are critical aspects of the podocyte phenotype in experimental hypertension and obesity in mice.NEW & NOTEWORTHY Hypertension and obesity can lead to glomerular dysfunction in patients, causing podocyte injury and depletion. Here, young mice given deoxycorticosterone acetate or a high-fat diet to induce hypertension or obesity, respectively. mRNA sequencing of isolated podocytes showed transcriptional changes consistent with senescence, a senescent-associated secretory phenotype, and aging, which was confirmed by immunostaining. Ongoing studies are determining the mechanistic roles of the accelerated aging podocyte phenotype in experimental hypertension and obesity.
Collapse
Affiliation(s)
- Sierra R McKinzie
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Natalya Kaverina
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, United States
| | | | - Christopher P Chaney
- Department of Medicine, University of Texas Southwestern, Dallas, Texas, United States
| | - Diana G Eng
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, United States
| | | | - Bryan Kestenbaum
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Jeffrey W Pippin
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Oliver Wessely
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Stuart J Shankland
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, United States
| |
Collapse
|
9
|
Kovalik ME, Dacanay MA, Crowley SD, Hall G. Swollen Feet: Considering the Paradoxical Roles of Interleukins in Nephrotic Syndrome. Biomedicines 2024; 12:738. [PMID: 38672094 PMCID: PMC11048099 DOI: 10.3390/biomedicines12040738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024] Open
Abstract
Interleukins are a family of 40 bioactive peptides that act through cell surface receptors to induce a variety of intracellular responses. While interleukins are most commonly associated with destructive, pro-inflammatory signaling in cells, some also play a role in promoting cellular resilience and survival. This review will highlight recent evidence of the cytoprotective actions of the interleukin 1 receptor (IL-1R)- and common gamma chain receptor (IL-Rγc)-signaling cytokines in nephrotic syndrome (NS). NS results from the injury or loss of glomerular visceral epithelial cells (i.e., podocytes). Although the causes of podocyte dysfunction vary, it is clear that pro-inflammatory cytokines play a significant role in regulating the propagation, duration and severity of disease. Pro-inflammatory cytokines signaling through IL-1R and IL-Rγc have been shown to exert anti-apoptotic effects in podocytes through the phosphoinositol-3-kinase (PI-3K)/AKT pathway, highlighting the potential utility of IL-1R- and IL-Rγc-signaling interleukins for the treatment of podocytopathy in NS. The paradoxical role of interleukins as drivers and mitigators of podocyte injury is complex and ill-defined. Emerging evidence of the cytoprotective role of some interleukins in NS highlights the urgent need for a nuanced understanding of their pro-survival benefits and reveals their potential as podocyte-sparing therapeutics for NS.
Collapse
Affiliation(s)
- Maria E. Kovalik
- Division of Nephrology, Duke University, Durham, NC 27701, USA; (M.E.K.)
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27710, USA
| | - Monique A. Dacanay
- Division of Nephrology, Duke University, Durham, NC 27701, USA; (M.E.K.)
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27710, USA
| | - Steven D. Crowley
- Division of Nephrology, Duke University, Durham, NC 27701, USA; (M.E.K.)
| | - Gentzon Hall
- Division of Nephrology, Duke University, Durham, NC 27701, USA; (M.E.K.)
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27710, USA
| |
Collapse
|
10
|
Hall G. Interleukin-15 in kidney disease and therapeutics. Curr Opin Nephrol Hypertens 2024; 33:174-180. [PMID: 38164877 PMCID: PMC10893218 DOI: 10.1097/mnh.0000000000000964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW Interleukin 15 (IL-15) is a member of the IL-2 family of common gamma chain receptor cytokines with well described anti-inflammatory, pro-survival and pro-proliferative signaling properties. The cytoprotective role of IL-15 in the kidney is now coming into focus with recent reports of its beneficial actions in various forms of kidney disease. This review will summarize what is currently known about IL-15 signaling in the kidney and highlight recent evidence of its beneficial effects on kidney physiology. RECENT FINDINGS IL-15 and its heterotrimeric receptor are expressed throughout the kidney. Like all IL-2 family cytokines, IL-15 can activate signaling through the Janus Kinase (JAK)/Signal transducer of activated T-cells (STAT), phosphoinositol-3 kinase (PI-3K)/AKT and mitogen activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathways and recent evidence suggests that STAT5B is an essential transcriptional mediator of prosurvival signaling in glomerular visceral epithelial cells (i.e. podocytes). IL-15 has also been shown to suppress pro-apoptotic signaling in models of acute kidney injury and pro-fibrotic signaling in models of chronic kidney disease. SUMMARY The cytoprotective properties of IL-15 suggest that it may have potential as a nonimmunosuppresive therapeutic for kidney disease. A novel class of IL-15 immunotherapies has emerged for the treatment cancer and some have demonstrated efficacy in clinical trials. These well tolerated IL-15 agonists could possibly be repurposed for the treatment of kidney disease and warrant further exploration.
Collapse
Affiliation(s)
- Gentzon Hall
- Division of Nephrology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
11
|
Chrysopoulou M, Rinschen MM. Metabolic Rewiring and Communication: An Integrative View of Kidney Proximal Tubule Function. Annu Rev Physiol 2024; 86:405-427. [PMID: 38012048 DOI: 10.1146/annurev-physiol-042222-024724] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The kidney proximal tubule is a key organ for human metabolism. The kidney responds to stress with altered metabolite transformation and perturbed metabolic pathways, an ultimate cause for kidney disease. Here, we review the proximal tubule's metabolic function through an integrative view of transport, metabolism, and function, and embed it in the context of metabolome-wide data-driven research. Function (filtration, transport, secretion, and reabsorption), metabolite transformation, and metabolite signaling determine kidney metabolic rewiring in disease. Energy metabolism and substrates for key metabolic pathways are orchestrated by metabolite sensors. Given the importance of renal function for the inner milieu, we also review metabolic communication routes with other organs. Exciting research opportunities exist to understand metabolic perturbation of kidney and proximal tubule function, for example, in hypertension-associated kidney disease. We argue that, based on the integrative view outlined here, kidney diseases without genetic cause should be approached scientifically as metabolic diseases.
Collapse
Affiliation(s)
| | - Markus M Rinschen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark;
- III. Department of Medicine and Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Fang Z, Lee K, He JC. Injury in nonaged podocytes as an accelerator of glomerular aging. Am J Physiol Renal Physiol 2024; 326:F118-F119. [PMID: 38031730 DOI: 10.1152/ajprenal.00344.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Zhengying Fang
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Kyung Lee
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - John Cijiang He
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Renal Section, James J. Peters Veterans Affair Medical Center, Bronx, New York, United States
| |
Collapse
|
13
|
Veloso Pereira BM, Zeng Y, Maggiore JC, Schweickart RA, Eng DG, Kaverina N, McKinzie SR, Chang A, Loretz CJ, Thieme K, Hukriede NA, Pippin JW, Wessely O, Shankland SJ. Podocyte injury at young age causes premature senescence and worsens glomerular aging. Am J Physiol Renal Physiol 2024; 326:F120-F134. [PMID: 37855038 PMCID: PMC11198990 DOI: 10.1152/ajprenal.00261.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023] Open
Abstract
As life expectancy continues to rise, age-related diseases are becoming more prevalent. For example, proteinuric glomerular diseases typified by podocyte injury have worse outcomes in the elderly compared with young patients. However, the reasons are not well understood. We hypothesized that injury to nonaged podocytes induces senescence, which in turn augments their aging processes. In primary cultured human podocytes, injury induced by a cytopathic antipodocyte antibody, adriamycin, or puromycin aminonucleoside increased the senescence-related genes CDKN2A (p16INK4a/p14ARF), CDKN2D (p19INK4d), and CDKN1A (p21). Podocyte injury in human kidney organoids was accompanied by increased expression of CDKN2A, CDKN2D, and CDKN1A. In young mice, experimental focal segmental glomerulosclerosis (FSGS) induced by adriamycin and antipodocyte antibody increased the glomerular expression of p16, p21, and senescence-associated β-galactosidase (SA-β-gal). To assess the long-term effects of early podocyte injury-induced senescence, we temporally followed young mice with experimental FSGS through adulthood (12 m of age) and middle age (18 m of age). p16 and Sudan black staining were higher at middle age in mice with earlier FSGS compared with age-matched mice that did not get FSGS when young. This was accompanied by lower podocyte density, reduced canonical podocyte protein expression, and increased glomerular scarring. These results are consistent with injury-induced senescence in young podocytes, leading to increased senescence of podocytes by middle age accompanied by lower podocyte lifespan and health span.NEW & NOTEWORTHY Glomerular function is decreased by aging. However, little is known about the molecular mechanisms involved in age-related glomerular changes and which factors could contribute to a worse glomerular aging process. Here, we reported that podocyte injury in young mice and culture podocytes induced senescence, a marker of aging, and accelerates glomerular aging when compared with healthy aging mice.
Collapse
Affiliation(s)
- Beatriz Maria Veloso Pereira
- Division of Nephrology, University of Washington, Seattle, Washington, United States
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
| | - Yuting Zeng
- Department of Chemistry, University of Washington, Seattle, Washington, United States
| | - Joseph C Maggiore
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | | | - Diana G Eng
- Division of Nephrology, University of Washington, Seattle, Washington, United States
| | - Natalya Kaverina
- Division of Nephrology, University of Washington, Seattle, Washington, United States
| | - Sierra R McKinzie
- Division of Nephrology, University of Washington, Seattle, Washington, United States
| | - Anthony Chang
- Department of Pathology, University of Chicago, Chicago, Illinois, United States
| | - Carol J Loretz
- Division of Nephrology, University of Washington, Seattle, Washington, United States
| | - Karina Thieme
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
| | - Neil A Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Jeffrey W Pippin
- Division of Nephrology, University of Washington, Seattle, Washington, United States
| | - Oliver Wessely
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Stuart J Shankland
- Division of Nephrology, University of Washington, Seattle, Washington, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States
| |
Collapse
|
14
|
Shu H, Zhang Z, Liu J, Chen P, Yang C, Wu Y, Wu D, Cao Y, Chu Y, Li L. Circular RNAs: An emerging precise weapon for diabetic nephropathy diagnosis and therapy. Biomed Pharmacother 2023; 168:115818. [PMID: 37939612 DOI: 10.1016/j.biopha.2023.115818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023] Open
Abstract
Diabetic nephropathy (DN) is a prevalent chronic microvascular complication associated with diabetes mellitus and represents a major cause of chronic kidney disease and renal failure. Current treatment strategies for DN primarily focus on symptom alleviation, lacking effective approaches to halt or reverse DN progression. Circular RNA (circRNA), characterized by a closed-loop structure, has emerged as a novel non-coding RNA regulator of gene expression, attributed to its conservation, stability, specificity, and multifunctionality. Dysregulation of circRNA expression is closely associated with DN progression, whereby circRNA impacts kidney cell injury by modulating cell cycle, differentiation, cell death, as well as influencing the release of inflammatory factors and stromal fibronectin expression. Consequently, circRNA is considered a predictive biomarker and a potential therapeutic target for DN. This review provides an overview of the latest research progress in the classification, functions, monitoring methods, and databases related to circRNA. The paper focuses on elucidating the impact and underlying mechanisms of circRNA on kidney cells under diabetic conditions, aiming to offer novel insights into the prevention, diagnosis, and treatment of DN.
Collapse
Affiliation(s)
- Haiying Shu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, China
| | - Jieting Liu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China.
| | - Peijian Chen
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Can Yang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yan Wu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Dan Wu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yanan Cao
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yanhui Chu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China.
| | - Luxin Li
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China.
| |
Collapse
|
15
|
Shankland SJ, Rule AD, Kutz JN, Pippin JW, Wessely O. Podocyte Senescence and Aging. KIDNEY360 2023; 4:1784-1793. [PMID: 37950369 PMCID: PMC10758523 DOI: 10.34067/kid.0000000000000284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
As the population in many industrial countries is aging, the risk, incidence, and prevalence of CKD increases. In the kidney, advancing age results in a progressive decrease in nephron number and an increase in glomerulosclerosis. In this review, we focus on the effect of aging on glomerular podocytes, the post-mitotic epithelial cells critical for the normal integrity and function of the glomerular filtration barrier. The podocytes undergo senescence and transition to a senescence-associated secretory phenotype typified by the production and secretion of inflammatory cytokines that can influence neighboring glomerular cells by paracrine signaling. In addition to senescence, the aging podocyte phenotype is characterized by ultrastructural and functional changes; hypertrophy; cellular, oxidative, and endoplasmic reticulum stress; reduced autophagy; and increased expression of aging genes. This results in a reduced podocyte health span and a shortened life span. Importantly, these changes in the pathways/processes characteristic of healthy podocyte aging are also often similar to pathways in the disease-induced injured podocyte. Finally, the better understanding of podocyte aging and senescence opens therapeutic options to slow the rate of podocyte aging and promote kidney health.
Collapse
Affiliation(s)
- Stuart J. Shankland
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
| | - Andrew D. Rule
- Division of Nephrology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - J. Nathan Kutz
- Department of Applied Mathematics, University of Washington, Seattle, Washington
| | - Jeffrey W. Pippin
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
| | - Oliver Wessely
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| |
Collapse
|
16
|
Wang T, Li C, Wang X, Liu F. MAGI2 ameliorates podocyte apoptosis of diabetic kidney disease through communication with TGF-β-Smad3/nephrin pathway. FASEB J 2023; 37:e23305. [PMID: 37950637 DOI: 10.1096/fj.202301058r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/15/2023] [Accepted: 10/27/2023] [Indexed: 11/13/2023]
Abstract
Podocytes, the key component of the glomerular filtration barrier (GFB), are gradually lost during the progression of diabetic kidney disease (DKD), severely compromising kidney functionality. The molecular mechanisms regulating the survival of podocytes in DKD are incompletely understood. Here, we show that membrane-associated guanylate kinase inverted 2 (MAGI2) is specifically expressed in renal podocytes, and promotes podocyte survival in DKD. We found that MAGI2 expression was downregulated in podocytes cultured with high-glucose in vitro, and in kidneys of db/db mice as well as DKD patients. Conversely, we found enforced expression of MAGI2 via AAV transduction protected podocytes from apoptosis, with concomitant improvement of renal functions. Mechanistically, we found that MAGI2 deficiency induced by high glucose levels activates TGF-β signaling to decrease the expression of anti-apoptotic proteins. These results indicate that MAGI2 protects podocytes from cell death, and can be harnessed therapeutically to improve renal function in diabetic kidney disease.
Collapse
Affiliation(s)
- Tingli Wang
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Li
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital & Institute, School of medicine, University of Electronic Science and Technology of China, Chengdu, China
- West China Hospital, Sichuan University, Chengdu, China
| | - Xiaofei Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Liu
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Yang C, Zhang Z, Liu J, Chen P, Li J, Shu H, Chu Y, Li L. Research progress on multiple cell death pathways of podocytes in diabetic kidney disease. Mol Med 2023; 29:135. [PMID: 37828444 PMCID: PMC10571269 DOI: 10.1186/s10020-023-00732-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Diabetic kidney disease (DKD) is the main cause of end-stage renal disease, and its clinical manifestations are progressive proteinuria, decreased glomerular filtration rate, and renal failure. The injury and death of glomerular podocytes are the keys to DKD. Currently, a variety of cell death modes have been identified in podocytes, including apoptosis, autophagy, endoplasmic reticulum (ER) stress, pyroptosis, necroptosis, ferroptosis, mitotic catastrophe, etc. The signaling pathways leading to these cell death processes are interconnected and can be activated simultaneously or in parallel. They are essential for cell survival and death that determine the fate of cells. With the deepening of the research on the mechanism of cell death, more and more researchers have devoted their attention to the underlying pathologic research and the drug therapy research of DKD. In this paper, we discussed the podocyte physiologic role and DKD processes. We also provide an overview of the types and specific mechanisms involved in each type of cell death in DKD, as well as related targeted therapy methods and drugs are reviewed. In the last part we discuss the complexity and potential crosstalk between various modes of cell death, which will help improve the understanding of podocyte death and lay a foundation for new and ideal targeted therapy strategies for DKD treatment in the future.
Collapse
Affiliation(s)
- Can Yang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China
- School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Jieting Liu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Peijian Chen
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Jialing Li
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Haiying Shu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Yanhui Chu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China.
| | - Luxin Li
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China.
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China.
| |
Collapse
|
18
|
Hayashi K. Targeting DNA Methylation in Podocytes to Overcome Chronic Kidney Disease. Keio J Med 2023; 72:67-76. [PMID: 37271519 DOI: 10.2302/kjm.2022-0017-ir] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The number of patients with chronic kidney disease (CKD) is on the rise worldwide, and there is urgent need for the development of effective plans against the increasing incidence of CKD. Podocytes, glomerular epithelial cells, are an integral part of the primary filtration unit of the kidney and form a slit membrane as a barrier to prevent proteinuria. The role of podocytes in the pathogenesis and progression of CKD is now recognized. Podocyte function depends on a specialized morphology with the arranged foot processes, which is directly related to their function. Epigenetic changes responsible for the regulation of gene expression related to podocyte morphology have been shown to be important in the pathogenesis of CKD. Although epigenetic mechanisms include DNA methylation, histone modifications, and RNA-based regulation, we have focused on DNA methylation changes because they are more stable than other epigenetic modifications. This review summarizes recent literature about the role of altered DNA methylation in the kidney, especially in glomerular podocytes, focusing on transcription factors and DNA damage responses that are closely associated with the formation of DNA methylation changes.
Collapse
Affiliation(s)
- Kaori Hayashi
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
19
|
Kaverina N, Schweickart RA, Chan GC, Maggiore JC, Eng DG, Zeng Y, McKinzie SR, Perry HS, Ali A, O’Connor C, Pereira BMV, Theberge AB, Vaughan JC, Loretz CJ, Chang A, Hukriede NA, Bitzer M, Pippin JW, Wessely O, Shankland SJ. Inhibiting NLRP3 signaling in aging podocytes improves their life- and health-span. Aging (Albany NY) 2023; 15:6658-6689. [PMID: 37487005 PMCID: PMC10415579 DOI: 10.18632/aging.204897] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023]
Abstract
The decrease in the podocyte's lifespan and health-span that typify healthy kidney aging cause a decrease in their normal structure, physiology and function. The ability to halt and even reverse these changes becomes clinically relevant when disease is superimposed on an aged kidney. RNA-sequencing of podocytes from middle-aged mice showed an inflammatory phenotype with increases in the NLRP3 inflammasome, signaling for IL2/Stat5, IL6 and TNF, interferon gamma response, allograft rejection and complement, consistent with inflammaging. Furthermore, injury-induced NLRP3 signaling in podocytes was further augmented in aged mice compared to young ones. The NLRP3 inflammasome (NLRP3, Caspase-1, IL1β IL-18) was also increased in podocytes of middle-aged humans. Higher transcript expression for NLRP3 in human glomeruli was accompanied by reduced podocyte density and increased global glomerulosclerosis and glomerular volume. Pharmacological inhibition of NLRP3 with MCC950, or gene deletion, reduced podocyte senescence and the genes typifying aging in middle-aged mice, which was accompanied by an improved podocyte lifespan and health-span. Moreover, modeling the injury-dependent increase in NLRP3 signaling in human kidney organoids confirmed the anti-senescence effect of MC9950. Finally, NLRP3 also impacted liver aging. Together, these results suggest a critical role for the NLRP3 inflammasome in podocyte and liver aging.
Collapse
Affiliation(s)
- Natalya Kaverina
- Division of Nephrology, University of Washington, Seattle, WA 98109, USA
| | - R. Allen Schweickart
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
| | - Gek Cher Chan
- Department of Medicine, Division of Nephrology, National University Hospital, Singapore
| | - Joseph C. Maggiore
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Diana G. Eng
- Division of Nephrology, University of Washington, Seattle, WA 98109, USA
| | - Yuting Zeng
- Department of Chemistry, University of Washington, Seattle, WA 98109, USA
| | - Sierra R. McKinzie
- Division of Nephrology, University of Washington, Seattle, WA 98109, USA
| | - Hannah S. Perry
- Department of Chemistry, University of Washington, Seattle, WA 98109, USA
| | - Adilijiang Ali
- Department of Chemistry, University of Washington, Seattle, WA 98109, USA
| | | | | | | | - Joshua C. Vaughan
- Department of Chemistry, University of Washington, Seattle, WA 98109, USA
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98109, USA
| | - Carol J. Loretz
- Division of Nephrology, University of Washington, Seattle, WA 98109, USA
| | - Anthony Chang
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Neil A. Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Markus Bitzer
- Division of Nephrology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jeffrey W. Pippin
- Division of Nephrology, University of Washington, Seattle, WA 98109, USA
| | - Oliver Wessely
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
| | - Stuart J. Shankland
- Division of Nephrology, University of Washington, Seattle, WA 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
20
|
Nakamichi R, Hishikawa A, Chikuma S, Yoshimura A, Sasaki T, Hashiguchi A, Abe T, Tokuhara T, Yoshimoto N, Nishimura ES, Hama EY, Azegami T, Nakayama T, Hayashi K, Itoh H. DNA-damaged podocyte-CD8 T cell crosstalk exacerbates kidney injury by altering DNA methylation. Cell Rep 2023; 42:112302. [PMID: 36989112 DOI: 10.1016/j.celrep.2023.112302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/03/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Recent epigenome-wide studies suggest an association between blood DNA methylation and kidney function. However, the pathological importance remains unclear. Here, we show that the homing endonuclease I-PpoI-induced DNA double-strand breaks in kidney glomerular podocytes cause proteinuria, glomerulosclerosis, and tubulointerstitial fibrosis with DNA methylation changes in blood cells as well as in podocytes. Single-cell RNA-sequencing analysis reveals an increase in cytotoxic CD8+ T cells with the activating/costimulatory receptor NKG2D in the kidneys, which exhibit a memory precursor effector cell phenotype, and the CD44high memory CD8+ T cells are also increased in the peripheral circulation. NKG2D blockade attenuates the renal phenotype caused by podocyte DNA damage. Blood methylome shows increased DNA methylation in binding sites for STAT1, a transcription factor contributing to CD8+ T cell homeostasis. Collectively, podocyte DNA damage alters the blood methylome, leading to changes in CD8+ T cells, which contribute to sustained renal injury in chronic kidney disease.
Collapse
Affiliation(s)
- Ran Nakamichi
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Akihito Hishikawa
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shunsuke Chikuma
- Department of Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Akihiko Yoshimura
- Department of Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takashi Sasaki
- Center for Supercentenarian Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Akinori Hashiguchi
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Hyogo 650-0047, Japan
| | - Tomoko Tokuhara
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Hyogo 650-0047, Japan
| | - Norifumi Yoshimoto
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Erina Sugita Nishimura
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Eriko Yoshida Hama
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tatsuhiko Azegami
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takashin Nakayama
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kaori Hayashi
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | - Hiroshi Itoh
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
21
|
Li S, Livingston MJ, Ma Z, Hu X, Wen L, Ding HF, Zhou D, Dong Z. Tubular cell senescence promotes maladaptive kidney repair and chronic kidney disease after cisplatin nephrotoxicity. JCI Insight 2023; 8:e166643. [PMID: 36917180 PMCID: PMC10243740 DOI: 10.1172/jci.insight.166643] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Cisplatin is a widely used chemotherapy drug; however, it induces both acute and chronic kidney diseases (CKD) in patients with cancer. The pathogenesis of cisplatin-induced CKD is unclear, and effective renoprotective approaches are not available. Here, we report that repeated low-dose cisplatin (RLDC) treatment of C57BL/6 mice induced chronic cellular senescence in kidney tubules, accompanied with tubular degeneration and profibrotic phenotype transformation that culminated in maladaptive repair and renal fibrosis. Suppression of tubular senescence by senolytic drugs ABT-263 and Fisetin attenuated renal fibrosis and improved tubular repair, as indicated by restoration of tubular regeneration and renal function. In vitro, RLDC also induced senescence in mouse proximal tubular (BUMPT) cells. ABT-263 eliminated senescent BUMPT cells following RLDC treatment, reversed the profibrotic phenotype of the cells, and increased their clonogenic activity. Moreover, ABT-263 alleviated the paracrine effect of RLDC-treated BUMPT cells on fibroblasts for fibrosis. Consistently, knockdown of p16 suppressed post-RLDC senescence and fibrotic changes in BUMPT cells and alleviated their paracrine effects on renal fibroblast proliferation. These results indicate that persistent induction of tubular senescence plays an important role in promoting cisplatin-induced CKD. Targeting senescent tubular cells may be efficient for improvement of kidney repair and for the prevention and treatment of cisplatin-induced CKD.
Collapse
Affiliation(s)
- Siyao Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Man J. Livingston
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Zhengwei Ma
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Xiaoru Hu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Lu Wen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Han-Fei Ding
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama School of Medicine at Birmingham, Birmingham, Alabama, USA
| | - Daohong Zhou
- Center for Innovative Drug Development and Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
- Research Department, Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| |
Collapse
|
22
|
Ding L, Li ZL, Zhou Y, Liu NC, Liu SS, Zhang XJ, Liu CC, Zhang DJ, Wang GH, Ma RX. Loss of Sirt1 promotes exosome secretion from podocytes by inhibiting lysosomal acidification in diabetic nephropathy. Mol Cell Endocrinol 2023; 568-569:111913. [PMID: 36990198 DOI: 10.1016/j.mce.2023.111913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/29/2023]
Abstract
Podocyte injury is a characteristic feature of diabetic nephropathy (DN). The secretion of exosomes in podocytes increases significantly in DN; however, the precise mechanisms remain poorly understood. Here, we demonstrated that Sirtuin1 (Sirt1) was significantly downregulated in podocytes in DN, which correlated negatively with increased exosome secretion. Similar results were observed in vitro. We found that lysosomal acidification in podocytes following high glucose administration was markedly inhibited, resulting in the decreased lysosomal degradation of multivesicular bodies. Mechanistically, we indicated that loss of Sirt1 contributed to the inhibited lysosomal acidification by decreasing the expression of the A subunit of the lysosomal vacuolar-type H+ ATPase proton pump (ATP6V1A) in podocytes. Overexpression of Sirt1 significantly improved lysosomal acidification with increased expression of ATP6V1A and inhibited exosome secretion. These findings suggest that dysfunctional Sirt1-mediated lysosomal acidification is the exact mechanism of increased secretion of exosomes in podocytes in DN, providing insights into potential therapeutic strategies for preventing DN progression.
Collapse
Affiliation(s)
- Lin Ding
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zuo-Lin Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| | - Yan Zhou
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Nan-Chi Liu
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shan-Shan Liu
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xing-Jian Zhang
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Cong-Cong Liu
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Dong-Jie Zhang
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Gui-Hua Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Rui-Xia Ma
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
23
|
Medina Rangel PX, Cross E, Liu C, Pedigo CE, Tian X, Gutiérrez-Calabrés E, Nagata S, Priyadarshini A, Lerner G, Bunda P, Perincheri S, Gu J, Zhao H, Wang Y, Inoue K, Ishibe S. Cell Cycle and Senescence Regulation by Podocyte Histone Deacetylase 1 and 2. J Am Soc Nephrol 2023; 34:433-450. [PMID: 36414418 PMCID: PMC10103311 DOI: 10.1681/asn.2022050598] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/17/2022] [Accepted: 11/06/2022] [Indexed: 11/24/2022] Open
Abstract
SIGNIFICANCE STATEMENT The loss of integrity of the glomerular filtration barrier results in proteinuria that is often attributed to podocyte loss. Yet how damaged podocytes are lost remains unknown. Germline loss of murine podocyte-associated Hdac1 and Hdac2 ( Hdac1/2 ) results in proteinuria and collapsing glomerulopathy due to sustained double-stranded DNA damage. Hdac1/2 deletion induces loss of podocyte quiescence, cell cycle entry, arrest in G1, and podocyte senescence, observed both in vivo and in vitro . Through the senescence secretory associated phenotype, podocytes secrete proteins that contribute to their detachment. These results solidify the role of HDACs in cell cycle regulation and senescence, providing important clues in our understanding of how podocytes are lost following injury. BACKGROUND Intact expression of podocyte histone deacetylases (HDAC) during development is essential for maintaining a normal glomerular filtration barrier because of its role in modulating DNA damage and preventing premature senescence. METHODS Germline podocyte-specific Hdac1 and 2 ( Hdac1 / 2 ) double-knockout mice were generated to examine the importance of these enzymes during development. RESULTS Podocyte-specific loss of Hdac1 / 2 in mice resulted in severe proteinuria, kidney failure, and collapsing glomerulopathy. Hdac1 / 2 -deprived podocytes exhibited classic characteristics of senescence, such as senescence-associated β-galactosidase activity and lipofuscin aggregates. In addition, DNA damage, likely caused by epigenetic alterations such as open chromatin conformation, not only resulted in podocyte cell-cycle entry as shown in vivo by Ki67 expression and by FUCCI-2aR mice, but also in p21-mediated cell-cycle arrest. Through the senescence secretory associated phenotype, the damaged podocytes secreted proinflammatory cytokines, growth factors, and matrix metalloproteinases, resulting in subsequent podocyte detachment and loss, evidenced by senescent podocytes in urine. CONCLUSIONS Hdac1 / 2 plays an essential role during development. Loss of these genes in double knockout mice leads to sustained DNA damage and podocyte senescence and loss.
Collapse
Affiliation(s)
| | - Elizabeth Cross
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Chang Liu
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Christopher E. Pedigo
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Xuefei Tian
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | | | - Soichiro Nagata
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Anupama Priyadarshini
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Gabriel Lerner
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Patricia Bunda
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Sudhir Perincheri
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Jianlei Gu
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut
| | - Hongyu Zhao
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut
| | - Ying Wang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Kazunori Inoue
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Shuta Ishibe
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
24
|
Drummond BE, Ercanbrack WS, Wingert RA. Modeling Podocyte Ontogeny and Podocytopathies with the Zebrafish. J Dev Biol 2023; 11:9. [PMID: 36810461 PMCID: PMC9944608 DOI: 10.3390/jdb11010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Podocytes are exquisitely fashioned kidney cells that serve an essential role in the process of blood filtration. Congenital malformation or damage to podocytes has dire consequences and initiates a cascade of pathological changes leading to renal disease states known as podocytopathies. In addition, animal models have been integral to discovering the molecular pathways that direct the development of podocytes. In this review, we explore how researchers have used the zebrafish to illuminate new insights about the processes of podocyte ontogeny, model podocytopathies, and create opportunities to discover future therapies.
Collapse
Affiliation(s)
| | | | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
25
|
Staruschenko A, Ma R, Palygin O, Dryer SE. Ion channels and channelopathies in glomeruli. Physiol Rev 2023; 103:787-854. [PMID: 36007181 PMCID: PMC9662803 DOI: 10.1152/physrev.00013.2022] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 11/22/2022] Open
Abstract
An essential step in renal function entails the formation of an ultrafiltrate that is delivered to the renal tubules for subsequent processing. This process, known as glomerular filtration, is controlled by intrinsic regulatory systems and by paracrine, neuronal, and endocrine signals that converge onto glomerular cells. In addition, the characteristics of glomerular fluid flow, such as the glomerular filtration rate and the glomerular filtration fraction, play an important role in determining blood flow to the rest of the kidney. Consequently, disease processes that initially affect glomeruli are the most likely to lead to end-stage kidney failure. The cells that comprise the glomerular filter, especially podocytes and mesangial cells, express many different types of ion channels that regulate intrinsic aspects of cell function and cellular responses to the local environment, such as changes in glomerular capillary pressure. Dysregulation of glomerular ion channels, such as changes in TRPC6, can lead to devastating glomerular diseases, and a number of channels, including TRPC6, TRPC5, and various ionotropic receptors, are promising targets for drug development. This review discusses glomerular structure and glomerular disease processes. It also describes the types of plasma membrane ion channels that have been identified in glomerular cells, the physiological and pathophysiological contexts in which they operate, and the pathways by which they are regulated and dysregulated. The contributions of these channels to glomerular disease processes, such as focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy, as well as the development of drugs that target these channels are also discussed.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida
- James A. Haley Veterans Hospital, Tampa, Florida
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, Texas
| |
Collapse
|
26
|
Shankland SJ, Wessely O. Zoning in on podocytes. Kidney Int 2022; 102:966-968. [PMID: 36272754 DOI: 10.1016/j.kint.2022.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 12/14/2022]
Abstract
Podocytes undergo defined morphologic changes during development, homeostasis, and aging, and on injury. Quantitative podometric assessments of podocyte endowment provide a powerful tool to interrogate glomerular health. Expanding this approach to a regional assessment demonstrates that the podocytes from cortical, subcortical, and juxtamedullary glomeruli are not only morphologically heterogeneous per se, but respond differently to stressors, such as age and hypertension. This suggests that zonal glomerular changes harbor critical information to understand glomerulopathies.
Collapse
Affiliation(s)
- Stuart J Shankland
- Division of Nephrology, University of Washington, Seattle, Washington, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA.
| | - Oliver Wessely
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA.
| |
Collapse
|
27
|
Liu T, Yang L, Mao H, Ma F, Wang Y, Li S, Li P, Zhan Y. Sirtuins as novel pharmacological targets in podocyte injury and related glomerular diseases. Biomed Pharmacother 2022; 155:113620. [PMID: 36122519 DOI: 10.1016/j.biopha.2022.113620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/10/2022] [Accepted: 08/27/2022] [Indexed: 11/29/2022] Open
Abstract
Podocyte injury is a major cause of proteinuria in kidney diseases, and persistent loss of podocytes leads to rapid irreversible progression of kidney disease. Sirtuins, a class of nicotinamide adenine dinucleotide-dependent deacetylases, can promote DNA repair, modify transcription factors, and regulate the cell cycle. Additionally, sirtuins play a critical role in renoprotection, particularly against podocyte injury. They also have pleiotropic protective effects on podocyte injury-related glomerular diseases, such as improving the immune inflammatory status and oxidative stress levels, maintaining mitochondrial homeostasis, enhancing autophagy, and regulating lipid metabolism. Sirtuins deficiency causes podocyte injury in different glomerular diseases. Studies using podocyte sirtuin-specific knockout and transgenic models corroborate this conclusion. Of note, sirtuin activators have protective effects in different podocyte injury-related glomerular diseases, including diabetic kidney disease, focal segmental glomerulosclerosis, membranous nephropathy, IgA nephropathy, and lupus nephritis. These findings suggest that sirtuins are promising therapeutic targets for preventing podocyte injury. This review provides an overview of recent advances in the role of sirtuins in kidney diseases, especially their role in podocyte injury, and summarizes the possible rationale for sirtuins as targets for pharmacological intervention in podocyte injury-related glomerular diseases.
Collapse
Affiliation(s)
- Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shen Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
28
|
Shankland SJ, Wessely O. GSKβ as a target in podocyte aging. Kidney Int 2022; 102:463-465. [PMID: 35660495 DOI: 10.1016/j.kint.2022.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/22/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Stuart J Shankland
- Division of Nephrology, University of Washington, Seattle, Washington, USA; Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington, USA.
| | - Oliver Wessely
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA.
| |
Collapse
|
29
|
Ren Z, Potenza DM, Ma Y, Ajalbert G, Hoogewijs D, Ming XF, Yang Z. Role of Arginase-II in Podocyte Injury under Hypoxic Conditions. Biomolecules 2022; 12:biom12091213. [PMID: 36139052 PMCID: PMC9496188 DOI: 10.3390/biom12091213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Hypoxia plays a crucial role in acute and chronic renal injury, which is attributable to renal tubular and glomerular cell damage. Some studies provide evidence that hypoxia-dependent upregulation of the mitochondrial enzyme arginase type-II (Arg-II) in tubular cells promotes renal tubular injury. It is, however, not known whether Arg-II is also expressed in glomerular cells, particularly podocytes under hypoxic conditions, contributing to hypoxia-induced podocyte injury. The effects of hypoxia on human podocyte cells (AB8/13) in cultures and on isolated kidneys from wild-type (wt) and arg-ii gene-deficient (arg-ii−/−) mice ex vivo, as well as on mice of the two genotypes in vivo, were investigated, respectively. We found that the Arg-II levels were enhanced in cultured podocytes in a time-dependent manner over 48 h, which was dependent on the stabilization of hypoxia-inducible factor 1α (HIF1α). Moreover, a hypoxia-induced derangement of cellular actin cytoskeletal fibers, a decrease in podocin, and an increase in mitochondrial ROS (mtROS) generation—as measured by MitoSOX—were inhibited by adenoviral-mediated arg-ii gene silencing. These effects of hypoxia on podocyte injury were mimicked by the HIFα stabilizing drug DMOG, which inhibits prolyl hydroxylases (PHD), the enzymes involved in HIFα degradation. The silencing of arg-ii prevented the detrimental effects of DMOG on podocytes. Furthermore, the inhibition of mtROS generation by rotenone—the inhibitor of respiration chain complex-I—recapitulated the protective effects of arg-ii silencing on podocytes under hypoxic conditions. Moreover, the ex vivo experiments with isolated kidney tissues and the in vivo experiments with mice exposed to hypoxic conditions showed increased Arg-II levels in podocytes and decreased podocyte markers regarding synaptopodin in wt mice but not in arg-ii−/− mice. While age-associated albuminuria was reduced in the arg-ii−/− mice, the hypoxia-induced increase in albuminuria was, however, not significantly affected in the arg-ii−/−. Our study demonstrates that Arg-II in podocytes promotes cell injury. Arg-ii ablation seems insufficient to protect mice in vivo against a hypoxia-induced increase in albuminuria, but it does reduce albuminuria in aging.
Collapse
Affiliation(s)
- Zhilong Ren
- Cardiovascular & Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Duilio Michele Potenza
- Cardiovascular & Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Yiqiong Ma
- Cardiovascular & Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Guillaume Ajalbert
- Cardiovascular & Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - David Hoogewijs
- Integrative Oxygen Physiology, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Xiu-Fen Ming
- Cardiovascular & Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
- Correspondence: (X.-F.M.); (Z.Y.); Tel.: +41-26-300-85-93 (Z.Y.)
| | - Zhihong Yang
- Cardiovascular & Aging Research, Department of Endocrinology, Metabolism, Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
- Correspondence: (X.-F.M.); (Z.Y.); Tel.: +41-26-300-85-93 (Z.Y.)
| |
Collapse
|
30
|
Abstract
Understanding the loss of kidney function resulting from kidney aging has become an emerging research focus that will facilitate the future development of antisenolytic treatments. In this issue of the JCI, Pippin et al. first identified PD-1 upregulation in the aged mouse podocyte via unbiased RNA-seq analysis. Overexpression of PD-1 in immortalized mouse podocytes induced cell death and a senescence-associated secretory phenotype, suggesting the pathological role of PD-1 upregulation in aged podocytes. Blocking PD-1 signaling via a neutralizing anti-PD-1 antibody reversed the aged phenotype in the aged mice and ameliorated proteinuria in an experimental focal segmental glomerulosclerosis (FSGS) mouse model. These findings highlight the role of PD-1 signaling in kidney aging and its therapeutic potential for human clinical trials.
Collapse
Affiliation(s)
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, and
- Department of Pharmacological Sciences, Mount Sinai School of Medicine, New York, New York, USA
- James J. Peters Veteran Administration Medical Center, New York, New York, USA
| |
Collapse
|
31
|
Pippin JW, Kaverina N, Wang Y, Eng DG, Zeng Y, Tran U, Loretz CJ, Chang A, Akilesh S, Poudel C, Perry HS, O’Connor C, Vaughan JC, Bitzer M, Wessely O, Shankland SJ. Upregulated PD-1 signaling antagonizes glomerular health in aged kidneys and disease. J Clin Invest 2022; 132:e156250. [PMID: 35968783 PMCID: PMC9374384 DOI: 10.1172/jci156250] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/24/2022] [Indexed: 01/21/2023] Open
Abstract
With an aging population, kidney health becomes an important medical and socioeconomic factor. Kidney aging mechanisms are not well understood. We previously showed that podocytes isolated from aged mice exhibit increased expression of programmed cell death protein 1 (PD-1) surface receptor and its 2 ligands (PD-L1 and PD-L2). PDCD1 transcript increased with age in microdissected human glomeruli, which correlated with lower estimated glomerular filtration rate and higher segmental glomerulosclerosis and vascular arterial intima-to-lumen ratio. In vitro studies in podocytes demonstrated a critical role for PD-1 signaling in cell survival and in the induction of a senescence-associated secretory phenotype. To prove PD-1 signaling was critical to podocyte aging, aged mice were injected with anti-PD-1 antibody. Treatment significantly improved the aging phenotype in both kidney and liver. In the glomerulus, it increased the life span of podocytes, but not that of parietal epithelial, mesangial, or endothelial cells. Transcriptomic and immunohistochemistry studies demonstrated that anti-PD-1 antibody treatment improved the health span of podocytes. Administering the same anti-PD-1 antibody to young mice with experimental focal segmental glomerulosclerosis (FSGS) lowered proteinuria and improved podocyte number. These results suggest a critical contribution of increased PD-1 signaling toward both kidney and liver aging and in FSGS.
Collapse
Affiliation(s)
| | | | - Yuliang Wang
- Paul G. Allen School of Computer Science and Engineering, and
| | | | - Yuting Zeng
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Uyen Tran
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | | | - Anthony Chang
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Shreeram Akilesh
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Chetan Poudel
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Hannah S. Perry
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | | | - Joshua C. Vaughan
- Department of Chemistry, University of Washington, Seattle, Washington, USA
- Department of Physiology and Biophysics and
| | - Markus Bitzer
- Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Oliver Wessely
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Stuart J. Shankland
- Division of Nephrology
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
32
|
Lausecker F, Koehler S, Fresquet M, Naylor RW, Tian P, Wanner N, Braun F, Butt L, Huber TB, Lennon R. Integrating basic science with translational research: the 13th International Podocyte Conference 2021. Kidney Int 2022; 102:708-719. [PMID: 35964799 PMCID: PMC9386279 DOI: 10.1016/j.kint.2022.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022]
Abstract
The 13th International Podocyte Conference was held in Manchester, UK, and online from July 28 to 30, 2021. Originally planned for 2020, this biannual meeting was postponed by a year because of the coronavirus disease 2019 (COVID-19) pandemic and proceeded as an innovative hybrid meeting. In addition to in-person attendance, online registration was offered, and this attracted 490 conference registrations in total. As a Podocyte Conference first, a day for early-career researchers was introduced. This premeeting included talks from graduate students and postdoctoral researchers. It gave early career researchers the opportunity to ask a panel, comprising academic leaders and journal editors, about career pathways and the future for podocyte research. The main meeting over 3 days included a keynote talk and 4 focused sessions each day incorporating invited talks, followed by selected abstract presentations, and an open panel discussion. The conference concluded with a Patient Day, which brought together patients, clinicians, researchers, and industry representatives. The Patient Day was an interactive and diverse day. As well as updates on improving diagnosis and potential new therapies, the Patient Day included a PodoArt competition, exercise and cooking classes with practical nutrition advice, and inspirational stories from patients and family members. This review summarizes the exciting science presented during the 13th International Podocyte Conference and demonstrates the resilience of researchers during a global pandemic.
Collapse
Affiliation(s)
- Franziska Lausecker
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Sybille Koehler
- Biomedical Sciences, University of Edinburgh, Edinburgh, UK; III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maryline Fresquet
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Richard W Naylor
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Pinyuan Tian
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Nicola Wanner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Linus Butt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
33
|
van der Wolde J, Haruhara K, Puelles VG, Nikolic-Paterson D, Bertram JF, Cullen-McEwen LA. The ability of remaining glomerular podocytes to adapt to the loss of their neighbours decreases with age. Cell Tissue Res 2022; 388:439-451. [PMID: 35290515 PMCID: PMC9035415 DOI: 10.1007/s00441-022-03611-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/01/2022] [Indexed: 02/06/2023]
Abstract
Progressive podocyte loss is a feature of healthy ageing. While previous studies have reported age-related changes in podocyte number, density and size and associations with proteinuria and glomerulosclerosis, few studies have examined how the response of remaining podocytes to podocyte depletion changes with age. Mild podocyte depletion was induced in PodCreiDTR mice aged 1, 6, 12 and 18 months via intraperitoneal administration of diphtheria toxin. Control mice received intraperitoneal vehicle. Podometrics, proteinuria and glomerular pathology were assessed, together with podocyte expression of p-rp-S6, a phosphorylation target that represents activity of the mammalian target of rapamycin (mTOR). Podocyte number per glomerulus did not change in control mice in the 18-month time period examined. However, control mice at 18 months had the largest podocytes and the lowest podocyte density. Podocyte depletion at 1, 6 and 12 months resulted in mild albuminuria but no glomerulosclerosis, whereas similar levels of podocyte depletion at 18 months resulted in both albuminuria and glomerulosclerosis. Following podocyte depletion at 6 and 12 months, the number of p-rp-S6 positive podocytes increased significantly, and this was associated with an adaptive increase in podocyte volume. However, at 18 months of age, remaining podocytes were unable to further elevate mTOR expression or undergo hypertrophic adaptation in response to mild podocyte depletion, resulting in marked glomerular pathology. These findings demonstrate the importance of mTORC1-mediated podocyte hypertrophy in both physiological (ageing) and adaptive settings, highlighting a functional limit to podocyte hypertrophy reached under physiological conditions.
Collapse
Affiliation(s)
- James van der Wolde
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Kotaro Haruhara
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
- Division of Nephrology and Hypertension, Jikei University School of Medicine, Tokyo, Japan
| | - Victor G Puelles
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Nikolic-Paterson
- Departments of Nephrology and Medicine, Monash Health and Monash University, Clayton, Vic, Australia
| | - John F Bertram
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| | - Luise A Cullen-McEwen
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| |
Collapse
|
34
|
Denic A, Rule AD, Glassock RJ. Healthy and unhealthy aging on kidney structure and function: human studies. Curr Opin Nephrol Hypertens 2022; 31:228-234. [PMID: 35067600 PMCID: PMC9035051 DOI: 10.1097/mnh.0000000000000780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This review is intended to provide an up-to-date analysis of the structural and functional alterations of the kidneys that accompany healthy and unhealthy aging in humans. Macro- and micro- structural changes and glomerular filtration rate (whole kidney and single nephron) accompanying aging will be stressed. RECENT FINDINGS Comparative findings concerning distribution of anatomic changes of the kidney healthy and unhealthy aging are reviewed. Challenges concerning definition of chronic kidney disease (CKD) in otherwise healthy aging patients are discussed. The complex interactions of CKD and aging are discussed. The role of podocyte dysbiosis in kidney aging is reviewed. SUMMARY Kidney aging is a complex phenomenon often difficult to distinguish from CKD. Nonetheless, phenotypes of healthy and unhealthy aging are evident. Much more information concerning the molecular characteristics of normal kidney aging and its relevance to chronic kidney disease is needed.
Collapse
Affiliation(s)
- Aleksandar Denic
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Andrew D. Rule
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Richard J. Glassock
- Department of Medicine, Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
35
|
Ren Q, Yu S, Zeng H, Xia H. The role of PTEN in puromycin aminonucleoside-induced podocyte injury. Int J Med Sci 2022; 19:1451-1459. [PMID: 36035365 PMCID: PMC9413557 DOI: 10.7150/ijms.72988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/28/2022] [Indexed: 11/27/2022] Open
Abstract
Podocytes are specialized cells of the glomerulus that play important structural and functional roles in maintaining the filtration barrier. Loss and injury of podocytes are leading factors of glomerular disease and kidney failure. Recent studies found that phosphatase and tensin homolog (PTEN) may play a critical role in maintaining the normal structure and function in podocytes. However, we still understand very little about how PTEN is regulated under podocyte injury conditions. In this study, We therefore investigated whether PTEN could play a role in podocyte injury induced by puromycin aminonucleoside (PAN), and whether dexamethasone (DEX) alleviates podocyte injury by PTEN/PI3K/Akt signaling. Our results showed that PI3K/Akt pathway was activated in podocytes exposed to PAN conditions, accompanied by down-regulation of the PTEN and microtubule-associated light chain 3 (LC3) expression.podocyte-specific knockout of PTEN significantly promoted podocyte injury, The potential renoprotection of overexpressed PTEN in podocytes was partly attributed with an improvement in autophagy and the inhibition of apoptosis.These novel findings also suggest that targeting PTEN might be a novel and promising therapeutic strategy against podocyte injury.
Collapse
Affiliation(s)
- Qi Ren
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China.,Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, P.R. China
| | - Shengyou Yu
- Department of Pediatrics, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, P.R.China
| | - Huasong Zeng
- Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, P.R. China
| | - Huimin Xia
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China.,Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
36
|
Teh YM, Mualif SA, Lim SK. A comprehensive insight into autophagy and its potential signaling pathways as a therapeutic target in podocyte injury. Int J Biochem Cell Biol 2021; 143:106153. [PMID: 34974186 DOI: 10.1016/j.biocel.2021.106153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023]
Abstract
As part of the glomerular filtration membrane, podocyte is terminally differentiated, structurally unique, and highly specialized in maintaining kidney function. Proteinuria caused by podocyte injury (foot process effacement) is the clinical symptom of various kidney diseases (CKD), including nephrotic syndrome. Podocyte autophagy has become a powerful therapeutic strategy target in ameliorating podocyte injury. Autophagy is known to be associated significantly with sirtuin-1, proteinuria, and podocyte injury. Various key findings in podocyte autophagy were reported in the past ten years, such as the role of endoplasmic reticulum (ER) stress in podocyte autophagy impairment, podocyte autophagy-related gene, essential roles of the signaling pathways: Mammalian Target of Rapamycin (mTOR)/ Phosphoinositide 3-kinase (PI3k)/ serine/threonine kinase 1 (Akt) in podocyte autophagy. These significant factors caused podocyte injury associated with autophagy impairment. Sirtuin-1 was reported to have a vital key role in mTOR signaling, 5'AMP-activated protein kinase (AMPK) regulation, autophagy activation, and various critical pathways associated with podocyte's function and health; it has potential value to podocyte injury pathogenesis investigation. From these findings, podocyte autophagy has become an attractive therapeutic strategy to ameliorate podocyte injury, and this review will provide an in-depth review on therapeutic targets he podocyte autophagy.
Collapse
Affiliation(s)
- Yoong Mond Teh
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia
| | - Siti Aisyah Mualif
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia; Medical Device and Technology Centre (MEDiTEC), Universiti Teknologi Malaysia, Malaysia
| | - Soo Kun Lim
- Renal Division, Department of Medicine, Faculty of Medicine, University of Malaya (UM), Kuala Lumpur, Malaysia.
| |
Collapse
|