1
|
Tytti K, Sanna K, Carla G, Jonatan P, Kaisa R, Sari T. Mechanosensitive TRPV4 channel guides maturation and organization of the bilayered mammary epithelium. Sci Rep 2024; 14:6774. [PMID: 38514727 PMCID: PMC10957991 DOI: 10.1038/s41598-024-57346-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 03/18/2024] [Indexed: 03/23/2024] Open
Abstract
Biophysical cues from the cell microenvironment are detected by mechanosensitive components at the cell surface. Such machineries convert physical information into biochemical signaling cascades within cells, subsequently leading to various cellular responses in a stimulus-dependent manner. At the surface of extracellular environment and cell cytoplasm exist several ion channel families that are activated by mechanical signals to direct intracellular events. One of such channel is formed by transient receptor potential cation channel subfamily V member, TRPV4 that is known to act as a mechanosensor in wide variaty of tissues and control ion-influx in a spatio-temporal way. Here we report that TRPV4 is prominently expressed in the stem/progenitor cell populations of the mammary epithelium and seems important for the lineage-specific differentiation, consequently affecting mechanical features of the mature mammary epithelium. This was evident by the lack of several markers for mature myoepithelial and luminal epithelial cells in TRPV4-depleted cell lines. Interestingly, TRPV4 expression is controlled in a tension-dependent manner and it also impacts differentation process dependently on the stiffness of the microenvironment. Furthermore, such cells in a 3D compartment were disabled to maintain normal mammosphere structures and displayed abnormal lumen formation, size of the structures and disrupted cellular junctions. Mechanosensitive TRPV4 channel therefore act as critical player in the homeostasis of normal mammary epithelium through sensing the physical environment and guiding accordingly differentiation and structural organization of the bilayered mammary epithelium.
Collapse
Affiliation(s)
- Kärki Tytti
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| | - Koskimäki Sanna
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Guenther Carla
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Pirhonen Jonatan
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Rajakylä Kaisa
- School of Social Services and Health Care, Tampere University of Applied Sciences, Tampere, Finland
| | - Tojkander Sari
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Tampere Institute for Advanced Study, Tampere University, Tampere, Finland.
| |
Collapse
|
2
|
Martin-García D, Téllez T, Redondo M, García-Aranda M. Calcium Homeostasis in the Development of Resistant Breast Tumors. Cancers (Basel) 2023; 15:2872. [PMID: 37296835 PMCID: PMC10251880 DOI: 10.3390/cancers15112872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer is one of the main health problems worldwide. Only in 2020, this disease caused more than 19 million new cases and almost 10 million deaths, with breast cancer being the most diagnosed worldwide. Today, despite recent advances in breast cancer treatment, a significant percentage of patients will either not respond to therapy or will eventually experience lethal progressive disease. Recent studies highlighted the involvement of calcium in the proliferation or evasion of apoptosis in breast carcinoma cells. In this review, we provide an overview of intracellular calcium signaling and breast cancer biology. We also discuss the existing knowledge on how altered calcium homeostasis is implicated in breast cancer development, highlighting the potential utility of Ca2+ as a predictive and prognostic biomarker, as well as its potential for the development of new pharmacological treatments to treat the disease.
Collapse
Affiliation(s)
- Desirée Martin-García
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain; (D.M.-G.); (T.T.)
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-BIONAND), Severo Ochoa, 35, 29590 Málaga, Spain;
| | - Teresa Téllez
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain; (D.M.-G.); (T.T.)
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-BIONAND), Severo Ochoa, 35, 29590 Málaga, Spain;
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC) and Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Málaga, Spain
| | - Maximino Redondo
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain; (D.M.-G.); (T.T.)
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-BIONAND), Severo Ochoa, 35, 29590 Málaga, Spain;
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC) and Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Málaga, Spain
- Research and Innovation Unit, Hospital Costa del Sol, Autovia A-7 km 187, 29602 Marbella, Spain
| | - Marilina García-Aranda
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-BIONAND), Severo Ochoa, 35, 29590 Málaga, Spain;
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC) and Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Málaga, Spain
- Research and Innovation Unit, Hospital Costa del Sol, Autovia A-7 km 187, 29602 Marbella, Spain
| |
Collapse
|
3
|
Sheth M, Esfandiari L. Bioelectric Dysregulation in Cancer Initiation, Promotion, and Progression. Front Oncol 2022; 12:846917. [PMID: 35359398 PMCID: PMC8964134 DOI: 10.3389/fonc.2022.846917] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is primarily a disease of dysregulation – both at the genetic level and at the tissue organization level. One way that tissue organization is dysregulated is by changes in the bioelectric regulation of cell signaling pathways. At the basis of bioelectricity lies the cellular membrane potential or Vmem, an intrinsic property associated with any cell. The bioelectric state of cancer cells is different from that of healthy cells, causing a disruption in the cellular signaling pathways. This disruption or dysregulation affects all three processes of carcinogenesis – initiation, promotion, and progression. Another mechanism that facilitates the homeostasis of cell signaling pathways is the production of extracellular vesicles (EVs) by cells. EVs also play a role in carcinogenesis by mediating cellular communication within the tumor microenvironment (TME). Furthermore, the production and release of EVs is altered in cancer. To this end, the change in cell electrical state and in EV production are responsible for the bioelectric dysregulation which occurs during cancer. This paper reviews the bioelectric dysregulation associated with carcinogenesis, including the TME and metastasis. We also look at the major ion channels associated with cancer and current technologies and tools used to detect and manipulate bioelectric properties of cells.
Collapse
Affiliation(s)
- Maulee Sheth
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States
| | - Leyla Esfandiari
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Leyla Esfandiari,
| |
Collapse
|
4
|
Koh HH, Choi S, Park CK, Ha SY. Down-regulation of TRPV6 Is Associated With Adverse Prognosis in Hepatocellular Carcinoma Treated With Curative Resection. Cancer Genomics Proteomics 2022; 19:259-269. [PMID: 35181592 PMCID: PMC8865045 DOI: 10.21873/cgp.20318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND/AIM Transient receptor potential vanilloid 6 (TRPV6), an endothelial Ca2+-selective entry channel, is expressed in various cancer types, and a selective TRPV6 inhibitor is currently being investigated in a clinical trial. However, TRPV6 expression in hepatocellular carcinoma (HCC) has not been reported. MATERIALS AND METHODS We evaluated TRPV6 expression in 219 cases of HCC and analyzed its association with clinicopathological parameters and prognostic significance. TRPV6 mRNA expression was compared between HCC and non-tumor liver tissues using various public datasets, and its prognostic effect was examined in The Cancer Genome Atlas (TCGA) cohort. RESULTS Low TRPV6 expression was found in 37.4% of patients, which was significantly associated with adverse histologic features, and patients with low TRPV6 expression had shorter recurrence-free and disease-free survival. TRPV6 mRNA expression was consistently lower in HCC compared to non-tumor liver samples in public datasets, at the whole tissue level as well as single-cell level. Patients with low TRPV6 expression in the TCGA cohort had shorter progression-free survival. CONCLUSION TRPV6 expression is down-regulated in HCCs and associated with a poor prognosis. TRPV6 may be a prognostic biomarker in HCC.
Collapse
Affiliation(s)
- Hyun Hee Koh
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sangjoon Choi
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Cheol-Keun Park
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Anatomic Pathology Reference Lab, Seegene Medical Foundation, Seoul, Republic of Korea
| | - Sang Yun Ha
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea;
| |
Collapse
|
5
|
Molecular Characterization of Membrane Steroid Receptors in Hormone-Sensitive Cancers. Cells 2021; 10:cells10112999. [PMID: 34831222 PMCID: PMC8616056 DOI: 10.3390/cells10112999] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer is one of the most common causes of death worldwide, and its development is a result of the complex interaction of genetic factors, environmental cues, and aging. Hormone-sensitive cancers depend on the action of one or more hormones for their development and progression. Sex steroids and corticosteroids can regulate different physiological functions, including metabolism, growth, and proliferation, through their interaction with specific nuclear receptors, that can transcriptionally regulate target genes via their genomic actions. Therefore, interference with hormones’ activities, e.g., deregulation of their production and downstream pathways or the exposition to exogenous hormone-active substances such as endocrine-disrupting chemicals (EDCs), can affect the regulation of their correlated pathways and trigger the neoplastic transformation. Although nuclear receptors account for most hormone-related biologic effects and their slow genomic responses are well-studied, less-known membrane receptors are emerging for their ability to mediate steroid hormones effects through the activation of rapid non-genomic responses also involved in the development of hormone-sensitive cancers. This review aims to collect pre-clinical and clinical data on these extranuclear receptors not only to draw attention to their emerging role in cancer development and progression but also to highlight their dual role as tumor microenvironment players and potential candidate drug targets.
Collapse
|
6
|
Cyrus K, Wang Q, Sharawi Z, Noguchi G, Kaushal M, Chang T, Rydzewski W, Yeguech W, Gibrel F, Psaltis JB, Haddad BR, Martin MB. Role of calcium in hormone-independent and -resistant breast cancer. Int J Cancer 2021; 149:1817-1827. [PMID: 34289100 DOI: 10.1002/ijc.33745] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 06/03/2021] [Accepted: 06/22/2021] [Indexed: 11/05/2022]
Abstract
Approximately one-third of estrogen receptor (ER) positive breast tumors fail to respond to or become resistant to hormonal therapy. Although the mechanisms responsible for hormone resistance are not completely understood, resistance is associated with alterations in ERα; overexpression of proteins that interact with the receptor; and hormone-independent activation of the receptor by growth factor signal transduction pathways. Our previous studies show that in estrogen dependent breast cancer cells, activation of the epidermal growth factor signaling pathway increases intracellular calcium which binds to and activates ERα through sites in the ligand-binding domain of the receptor and that treatment with extracellular calcium increases the concentration of intracellular calcium which activates ERα and induces hormone-independent cell growth. The present study asked whether overexpression of calcium channels contributes to the hormone-independent and -resistant phenotype of breast cancer cells and whether clinically used calcium channel blockers reverse hormone independence and resistance. The results show that hormone-independent and -resistant cells overexpress calcium channels, have high concentrations of intracellular calcium, overexpress estrogen responsive genes and, as expected, grow in the absence of estradiol and that treatment with calcium channel blockers decreased the concentration of intracellular calcium, the expression of estrogen responsive genes and cell growth. More importantly, in hormone-resistant cells, treatment that combined a calcium channel blocker with an antiestrogen reversed resistance to the antiestrogen.
Collapse
Affiliation(s)
- Kedra Cyrus
- Department of Oncology, Georgetown University, Washington, District of Columbia, USA
| | - Qiaochu Wang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA
| | - Zeina Sharawi
- Department of Genetics and Human Genetics, Howard University, Washington, District of Columbia, USA
| | - Glyn Noguchi
- Department of Oncology, Georgetown University, Washington, District of Columbia, USA
| | - Mudit Kaushal
- Department of Oncology, Georgetown University, Washington, District of Columbia, USA
| | - Tiffany Chang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA
| | - William Rydzewski
- Department of Oncology, Georgetown University, Washington, District of Columbia, USA
| | - William Yeguech
- Department of Oncology, Georgetown University, Washington, District of Columbia, USA
| | - Fatima Gibrel
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA
| | - John B Psaltis
- Department of Oncology, Georgetown University, Washington, District of Columbia, USA
| | - Bassem R Haddad
- Department of Oncology, Georgetown University, Washington, District of Columbia, USA
| | - Mary Beth Martin
- Department of Oncology, Georgetown University, Washington, District of Columbia, USA.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA
| |
Collapse
|
7
|
Store-Independent Calcium Entry and Related Signaling Pathways in Breast Cancer. Genes (Basel) 2021; 12:genes12070994. [PMID: 34209733 PMCID: PMC8303984 DOI: 10.3390/genes12070994] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/12/2021] [Accepted: 06/25/2021] [Indexed: 01/15/2023] Open
Abstract
Known as a key effector in breast cancer (BC) progression, calcium (Ca2+) is tightly regulated to maintain the desired concentration to fine-tune cell functions. Ca2+ channels are the main actors among Ca2+ transporters that control the intracellular Ca2+ concentration in cells. It is well known that the basal Ca2+ concentration is regulated by both store-dependent and independent Ca2+ channels in BC development and progression. However, most of the literature has reported the role of store-dependent Ca2+ entry, and only a few studies are focusing on store-independent Ca2+ entry (SICE). In this review, we aim to summarize all findings on SICE in the BC progression field.
Collapse
|
8
|
Jardin I, Diez-Bello R, Falcon D, Alvarado S, Regodon S, Salido GM, Smani T, Rosado JA. Melatonin downregulates TRPC6, impairing store-operated calcium entry in triple-negative breast cancer cells. J Biol Chem 2021; 296:100254. [PMID: 33380424 PMCID: PMC7948746 DOI: 10.1074/jbc.ra120.015769] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
Melatonin has been reported to induce effective reduction in growth and development in a variety of tumors, including breast cancer. In triple-negative breast cancer (TNBC) cells, melatonin attenuates a variety of cancer features, such as tumor growth and apoptosis resistance, through a number of still poorly characterized mechanisms. One biological process that is important for TNBC cells is store-operated Ca2+ entry (SOCE), which is modulated by TRPC6 expression and function. We wondered whether melatonin might intersect with this pathway as part of its anticancer activity. We show that melatonin, in the nanomolar range, significantly attenuates TNBC MDA-MB-231 cell viability, proliferation, and migration in a time- and concentration-dependent manner, without having any effect on nontumoral breast epithelial MCF10A cells. Pretreatment with different concentrations of melatonin significantly reduced SOCE in MDA-MB-231 cells without altering Ca2+ release from the intracellular stores. By contrast, SOCE in MCF10A cells was unaffected by melatonin. In the TNBC MDA-MB-468 cell line, melatonin not only attenuated viability, migration, and SOCE, but also reduced TRPC6 expression in a time- and concentration-dependent manner, without altering expression or function of the Ca2+ channel Orai1. The expression of exogenous TRPC6 overcame the effect of melatonin on SOCE and cell proliferation, and silencing or inhibition of TRPC6 impaired the inhibitory effect of melatonin on SOCE. These findings indicate that TRPC6 downregulation might be involved in melatonin's inhibitory effects on Ca2+ influx and the maintenance of cancer hallmarks and point toward a novel antitumoral mechanism of melatonin in TNBC cells.
Collapse
Affiliation(s)
- Isaac Jardin
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain.
| | - Raquel Diez-Bello
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | - Debora Falcon
- Cardiovascular Physiopathology Group, Institute of Biomedicine of Sevilla, Sevilla, Spain
| | - Sandra Alvarado
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | - Sergio Regodon
- Department of Animal Medicine, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Sevilla, Sevilla, Spain
| | - Juan A Rosado
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| |
Collapse
|
9
|
Zhang LY, Zhang YQ, Zeng YZ, Zhu JL, Chen H, Wei XL, Liu LJ. TRPC1 inhibits the proliferation and migration of estrogen receptor-positive Breast cancer and gives a better prognosis by inhibiting the PI3K/AKT pathway. Breast Cancer Res Treat 2020; 182:21-33. [PMID: 32415497 DOI: 10.1007/s10549-020-05673-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/06/2020] [Indexed: 02/05/2023]
Abstract
PURPOSE Previous studies have indicated that transient receptor potential (TRP) channels can influence cancer development. The TRPC subfamily consists of seven subtypes, TRPC1 - TRPC7. Interestingly, the expression levels of TRPC1 have been shown to be totally different in different breast cancer cell lines. Nevertheless, the underlying mechanism remains unknown. In this study, we explore the significance of TRPC1 expression in breast cancer. METHODS Immunohistochemical TRPC1 staining was performed in 278 samples. TRPC1 expression in different breast tissues were examined. Then, the influence of TRPC1 on migration, invasion and proliferation was explored. We analyzed the protein of TRPC1 by Western blot to prove which pathway may be involved in. Finally, we use online database to predict the prognosis of TRPC1 in breast cancer. RESULTS Through immunohistochemistry and in vitro experiments, we found that the expression level of TRPC1 was higher in breast cancer cells as compared with that in normal breast epithelial cells. Moreover, the expression level of TRPC1 was different between estrogen receptor-positive (ER +) and -negative (ER -) breast cancer. It was shown that TRPC1 inhibited MCF7 cell proliferation, migration, and invasion in vitro. Western blotting revealed that TRPC1 inhibited the PI3K/AKT pathway and epithelium-mesenchymal transformation, leading to subsequent inhibition of cell proliferation and metastasis. In luminal A and luminal B patients, those with high TRPC1 expression had a better prognosis. On the contrary, in basal-like and triple-negative breast cancer (TNBC) subtypes, patients with high-TRPC1 expression had a worse prognosis. CONCLUSIONS We confirmed that TRPC1 was high expression in breast cancer. Overexpression of TRPC1 inhibits proliferation and migration of ER + breast cancer and gives a better prognosis by inhibiting PI3K/AKT pathway activation. TRPC1 may be an independent prognostic predictor in breast cancer patients.
Collapse
Affiliation(s)
- Li-Ying Zhang
- Department of Pathology, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515031, People's Republic of China
| | - Yong-Qu Zhang
- Department of Breast Center, Cancer Hospital of Shantou University Medical College, No.7 Raoping Road, shantou, 515031, People's Republic of China
- Department of Breast-Thyroid-Surgery, Xiang'an Hospital of Xiamen University, 2000 Xiang'an East Road, Xiamen, 361101, People's Republic of China
| | - Yun-Zhu Zeng
- Department of Pathology, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515031, People's Republic of China
| | - Jian-Ling Zhu
- Department of Pathology, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515031, People's Republic of China
| | - Huan Chen
- Department of Pathology, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515031, People's Republic of China
| | - Xiao-Long Wei
- Department of Pathology, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515031, People's Republic of China.
| | - Li-Juan Liu
- Outpatient Department of Breast Center, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515031, People's Republic of China.
| |
Collapse
|
10
|
Abstract
As the leading cause of death in cancer, there is an urgent need to develop treatments to target the dissemination of primary tumor cells to secondary organs, known as metastasis. Bioelectric signaling has emerged in the last century as an important controller of cell growth, and with the development of current molecular tools we are now beginning to identify its role in driving cell migration and metastasis in a variety of cancer types. This review summarizes the currently available research for bioelectric signaling in solid tumor metastasis. We review the steps of metastasis and discuss how these can be controlled by bioelectric cues at the level of a cell, a population of cells, and the tissue. The role of ion channel, pump, and exchanger activity and ion flux is discussed, along with the importance of the membrane potential and the relationship between ion flux and membrane potential. We also provide an overview of the evidence for control of metastasis by external electric fields (EFs) and draw from examples in embryogenesis and regeneration to discuss the implications for endogenous EFs. By increasing our understanding of the dynamic properties of bioelectric signaling, we can develop new strategies that target metastasis to be translated into the clinic.
Collapse
Affiliation(s)
- Samantha L. Payne
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, Massachusetts
| | - Madeleine J. Oudin
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| |
Collapse
|
11
|
Jardin I, Diez-Bello R, Lopez JJ, Redondo PC, Salido GM, Smani T, Rosado JA. TRPC6 Channels Are Required for Proliferation, Migration and Invasion of Breast Cancer Cell Lines by Modulation of Orai1 and Orai3 Surface Exposure. Cancers (Basel) 2018; 10:cancers10090331. [PMID: 30223530 PMCID: PMC6162527 DOI: 10.3390/cancers10090331] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/07/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023] Open
Abstract
Transient receptor potential channels convey signaling information from a number of stimuli to a wide variety of cellular functions, mainly by inducing changes in cytosolic Ca2+ concentration. Different members of the TRPC, TRPM and TRPV subfamilies have been reported to play a role in tumorigenesis. Here we show that the estrogen receptor positive and triple negative breast cancer cell lines, MCF7 and MDA-MB-231, respectively, exhibit enhanced expression of the TRPC6 channel as compared to the non-tumoral MCF10A cell line. In vitro TRPC6 knockdown using shRNA impaired MCF7 and MDA-MB-231 cell proliferation, migration and invasion detected by BrdU incorporation, wound healing and Boyden chamber assays, respectively. Using RNAi-mediated TRPC6 silencing as well as overexpression of the pore-dead dominant-negative TRPC6 mutant we have found that TRPC6 plays a relevant role in the activation of store-operated Ca2+ entry in the breast cancer cell lines but not in non-tumoral breast cells. Finally, we have found that TRPC6 interacts with Orai1 and Orai3 in MCF7 and MDA-MB-231 cells and is required for the translocation of Orai1 and Orai3 to the plasma membrane in MDA-MB-231 and MCF7 cells, respectively, upon Ca2+ store depletion. These findings introduce a novel mechanism for the modulation of Ca2+ influx and the development of different cancer hallmarks in breast cancer cells.
Collapse
Affiliation(s)
- Isaac Jardin
- Cellular Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain.
| | - Raquel Diez-Bello
- Cellular Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain.
| | - Jose J Lopez
- Cellular Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain.
| | - Pedro C Redondo
- Cellular Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain.
| | - Ginés M Salido
- Cellular Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain.
| | - Tarik Smani
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Sevilla, 41013 Sevilla, Spain.
| | - Juan A Rosado
- Cellular Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain.
| |
Collapse
|
12
|
O'Grady S, Morgan MP. Microcalcifications in breast cancer: From pathophysiology to diagnosis and prognosis. Biochim Biophys Acta Rev Cancer 2018; 1869:310-320. [PMID: 29684522 DOI: 10.1016/j.bbcan.2018.04.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 01/29/2023]
Abstract
The implementation of mammographic screening programmes in many countries has been linked to a marked increase in early detection and improved prognosis for breast cancer patients. Breast tumours can be detected by assessing several features in mammographic images but one of the most common are the presence of small deposits of calcium known as microcalcifications, which in many cases may be the only detectable sign of a breast tumour. In addition to their efficacy in the detection of breast cancer, the presence of microcalcifications within a breast tumour may also convey useful prognostic information. Breast tumours with associated calcifications display an increased rate of HER2 overexpression as well as decreased survival, increased risk of recurrence, high tumour grade and increased likelihood of spread to the lymph nodes. Clearly, the presence of microcalcifications in a tumour is a clinically significant finding, suggesting that a detailed understanding of their formation may improve our knowledge of the early stages of breast tumourigenesis, yet there are no reports which attempt to bring together recent basic science research findings and current knowledge of the clinical significance of microcalcifications. This review will summarise the most current understanding of the formation of calcifications within breast tissue and explore their associated clinical features and prognostic value.
Collapse
Affiliation(s)
- S O'Grady
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - M P Morgan
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
13
|
Endogenous TRPV1 stimulation leads to the activation of the inositol phospholipid pathway necessary for sustained Ca 2+ oscillations. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2905-2915. [PMID: 27663071 DOI: 10.1016/j.bbamcr.2016.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/05/2016] [Accepted: 09/16/2016] [Indexed: 01/15/2023]
Abstract
Sensory neuron subpopulations as well as breast and prostate cancer cells express functional transient receptor potential vanilloid type 1 (TRPV1) ion channels; however little is known how TRPV1 activation leads to biological responses. Agonist-induced activation of TRPV1 resulted in specific spatiotemporal patterns of cytoplasmic Ca2+ signals in breast and prostate cancer-derived cells. Capsaicin (CAPS; 50μM) evoked intracellular Ca2+ oscillations and/or intercellular Ca2+ waves in all cell lines. As evidenced in prostate cancer Du 145 cells, oscillations were largely dependent on the expression of functional TRPV1 channels in the plasma membrane, phospholipase C activation and on the presence of extracellular Ca2+ ions. Concomitant oscillations of the mitochondrial matrix Ca2+ concentration resulted in mitochondria energization evidenced by increased ATP production. CAPS-induced Ca2+ oscillations also occurred in a subset of sensory neurons, yet already at lower CAPS concentrations (1μM). Stimulation of ectopically expressed TRPV1 channels in CAPS-insensitive NIH-3T3 cells didn't provoke CAPS-triggered Ca2+ oscillations; rather it resulted in low-magnitude, long-lasting elevations of the cytosolic Ca2+ concentration. This indicates that sole TRPV1 activation is not sufficient to generate Ca2+ oscillations. Instead the initial TRPV1-mediated signal leads to the activation of the inositol phospholipid pathway. This in turn suffices to generate a biologically relevant frequency-modulated Ca2+ signal.
Collapse
|
14
|
Zhang Z, Wang J, He J, Zeng X, Chen X, Xiong M, Zhou Q, Guo M, Li D, Lu W. Identification of TRPCs genetic variants that modify risk for lung cancer based on the pathway and two-stage study. Meta Gene 2016; 9:191-6. [PMID: 27617218 PMCID: PMC5006132 DOI: 10.1016/j.mgene.2016.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 06/26/2016] [Accepted: 07/07/2016] [Indexed: 10/28/2022] Open
Abstract
OBJECTIVE Store operated calcium channels (SOCCs) and Receptor-operated calcium channels (ROCCs) are important pathways participating in regulation of intracellular Ca(2 +) concentration in various cell types. The purpose of our study is to determine whether genetic variations in key components of SOCCs and ROCCs are associated with lung cancer risk. METHODS We identified 236 tagSNPs in 9 key genes related to SOCCs and ROCCs (TRPC1, TRPC3, TRPC4, TRPC6, TRPC7, ORAI1, ORAI2, STIM1, and STIM2) and evaluated their association with lung cancer risk in a two-stage case-control study with a total of 2433 lung cancer cases and 2433 cancer-free controls using Illumina high throughput genotyping platform. RESULTS We found consistently significant associations of TRPC4 rs9547991 and rs978156, and TRPC7 rs11748198 with increased risk of lung cancer among the three kinds of sources of populations (additive model in combined population: adjusted OR = 1.33, 95% CI = 1.11-1.59 for rs9547991; adjusted OR = 1.21, 95% CI = 1.08-1.35 for rs978156; and adjusted OR = 1.28, 95% CI = 1.10-1.47 for rs11748198). When combining the effects of TRPC7 rs11748198, and TRPC4 rs9547991 and rs978156, subjects carrying "≥ 1" variant alleles had a 1.29-fold increased risk of lung cancer (95% CI = 1.15-1.46), compared with those carrying "0" variant allele. Lung cancer risk significantly increased with the increasing number of variant alleles of the three SNPs in a dose-dependent manner (P for trend = 7.2 × 10(- 7)). CONCLUSION These findings suggested that TRPC4 rs9547991 and rs978156, and TRPC7 rs11748198 were candidate susceptibility markers for lung cancer in Chinese population. Our study provides the epidemiological evidence supporting a connection between TRPC members and lung cancer risks.
Collapse
Key Words
- CI, confidence interval
- Genetic variants
- HWE, Hardy-Weinberg equilibrium
- LD, linkage disequilibrium
- Lung cancer
- MAF, minor allele frequency
- OR, odds ratio
- ROCCs
- ROCCs, receptor-operated Ca2 + channels
- SNP, single nucleotide polymorphism
- SOCCs
- SOCCs, Store-operated Ca2 + channels
- SOCE, Store-operated Ca2 + entry channels
- TRPCs
- tagSNPs, tagging single nucleotide polymorphisms
Collapse
Affiliation(s)
- Zili Zhang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jianxing He
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiansheng Zeng
- Department of Respiratory Medicine, Xiangyang Central Hospital, Xiangyang, China
| | - Xindong Chen
- The First Municipal Hospital of Lufeng, Lufeng, China
| | - Mingmei Xiong
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qipeng Zhou
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Meihua Guo
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Defu Li
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Department of Laboratory Medicine, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
15
|
Sharma T, Radosevich JA, Pachori G, Mandal CC. A Molecular View of Pathological Microcalcification in Breast Cancer. J Mammary Gland Biol Neoplasia 2016; 21:25-40. [PMID: 26769216 DOI: 10.1007/s10911-015-9349-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/30/2015] [Indexed: 12/11/2022] Open
Abstract
Breast microcalcification is a potential diagnostic indicator for non-palpable breast cancers. Microcalcification type I (calcium oxalate) is restricted to benign tissue, whereas type II (calcium hydroxyapatite) occurs both in benign as well as in malignant lesions. Microcalcification is a pathological complication of the mammary gland. Over the past few decades, much attention has been paid to exploit this property, which forms the basis for advances in diagnostic procedures and imaging techniques. The mechanism of its formation is still poorly understood. Hence, in this paper, we have attempted to address the molecular mechanism of microcalcification in breast cancer. The central theme of this communication is "how a subpopulation of heterogeneous breast tumor cells attains an osteoblast-like phenotype, and what activities drive the process of pathophysiological microcalcification, especially at the invasive or infiltrating front of breast tumors". The role of bone morphogenetic proteins (BMPs) and tumor associated macrophages (TAMs) along with epithelial to mesenchymal transition (EMT) in manipulating this pathological process has been highlighted. Therefore, this review offers a novel insight into the mechanism underlying the development of microcalcification in breast carcinomas.
Collapse
Affiliation(s)
- Tanu Sharma
- Department of Biochemistry, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - James A Radosevich
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Geeta Pachori
- Department of Pathology, J.L.N Medical College, Ajmer, Rajasthan, 305001, India
| | - Chandi C Mandal
- Department of Biochemistry, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
16
|
Lin CM, Ma JM, Zhang L, Hao ZY, Zhou J, Zhou ZY, Shi HQ, Zhang YF, Shao EM, Liang CZ. Inhibition of Transient Receptor Potential Melastain 7 Enhances Apoptosis Induced by TRAIL in PC-3 cells. Asian Pac J Cancer Prev 2016; 16:4469-75. [PMID: 26028116 DOI: 10.7314/apjcp.2015.16.10.4469] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Transient receptor potential melastain 7 (TRPM7) is a bifunctional protein with dual structure of both ion channel and protein kinase, participating in a wide variety of diseases including cancer. Recent researches have reported the mechanism of TRPM7 in human cancers. However, the correlation between TRPM7 and prostate cancer (PCa) has not been well studied. The objective of this study was to investigate the potential the role of TRPM7 in the apoptosis of PC-3 cells, which is the key cell of advanced metastatic PCa. In this study, we demonstrated the influence and potential function of TRPM7 on the PC-3 cells apoptosis induced by TNF-related apoptosis inducing-ligand (TRAIL). The study also found a novel up-regulated expression of TRPM7 in PC-3 cells after treating with TRAIL. Suppression of TRPM7 by TRPM7 non-specific inhibitors (Gd3+ or 2-aminoethoxy diphenylborate (2-APB) ) not only markedly eliminated TRPM7 expression level, but also increased the apoptosis of TRAIL-treated PC-3 cells, which may be regulated by the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway accompany with up-regulated expression of cleaved Caspase-3, (TRAIL-receptor 1, death receptors 4) DR4, and (TRAIL-receptor 2, death receptors 5) DR5. Taken together, our findings strongly suggested that TRPM7 was involved in the apoptosis of PC-3 cells induced by TRAIL, indicating that TRPM7 may be applied as a therapeutic target for PCa.
Collapse
Affiliation(s)
- Chang-Ming Lin
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China E-mail :
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bertamino A, Ostacolo C, Ambrosino P, Musella S, Di Sarno V, Ciaglia T, Soldovieri MV, Iraci N, Fernandez Carvajal A, de la Torre-Martinez R, Ferrer-Montiel A, Gonzalez Muniz R, Novellino E, Taglialatela M, Campiglia P, Gomez-Monterrey I. Tryptamine-Based Derivatives as Transient Receptor Potential Melastatin Type 8 (TRPM8) Channel Modulators. J Med Chem 2016; 59:2179-91. [PMID: 26847872 DOI: 10.1021/acs.jmedchem.5b01914] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Pharmacological modulation of the transient receptor potential melastatin type 8 (TRPM8) is currently under investigation as a new approach for the treatment of pain and other diseases. In this study, a series of N-substituted tryptamines was prepared to explore the structural requirements determining TRPM8 modulation. Using a fluorescence-based screening assay, we identified two compounds acting as an activator (2-(1H-indol-3-yl)-N-(4-phenoxybenzyl)ethanamine, 21) or an inhibitor (N,N-dibenzyl-2-(1H-indol-3-yl)ethanamine, 12) of calcium influx in HEK293 cells. In patch-clamp recordings, compound 21 displayed a significantly higher potency (EC50 = 40 ± 4 μM) and a similar efficacy when compared to menthol; by contrast, compound 12 produced a concentration-dependent inhibition of menthol-induced TRPM8 currents (IC50 = 367 ± 24 nM). Molecular modeling studies using a homology model of a single rat TRPM8 subunit identified a putative binding site located between the VSD and the TRP box, disclosing differences in the binding modes for the agonist and the antagonist.
Collapse
Affiliation(s)
- Alessia Bertamino
- Department of Pharmacy, University of Salerno , Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Carmine Ostacolo
- Department of Pharmacy, University Federico II of Naples , Via D. Montesano 49, 80131, Naples, Italy
| | - Paolo Ambrosino
- Department of Medicine and Health Science V. Tiberio, University of Molise , Via F. de Sanctis, 86100, Campobasso, Italy
| | - Simona Musella
- Department of Pharmacy, University Federico II of Naples , Via D. Montesano 49, 80131, Naples, Italy
| | - Veronica Di Sarno
- Department of Pharmacy, University of Salerno , Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno , Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Maria Virginia Soldovieri
- Department of Medicine and Health Science V. Tiberio, University of Molise , Via F. de Sanctis, 86100, Campobasso, Italy
| | - Nunzio Iraci
- Department of Pharmacy, University of Salerno , Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Asia Fernandez Carvajal
- Institute of Molecular and Cellular Biology, University Miguel Hernández of Elche , 032020, Elche, Alicante, Spain
| | - Roberto de la Torre-Martinez
- Institute of Molecular and Cellular Biology, University Miguel Hernández of Elche , 032020, Elche, Alicante, Spain
| | - Antonio Ferrer-Montiel
- Institute of Molecular and Cellular Biology, University Miguel Hernández of Elche , 032020, Elche, Alicante, Spain
| | - Rosario Gonzalez Muniz
- Institute of Medicinal Chemistry, IQM-CSIC , c/Juan de la Cierva 3, 28006, Madrid, Spain
| | - Ettore Novellino
- Department of Pharmacy, University Federico II of Naples , Via D. Montesano 49, 80131, Naples, Italy
| | - Maurizio Taglialatela
- Department of Medicine and Health Science V. Tiberio, University of Molise , Via F. de Sanctis, 86100, Campobasso, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno , Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Isabel Gomez-Monterrey
- Department of Pharmacy, University Federico II of Naples , Via D. Montesano 49, 80131, Naples, Italy
| |
Collapse
|
18
|
Chen J, Luan Y, Yu R, Zhang Z, Zhang J, Wang W. Transient receptor potential (TRP) channels, promising potential diagnostic and therapeutic tools for cancer. Biosci Trends 2014; 8:1-10. [PMID: 24647107 DOI: 10.5582/bst.8.1] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Despite the advances in detection of and therapies for various tumors, high rates of treatment failure and mortality still exist throughout the world. These high rates are mainly due to the powerful capability of tumor cells to proliferate and migrate. Recent studies regarding the transient receptor potential (TRP) have indicated that TRP channels are associated with tumors and that TRP channels might represent potential targets for cancer treatment. TRP channels are important calcium-selective ion channels in many different tissues and cell types in mammals and are crucial regulators of calcium and sodium. TRP were first discovered in the photoreceptors of Drosophila with gene defects or mutations. TRP channels can be divided into seven subfamilies: TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPML (mucolipin), TRPP (polycystin), TRPA (ankyrin transmembrane protein), and TRPN (NomPC-like). TRPC proteins are conserved across organisms since they are most homologous to Drosophila TRP. TRP superfamilies have been linked to many physiological and pathological functions, including cell differentiation, proliferation, apoptosis, and ion homeostasis. This review focuses on the properties of TRP in oncogenesis, cancer proliferation, and cell migration.
Collapse
Affiliation(s)
- Jianpeng Chen
- Department of Oncology, Provincial Hospital Affiliated with Shandong University
| | | | | | | | | | | |
Collapse
|
19
|
Lange I, Koomoa DLT. MycN promotes TRPM7 expression and cell migration in neuroblastoma through a process that involves polyamines. FEBS Open Bio 2014; 4:966-75. [PMID: 25426416 PMCID: PMC4241534 DOI: 10.1016/j.fob.2014.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/13/2014] [Accepted: 10/24/2014] [Indexed: 12/22/2022] Open
Abstract
MycN expression correlates with TRPM7 expression in neuroblastoma (NB) tumors. Expression of the transmembrane protein TRPM7 correlates with lower overall survival in NB tumors. MycN promotes TRPM7 mRNA and protein expression and increases TRPM7 channel activity. TRPM7 regulates NB cell migration. Polyamines regulate TRPM7 expression.
Neuroblastoma is an extra-cranial solid cancer in children. MYCN gene amplification is a prognostic indicator of poor outcome in neuroblastoma. Recent studies have shown that the multiple steps involved in cell migration are dependent on the availability of intracellular calcium (Ca2+). Although significant advances have been made in understanding the role of Ca2+ during migration, little has been achieved towards understanding its impact on the progression of diseases such as cancer. Interestingly, previous studies showed that cancer cell migration is regulated by TRPM7, a calcium-permeable ion channel. The objective of the current study was to elucidate the mechanism by which MycN promotes NB cell migration and the mechanism regulating TRPM7 expression. The results showed that MycN increased TRPM7 expression, induced TRPM7 channel activity, increased intracellular Ca2+ signaling, and promoted cell migration in NB cells. The results also showed that inhibition or down-regulation of ornithine decarboxylase (ODC) inhibited TRPM7 expression, a process that was reversed by spermidine. Overall, this study provides evidence that MycN promotes TRPM7 expression and cell migration through a mechanism that involves ODC synthesis of polyamines.
Collapse
Affiliation(s)
- Ingo Lange
- University of Hawaii at Hilo, The Daniel K. Inouye College of Pharmacy, Hilo, HI 96720, USA
| | - Dana-Lynn T Koomoa
- University of Hawaii at Hilo, The Daniel K. Inouye College of Pharmacy, Hilo, HI 96720, USA
| |
Collapse
|
20
|
Chen JP, Wang J, Luan Y, Wang CX, Li WH, Zhang JB, Sha D, Shen R, Cui YG, Zhang Z, Zhang LM, Wang WB. TRPM7 promotes the metastatic process in human nasopharyngeal carcinoma. Cancer Lett 2014; 356:483-90. [PMID: 25304381 DOI: 10.1016/j.canlet.2014.09.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/06/2014] [Accepted: 09/24/2014] [Indexed: 12/30/2022]
Abstract
Our study observed the relationship between transient receptor potential melastatin 7 (TRPM7) expression and the metastatic process of nasopharyngeal carcinoma (NPC). We found that TRPM7 was overexpressed in 102 out of 206 (49.5%) human NPC cases and was significantly associated with clinical stage and lymphatic and distant metastasis. The results suggested that TRPM7 promotes NPC cell migration and invasion in vitro. Further, TRPM7 was correlated with poor clinical outcome and was an independent predictor for 5-year overall survival rate (HR, 1.832; 95% CI, 1.237-4.146 [P = 0.041]). In conclusion, TRPM7 promotes the metastasis of NPC and may serve as a prognostic marker in NPC patients.
Collapse
Affiliation(s)
- Jian-Peng Chen
- Department of Oncology, Provincial Hospital affiliated to Shandong University, Jinan, 250021, China.
| | - Jun Wang
- Department of Oncology, General Hospital, Jinan Command of the People's Liberation Army, Jinan, 250031, China
| | - Yi Luan
- Center for Disease Control, Jinan Command of the People's Liberation Army, Jinan, 250014, China
| | - Cai-Xia Wang
- Department of Oncology, Provincial Hospital affiliated to Shandong University, Jinan, 250021, China
| | - Wen-Huan Li
- Department of Oncology, Provincial Hospital affiliated to Shandong University, Jinan, 250021, China
| | - Jin-Biao Zhang
- Department of Oncology, the 148th Hospital, Jinan Command of the People's Liberation Army, Zibo, 255300, China
| | - Dan Sha
- Department of Oncology, Provincial Hospital affiliated to Shandong University, Jinan, 250021, China
| | - Rong Shen
- Department of Oncology, Provincial Hospital affiliated to Shandong University, Jinan, 250021, China
| | - Yan-Gang Cui
- Department of Oncology, Provincial Hospital affiliated to Shandong University, Jinan, 250021, China
| | - Zheng Zhang
- Department of Oncology, Provincial Hospital affiliated to Shandong University, Jinan, 250021, China
| | - Li-Ming Zhang
- Department of Rheumatology, Provincial Hospital affiliated to Shandong University, Jinan, 250021, China
| | - Wei-Bo Wang
- Department of Oncology, Provincial Hospital affiliated to Shandong University, Jinan, 250021, China
| |
Collapse
|
21
|
Zhou W, Guo S, Xiong Z, Liu M. Oncogenic role and therapeutic target of transient receptor potential melastatin 7 channel in malignancy. Expert Opin Ther Targets 2014; 18:1177-96. [DOI: 10.1517/14728222.2014.940894] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
TRPM8 promotes aggressiveness of breast cancer cells by regulating EMT via activating AKT/GSK-3β pathway. Tumour Biol 2014; 35:8969-77. [DOI: 10.1007/s13277-014-2077-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/07/2014] [Indexed: 01/17/2023] Open
|
23
|
Wang Y, Yang Z, Meng Z, Cao H, Zhu G, Liu T, Wang X. Knockdown of TRPM8 suppresses cancer malignancy and enhances epirubicin-induced apoptosis in human osteosarcoma cells. Int J Biol Sci 2013; 10:90-102. [PMID: 24391455 PMCID: PMC3879595 DOI: 10.7150/ijbs.7738] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/03/2013] [Indexed: 11/05/2022] Open
Abstract
As the function of transient receptor potential melastatin member 8 (TRPM8) in osteosarcoma is still unknown, we aim to investigate the possible effects and potential mechanisms of TRPM8 on cell proliferation, metastasis and chemosensitivity in osteosarcoma cells. We find that TRPM8 is aberrantly over-expressed in human osteosarcoma tissues and cell lines. Knockdown of TRPM8 by siRNA in osteosarcoma cells leads to the impaired regulation of intracellular Ca(2+) concentration and then the Akt-GSK-3β pathway and the phosphorylation of p44/p42 and FAK are suppressed. Knockdown of TRPM8 not only negatively influences the cell proliferation and metastasis but also enhances epirubicin-induced cell apoptosis. Such results reveal that TRPM8 is worthy further investigation for its potential as a clinical biomarker and therapeutic target in osteosarcoma.
Collapse
Affiliation(s)
- Yongzhi Wang
- Department of Urology, Zhongnan Hospital, Wuhan University, Wuhan, China, 430071
| | - Zhonghua Yang
- Department of Urology, Zhongnan Hospital, Wuhan University, Wuhan, China, 430071
| | - Zhe Meng
- Department of Urology, Zhongnan Hospital, Wuhan University, Wuhan, China, 430071
| | - Hong Cao
- Department of Urology, Zhongnan Hospital, Wuhan University, Wuhan, China, 430071
| | - Guangbin Zhu
- Department of Urology, Zhongnan Hospital, Wuhan University, Wuhan, China, 430071
| | - Tao Liu
- Department of Urology, Zhongnan Hospital, Wuhan University, Wuhan, China, 430071
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital, Wuhan University, Wuhan, China, 430071
| |
Collapse
|
24
|
Mergler S, Derckx R, Reinach PS, Garreis F, Böhm A, Schmelzer L, Skosyrski S, Ramesh N, Abdelmessih S, Polat OK, Khajavi N, Riechardt AI. Calcium regulation by temperature-sensitive transient receptor potential channels in human uveal melanoma cells. Cell Signal 2013; 26:56-69. [PMID: 24084605 DOI: 10.1016/j.cellsig.2013.09.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 09/25/2013] [Accepted: 09/25/2013] [Indexed: 11/16/2022]
Abstract
Uveal melanoma (UM) is both the most common and fatal intraocular cancer among adults worldwide. As with all types of neoplasia, changes in Ca(2+) channel regulation can contribute to the onset and progression of this pathological condition. Transient receptor potential channels (TRPs) and cannabinoid receptor type 1 (CB1) are two different types of Ca(2+) permeation pathways that can be dysregulated during neoplasia. We determined in malignant human UM and healthy uvea and four different UM cell lines whether there is gene and functional expression of TRP subtypes and CB1 since they could serve as drug targets to either prevent or inhibit initiation and progression of UM. RT-PCR, Ca(2+) transients, immunohistochemistry and planar patch-clamp analysis probed for their gene expression and functional activity, respectively. In UM cells, TRPV1 and TRPM8 gene expression was identified. Capsaicin (CAP), menthol or icilin induced Ca(2+) transients as well as changes in ion current behavior characteristic of TRPV1 and TRPM8 expression. Such effects were blocked with either La(3+), capsazepine (CPZ) or BCTC. TRPA1 and CB1 are highly expressed in human uvea, but TRPA1 is not expressed in all UM cell lines. In UM cells, the CB1 agonist, WIN 55,212-2, induced Ca(2+) transients, which were suppressed by La(3+) and CPZ whereas CAP-induced Ca(2+) transients could also be suppressed by CB1 activation. Identification of functional TRPV1, TRPM8, TRPA1 and CB1 expression in these tissues may provide novel drug targets for treatment of this aggressive neoplastic disease.
Collapse
Affiliation(s)
- Stefan Mergler
- Charité - Universitätsmedizin Berlin, Campus Virchow-Clinic, Department of Ophthalmology, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ko JH, Ko EA, Gu W, Lim I, Bang H, Zhou T. Expression profiling of ion channel genes predicts clinical outcome in breast cancer. Mol Cancer 2013; 12:106. [PMID: 24053408 PMCID: PMC3849355 DOI: 10.1186/1476-4598-12-106] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 09/16/2013] [Indexed: 11/22/2022] Open
Abstract
Background Ion channels play a critical role in a wide variety of biological processes, including the development of human cancer. However, the overall impact of ion channels on tumorigenicity in breast cancer remains controversial. Methods We conduct microarray meta-analysis on 280 ion channel genes. We identify candidate ion channels that are implicated in breast cancer based on gene expression profiling. We test the relationship between the expression of ion channel genes and p53 mutation status, ER status, and histological tumor grade in the discovery cohort. A molecular signature consisting of ion channel genes (IC30) is identified by Spearman’s rank correlation test conducted between tumor grade and gene expression. A risk scoring system is developed based on IC30. We test the prognostic power of IC30 in the discovery and seven validation cohorts by both Cox proportional hazard regression and log-rank test. Results 22, 24, and 30 ion channel genes are found to be differentially expressed with a change in p53 mutation status, ER status, and tumor histological grade in the discovery cohort. We assign the 30 tumor grade associated ion channel genes as the IC30 gene signature. We find that IC30 risk score predicts clinical outcome (P < 0.05) in the discovery cohort and 6 out of 7 validation cohorts. Multivariate and univariate tests conducted in two validation cohorts indicate that IC30 is a robust prognostic biomarker, which is independent of standard clinical and pathological prognostic factors including patient age, lymph node status, tumor size, tumor grade, estrogen and progesterone receptor status, and p53 mutation status. Conclusions We identified a molecular gene signature IC30, which represents a promising diagnostic and prognostic biomarker in breast cancer. Our results indicate that information regarding the expression of ion channels in tumor pathology could provide new targets for therapy in human cancers.
Collapse
Affiliation(s)
- Jae-Hong Ko
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul 156-756, South Korea.
| | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Mandavilli S, Singh BB, Sahmoun AE. Serum calcium levels, TRPM7, TRPC1, microcalcifications, and breast cancer using breast imaging reporting and data system scores. BREAST CANCER-TARGETS AND THERAPY 2012; 2013:1-7. [PMID: 23662076 DOI: 10.2147/bctt.s37436] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND An association between higher serum calcium (Ca2+) levels and breast cancer has been previously reported. However, little is known regarding the relationship between serum Ca2+ levels and the expression of Ca2+ channels in the presence of breast microcalcifications. METHODS A retrospective analysis of women newly diagnosed with breast microcalcifications was performed based on the Breast Imaging Reporting and Data System (BI-RADS). The expression of TRPC1, TRPC3, and TRPM7 using normal biopsy without microcalcifications (controls) and infiltrating ductal carcinoma with microcalcifications was evaluated. RESULTS Data on 138 women were analyzed. Seventy percent of women had a BI-RADS score (1-3) corresponding to benign disease. Seventy-six percent of women with a BI-RADS score (4 or 5) were diagnosed with breast cancer, 56% were cancers in situ, and 93% were infiltrating ductal carcinomas. No difference in the distribution of corrected serum Ca2+ levels between BI-RADS scores (1-3) and BI-RADS scores (4-5) (P = 0.82) was observed. Serum Ca2+ levels were similar in women without cancer and women diagnosed with breast cancer (P = 0.94). However, the expression of TRPM7 and TRPC1, but not TRPC3, Ca2+ channels were increased in infiltrating ductal carcinoma samples with microcalcifications when compared with age-matched controls without calcification or cancer. CONCLUSION We observed an increase in the expression of TRPM7 and TRPC1 Ca2+ channels in infiltrating ductal carcinoma samples with microcalcifications, whereas no change in serum Ca2+ levels was observed. Together these data suggest that increased expression of these channels might lead to an increase in intracellular Ca2+ levels thereby restoring serum Ca2+ levels, but these can contribute to the breast microcalcifications. However, future studies exploring the intracellular Ca2+ levels as well as the role of TRPM7 and TRPC1 function according to BI-RADS scores are needed.
Collapse
Affiliation(s)
- Shravya Mandavilli
- Department of Internal Medicine, University of North Dakota School of Medicine and Health Sciences, Fargo, ND, USA
| | | | | |
Collapse
|