1
|
Matsuki Y, Ichihara K, Itoh Y, Mori K, Ihara H, Maekawa M, Nishimura M, Kiuchi S, Nomura F, Hashizume N, Itoh N, Matsumura S. Reappraisal of serum retinol-binding protein as a surrogate marker for retinol and discovery of a novel retinol estimation formula. Clin Nutr ESPEN 2024; 61:119-130. [PMID: 38777423 DOI: 10.1016/j.clnesp.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND & AIMS Serum retinol (ROH) is commonly used for population level assessment of vitamin A status. High-performance liquid chromatography (HPLC) is considered most accurate method for measuring ROH. However, with the technical difficulty of using HPLC for routine assays, serum retinol-binding protein (RBP) measured by immunological assays is expected to be a surrogate marker for ROH, with reports of a close correlation between serum RBP and ROH. Nevertheless, RBP is not commonly tested to assess vitamin A status with concerns over RBP alterations under various physiopathological conditions. Thus, we reappraised the extent to which RBP could be used as a surrogate marker in representative disorders that alter serum RBP levels. As a related marker, diagnostic utility of transthyretin (TTR) was also evaluated. METHODS To evaluate the reliability of ROH and RBP assays, specimen stability was assessed in terms of (1) storage at 25, 4, -20, and -80 °C for 1-28 days, (2) five-cycle freeze-thawing, and (3) fluorescent light exposure for 1-14 days. Sources of variation (sex, age, body mass index [BMI], and drinking habits) and reference intervals for ROH, RBP, and TTR were determined in 617 well-defined healthy individuals. To investigate the influence of disorders that affect serum RBP, patients with five diagnostic groups were enrolled: 26 with chronic kidney disease (CKD); 13 with various malignancies in advanced stages (AdM), 12 with acute bacterial infections (ABI), 6 with liver cirrhosis (LC), and 26 with simple obesity (BMI ≥ 27 kg/m2). RESULTS The stability of RBP and ROH in serum was confirmed under all conditions. In healthy individuals, serum ROH, RBP, and TTR were appreciably high in males with a slight increase in proportion to age and BMI. The major-axis regression line between RBP (x) and ROH (y) in healthy individuals was y = x, with a correlation coefficient of 0.986. In the LC, AdM, and ABI groups, similar strong correlations were observed; however, the regression lines were shifted slightly rightward from the healthy group line, indicating a positive bias in estimating ROH. Interestingly, the same analyses between TTR and ROH revealed similar strong linear relationships in all groups; however, the regression line of each group showed a leftward (opposite) shift from the healthy group line. Based on these observations, we developed a novel regression model composed of RBP and TTR, which gave much improved accuracy in estimating ROH, even under these pathological conditions. CONCLUSIONS The perfect RBP-ROH correlation in healthy individuals indicates the utility of RPB as a surrogate marker for ROH. Nevertheless, under RBP-altered conditions, a slight overestimation of ROH is inevitable. However, when the TTR was tested together, the bias can be corrected almost perfectly using the novel ROH estimation formula comprising RBP and TTR.
Collapse
Affiliation(s)
- Yuri Matsuki
- Scientific & Technical Affairs Department, Nittobo Medical Co., LTD. Kojimachi-Odori Building 2-4-1, Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Kiyoshi Ichihara
- Department of Clinical Laboratory Sciences, Faculty of Health Sciences, Yamaguchi University Graduate School of Medicine, Minami-Kogushi 1-1-1, Ube, 755-8505, Japan.
| | - Yoshihisa Itoh
- Clinical Laboratory, Eiju General Hospital, Life Extension Research Institute, 23-16 Higashiueno 2-chome, Taito-ku, Tokyo 110-8645, Japan
| | - Kazuo Mori
- Marketing Department, Research & Development Division, Tokuyama Corporation. Front Place Akihabara, 7-5, Sotokanda 1-chome, Chiyoda-ku, Tokyo 101-8618, Japan
| | - Hiroshi Ihara
- Department of Health and Medical Sciences, Faculty of Risk and Crisis Management, Chiba Institute of Science, 15-8 Shiomi, Choshi, Chiba 288-0025, Japan
| | - Masato Maekawa
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, 20-1 Handayama 1-chome, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Motoi Nishimura
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, 1-33 Yayoicho, Chiba Inage-ku, Chiba, 263-8522 Japan
| | - Sachiko Kiuchi
- Department of Health and Medical Sciences, Faculty of Risk and Crisis Management, Chiba Institute of Science, 15-8 Shiomi, Choshi, Chiba 288-0025, Japan
| | - Fumio Nomura
- Division of Clinical Genetics, Chiba Foundation for Health Promotion & Disease Prevention, 32-14 Shinminato, Chiba Mihama-ku, Chiba 261-0002, Japan
| | - Naotaka Hashizume
- Donguri Clinic, 1-8-21Miyazaki, Miyamae-ku, Kawasaki, Kanagawa 216-0033, Japan
| | - Nobue Itoh
- Medical Technology Course, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Satoshi Matsumura
- Department of Health and Medical Sciences, Faculty of Risk and Crisis Management, Chiba Institute of Science, 15-8 Shiomi, Choshi, Chiba 288-0025, Japan
| |
Collapse
|
2
|
Jagennath S, Mehalingam V, Adole PS, Senthilkumar GP. Urinary megalin levels in patients with type 2 diabetic nephropathy and its correlation with renal function. J Family Med Prim Care 2024; 13:635-639. [PMID: 38605745 PMCID: PMC11006076 DOI: 10.4103/jfmpc.jfmpc_1207_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 04/13/2024] Open
Abstract
Purpose Megalin is a glycoprotein molecule found on proximal renal tubular epithelial cells. The objectives of this study were to determine urinary megalin levels in non-diabetic subjects and in patients with and without type 2 diabetic nephropathy and to assess the correlation between urinary megalin, urinary albumin, and estimated glomerular filtration rate (eGFR) in diabetic patients. Materials and Methods This was a cross-sectional comparative study conducted at a tertiary care teaching hospital in South India for 2 years. Study subjects were divided into three groups: non-diabetic subjects, diabetics with normoalbuminuria, and diabetics with microalbuminuria. Urinary albumin was detected by the dipstick technique in a spot urine sample for all study subjects. Nephelometry was used to quantify urinary albumin levels. The enzyme-linked immunosorbent assay technique estimated urinary megalin. Results Urinary megalin levels were higher in non-diabetic subjects compared to diabetic study subjects. There was a significant difference in urinary megalin levels between non-diabetic subjects and diabetic patients with microalbuminuria. No correlation was found between urinary megalin, urinary albumin, and eGFR in patients with diabetic nephropathy. Conclusion Urinary megalin levels were higher in non-diabetic subjects than in type 2 diabetic patients. There was no correlation between urinary megalin, urinary albumin, and eGFR in patients with diabetic nephropathy.
Collapse
Affiliation(s)
- Sudharshan Jagennath
- Department of Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Vadivelan Mehalingam
- Department of Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Prashant S. Adole
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | | |
Collapse
|
3
|
Bisgaard LS, Christensen PM, Oh J, Torta F, Füchtbauer EM, Nielsen LB, Christoffersen C. Kidney derived apolipoprotein M and its role in acute kidney injury. Front Pharmacol 2024; 15:1328259. [PMID: 38313311 PMCID: PMC10834784 DOI: 10.3389/fphar.2024.1328259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
Aim: Apolipoprotein M (apoM) is mainly expressed in liver and in proximal tubular epithelial cells in the kidney. In plasma, apoM associates with HDL particles via a retained signal peptide and carries sphingosine-1-phosphate (S1P), a small bioactive lipid. ApoM is undetectable in urine from healthy individuals but lack of megalin receptors in proximal tubuli cells induces loss of apoM into the urine. Besides this, very little is known about kidney-derived apoM. The aim of this study was to address the role of apoM in kidney biology and in acute kidney injury. Methods: A novel kidney-specific human apoM transgenic mouse model (RPTEC-hapoMTG) was generated and subjected to either cisplatin or ischemia/reperfusion injury. Further, a stable transfection of HK-2 cells overexpressing human apoM (HK-2-hapoMTG) was developed to study the pattern of apoM secretion in proximal tubuli cells. Results: Human apoM was present in plasma from RPTEC-hapoMTG mice (mean 0.18 μM), with a significant increase in plasma S1P levels. In vitro apoM was secreted to both the apical (urine) and basolateral (blood) compartment from proximal tubular epithelial cells. However, no differences in kidney injury score was seen between RPTEC-hapoMTG and wild type (WT) mice upon kidney injury. Further, gene expression of inflammatory markers (i.e., IL6, MCP-1) was similar upon ischemia/reperfusion injury. Conclusion: Our study suggests that kidney-derived apoM is secreted to plasma, supporting a role for apoM in sequestering molecules from excretion in urine. However, overexpression of human apoM in the kidney did not protect against acute kidney injury.
Collapse
Affiliation(s)
- Line S. Bisgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pernille M. Christensen
- Department of Clinical Biochemistry, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jeongah Oh
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Federico Torta
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Lars Bo Nielsen
- The Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Thévenod F, Herbrechter R, Schlabs C, Pethe A, Lee WK, Wolff NA, Roussa E. Role of the SLC22A17/lipocalin-2 receptor in renal endocytosis of proteins/metalloproteins: a focus on iron- and cadmium-binding proteins. Am J Physiol Renal Physiol 2023; 325:F564-F577. [PMID: 37589051 DOI: 10.1152/ajprenal.00020.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/18/2023] Open
Abstract
The transmembrane protein SLC22A17 [or the neutrophil gelatinase-associated lipocalin/lipocalin-2 (LCN2)/24p3 receptor] is an atypical member of the SLC22 family of organic anion and cation transporters: it does not carry typical substrates of SLC22 transporters but mediates receptor-mediated endocytosis (RME) of LCN2. One important task of the kidney is the prevention of urinary loss of proteins filtered by the glomerulus by bulk reabsorption of multiple ligands via megalin:cubilin:amnionless-mediated endocytosis in the proximal tubule (PT). Accordingly, overflow, glomerular, or PT damage, as in Fanconi syndrome, results in proteinuria. Strikingly, up to 20% of filtered proteins escape the PT under physiological conditions and are reabsorbed by the distal nephron. The renal distal tubule and collecting duct express SLC22A17, which mediates RME of filtered proteins that evade the PT but with limited capacity to prevent proteinuria under pathological conditions. The kidney also prevents excretion of filtered essential and nonessential transition metals, such as iron or cadmium, respectively, that are largely bound to proteins with high affinity, e.g., LCN2, transferrin, or metallothionein, or low affinity, e.g., microglobulins or albumin. Hence, increased uptake of transition metals may cause nephrotoxicity. Here, we assess the literature on SLC22A17 structure, topology, tissue distribution, regulation, and assumed functions, emphasizing renal SLC22A17, which has relevance for physiology, pathology, and nephrotoxicity due to the accumulation of proteins complexed with transition metals, e.g., cadmium or iron. Other putative renal functions of SLC22A17, such as its contribution to osmotic stress adaptation, protection against urinary tract infection, or renal carcinogenesis, are discussed.
Collapse
Affiliation(s)
- Frank Thévenod
- Institute for Physiology, Pathophysiology and Toxicology, Center for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Robin Herbrechter
- Institute for Physiology, Pathophysiology and Toxicology, Center for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | - Carolin Schlabs
- Institute for Physiology, Pathophysiology and Toxicology, Center for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | - Abhishek Pethe
- Department of Molecular Embryology, Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Wing-Kee Lee
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Natascha A Wolff
- Institute for Physiology, Pathophysiology and Toxicology, Center for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | - Eleni Roussa
- Department of Molecular Embryology, Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
5
|
El Latif AA, Zahra AEA, Badr A, Elbialy ZI, Alghamdi AAA, Althobaiti NA, Assar DH, Abouzed TK. The potential role of upregulated PARP-1/RIPK1 expressions in amikacin-induced oxidative damage and nephrotoxicity in Wistar rats. Toxicol Res (Camb) 2023; 12:979-989. [PMID: 37915468 PMCID: PMC10615830 DOI: 10.1093/toxres/tfad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 09/03/2023] [Accepted: 09/09/2023] [Indexed: 11/03/2023] Open
Abstract
This study aimed to investigate the gene expression levels associated with nephrotoxic action of amikacin, as well as the post-treatment effect of diuretics on its nephrotoxic effects. Sixty male rats were divided equally into six groups, including the control group receiving saline intra-peritoneally (ip), and the five treated groups including therapeutic and double therapeutic dose groups, injected ip (15 and 30 mg/kg b.wt./day) respectively for seven days, and another two rat groups treated as therapeutic and double therapeutic dose groups then administered the diuretic orally for seven days and the last group received amikacin ip at a rate of 15 mg/kg/day for seven days, then given free access to water without diuretics for another seven days and was kept as a self-recovery group. Amikacin caused kidney injury, which was exacerbated by the double therapeutic dose, as evidenced by abnormal serum renal injury biomarkers, elevated renal MDA levels, inhibition of renal catalase and SOD enzyme activities, with renal degenerative and necrotic changes. Moreover, comet assays also revealed renal DNA damage. Interestingly, amikacin administration markedly elevated expression levels of the PARP-1, RIP1, TNF-α, IL-1β, and iNOS genes as compared to the control group. However, compared to the self-recovery group, post-amikacin diuretic treatment modulates amikacin-induced altered findings and alleviates amikacin nephrotoxic effects more efficiently. Our findings suggested the potential role of PARP-1 and RIPK1 expressions that influence the expression of proinflammatory cytokines such as IL-1β and TNF-α by exaggerating oxidative stress which may contribute to the pathogenesis of amikacin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Amera Abd El Latif
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Gish Street, Kafr El Sheikh 33516, Egypt
| | - Abo Elnasr A Zahra
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Gish Street, Kafr El Sheikh 33516, Egypt
| | - AlShimaa Badr
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Gish Street, Kafr El Sheikh 33516, Egypt
| | - Zizy I Elbialy
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, El-Gish Street, Kafr El Sheikh 33516, Egypt
| | - Abdullah A A Alghamdi
- Department of Biology, Faculty of Science, Albaha University, Kafrelsheikh University, El-Gish Street, Albaha 1988, Kingdom of Saudi Arabia
| | - Norah A Althobaiti
- Biology Department, College of Science and Humanities-Al Quwaiiyah, Shaqra University, Kafrelsheikh University, El-Gish Street, El-Gish Street, Al Quwaiiyah 19257, Kingdom of Saudi Arabia
| | - Doaa H Assar
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Gish Street, Kafr El Sheikh 33516, Egypt
| | - Tarek kamal Abouzed
- Biochemistry Department, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Gish Street, Kafr El Sheikh, 33516, Egypt
| |
Collapse
|
6
|
Schröder SK, Gasterich N, Weiskirchen S, Weiskirchen R. Lipocalin 2 receptors: facts, fictions, and myths. Front Immunol 2023; 14:1229885. [PMID: 37638032 PMCID: PMC10451079 DOI: 10.3389/fimmu.2023.1229885] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
The human 25-kDa Lipocalin 2 (LCN2) was first identified and purified as a protein that in part is associated with gelatinase from neutrophils. This protein shows a high degree of sequence similarity with the deduced sequences of rat α2-microglobulin-related protein and the mouse protein 24p3. Based on its typical lipocalin fold, which consists of an eight-stranded, anti-parallel, symmetrical β-barrel fold structure it was initially thought that LCN2 is a circulating protein functioning as a transporter of small lipophilic molecules. However, studies in Lcn2 null mice have shown that LCN2 has bacteriostatic properties and plays a key role in innate immunity by sequestering bacterial iron siderophores. Numerous reports have further shown that LCN2 is involved in the control of cell differentiation, energy expenditure, cell death, chemotaxis, cell migration, and many other biological processes. In addition, important roles for LCN2 in health and disease have been identified in Lcn2 null mice and multiple molecular pathways required for regulation of Lcn2 expression have been identified. Nevertheless, although six putative receptors for LCN2 have been proposed, there is a fundamental lack in understanding of how these cell-surface receptors transmit and amplify LCN2 to the cell. In the present review we summarize the current knowledge on LCN2 receptors and discuss inconsistencies, misinterpretations and false assumptions in the understanding of these potential LCN2 receptors.
Collapse
Affiliation(s)
- Sarah K. Schröder
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Natalie Gasterich
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
7
|
DiKun KM, Gudas LJ. Vitamin A and retinoid signaling in the kidneys. Pharmacol Ther 2023; 248:108481. [PMID: 37331524 PMCID: PMC10528136 DOI: 10.1016/j.pharmthera.2023.108481] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/18/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
Vitamin A (VA, retinol) and its metabolites (commonly called retinoids) are required for the proper development of the kidney during embryogenesis, but retinoids also play key roles in the function and repair of the kidney in adults. Kidneys filter 180-200 liters of blood per day and each kidney contains approximately 1 million nephrons, which are often referred to as the 'functional units' of the kidney. Each nephron consists of a glomerulus and a series of tubules (proximal tubule, loop of Henle, distal tubule, and collecting duct) surrounded by a network of capillaries. VA is stored in the liver and converted to active metabolites, most notably retinoic acid (RA), which acts as an agonist for the retinoic acid receptors ((RARs α, β, and γ) to regulate gene transcription. In this review we discuss some of the actions of retinoids in the kidney after injury. For example, in an ischemia-reperfusion model in mice, injury-associated loss of proximal tubule (PT) differentiation markers occurs, followed by re-expression of these differentiation markers during PT repair. Notably, healthy proximal tubules express ALDH1a2, the enzyme that metabolizes retinaldehyde to RA, but transiently lose ALDH1a2 expression after injury, while nearby myofibroblasts transiently acquire RA-producing capabilities after injury. These results indicate that RA is important for renal tubular injury repair and that compensatory mechanisms exist for the generation of endogenous RA by other cell types upon proximal tubule injury. ALDH1a2 levels also increase in podocytes, epithelial cells of the glomeruli, after injury, and RA promotes podocyte differentiation. We also review the ability of exogenous, pharmacological doses of RA and receptor selective retinoids to treat numerous kidney diseases, including kidney cancer and diabetic kidney disease, and the emerging genetic evidence for the importance of retinoids and their receptors in maintaining or restoring kidney function after injury. In general, RA has a protective effect on the kidney after various types of injuries (eg. ischemia, cytotoxic actions of chemicals, hyperglycemia related to diabetes). As more research into the actions of each of the three RARs in the kidney is carried out, a greater understanding of the actions of vitamin A is likely to lead to new insights into the pathology of kidney disorders and the development of new therapies for kidney diseases.
Collapse
Affiliation(s)
- Krysta M DiKun
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, USA; New York Presbyterian Hospital, New York, NY, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, USA; Department of Urology, Weill Cornell Medicine, New York, NY, USA; New York Presbyterian Hospital, New York, NY, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
8
|
Goto S, Hosojima M, Kabasawa H, Saito A. The endocytosis receptor megalin: From bench to bedside. Int J Biochem Cell Biol 2023; 157:106393. [PMID: 36863658 DOI: 10.1016/j.biocel.2023.106393] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/27/2023] [Indexed: 03/04/2023]
Abstract
The large (∼600 kDa) endocytosis receptor megalin/low-density lipoprotein receptor-related protein 2 is highly expressed at the apical membrane of proximal tubular epithelial cells (PTECs). Megalin plays an important role in the endocytosis of various ligands via interactions with intracellular adaptor proteins, which mediate the trafficking of megalin in PTECs. Megalin mediates the retrieval of essential substances, including carrier-bound vitamins and elements, and impairment of the endocytic process may result in the loss of those substances. In addition, megalin reabsorbs nephrotoxic substances such as antimicrobial (colistin, vancomycin, and gentamicin) or anticancer (cisplatin) drugs and advanced glycation end product-modified or fatty acid-containing albumin. The megalin-mediated uptake of these nephrotoxic ligands causes metabolic overload in PTECs and leads to kidney injury. Blockade or suppression of the megalin-mediated endocytosis of nephrotoxic substances may represent a novel therapeutic strategy for drug-induced nephrotoxicity or metabolic kidney disease. Megalin reabsorbs urinary biomarker proteins such as albumin, α1-microglobulin, β2-microglobulin, and liver-type fatty acid-binding protein; thus, the above-mentioned megalin-targeted therapy may have an effect on the urinary excretion of these biomarkers. We have previously established a sandwich enzyme-linked immunosorbent assay to measure the ectodomain (A-megalin) and full-length (C-megalin) forms of urinary megalin using monoclonal antibodies against the amino- and carboxyl-terminals of megalin, respectively, and reported their clinical usefulness. In addition, there have been reports of patients with novel pathological anti-brush border autoantibodies targeting megalin in the kidney. Even with these breakthroughs in the characterization of megalin, a large number of issues remain to be addressed in future research.
Collapse
Affiliation(s)
- Sawako Goto
- Departments of Applied Molecular Medicine, Japan
| | - Michihiro Hosojima
- Departments of Clinical Nutrition Science, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Hideyuki Kabasawa
- Departments of Clinical Nutrition Science, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | | |
Collapse
|
9
|
Beenken A, Cerutti G, Brasch J, Guo Y, Sheng Z, Erdjument-Bromage H, Aziz Z, Robbins-Juarez SY, Chavez EY, Ahlsen G, Katsamba PS, Neubert TA, Fitzpatrick AWP, Barasch J, Shapiro L. Structures of LRP2 reveal a molecular machine for endocytosis. Cell 2023; 186:821-836.e13. [PMID: 36750096 PMCID: PMC9993842 DOI: 10.1016/j.cell.2023.01.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/29/2022] [Accepted: 01/10/2023] [Indexed: 02/08/2023]
Abstract
The low-density lipoprotein (LDL) receptor-related protein 2 (LRP2 or megalin) is representative of the phylogenetically conserved subfamily of giant LDL receptor-related proteins, which function in endocytosis and are implicated in diseases of the kidney and brain. Here, we report high-resolution cryoelectron microscopy structures of LRP2 isolated from mouse kidney, at extracellular and endosomal pH. The structures reveal LRP2 to be a molecular machine that adopts a conformation for ligand binding at the cell surface and for ligand shedding in the endosome. LRP2 forms a homodimer, the conformational transformation of which is governed by pH-sensitive sites at both homodimer and intra-protomer interfaces. A subset of LRP2 deleterious missense variants in humans appears to impair homodimer assembly. These observations lay the foundation for further understanding the function and mechanism of LDL receptors and implicate homodimerization as a conserved feature of the LRP receptor subfamily.
Collapse
Affiliation(s)
- Andrew Beenken
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Gabriele Cerutti
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Julia Brasch
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Yicheng Guo
- Aaron Diamond AIDS Research Center, Columbia University, New York, NY 10032, USA
| | - Zizhang Sheng
- Aaron Diamond AIDS Research Center, Columbia University, New York, NY 10032, USA
| | - Hediye Erdjument-Bromage
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Zainab Aziz
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | - Estefania Y Chavez
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Goran Ahlsen
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Phinikoula S Katsamba
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Thomas A Neubert
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Anthony W P Fitzpatrick
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Jonathan Barasch
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Columbia University George M. O'Brien Urology Center, New York, NY 10032, USA.
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
10
|
Zhao B, Tu C, Shen S, Qu J, Morris ME. Identification of Potential Megalin/Cubilin Substrates Using Extensive Proteomics Quantification from Kidney Megalin-Knockdown Mice. AAPS J 2022; 24:109. [PMID: 36253507 DOI: 10.1208/s12248-022-00758-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/26/2022] [Indexed: 11/24/2022] Open
Abstract
Megalin and cubilin, endocytic proteins present in the proximal tubule of the kidney, are responsible for reabsorbing filtered proteins from urine. Our hypothesis was that potential substrates of megalin/cubilin could be identified by examining urinary protein differences between control (WT) mice and kidney-specific megalin knockdown (KD) mice. Using the IonStar proteomics approach, 877 potential megalin/cubilin substrates were discovered, with 23 of these compounds representing known megalin/cubilin substrates. Some of the proteins with the largest fold changes in the urine between KD and WT included the known megalin substrates retinol-binding protein and vitamin D-binding protein. Of the total proteins identified as novel substrates, about three-quarters of compounds had molecular weights (MWs) below 69 kDa, the MW of albumin, and the remaining had higher MWs, with about 5% of the proteins having MWs greater than 150 kDa. Sex differences in the number of identified substrates occurred, but this may be due to differences in kidney megalin expression between both male and female megalin KD and WT animals, with the ratio of megalin between WT and KD being 2.76 and 2.14 for female and male mice, respectively. The top three ingenuity canonical pathways based on the urinary proteins in both female and male KD mice were acute phase response signaling, liver X receptor/retinoid X receptor activation, and intrinsic prothrombin activation pathways. In conclusion, analysis of urine samples from kidney-specific megalin KD and WT mice was found to be useful for the identification of potential endogenous substrates for megalin and cubilin.
Collapse
Affiliation(s)
- Bei Zhao
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214-8033, USA
| | - Chengjian Tu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214-8033, USA.,New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, New York, 14203, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214-8033, USA.,New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, New York, 14203, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214-8033, USA.,New York State Center of Excellence in Bioinformatics and Life Sciences, 701 Ellicott Street, Buffalo, New York, 14203, USA
| | - Marilyn E Morris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214-8033, USA.
| |
Collapse
|
11
|
Zhang J, Wang Z, Zhang H, Li S, Li J, Liu H, Cheng Q. The role of lipocalin 2 in brain injury and recovery after ischemic and hemorrhagic stroke. Front Mol Neurosci 2022; 15:930526. [PMID: 36187347 PMCID: PMC9520288 DOI: 10.3389/fnmol.2022.930526] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/02/2022] [Indexed: 12/03/2022] Open
Abstract
Ischemic and hemorrhagic stroke (including intracerebral hemorrhage, intraventricular hemorrhage, and subarachnoid hemorrhage) is the dominating cause of disability and death worldwide. Neuroinflammation, blood–brain barrier (BBB) disruption, neuronal death are the main pathological progress, which eventually causes brain injury. Increasing evidence indicated that lipocalin 2 (LCN2), a 25k-Da acute phase protein from the lipocalin superfamily, significantly increased immediately after the stroke and played a vital role in these events. Meanwhile, there exists a close relationship between LCN2 levels and the worse clinical outcome of patients with stroke. Further research revealed that LCN2 elimination is associated with reduced immune infiltrates, infarct volume, brain edema, BBB leakage, neuronal death, and neurological deficits. However, some studies revealed that LCN2 might also act as a beneficial factor in ischemic stroke. Nevertheless, the specific mechanism of LCN2 and its primary receptors (24p3R and megalin) involving in brain injury remains unclear. Therefore, it is necessary to investigate the mechanism of LCN2 induced brain damage after stroke. This review focuses on the role of LCN2 and its receptors in brain injury and aiming to find out possible therapeutic targets to reduce brain damage following stroke.
Collapse
Affiliation(s)
- Jingwei Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Shuwang Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Li
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hongwei Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Hongwei Liu,
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Quan Cheng,
| |
Collapse
|
12
|
Megalin and Vitamin D Metabolism—Implications in Non-Renal Tissues and Kidney Disease. Nutrients 2022; 14:nu14183690. [PMID: 36145066 PMCID: PMC9506339 DOI: 10.3390/nu14183690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Megalin is an endocytic receptor abundantly expressed in proximal tubular epithelial cells and other calciotropic extrarenal cells expressing vitamin D metabolizing enzymes, such as bone and parathyroid cells. The receptor functions in the uptake of the vitamin D-binding protein (DBP) complexed to 25 hydroxyvitamin D3 (25(OH)D3), facilitating the intracellular conversion of precursor 25(OH)D3 to the active 1,25 dihydroxyvitamin D3 (1,25(OH)2D3). The significance of renal megalin-mediated reabsorption of 25(OH)D3 and 1,25(OH)2D3 has been well established experimentally, and other studies have demonstrated relevant roles of extrarenal megalin in regulating vitamin D homeostasis in mammary cells, fat, muscle, bone, and mesenchymal stem cells. Parathyroid gland megalin may regulate calcium signaling, suggesting intriguing possibilities for megalin-mediated cross-talk between calcium and vitamin D regulation in the parathyroid; however, parathyroid megalin functionality has not been assessed in the context of vitamin D. Within various models of chronic kidney disease (CKD), megalin expression appears to be downregulated; however, contradictory results have been observed between human and rodent models. This review aims to provide an overview of the current knowledge of megalin function in the context of vitamin D metabolism, with an emphasis on extrarenal megalin, an area that clearly requires further investigation.
Collapse
|
13
|
Penkert RR, Azul M, Sealy RE, Jones BG, Dowdy J, Hayden RT, Tang L, Ross AC, Hankins JS, Hurwitz JL. Hypothesis: Low Vitamin A and D Levels Worsen Clinical Outcomes When Children with Sickle Cell Disease Encounter Parvovirus B19. Nutrients 2022; 14:nu14163415. [PMID: 36014920 PMCID: PMC9414848 DOI: 10.3390/nu14163415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/31/2022] [Accepted: 08/10/2022] [Indexed: 12/12/2022] Open
Abstract
Human parvovirus B19 causes life-threatening anemia due to transient red cell aplasia (TRCA) in individuals with sickle cell disease (SCD). Children with SCD experiencing profound anemia during TRCA often require red blood cell transfusions and hospitalization. The prevalence of vitamin deficiencies in SCD is high and deficiencies are associated with respiratory and pain symptoms, but the effects of vitamins on acute infection with parvovirus B19 remain unclear. We performed a clinical study in which 20 SCD patients hospitalized with parvovirus B19 infections (Day 0) were monitored over a 120-day time course to query relationships between vitamins A and D and clinical outcomes. There were significant negative correlations between Day 0 vitamin levels and disease consequences (e.g., red blood cell transfusion requirements, inflammatory cytokines). There were significant positive correlations (i) between Day 0 vitamins and peak virus-specific antibodies in nasal wash, and (ii) between Day 0 virus-specific serum plus nasal wash antibodies and absolute reticulocyte counts. There was a significant negative correlation between Day 0 virus-specific serum antibodies and virus loads. To explain the results, we propose circular and complex mechanisms. Low baseline vitamin levels may weaken virus-specific immune responses to permit virus amplification and reticulocyte loss; consequent damage may further reduce vitamin levels and virus-specific immunity. While the complex benefits of vitamins are not fully understood, we propose that maintenance of replete vitamin A and D levels in children with SCD will serve as prophylaxis against parvovirus B19-induced TRCA complications.
Collapse
Affiliation(s)
- Rhiannon R. Penkert
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Melissa Azul
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Robert E. Sealy
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Bart G. Jones
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jola Dowdy
- Department of Bone Marrow Transplant and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Randall T. Hayden
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Li Tang
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - A. Catharine Ross
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Jane S. Hankins
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Julia L. Hurwitz
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Correspondence:
| |
Collapse
|
14
|
Ratajczyk K, Konieczny A, Czekaj A, Piotrów P, Fiutowski M, Krakowska K, Kowal P, Witkiewicz W, Marek-Bukowiec K. The Clinical Significance of Urinary Retinol-Binding Protein 4: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9878. [PMID: 36011513 PMCID: PMC9408023 DOI: 10.3390/ijerph19169878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Effective biomarkers for early diagnosis, prognostication, and monitoring in renal diseases (in general) comprise an unmet need. Urinary retinol-binding protein 4, which is the most sensitive indicator of renal tubular damage, holds great promise as a universal biomarker for renal pathologies, in which tubular injury is the driving force. Here, we summarize the most important existing data on the associations between urinary retinol-binding protein 4 and renal diseases and highlight the untapped potential of retinol-binding protein 4 in clinical use.
Collapse
Affiliation(s)
- Krzysztof Ratajczyk
- Department of Urology, Regional Specialist Hospital in Wroclaw, Kamienskiego 73a, 51-124 Wroclaw, Poland
| | - Andrzej Konieczny
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Adrian Czekaj
- Department of Urology, Regional Specialist Hospital in Wroclaw, Kamienskiego 73a, 51-124 Wroclaw, Poland
| | - Paweł Piotrów
- Department of Urology, Regional Specialist Hospital in Wroclaw, Kamienskiego 73a, 51-124 Wroclaw, Poland
| | - Marek Fiutowski
- Department of Urology, Regional Specialist Hospital in Wroclaw, Kamienskiego 73a, 51-124 Wroclaw, Poland
| | - Kornelia Krakowska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Paweł Kowal
- Department of Urology, Regional Specialist Hospital in Wroclaw, Kamienskiego 73a, 51-124 Wroclaw, Poland
| | - Wojciech Witkiewicz
- Research and Development Center, Regional Specialist Hospital in Wroclaw, Kamienskiego 73a, 51-124 Wroclaw, Poland
| | - Karolina Marek-Bukowiec
- Research and Development Center, Regional Specialist Hospital in Wroclaw, Kamienskiego 73a, 51-124 Wroclaw, Poland
| |
Collapse
|
15
|
Sanguinetti C, Minniti M, Susini V, Caponi L, Panichella G, Castiglione V, Aimo A, Emdin M, Vergaro G, Franzini M. The Journey of Human Transthyretin: Synthesis, Structure Stability, and Catabolism. Biomedicines 2022; 10:biomedicines10081906. [PMID: 36009453 PMCID: PMC9405911 DOI: 10.3390/biomedicines10081906] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 12/19/2022] Open
Abstract
Transthyretin (TTR) is a homotetrameric protein mainly synthesised by the liver and the choroid plexus whose function is to carry the thyroid hormone thyroxine and the retinol-binding protein bound to retinol in plasma and cerebrospinal fluid. When the stability of the tetrameric structure is lost, it breaks down, paving the way for the aggregation of TTR monomers into insoluble fibrils leading to transthyretin (ATTR) amyloidosis, a progressive disorder mainly affecting the heart and nervous system. Several TTR gene mutations have been characterised as destabilisers of TTR structure and are associated with hereditary forms of ATTR amyloidosis. The reason why also the wild-type TTR is intrinsically amyloidogenic in some subjects is largely unknown. The aim of the review is to give an overview of the TTR biological life cycle which is largely unknown. For this purpose, the current knowledge on TTR physiological metabolism, from its synthesis to its catabolism, is described. Furthermore, a large section of the review is dedicated to examining in depth the role of mutations and physiological ligands on the stability of TTR tetramers.
Collapse
Affiliation(s)
- Chiara Sanguinetti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Marianna Minniti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Vanessa Susini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Laura Caponi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Giorgia Panichella
- “Health Science” Interdisciplinary Research Center, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Vincenzo Castiglione
- “Health Science” Interdisciplinary Research Center, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Alberto Aimo
- “Health Science” Interdisciplinary Research Center, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| | - Michele Emdin
- “Health Science” Interdisciplinary Research Center, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| | - Giuseppe Vergaro
- “Health Science” Interdisciplinary Research Center, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| | - Maria Franzini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- Correspondence:
| |
Collapse
|
16
|
Soeorg H, Padari H, Kipper K, Ilmoja ML, Lutsar I, Metsvaht T. Pharmacokinetics of Gentamicin Components C1, C1a, and C2/C2a/C2b and Subsequent Decline in Glomerular Filtration Rate in Neonates. AAPS J 2022; 24:77. [DOI: 10.1208/s12248-022-00727-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022] Open
|
17
|
Nguyen TD, Truong ME, Reiter JF. The Intimate Connection Between Lipids and Hedgehog Signaling. Front Cell Dev Biol 2022; 10:876815. [PMID: 35757007 PMCID: PMC9222137 DOI: 10.3389/fcell.2022.876815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/13/2022] [Indexed: 01/19/2023] Open
Abstract
Hedgehog (HH) signaling is an intercellular communication pathway involved in directing the development and homeostasis of metazoans. HH signaling depends on lipids that covalently modify HH proteins and participate in signal transduction downstream. In many animals, the HH pathway requires the primary cilium, an organelle with a specialized protein and lipid composition. Here, we review the intimate connection between HH signaling and lipids. We highlight how lipids in the primary cilium can create a specialized microenvironment to facilitate signaling, and how HH and components of the HH signal transduction pathway use lipids to communicate between cells.
Collapse
Affiliation(s)
- Thi D. Nguyen
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Melissa E. Truong
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Jeremy F. Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States,Chan Zuckerberg Biohub, San Francisco, CA, United States,*Correspondence: Jeremy F. Reiter,
| |
Collapse
|
18
|
O’Connor C, Varshosaz P, Moise AR. Mechanisms of Feedback Regulation of Vitamin A Metabolism. Nutrients 2022; 14:nu14061312. [PMID: 35334970 PMCID: PMC8950952 DOI: 10.3390/nu14061312] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Vitamin A is an essential nutrient required throughout life. Through its various metabolites, vitamin A sustains fetal development, immunity, vision, and the maintenance, regulation, and repair of adult tissues. Abnormal tissue levels of the vitamin A metabolite, retinoic acid, can result in detrimental effects which can include congenital defects, immune deficiencies, proliferative defects, and toxicity. For this reason, intricate feedback mechanisms have evolved to allow tissues to generate appropriate levels of active retinoid metabolites despite variations in the level and format, or in the absorption and conversion efficiency of dietary vitamin A precursors. Here, we review basic mechanisms that govern vitamin A signaling and metabolism, and we focus on retinoic acid-controlled feedback mechanisms that contribute to vitamin A homeostasis. Several approaches to investigate mechanistic details of the vitamin A homeostatic regulation using genomic, gene editing, and chromatin capture technologies are also discussed.
Collapse
Affiliation(s)
- Catherine O’Connor
- MD Program, Northern Ontario School of Medicine, 317-MSE Bldg., 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada;
| | - Parisa Varshosaz
- Biology and Biomolecular Sciences Ph.D. Program, Northern Ontario School of Medicine, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| | - Alexander R. Moise
- Medical Sciences Division, Northern Ontario School of Medicine, 317-MSE Bldg., 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
- Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada
- Correspondence: ; Tel.: +1-705-662-7253
| |
Collapse
|
19
|
Steinhoff JS, Lass A, Schupp M. Retinoid Homeostasis and Beyond: How Retinol Binding Protein 4 Contributes to Health and Disease. Nutrients 2022; 14:1236. [PMID: 35334893 PMCID: PMC8951293 DOI: 10.3390/nu14061236] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023] Open
Abstract
Retinol binding protein 4 (RBP4) is the specific transport protein of the lipophilic vitamin A, retinol, in blood. Circulating RBP4 originates from the liver. It is secreted by hepatocytes after it has been loaded with retinol and binding to transthyretin (TTR). TTR association prevents renal filtration due to the formation of a higher molecular weight complex. In the circulation, RBP4 binds to specific membrane receptors, thereby delivering retinol to target cells, rendering liver-secreted RBP4 the major mechanism to distribute hepatic vitamin A stores to extrahepatic tissues. In particular, binding of RBP4 to 'stimulated by retinoic acid 6' (STRA6) is required to balance tissue retinoid responses in a highly homeostatic manner. Consequently, defects/mutations in RBP4 can cause a variety of conditions and diseases due to dysregulated retinoid homeostasis and cover embryonic development, vision, metabolism, and cardiovascular diseases. Aside from the effects related to retinol transport, non-canonical functions of RBP4 have also been reported. In this review, we summarize the current knowledge on the regulation and function of RBP4 in health and disease derived from murine models and human mutations.
Collapse
Affiliation(s)
- Julia S. Steinhoff
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular Metabolic Renal (CMR)-Research Center, 10115 Berlin, Germany;
| | - Achim Lass
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Heinrichstraße 31/II, A-8010 Graz, Austria;
- Field of Excellence BioHealth, University of Graz, Heinrichstraße 31/II, A-8010 Graz, Austria
| | - Michael Schupp
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular Metabolic Renal (CMR)-Research Center, 10115 Berlin, Germany;
| |
Collapse
|
20
|
Matsushita K, Mori K, Saritas T, Eiwaz MB, Funahashi Y, Nickerson MN, Hebert JF, Munhall AC, McCormick JA, Yanagita M, Hutchens MP. Cilastatin Ameliorates Rhabdomyolysis-induced AKI in Mice. J Am Soc Nephrol 2021; 32:2579-2594. [PMID: 34341182 PMCID: PMC8722809 DOI: 10.1681/asn.2020030263] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/17/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Rhabdomyolysis, the destruction of skeletal muscle, is a significant cause of AKI and death in the context of natural disaster and armed conflict. Rhabdomyolysis may also initiate CKD. Development of specific pharmacologic therapy is desirable because supportive care is nearly impossible in austere environments. Myoglobin, the principal cause of rhabdomyolysis-related AKI, undergoes megalin-mediated endocytosis in proximal tubule cells, a process that specifically injures these cells. METHODS To investigate whether megalin is protective in a mouse model of rhabdomyolysis-induced AKI, we used male C57BL/6 mice and mice (14-32 weeks old) with proximal tubule-specific deletion of megalin. We used a well-characterized rhabdomyolysis model, injection of 50% glycerol in normal saline preceded by water deprivation. RESULTS Inducible proximal tubule-specific deletion of megalin was highly protective in this mouse model of rhabdomyolysis-induced AKI. The megalin knockout mice demonstrated preserved GFR, reduced proximal tubule injury (as indicated by kidney injury molecule-1), and reduced renal apoptosis 24 hours after injury. These effects were accompanied by increased urinary myoglobin clearance. Unlike littermate controls, the megalin-deficient mice also did not develop progressive GFR decline and persistent new proteinuria. Administration of the pharmacologic megalin inhibitor cilastatin to wild-type mice recapitulated the renoprotective effects of megalin deletion. This cilastatin-mediated renoprotective effect was dependent on megalin. Cilastatin administration caused selective proteinuria and inhibition of tubular myoglobin uptake similar to that caused by megalin deletion. CONCLUSIONS We conclude that megalin plays a critical role in rhabdomyolysis-induced AKI, and megalin interference and inhibition ameliorate rhabdomyolysis-induced AKI. Further investigation of megalin inhibition may inform translational investigation of a novel potential therapy.
Collapse
Affiliation(s)
- Katsuyuki Matsushita
- Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon
| | - Kiyoshi Mori
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Turgay Saritas
- Division of Nephrology & Hypertension, Oregon Health & Science University, Portland, Oregon,Division of Nephrology & Hypertension, University Hospital RWTH Aachen, Aachen, Germany
| | - Mahaba B. Eiwaz
- Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon
| | - Yoshio Funahashi
- Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon
| | - Megan N. Nickerson
- Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon
| | - Jessica F. Hebert
- Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon
| | - Adam C. Munhall
- Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon
| | - James A. McCormick
- Division of Nephrology & Hypertension, Oregon Health & Science University, Portland, Oregon
| | - Motoko Yanagita
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan,Institute for Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Michael P. Hutchens
- Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon,Portland Veterans Affairs Medical Center, Operative Care Division, Portland, Oregon,Correspondence: Dr. Michael P. Hutchens, Operative Care Division, Portland Veterans Affairs Medical Center R&D, 5 3710 SW US Veterans Hospital Road, Portland, OR 97239.
| |
Collapse
|
21
|
The diversity of lipocalin receptors. Biochimie 2021; 192:22-29. [PMID: 34534611 DOI: 10.1016/j.biochi.2021.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 11/23/2022]
Abstract
Lipocalins are important carriers of preferentially hydrophobic molecules, but they can also bind other ligands, like highly polar siderophores or intact proteins. Consequently, they are involved in a variety of physiological processes in many species. Since lipocalins are mainly extracellular proteins, they have to interact with cell receptors to exert their biological effects. In contrast to the large number of lipocalins identified in the last years, the number of receptors known is still limited. Nevertheless, some novel findings concerning the molecules involved in cellular uptake or signaling effects of lipocalins have been made recently. This review presents a detailed overview of the receptors identified so far. The methods used for isolation or identification are described and structural as well as functional information on these proteins is presented essentially in chronological order of their initial discovery.
Collapse
|
22
|
Gu X, Yang H, Sheng X, Ko YA, Qiu C, Park J, Huang S, Kember R, Judy RL, Park J, Damrauer SM, Nadkarni G, Loos RJF, My VTH, Chaudhary K, Bottinger EP, Paranjpe I, Saha A, Brown C, Akilesh S, Hung AM, Palmer M, Baras A, Overton JD, Reid J, Ritchie M, Rader DJ, Susztak K. Kidney disease genetic risk variants alter lysosomal beta-mannosidase ( MANBA) expression and disease severity. Sci Transl Med 2021; 13:13/576/eaaz1458. [PMID: 33441424 DOI: 10.1126/scitranslmed.aaz1458] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 04/08/2020] [Accepted: 12/09/2020] [Indexed: 02/05/2023]
Abstract
More than 800 million people in the world suffer from chronic kidney disease (CKD). Genome-wide association studies (GWAS) have identified hundreds of loci where genetic variants are associated with kidney function; however, causal genes and pathways for CKD remain unknown. Here, we performed integration of kidney function GWAS and human kidney-specific expression quantitative trait analysis and identified that the expression of beta-mannosidase (MANBA) was lower in kidneys of subjects with CKD risk genotype. We also show an increased incidence of renal failure in subjects with rare heterozygous loss-of-function coding variants in MANBA using phenome-wide association analysis of 40,963 subjects with exome sequencing data. MANBA is a lysosomal gene highly expressed in kidney tubule cells. Deep phenotyping revealed structural and functional lysosomal alterations in human kidneys from subjects with CKD risk alleles and mice with genetic deletion of Manba Manba heterozygous and knockout mice developed more severe kidney fibrosis when subjected to toxic injury induced by cisplatin or folic acid. Manba loss altered multiple pathways, including endocytosis and autophagy. In the absence of Manba, toxic acute tubule injury induced inflammasome activation and fibrosis. Together, these results illustrate the convergence of common noncoding and rare coding variants in MANBA in kidney disease development and demonstrate the role of the endolysosomal system in kidney disease development.
Collapse
Affiliation(s)
- Xiangchen Gu
- Department of Medicine Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Division of Nephrology, Yueyang Hospital of Integrative Traditional Chinese and Western Medicine, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Hongliu Yang
- Department of Medicine Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xin Sheng
- Department of Medicine Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi-An Ko
- Department of Medicine Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chengxiang Qiu
- Department of Medicine Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jihwan Park
- Department of Medicine Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shizheng Huang
- Department of Medicine Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel Kember
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Renae L Judy
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Joseph Park
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.,Department of Genetics Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Scott M Damrauer
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Girish Nadkarni
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,The Hasso Plattner Institute of Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vy Thi Ha My
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kumardeep Chaudhary
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Erwin P Bottinger
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,The Hasso Plattner Institute of Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ishan Paranjpe
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aparna Saha
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christopher Brown
- Department of Genetics Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shreeram Akilesh
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Adriana M Hung
- Nashville VA Medical Center, Nashville, TN 37212, USA.,Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Matthew Palmer
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aris Baras
- Regeneron Genetics Center (RGC), 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - John D Overton
- Regeneron Genetics Center (RGC), 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - Jeffrey Reid
- Regeneron Genetics Center (RGC), 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - Marylyn Ritchie
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.,Department of Genetics Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel J Rader
- Department of Medicine Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.,Department of Genetics Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katalin Susztak
- Department of Medicine Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. .,Department of Genetics Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
23
|
Salota R, Lapsley M, Nabi E, Packer S, Hyer S, Dockrell M. Time-resolved fluorescence immunoassay for urine retinol-binding protein is more sensitive than polyclonal and monoclonal assays. Ann Clin Biochem 2021; 58:505-519. [PMID: 34006121 DOI: 10.1177/00045632211020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Retinol-binding protein4 (RBP) assays using polyclonal antibodies (pRBP) have major problems of non-linearity of dilution and a very small useable dynamic range. Our objective was to develop a specific assay with a wider dynamic range to detect tubular proteinuria. METHODS mRBP (monoclonal capture and second antibody with colorimetric detection) and fluoroimmunoassays for RBP (fRBP) (polyclonal capture and monoclonal second antibody with fluorescence detection) were developed and compared with pRBP. Four hundred and eighty-eight patient samples were collected; 290 samples were analysed by mRBP and 198 samples with fRBP and compared with pRBP. RESULTS mRBP assay has the advantages of better linearity on dilution and wider analytical range over pRBP. It is limited by poor signal in the patients with albuminuria and glomerular proteinuria and inferior discrimination between patient groups. fRBP had an intra-assay and inter-assay CV of <6% and <8%, respectively, and analytical range was 2.3-599 µg/L. fRBP was linear on dilution within the analytical range. Correlation (r) was 0.8722 (95% CI 0.7621 to 0.9333, P< 0.0001); Mann-Whitney test revealed no significant difference (U = 18,877, n = 198, P = 0.5244) asserting that the medians of the two samples were identical. Bland-Altman test between pRBP and fRBP showed a mean negative bias of 16.43 (CI -994 to 1027) µg/mmol. CONCLUSIONS The combination assay with fluorescence detection (fRBP) proved more discriminatory than a purely monoclonal system especially in patients with significant proteinuria and has advantages of better linearity on dilution and wider analytical range than the existing pRBP assay and compared extremely well with pRBP.
Collapse
Affiliation(s)
- Rashim Salota
- Department of Clinical Biochemistry, Epsom and St Helier University Hospitals NHS Trust Surrey, UK
| | - Marta Lapsley
- Department of Clinical Biochemistry, Epsom and St Helier University Hospitals NHS Trust Surrey, UK
| | - Ekramun Nabi
- South West Thames Institute for Renal Research, Epsom and St. Helier University Hospitals NHS Trust, Surrey, UK
| | | | - Steve Hyer
- Diabetes and Endocrinology, Epsom and St Helier University Hospitals NHS Trust, Surrey, UK
| | - Mark Dockrell
- South West Thames Institute for Renal Research, Epsom and St. Helier University Hospitals NHS Trust, Surrey, UK
| |
Collapse
|
24
|
Steinhoff JS, Lass A, Schupp M. Biological Functions of RBP4 and Its Relevance for Human Diseases. Front Physiol 2021; 12:659977. [PMID: 33790810 PMCID: PMC8006376 DOI: 10.3389/fphys.2021.659977] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Retinol binding protein 4 (RBP4) is a member of the lipocalin family and the major transport protein of the hydrophobic molecule retinol, also known as vitamin A, in the circulation. Expression of RBP4 is highest in the liver, where most of the body’s vitamin A reserves are stored as retinyl esters. For the mobilization of vitamin A from the liver, retinyl esters are hydrolyzed to retinol, which then binds to RBP4 in the hepatocyte. After associating with transthyretin (TTR), the retinol/RBP4/TTR complex is released into the bloodstream and delivers retinol to tissues via binding to specific membrane receptors. So far, two distinct RBP4 receptors have been identified that mediate the uptake of retinol across the cell membrane and, under specific conditions, bi-directional retinol transport. Although most of RBP4’s actions depend on its role in retinoid homeostasis, functions independent of retinol transport have been described. In this review, we summarize and discuss the recent findings on the structure, regulation, and functions of RBP4 and lay out the biological relevance of this lipocalin for human diseases.
Collapse
Affiliation(s)
- Julia S Steinhoff
- Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Achim Lass
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Michael Schupp
- Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
25
|
Bryniarski MA, Zhao B, Chaves LD, Mikkelsen JH, Yee BM, Yacoub R, Shen S, Madsen M, Morris ME. Immunoglobulin G Is a Novel Substrate for the Endocytic Protein Megalin. AAPS JOURNAL 2021; 23:40. [PMID: 33677748 DOI: 10.1208/s12248-021-00557-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/07/2021] [Indexed: 11/30/2022]
Abstract
Therapeutic immunoglobulin G (IgG) antibodies comprise the largest class of protein therapeutics. Several factors that influence their overall disposition have been well-characterized, including target-mediated mechanics and convective flow. What remains poorly defined is the potential for non-targeted entry into various tissues or cell types by means of uptake via cell surface receptors at those sites. Megalin and cubilin are large endocytic receptors whose cooperative function plays important physiological roles at the tissues in which they are expressed. One such example is the kidney, where loss of either results in significant declines in proximal tubule protein reabsorption. Due to their diverse ligand profile and broad tissue expression, megalin and cubilin represent potential candidates for receptor-mediated uptake of IgG into various epithelia. Therefore, the objective of the current work was to determine if IgG was a novel ligand of megalin and/or cubilin. Direct binding was measured for human IgG with both megalin and the cubilin/amnionless complex. Additional work focusing on the megalin-IgG interaction was then conducted to build upon these findings. Cell uptake studies using megalin ligands for competitive inhibition or proximal tubule cells stably transduced with megalin-targeted shRNA constructs supported a role for megalin in the endocytosis of human IgG. Furthermore, a pharmacokinetic study using transgenic mice with a kidney-specific mosaic knockout of megalin demonstrated increased urinary excretion of human IgG in megalin knockout mice when compared to wild-type controls. These findings indicate that megalin is capable of binding and internalizing IgG via a high affinity interaction.
Collapse
Affiliation(s)
- Mark A Bryniarski
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 445 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Bei Zhao
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 445 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Lee D Chaves
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 445 Pharmacy Building, Buffalo, New York, 14214-8033, USA.,Department of Internal Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | | | - Benjamin M Yee
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 445 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Rabi Yacoub
- Department of Internal Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 445 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Mette Madsen
- Department of Biomedicine, Aarhus University, 8000, Aarhus C., Denmark
| | - Marilyn E Morris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 445 Pharmacy Building, Buffalo, New York, 14214-8033, USA.
| |
Collapse
|
26
|
Christensen EI, Kristoffersen IB, Grann B, Thomsen JS, Andreasen A, Nielsen R. A well-developed endolysosomal system reflects protein reabsorption in segment 1 and 2 of rat proximal tubules. Kidney Int 2020; 99:841-853. [PMID: 33340516 DOI: 10.1016/j.kint.2020.11.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 11/01/2020] [Accepted: 11/05/2020] [Indexed: 12/26/2022]
Abstract
Proteinuria is a well-established marker and predictor of kidney disease. The receptors megalin and cubilin reabsorb filtered proteins and thereby proteinuria is avoided. It is unknown if all segments of the proximal tubule are involved in clearing the filtrate or if there exists a reserve capacity in case of increased glomerular protein filtration. To determine this, we performed serial sectioning of rat kidney and used stereology to quantify the endolysosomal system of the three segments of cortical and juxtamedullary nephrons by electron microscopy. Immunohistochemistry was applied to analyze the adaptor protein Dab2, which assists in megalin mediated endocytosis, megalin, and endocytic uptake of two endogenous megalin ligands; retinol binding protein and β2-microglobulin at exact tubular positions. Proteinuric rats (puromycin-treated) and mice (podocin knock-out) were analyzed to clarify the response of the tubule to increased protein filtration. We found that the endolysosomal system was most prominent in segment 1 and 2, whereas segment 3 was less developed. The depth of ligand uptake varied among nephrons, but it descended into segment 2 although uptake was lower than in segment 1 and it was never observed in segment 3. This was supported by prominent expression of Dab2 in segment 1 and 2. When protein filtration increased, segment 3 was included in the reabsorption process in proteinuric animals. Thus, segment 1 and 2 are responsible for clearing the filtrate for protein during normal physiological conditions, but the tubule exhibits plasticity and is able to include segment 3 under proteinuric stress.
Collapse
Affiliation(s)
| | | | - Birgitte Grann
- Department of Biomedicine, Anatomy, Aarhus University, Aarhus, Denmark
| | - Jesper S Thomsen
- Department of Biomedicine, Anatomy, Aarhus University, Aarhus, Denmark
| | - Arne Andreasen
- Department of Biomedicine, Anatomy, Aarhus University, Aarhus, Denmark
| | - Rikke Nielsen
- Department of Biomedicine, Anatomy, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
27
|
Racz B, Varadi A, Pearson PG, Petrukhin K. Comparative pharmacokinetics and pharmacodynamics of the advanced Retinol-Binding Protein 4 antagonist in dog and cynomolgus monkey. PLoS One 2020; 15:e0228291. [PMID: 31978148 PMCID: PMC6980506 DOI: 10.1371/journal.pone.0228291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/10/2020] [Indexed: 12/23/2022] Open
Abstract
Accumulation of lipofuscin bisretinoids in the retina contributes to pathogenesis of macular degeneration. Retinol-Binding Protein 4 (RBP4) antagonists reduce serum retinol concentrations thus partially reducing retinol delivery to the retina which decreases bisretinoid synthesis. BPN-14136 is a novel RBP4 antagonist with good in vitro potency and selectivity and optimal rodent pharmacokinetic (PK) and pharmacodynamic (PD) characteristics. To select a non-rodent species for regulatory toxicology studies, we conducted PK and PD evaluation of BPN-14136 in dogs and non-human primates (NHP). PK properties were determined following oral and intravenous administration of BPN-14136 in beagle dogs and cynomolgus monkeys. Dynamics of plasma RBP4 reduction in response to compound administration was used as a PD marker. BPN-14136 exhibited favorable PK profile in both species. Dose-normalized exposure was significantly higher in NHP than in dog. Baseline concentrations of RBP4 were considerably lower in dog than in NHP, reflecting the atypical reliance of canids on non-RBP4 mechanisms of retinoid trafficking. Oral administration of BPN-14136 to NHP induced a strong 99% serum RBP4 reduction. Dynamics of RBP4 lowering in both species correlated with compound exposure. Despite adequate PK and PD characteristics of BPN-14136 in dog, reliance of canids on non-RBP4 mechanisms of retinoid trafficking precludes evaluation of on-target toxicities for RBP4 antagonists in this species. Strong RBP4 lowering combined with good PK attributes and high BPN-14136 exposure achieved in NHP, along with the biology of retinoid trafficking that is similar to that of humans, support the choice of NHP as a non-rodent safety species.
Collapse
Affiliation(s)
- Boglarka Racz
- Department of Ophthalmology, Columbia University, New York, New York, Unites States of America
| | - Andras Varadi
- Department of Ophthalmology, Columbia University, New York, New York, Unites States of America
| | - Paul G. Pearson
- Pearson Pharma Partners, Westlake Village, California, United States of America
| | - Konstantin Petrukhin
- Department of Ophthalmology, Columbia University, New York, New York, Unites States of America
- * E-mail:
| |
Collapse
|
28
|
Pérez-López L, Boronat M, Melián C, Brito-Casillas Y, Wägner AM. Animal Models and Renal Biomarkers of Diabetic Nephropathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1307:521-551. [PMID: 32329028 DOI: 10.1007/5584_2020_527] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diabetes mellitus (DM) is the first cause of end stage chronic kidney disease (CKD). Animal models of the disease can shed light on the pathogenesis of the diabetic nephropathy (DN) and novel and earlier biomarkers of the condition may help to improve diagnosis and prognosis. This review summarizes the most important features of animal models used in the study of DN and updates the most recent progress in biomarker research.
Collapse
Affiliation(s)
- Laura Pérez-López
- Institute of Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Mauro Boronat
- Institute of Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
- Department of Endocrinology and Nutrition, Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, Spain
| | - Carlos Melián
- Institute of Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
- Department of Animal Pathology, Veterinary Faculty, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Arucas, Las Palmas, Spain
| | - Yeray Brito-Casillas
- Institute of Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Ana M Wägner
- Institute of Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain.
- Department of Endocrinology and Nutrition, Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
29
|
Gliozzi ML, Rbaibi Y, Long KR, Vitturi DA, Weisz OA. Hemoglobin alters vitamin carrier uptake and vitamin D metabolism in proximal tubule cells: implications for sickle cell disease. Am J Physiol Cell Physiol 2019; 317:C993-C1000. [PMID: 31509446 DOI: 10.1152/ajpcell.00287.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Kidney disease, including proximal tubule (PT) dysfunction, and vitamin D deficiency are among the most prevalent complications in sickle cell disease (SCD) patients. Although these two comorbidities have never been linked in SCD, the PT is the primary site for activation of vitamin D. Precursor 25-hydroxyvitamin D [25(OH)D] bound to vitamin D-binding protein (DBP) is taken up by PT cells via megalin/cubilin receptors, hydroxylated to the active 1,25-dihydroxyvitamin D [1,25(OH)2D] form, and released into the bloodstream. We tested the hypothesis that cell-free hemoglobin (Hb) filtered into the PT lumen impairs vitamin D uptake and metabolism. Hb at concentrations expected to be chronically present in the ultrafiltrate of SCD patients competed directly with DBP for apical uptake by PT cells. By contrast, uptake of retinol binding protein was impaired only at considerably higher Hb concentrations. Prolonged exposure to Hb led to increased oxidative stress in PT cells and to a selective increase in mRNA levels of the CYP27B1 hydroxylase, although protein levels were unchanged. Hb exposure also impaired vitamin D metabolism in PT cells, resulting in reduced ratio of 1,25(OH)2D:25(OH)D. Moreover, plasma levels of 1,25(OH)2D were reduced in a mouse model of SCD. Together, our data suggest that Hb released by chronic hemolysis has multiple effects on PT function that contribute to vitamin D deficiency in SCD patients.
Collapse
Affiliation(s)
- Megan L Gliozzi
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Youssef Rbaibi
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kimberly R Long
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Dario A Vitturi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ora A Weisz
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
30
|
Collery RF, Link BA. Precise Short Sequence Insertion in Zebrafish Using a CRISPR/Cas9 Approach to Generate a Constitutively Soluble Lrp2 Protein. Front Cell Dev Biol 2019; 7:167. [PMID: 31457013 PMCID: PMC6700241 DOI: 10.3389/fcell.2019.00167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 07/31/2019] [Indexed: 11/13/2022] Open
Abstract
LRP2 is a large transmembrane receptor expressed on absorptive epithelia where it binds many extracellular ligands to control several signaling pathways. Mutations in LRP2 are associated with buphthalmic eye enlargement, myopia and other non-ocular symptoms. Though studies have clearly shown that absence of LRP2 causes these phenotypes, and that overexpression of individual LRP2 domains can exacerbate eye enlargement caused by the absence of Lrp2, the relationship between soluble LRP2 fragments and full-length membrane-bound LRP2 is not completely understood. Here we use a CRISPR/Cas9 approach to insert a stop codon cassette into zebrafish lrp2 to prematurely truncate the protein before its transmembrane domain while leaving the entire extracellular domain intact. The resulting mutant line will be a useful tool for examining Lrp2 function in the eye, and testing hypotheses regarding its extracellular processing.
Collapse
Affiliation(s)
- Ross F Collery
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin Eye Institute, Milwaukee, WI, United States
| | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
31
|
Wen L, Zhao Z, Wang Z, Xiao J, Birn H, Gregersen JW. High levels of urinary complement proteins are associated with chronic renal damage and proximal tubule dysfunction in immunoglobulin A nephropathy. Nephrology (Carlton) 2019; 24:703-710. [PMID: 30141239 DOI: 10.1111/nep.13477] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2018] [Indexed: 11/29/2022]
Abstract
AIM Complement activation is involved in the pathogenesis and progression of immunoglobulin A nephropathy (IgAN); however, the clinical implication of abnormal complement protein levels in serum and urine is not clear. To address this we analyzed the correlation between disease activity and complement proteins in serum and urine from IgAN patients, and compared to patients with other types of chronic kidney disease (CKD) as well as healthy controls. METHODS We included 85 Chinese patients with IgAN, 23 patients with non-proliferative CKD, and 20 healthy individuals. Patients were divided according to the Oxford classification of M0E0S0T0 (group 1, n = 20), M1E1S0-1 T0-1 (group 2, n = 25), M1E1S0-1 T2 or M0E0S1T1-2 (group 3, n = 40). Complement factor H (CFH), mannose-binding lectin and membrane attack complex in serum and urine were measured by enzyme-linked immunosorbent assay. RESULTS Urinary CFH, membrane attack complex and serum CFH were increased in both IgAN and CKD patients compared with healthy controls. The urinary excretion of CFH was the highest in IgAN patients with most tubulointerstitial damage (IgAN group 3). Urinary CFH and mannose-binding lectin levels were significantly higher in IgAN patients with crescents formation (C1-2) than in patients without (C0). Urinary complement protein excretion correlated negatively with estimated glomerular filtration rate, and positively with urinary retinol-binding protein and α1-microglobulin excretion indicating proximal tubule dysfunction. CONCLUSION Increased urinary excretion of complement proteins in IgAN is related to chronic injury and tubular dysfunction. This warrants caution using urinary complement proteins as markers of disease activity.
Collapse
Affiliation(s)
- Lu Wen
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Zhanzheng Zhao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zheng Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Xiao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Henrik Birn
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Jon W Gregersen
- Department of Nephrology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
32
|
Immature megalin expression in the preterm neonatal kidney is associated with urinary loss of vitamin carrier proteins. Pediatr Res 2019; 85:405-411. [PMID: 30659269 DOI: 10.1038/s41390-018-0261-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/15/2018] [Accepted: 11/30/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND Vitamin A and D deficiencies are common in preterm infants. Megalin is an endocytic receptor in the proximal tubule, which reabsorbs retinol-binding protein (RBP) and vitamin D-binding protein (VDBP). Although the proximal tubule is immature in preterm infants, little is known about megalin expression during kidney development. In this study, we establish the abundance of megalin in the developing human kidney and its relationship to the urinary excretion of vitamin carriers in preterm infants. METHODS We analyzed a postmortem group (20-40 weeks gestation), where we used morphometric means of measuring megalin and its ligands in kidney tissue and a living group of patients (28-40 weeks), where urinary RBP and VDBP were measured. RESULTS The presence of megalin, RBP, and VDBP increased in the proximal tubule through gestation. At birth the urinary concentration of RBP and VDBP were higher in the 28-32 week group compared to the 38-40 week group and a significant inverse correlation of tissue megalin and urinary loss of RBP and VDBP existed. CONCLUSIONS Preterm infants experience vitamin carrier protein losses, which are associated with decreased megalin expression. This developmental expression of megalin in the kidney has clinical implications in the prevention of vitamin deficiencies in preterm babies.
Collapse
|
33
|
Kocełak P, Owczarek A, Bożentowicz-Wikarek M, Brzozowska A, Mossakowska M, Grodzicki T, Więcek A, Chudek J, Olszanecka-Glinianowicz M. Plasma concentration of Retinol Binding Protein 4 (RBP4) in relation to nutritional status and kidney function in older population of PolSenior Study. Adv Med Sci 2018; 63:323-328. [PMID: 30025358 DOI: 10.1016/j.advms.2018.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 01/22/2018] [Accepted: 04/26/2018] [Indexed: 12/24/2022]
Abstract
PURPOSE The aim of the study was to assess plasma RBP4 concentration in elderly subjects in relation to nutritional status and kidney function in the population of the PolSenior Study. MATERIAL AND METHODS We assessed RBP4, glucose, insulin, albumin, lipid profile, C-reactive protein, (hsCRP) and creatinine concentrations in 2614 PolSenior Study participants (1235 women and 1379 men). The study group was divided based on BMI and HOMA-IR values, and the occurrence of diabetes. RESULTS Plasma RBP4 concentration was similar in normal weight, overweight, and obese subgroups, both in women (40.4 vs 40.8 vs 41.8 ng/ml, respectively), and men (41.2 vs 40.3 vs 42.9 ng/ml, respectively). Similar values were found in subjects with HOMA-IR <2.5; ≥2.5 and diabetes, while those with decreased eGFR (<60 ml/min/1.73 m2) were characterized by increased RBP4 levels [46.0 (32.0-64.8) vs 39.4 (28.2-54.9) ng/ml; p < 0.001]. Plasma RBP4 level variability was explained by: age, waist circumference or BMI, and eGFR, but not HOMA-IR and/or hsCRP. The standardized coefficients β (slopes) for BMI and waist circumference were similar. CONCLUSIONS The results revealed that in older subjects, circulating RBP4 levels are mostly affected by kidney function and modestly by age, gender, and nutritional status, but not insulin resistance.
Collapse
Affiliation(s)
- Piotr Kocełak
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Medical Faculty in Katowice, Medical University of Silesia, Katowice, Poland
| | - Aleksander Owczarek
- Department of Statistics, Department of Instrumental Analysis, Faculty of Pharmacy and Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Maria Bożentowicz-Wikarek
- Pathophysiology Unit, Department of Pathophysiology, Medical Faculty in Katowice, Medical University of Silesia, Katowice, Poland
| | - Aniceta Brzozowska
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Medical Faculty in Katowice, Medical University of Silesia, Katowice, Poland
| | | | - Tomasz Grodzicki
- Department of Internal Medicine and Gerontology, Jagiellonian University Medical College, Krakow, Poland
| | - Andrzej Więcek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Katowice, Poland
| | - Jerzy Chudek
- Pathophysiology Unit, Department of Pathophysiology, Medical Faculty in Katowice, Medical University of Silesia, Katowice, Poland; Department of Internal Medicine and Oncological Chemotherapy, Medical Faculty in Katowice, Medical University of Silesia, Katowice, Poland
| | - Magdalena Olszanecka-Glinianowicz
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Medical Faculty in Katowice, Medical University of Silesia, Katowice, Poland.
| |
Collapse
|
34
|
Otterpohl KL, Hart RG, Evans C, Surendran K, Chandrasekar I. Nonmuscle myosin 2 proteins encoded by Myh9, Myh10, and Myh14 are uniquely distributed in the tubular segments of murine kidney. Physiol Rep 2018; 5. [PMID: 29208685 PMCID: PMC5727274 DOI: 10.14814/phy2.13513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 11/24/2022] Open
Abstract
The diverse epithelial cell types of the kidneys are segregated into nephron segments and the collecting ducts in order to endow each tubular segment with unique functions. The rich diversity of the epithelial cell types is highlighted by the unique membrane channels and receptors expressed within each nephron segment. Our previous work identified a critical role for Myh9 and Myh10 in mammalian endocytosis. Here, we examined the expression patterns of Nonmuscle myosin 2 (NM2) heavy chains encoded by Myh9, Myh10, and Myh14 in mouse kidneys as these genes may confer unique nephron segment‐specific membrane transport properties. Interestingly, we found that each segment of the renal tubules predominately expressed only two of the three NM2 isoforms, with isoform‐specific subcellular localization, and different levels of expression within a nephron segment. Additionally, we identify Myh14 to be restricted to the intercalated cells and Myh10 to be restricted to the principal cells within the collecting ducts and connecting segments. We speculate that the distinct expression pattern of the NM2 proteins likely reflects the diversity of the intracellular trafficking machinery present within the different renal tubular epithelial segments.
Collapse
Affiliation(s)
- Karla L Otterpohl
- Enabling Technologies Group - Sanford Research, Sioux Falls, South Dakota, USA
| | - Ryan G Hart
- Enabling Technologies Group - Sanford Research, Sioux Falls, South Dakota, USA
| | - Claire Evans
- Molecular Pathology Core, Sanford Research, Sioux Falls, South Dakota, USA
| | - Kameswaran Surendran
- Pediatrics and Rare Diseases Group - Sanford Research, Sioux Falls, South Dakota, USA.,Department of Pediatrics, USD Sanford School of Medicine, Sioux Falls, South Dakota, USA
| | - Indra Chandrasekar
- Enabling Technologies Group - Sanford Research, Sioux Falls, South Dakota, USA.,Department of Pediatrics, USD Sanford School of Medicine, Sioux Falls, South Dakota, USA
| |
Collapse
|
35
|
Dalboni MA, Cenedeze MA, Manfredi SR, Cruz Andreoli MC, Paväo Dos Santos O, Canziani ME, Boim MA, GÓes MÂ, Draibe SA, Balakrishnan V, Cendoroglo M. High Serum Levels of Soluble Fas (sFas) in Ckd Patients: Effects of Renal Clearance, Reabsorption and Synthesis. Int J Artif Organs 2018; 31:405-10. [DOI: 10.1177/039139880803100505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Purpose Increased serum concentrations of soluble Fas (sFas) have been reported in patients with chronic kidney disease (CKD). However, little is known about the renal clearance of sFas, whether sFas is reabsorbed in the renal tubules, or the behavior of sFas synthesis in CKD. Materials and Methods We studied 69 patients with CKD (60±15 years old, creatinine clearance 37+19 ml/min/1.73 m2) and 14 healthy subjects (61±17 years, creatinine clearance 79±24 ml/min/1.73 m2). ELISA was used to measure the levels of sFas (pg/mL) and retinol binding protein (RBP - mg/L). RT-PCR was used to quantify sFasmRNA of leukocytes. Results Serum sFas levels were significantly higher in patients with CKD (2781±1214 vs. 2196±773, p=0.02). The concentrations of sFas in 24-hour urine samples (23±27 vs. 40±17, p=0.006) and sFas Clearance (0.019±0.022 vs. 0.036±0.020, p=0.01) were significantly lower in patients with CKD. sFas clearance correlated with creatinine clearance (r=0.25, p=0.02). Urine concentrations of RBP correlated with sFas concentrations in the urine (r=0.80, p<0.001). sFasmRNA were higher in patients with CKD (3.9±1.8 vs. 2.5±0.9, p<0.001). Conclusions In CKD patients, the decrease in renal function is followed by a decrease in sFas clearance and an increase in serum sFas. In patients with proximal tubule dysfunction (high urinary RBP concentrations), urinary sFas is also increased, suggesting that sFas is reabsorbed by the proximal tubule. It is possible that an increase in sFas synthesis also contributes to the increase of serum sFas concentrations in uremia.
Collapse
Affiliation(s)
- M. A. Dalboni
- Division of Nephrology, Department of Medicine, Federal University of San Paulo, San Paulo - Brazil
| | - M. A. Cenedeze
- Division of Nephrology, Department of Medicine, Federal University of San Paulo, San Paulo - Brazil
| | - S. R. Manfredi
- Division of Nephrology, Department of Medicine, Federal University of San Paulo, San Paulo - Brazil
| | - M. C. Cruz Andreoli
- Division of Nephrology, Department of Medicine, Federal University of San Paulo, San Paulo - Brazil
| | - O. Paväo Dos Santos
- Division of Nephrology, Department of Medicine, Federal University of San Paulo, San Paulo - Brazil
| | - M. E. Canziani
- Division of Nephrology, Department of Medicine, Federal University of San Paulo, San Paulo - Brazil
| | - M. A. Boim
- Division of Nephrology, Department of Medicine, Federal University of San Paulo, San Paulo - Brazil
| | - M. Â. GÓes
- Division of Nephrology, Department of Medicine, Federal University of San Paulo, San Paulo - Brazil
| | - S. A. Draibe
- Division of Nephrology, Department of Medicine, Federal University of San Paulo, San Paulo - Brazil
| | - V. Balakrishnan
- Division of Nephrology, Department of Medicine, New England Medical Center, Tufts School of Medicine, Boston, Massachusetts - USA
| | - M. Cendoroglo
- Division of Nephrology, Department of Medicine, Federal University of San Paulo, San Paulo - Brazil
- Division of Nephrology, Department of Medicine, New England Medical Center, Tufts School of Medicine, Boston, Massachusetts - USA
| |
Collapse
|
36
|
Ebenezer GJ, Liu Y, Judge DP, Cunningham K, Truelove S, Carter ND, Sebastian B, Byrnes K, Polydefkis M. Cutaneous nerve biomarkers in transthyretin familial amyloid polyneuropathy. Ann Neurol 2017; 82:44-56. [DOI: 10.1002/ana.24972] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 01/04/2023]
Affiliation(s)
| | - Ying Liu
- Department of Neurology; Johns Hopkins University
| | | | | | - Shaun Truelove
- Department of Epidemiology; Johns Hopkins Bloomberg School of Public Health; Baltimore MD
| | | | | | - Kelly Byrnes
- Department of Neurology; Johns Hopkins University
| | | |
Collapse
|
37
|
Jensen D, Kierulf-Lassen C, Kristensen MLV, Nørregaard R, Weyer K, Nielsen R, Christensen EI, Birn H. Megalin dependent urinary cystatin C excretion in ischemic kidney injury in rats. PLoS One 2017; 12:e0178796. [PMID: 28575050 PMCID: PMC5456377 DOI: 10.1371/journal.pone.0178796] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/18/2017] [Indexed: 11/30/2022] Open
Abstract
Background Cystatin C, a marker of kidney injury, is freely filtered in the glomeruli and reabsorbed by the proximal tubules. Megalin and cubilin are endocytic receptors essential for reabsorption of most filtered proteins. This study examines the role of these receptors for the uptake and excretion of cystatin C and explores the effect of renal ischemia/reperfusion injury on renal cystatin C uptake and excretion in a rat model. Methods Binding of cystatin C to megalin and cubilin was analyzed by surface plasmon resonance analysis. ELISA and/or immunoblotting and immunohistochemistry were used to study the urinary excretion and tubular uptake of endogenous cystatin C in mice. Furthermore, renal uptake and urinary excretion of cystatin C was investigated in rats exposed to ischemia/reperfusion injury. Results A high affinity binding of cystatin C to megalin and cubilin was identified. Megalin deficient mice revealed an increased urinary excretion of cystatin C associated with defective uptake by endocytosis. In rats exposed to ischemia/reperfusion injury urinary cystatin C excretion was increased and associated with a focal decrease in proximal tubule endocytosis with no apparent change in megalin expression. Conclusions Megalin is essential for the normal tubular recovery of endogenous cystatin C. The increase in urinary cystatin C excretion after ischemia/reperfusion injury is associated with decreased tubular uptake but not with reduced megalin expression.
Collapse
Affiliation(s)
- Danny Jensen
- Department of Biomedicine, Institute of Health, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
- * E-mail:
| | | | | | - Rikke Nørregaard
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Kathrin Weyer
- Department of Biomedicine, Institute of Health, Aarhus University, Aarhus, Denmark
| | - Rikke Nielsen
- Department of Biomedicine, Institute of Health, Aarhus University, Aarhus, Denmark
| | | | - Henrik Birn
- Department of Biomedicine, Institute of Health, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
38
|
Endocytic receptor LRP2/megalin—of holoprosencephaly and renal Fanconi syndrome. Pflugers Arch 2017; 469:907-916. [DOI: 10.1007/s00424-017-1992-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 12/31/2022]
|
39
|
Burns JA, Zhang H, Hill E, Kim E, Kerney R. Transcriptome analysis illuminates the nature of the intracellular interaction in a vertebrate-algal symbiosis. eLife 2017; 6:e22054. [PMID: 28462779 PMCID: PMC5413350 DOI: 10.7554/elife.22054] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/15/2017] [Indexed: 12/19/2022] Open
Abstract
During embryonic development, cells of the green alga Oophila amblystomatis enter cells of the salamander Ambystoma maculatum forming an endosymbiosis. Here, using de novo dual-RNA seq, we compared the host salamander cells that harbored intracellular algae to those without algae and the algae inside the animal cells to those in the egg capsule. This two-by-two-way analysis revealed that intracellular algae exhibit hallmarks of cellular stress and undergo a striking metabolic shift from oxidative metabolism to fermentation. Culturing experiments with the alga showed that host glutamine may be utilized by the algal endosymbiont as a primary nitrogen source. Transcriptional changes in salamander cells suggest an innate immune response to the alga, with potential attenuation of NF-κB, and metabolic alterations indicative of modulation of insulin sensitivity. In stark contrast to its algal endosymbiont, the salamander cells did not exhibit major stress responses, suggesting that the host cell experience is neutral or beneficial.
Collapse
Affiliation(s)
- John A Burns
- Division of Invertebrate Zoology, American Museum of Natural History, New York, United States
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, United States
| | - Huanjia Zhang
- Department of Biology, Gettysburg College, Gettysburg, United States
| | - Elizabeth Hill
- Department of Biology, Gettysburg College, Gettysburg, United States
| | - Eunsoo Kim
- Division of Invertebrate Zoology, American Museum of Natural History, New York, United States
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, United States
| | - Ryan Kerney
- Department of Biology, Gettysburg College, Gettysburg, United States
| |
Collapse
|
40
|
Wen L, Andersen PK, Husum DMU, Nørregaard R, Zhao Z, Liu Z, Birn H. MicroRNA-148b regulates megalin expression and is associated with receptor downregulation in mice with unilateral ureteral obstruction. Am J Physiol Renal Physiol 2017; 313:F210-F217. [PMID: 28331063 DOI: 10.1152/ajprenal.00585.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/02/2017] [Accepted: 03/16/2017] [Indexed: 11/22/2022] Open
Abstract
Megalin is a multiligand, endocytic receptor that is important for the normal, proximal tubule reabsorption of filtered proteins, hormones, enzymes, essential nutrients, and nephrotoxins. Megalin dysfunction has been associated with acute, as well as chronic kidney diseases. Tubular proteinuria has been observed following unilateral ureteral obstruction (UUO), suggesting megalin dysfunction; however, the pathophysiological mechanism has not been determined. To identify potential regulators of megalin expression, we examined renal microRNAs (miRNAs) expression and observed an upregulation of microRNA-148b (miR-148b) in obstructed mouse kidneys 7 days after UUO, which was associated with a significant reduction in proximal tubule megalin expression and accumulation of megalin ligands. By in silico miRNA target prediction analysis, we identified megalin messenger RNA (mRNA) as a potential target of miR-148b and confirmed using a dual-luciferase reporter assay that miR-148b targeted the 3'-untranslated region of the megalin gene. Transfection of LLC-PK1 cells with miR-148b mimic reduced endogenous megalin mRNA and protein levels in a concentration-dependent manner, while transfection with miR-148b inhibitor resulted in an increase. Our findings suggest that miR-148b directly downregulates megalin expression and that miR-148b negatively regulates megalin expression in UUO-induced kidney injury. Furthermore, the identification of a miRNA regulating megalin expression may allow for targeted interventions to modulate megalin function and proximal tubule uptake of proteins, as well as other ligands.
Collapse
Affiliation(s)
- Lu Wen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pia K Andersen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Dina M U Husum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; and
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; and
| | - Zhanzheng Zhao
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhangsuo Liu
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Henrik Birn
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; .,Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
41
|
Rubin LP, Ross AC, Stephensen CB, Bohn T, Tanumihardjo SA. Metabolic Effects of Inflammation on Vitamin A and Carotenoids in Humans and Animal Models. Adv Nutr 2017; 8:197-212. [PMID: 28298266 PMCID: PMC5347109 DOI: 10.3945/an.116.014167] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The association between inflammation and vitamin A (VA) metabolism and status assessment has been documented in multiple studies with animals and humans. The relation between inflammation and carotenoid status is less clear. Nonetheless, it is well known that carotenoids are associated with certain health benefits. Understanding these relations is key to improving health outcomes and mortality risk in infants and young children. Hyporetinolemia, i.e., low serum retinol concentrations, occurs during inflammation, and this can lead to the misdiagnosis of VA deficiency. On the other hand, inflammation causes impaired VA absorption and urinary losses that can precipitate VA deficiency in at-risk groups of children. Many epidemiologic studies have suggested that high dietary carotenoid intake and elevated plasma concentrations are correlated with a decreased risk of several chronic diseases; however, large-scale carotenoid supplementation trials have been unable to confirm the health benefits and in some cases resulted in controversial results. However, it has been documented that dietary carotenoids and retinoids play important roles in innate and acquired immunity and in the body's response to inflammation. Although animal models have been useful in investigating retinoid effects on developmental immunity, it is more challenging to tease out the effects of carotenoids because of differences in the absorption, kinetics, and metabolism between humans and animal models. The current understanding of the relations between inflammation and retinoid and carotenoid metabolism and status are the topics of this review.
Collapse
Affiliation(s)
- Lewis P Rubin
- Texas Tech Health Sciences Center El Paso, El Paso, TX
| | | | | | - Torsten Bohn
- Luxembourg Institute of Health, Population Health Department, Strassen, Luxembourg; and
| | | |
Collapse
|
42
|
Nielsen R, Christensen EI, Birn H. Megalin and cubilin in proximal tubule protein reabsorption: from experimental models to human disease. Kidney Int 2017; 89:58-67. [PMID: 26759048 DOI: 10.1016/j.kint.2015.11.007] [Citation(s) in RCA: 313] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/17/2015] [Accepted: 08/19/2015] [Indexed: 01/19/2023]
Abstract
Proximal tubule protein uptake is mediated by 2 receptors, megalin and cubilin. These receptors rescue a variety of filtered ligands, including biomarkers, essential vitamins, and hormones. Receptor gene knockout animal models have identified important functions of the receptors and have established their essential role in modulating urinary protein excretion. Rare genetic syndromes associated with dysfunction of these receptors have been identified and characterized, providing additional information on the importance of these receptors in humans. Using various disease models in combination with receptor gene knockout, the implications of receptor dysfunction in acute and chronic kidney injury have been explored and have pointed to potential new roles of these receptors. Based on data from animal models, this paper will review current knowledge on proximal tubule endocytic receptor function and regulation, and their role in renal development, protein reabsorption, albumin uptake, and normal renal physiology. These findings have implications for the pathophysiology and diagnosis of proteinuric renal diseases. We will examine the limitations of the different models and compare the findings to phenotypic observations in inherited human disorders associated with receptor dysfunction. Furthermore, evidence from receptor knockout mouse models as well as human observations suggesting a role of protein receptors for renal disease will be discussed in light of conditions such as chronic kidney disease, diabetes, and hypertension.
Collapse
Affiliation(s)
- Rikke Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Henrik Birn
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
43
|
Hirano M, Totani K, Fukuda T, Gu J, Suzuki A. N-Glycoform-dependent interactions of megalin with its ligands. Biochim Biophys Acta Gen Subj 2017; 1861:3106-3118. [DOI: 10.1016/j.bbagen.2016.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/30/2016] [Accepted: 10/19/2016] [Indexed: 12/18/2022]
|
44
|
Domingos MAM, Moreira SR, Gomez L, Goulart A, Lotufo PA, Benseñor I, Titan S. Urinary Retinol-Binding Protein: Relationship to Renal Function and Cardiovascular Risk Factors in Chronic Kidney Disease. PLoS One 2016; 11:e0162782. [PMID: 27655369 PMCID: PMC5031461 DOI: 10.1371/journal.pone.0162782] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 08/29/2016] [Indexed: 11/18/2022] Open
Abstract
The role of urinary retinol-binding protein (RBP) as a biomarker of CKD in proximal tubular diseases, glomerulopathies and in transplantation is well established. However, whether urinary RBP is also a biomarker of renal damage and CKD progression in general CKD is not known. In this study, we evaluated the association of urinary RBP with renal function and cardiovascular risk factors in the baseline data of the Progredir Study, a CKD cohort in Sao Paulo, Brazil, comprising 454 participants with stages 3 and 4 CKD. In univariate analysis, urinary RBP was inversely related to estimated glomerular filtration rate (CKD-EPI eGFR) and several cardiovascular risk factors. After adjustments, however, only CKD-EPI eGFR, albuminuria, systolic blood pressure, anemia, acidosis, and left atrium diameter remained significantly related to urinary RBP. The inverse relationship of eGFR to urinary RBP (β-0.02 ± 95CI -0.02; -0.01, p<0.0001 for adjusted model) remained in all strata of albuminuria, even after adjustments: in normoalbuminuria (β-0.008 ± 95CI (-0.02; -0.001, p = 0.03), in microalbuminuria (β-0.02 ± 95CI (-0.03; -0.02, p<0,0001) and in macroalbuminuria (β-0.02 ± 95CI (-0.03; -0.01, p<0,0001). Lastly, urinary RBP was able to significantly increase the accuracy of a logistic regression model (adjusted for sex, age, SBP, diabetes and albuminuria) in diagnosing eGFR<35 ml/min/1.73m2 (AUC 0,77, 95%CI 0,72–0,81 versus AUC 0,71, 95%CI 0,65–0,75, respectively; p = 0,05). Our results suggest that urinary RBP is significantly associated to renal function in CKD in general, a finding that expands the interest in this biomarker beyond the context of proximal tubulopathies, glomerulopathies or transplantation. Urinary RBP should be further explored as a predictive marker of CKD progression.
Collapse
Affiliation(s)
- Maria Alice Muniz Domingos
- Nephrology Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- * E-mail:
| | - Silvia Regina Moreira
- Nephrology Division, Kidney and Hypertension Hospital, São Paulo Federal University, São Paulo, Brazil
| | - Luz Gomez
- Genetics Cardiovascular Laboratory, Heart’s Institute, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Alessandra Goulart
- Clinical Center Research, University Hospital, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Paulo Andrade Lotufo
- Clinical Center Research, University Hospital, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Isabela Benseñor
- Clinical Center Research, University Hospital, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Silvia Titan
- Nephrology Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
45
|
Downes KJ, Dong M, Fukuda T, Clancy JP, Haffner C, Bennett MR, Vinks AA, Goldstein SL. Urinary kidney injury biomarkers and tobramycin clearance among children and young adults with cystic fibrosis: a population pharmacokinetic analysis. J Antimicrob Chemother 2016; 72:254-260. [PMID: 27585963 DOI: 10.1093/jac/dkw351] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/21/2016] [Accepted: 07/26/2016] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Tobramycin is frequently used for treatment of bronchopneumonia in patients with cystic fibrosis (CF). Variability in tobramycin clearance (CL) is high in this population with few reliable approaches to guide dosing. OBJECTIVES We sought to evaluate the pharmacokinetics of once-daily intravenous tobramycin in patients with CF and test the influence of covariates on tobramycin CL, including serum creatinine (SCr) and urinary biomarkers: neutrophil gelatinase-associated lipocalin (NGAL), retinol-binding protein (RBP) and kidney injury molecule-1 (KIM-1). METHODS This was a prospective, observational cohort study of children/young adults with CF receiving once-daily intravenous tobramycin from October 2012 to May 2014 at Cincinnati Children's Hospital Medical Center. Therapeutic drug monitoring data were prospectively obtained. Population pharmacokinetic analyses were performed using non-linear mixed-effects modelling. RESULTS Thirty-seven patients (median age 15.3 years, IQR 12.7-19.5) received 62 tobramycin courses. A one-compartment model with allometrically scaled weight for tobramycin CL and volume of distribution (V) best described the data. Urinary NGAL was associated with tobramycin CL (P < 0.001), as was urinary RBP (P < 0.001). SCr, estimated glomerular filtration rate and urinary KIM-1 were not significant covariates. The population pharmacokinetic parameter estimates were CL = 8.60 L/h/70 kg (relative standard error 4.3%) and V = 31.3 L/70 kg (relative standard error 4.7%). CONCLUSIONS We describe urinary biomarkers as predictors of tobramycin CL using a population pharmacokinetic modelling approach. Our findings suggest that patient weight and urinary NGAL or RBP could be used to individualize tobramycin therapy in patients with CF.
Collapse
Affiliation(s)
- Kevin J Downes
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA .,Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Min Dong
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Tsuyoshi Fukuda
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - John P Clancy
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Pulmonology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Christopher Haffner
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michael R Bennett
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Alexander A Vinks
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stuart L Goldstein
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
46
|
Mori KP, Yokoi H, Kasahara M, Imamaki H, Ishii A, Kuwabara T, Koga K, Kato Y, Toda N, Ohno S, Kuwahara K, Endo T, Nakao K, Yanagita M, Mukoyama M, Mori K. Increase of Total Nephron Albumin Filtration and Reabsorption in Diabetic Nephropathy. J Am Soc Nephrol 2016; 28:278-289. [PMID: 27382987 DOI: 10.1681/asn.2015101168] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 05/28/2016] [Indexed: 12/20/2022] Open
Abstract
The amount of albumin filtered through the glomeruli and reabsorbed at the proximal tubules in normal and in diabetic kidneys is debated. The megalin/cubilin complex mediates protein reabsorption, but genetic knockout of megalin is perinatally lethal. To overcome current technical problems, we generated a drug-inducible megalin-knockout mouse line, megalin(lox/lox);Ndrg1-CreERT2 (iMegKO), in which megalin expression can be shut off at any time by administration of tamoxifen (Tam). Tam administration in adult iMegKO mice decreased the expression of renal megalin protein by 92% compared with that in wild-type C57BL/6J mice and almost completely abrogated renal reabsorption of intravenously injected retinol-binding protein. Furthermore, urinary albumin excretion increased to 175 μg/d (0.46 mg albumin/mg creatinine) in Tam-treated iMegKO mice, suggesting that this was the amount of total nephron albumin filtration. By comparing Tam-treated, streptozotocin-induced diabetic iMegKO mice with Tam-treated nondiabetic iMegKO mice, we estimated that the development of diabetes led to a 1.9-fold increase in total nephron albumin filtration, a 1.8-fold increase in reabsorption, and a significant reduction in reabsorption efficiency (86% efficiency versus 96% efficiency in nondiabetic mice). Insulin treatment normalized these abnormalities. Akita;iMegKO mice, another model of type 1 diabetes, showed equivalent results. Finally, nondiabetic iMegKO mice had a glomerular sieving coefficient of albumin of 1.7×10-5, which approximately doubled in diabetic iMegKO mice. This study reveals actual values and changes of albumin filtration and reabsorption in early diabetic nephropathy in mice, bringing new insights to our understanding of renal albumin dynamics associated with the hyperfiltration status of diabetic nephropathy.
Collapse
Affiliation(s)
| | | | - Masato Kasahara
- Department of Clinical and Translational Research, Institute for Clinical and Translational Science, Nara Medical University, Nara, Japan
| | | | | | - Takashige Kuwabara
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | - Koichiro Kuwahara
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | - Motoko Yanagita
- Department of Nephrology and.,TMK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kiyoshi Mori
- TMK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan; .,Department of Molecular and Clinical Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan; and.,Department of Nephrology and Kidney Research, Shizuoka General Hospital, Shizuoka, Japan
| |
Collapse
|
47
|
Christ A, Herzog K, Willnow TE. LRP2, an auxiliary receptor that controls sonic hedgehog signaling in development and disease. Dev Dyn 2016; 245:569-79. [PMID: 26872844 DOI: 10.1002/dvdy.24394] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/03/2016] [Accepted: 02/07/2016] [Indexed: 12/31/2022] Open
Abstract
To fulfill their multiple roles in organ development and adult tissue homeostasis, hedgehog (HH) morphogens act through their receptor Patched (PTCH) on target cells. However, HH actions also require HH binding proteins, auxiliary cell surface receptors that agonize or antagonize morphogen signaling in a context-dependent manner. Here, we discuss recent findings on the LDL receptor-related protein 2 (LRP2), an exemplary HH binding protein that modulates sonic hedgehog activities in stem and progenitor cell niches in embryonic and adult tissues. LRP2 functions are crucial for developmental processes in a number of tissues, including the brain, the eye, and the heart, and defects in this receptor pathway are the cause of devastating congenital diseases in humans. Developmental Dynamics 245:569-579, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Annabel Christ
- Max-Delbrueck-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Katja Herzog
- Max-Delbrueck-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Thomas E Willnow
- Max-Delbrueck-Center for Molecular Medicine, 13125, Berlin, Germany
| |
Collapse
|
48
|
Schmiedchen B, Longardt AC, Loui A, Bührer C, Raila J, Schweigert FJ. Effect of vitamin A supplementation on the urinary retinol excretion in very low birth weight infants. Eur J Pediatr 2016; 175:365-72. [PMID: 26475348 DOI: 10.1007/s00431-015-2647-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/28/2015] [Accepted: 10/01/2015] [Indexed: 11/29/2022]
Abstract
UNLABELLED Despite high-dose vitamin A supplementation of very low birth weight infants (VLBW, <1500 g), their vitamin A status does not improve substantially. Unknown is the impact of urinary retinol excretion on the serum retinol concentration in these infants. Therefore, the effect of high-dose vitamin A supplementation on the urinary vitamin A excretion in VLBW infants was investigated. Sixty-three VLBW infants were treated with vitamin A (5000 IU intramuscular, 3 times/week for 4 weeks); 38 untreated infants were classified as control group. On days 3 and 28 of life, retinol, retinol-binding protein 4 (RBP4), glomerular filtration rate, proteinuria, and Tamm-Horsfall protein were quantified in urine. On day 3 of life, substantial retinol and RBP4 losses were found in both groups, which significantly decreased until day 28. Notwithstanding, the retinol excretion was higher (P < 0.01) under vitamin A supplementation as compared to infants of the control group. On day 28 of life, the urinary retinol concentrations were predictive for serum retinol concentrations in the vitamin A treated (P < 0.01), but not in the control group (P = 0.570). CONCLUSION High urinary retinol excretion may limit the vitamin A supplementation efficacy in VLBW infants. Advanced age and thus postnatal kidney maturation seems to be an important contributor in the prevention of urinary retinol losses.
Collapse
Affiliation(s)
- Bettina Schmiedchen
- Department of Physiology and Pathophysiology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | | | - Andrea Loui
- Department of Neonatology, Charité University Medical Center, Berlin, Germany.
| | - Christoph Bührer
- Department of Neonatology, Charité University Medical Center, Berlin, Germany.
| | - Jens Raila
- Department of Physiology and Pathophysiology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Florian J Schweigert
- Department of Physiology and Pathophysiology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| |
Collapse
|
49
|
Affiliation(s)
- Jessica A. Hokamp
- Department of Veterinary Pathobiology; College of Veterinary Medicine and Biomedical Sciences; Texas A&M University; College Station TX USA
| | - Mary B. Nabity
- Department of Veterinary Pathobiology; College of Veterinary Medicine and Biomedical Sciences; Texas A&M University; College Station TX USA
| |
Collapse
|
50
|
Baardman ME, Zwier MV, Wisse LJ, Gittenberger-de Groot AC, Kerstjens-Frederikse WS, Hofstra RMW, Jurdzinski A, Hierck BP, Jongbloed MRM, Berger RMF, Plösch T, DeRuiter MC. Common arterial trunk and ventricular non-compaction in Lrp2 knockout mice indicate a crucial role of LRP2 in cardiac development. Dis Model Mech 2016; 9:413-25. [PMID: 26822476 PMCID: PMC4852499 DOI: 10.1242/dmm.022053] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 01/20/2016] [Indexed: 01/22/2023] Open
Abstract
Lipoprotein-related receptor protein 2 (LRP2) is important for development of the embryonic neural crest and brain in both mice and humans. Although a role in cardiovascular development can be expected, the hearts of Lrp2 knockout (KO) mice have not yet been investigated. We studied the cardiovascular development of Lrp2 KO mice between embryonic day 10.5 (E10.5) and E15.5, applying morphometry and immunohistochemistry, using antibodies against Tfap2α (neural crest cells), Nkx2.5 (second heart field), WT1 (epicardium derived cells), tropomyosin (myocardium) and LRP2. The Lrp2 KO mice display a range of severe cardiovascular abnormalities, including aortic arch anomalies, common arterial trunk (persistent truncus arteriosus) with coronary artery anomalies, ventricular septal defects, overriding of the tricuspid valve and marked thinning of the ventricular myocardium. Both the neural crest cells and second heart field, which are essential for the lengthening and growth of the right ventricular outflow tract, are abnormally positioned in the Lrp2 KO. This explains the absence of the aorto-pulmonary septum, which leads to common arterial trunk and ventricular septal defects. Severe blebbing of the epicardial cells covering the ventricles is seen. Epithelial-mesenchymal transition does occur; however, there are fewer WT1-positive epicardium-derived cells in the ventricular wall as compared to normal, coinciding with the myocardial thinning and deep intertrabecular spaces. LRP2 plays a crucial role in cardiovascular development in mice. This corroborates findings of cardiac anomalies in humans with LRP2 mutations. Future studies should reveal the underlying signaling mechanisms in which LRP2 is involved during cardiogenesis. Summary: This paper sheds a new light on the role of the second heart field and neural crest cells in outflow tract formation in the mouse embryo. Depletion of the LPR2 results in a disturbed contribution pattern and subsequent common arterial trunk.
Collapse
Affiliation(s)
- Maria E Baardman
- Department of Genetics, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
| | - Mathijs V Zwier
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
| | - Lambertus J Wisse
- Department of Anatomy and Embryology, Leiden University Medical Center, PO-Box 9600, Leiden 2300 RC, The Netherlands
| | | | - Wilhelmina S Kerstjens-Frederikse
- Department of Genetics, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
| | - Robert M W Hofstra
- Department of Clinical Genetics, Erasmus Medical Center Rotterdam, PO-Box 2040, Rotterdam 3000 CA, The Netherlands Neural Development and Gastroenterology Units, UCL Institute of Child Health, London WC1 NEH, UK
| | - Angelika Jurdzinski
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
| | - Beerend P Hierck
- Department of Anatomy and Embryology, Leiden University Medical Center, PO-Box 9600, Leiden 2300 RC, The Netherlands
| | - Monique R M Jongbloed
- Department of Cardiology and Department of Anatomy and Embryology, Leiden University Medical Center, PO-Box 9600, Leiden 2300 RC, The Netherlands
| | - Rolf M F Berger
- Center for Congenital Heart Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
| | - Torsten Plösch
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
| | - Marco C DeRuiter
- Department of Anatomy and Embryology, Leiden University Medical Center, PO-Box 9600, Leiden 2300 RC, The Netherlands
| |
Collapse
|