1
|
Raza ML, Imam MH, Zehra W, Jamil S. Neuro-inflammatory pathways in COVID-19-induced central nervous system injury: Implications for prevention and treatment strategies. Exp Neurol 2024; 382:114984. [PMID: 39368535 DOI: 10.1016/j.expneurol.2024.114984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/15/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
This review explores the neuroinflammatory pathways underlying COVID-19-induced central nervous system (CNS) injury, with a focus on mechanisms of brain damage and strategies for prevention. A comprehensive literature review was conducted to summarize current knowledge on the pathways by which SARS-CoV-2 reaches the brain, the neuroinflammatory responses triggered by viral infection, neurological symptoms and long COVID. Results: We discuss the mechanisms of neuroinflammation in COVID-19, including blood-brain barrier disruption, cytokine storm, microglial activation, and peripheral immune cell infiltration. Additionally, we highlight potential strategies for preventing CNS injury, including pharmacological interventions, immunomodulatory therapies, and lifestyle modifications. Conclusively, Understanding the neuroinflammatory pathways in COVID-19-induced CNS injury is crucial for developing effective prevention and treatment strategies to protect brain health during and after viral infection.
Collapse
Affiliation(s)
- Muhammad Liaquat Raza
- Department of Infection Prevention & Control, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| | | | | | - Subia Jamil
- Faculty of Pharmacy, Jinnah University for Women, University, Karachi, Pakistan
| |
Collapse
|
2
|
Das A, Pathak S, Premkumar M, Sarpparajan CV, Balaji ER, Duttaroy AK, Banerjee A. A brief overview of SARS-CoV-2 infection and its management strategies: a recent update. Mol Cell Biochem 2024; 479:2195-2215. [PMID: 37742314 PMCID: PMC11371863 DOI: 10.1007/s11010-023-04848-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/02/2023] [Indexed: 09/26/2023]
Abstract
The COVID-19 pandemic has become a global health crisis, inflicting substantial morbidity and mortality worldwide. A diverse range of symptoms, including fever, cough, dyspnea, and fatigue, characterizes COVID-19. A cytokine surge can exacerbate the disease's severity. This phenomenon involves an increased immune response, marked by the excessive release of inflammatory cytokines like IL-6, IL-8, TNF-α, and IFNγ, leading to tissue damage and organ dysfunction. Efforts to reduce the cytokine surge and its associated complications have garnered significant attention. Standardized management protocols have incorporated treatment strategies, with corticosteroids, chloroquine, and intravenous immunoglobulin taking the forefront. The recent therapeutic intervention has also assisted in novel strategies like repurposing existing medications and the utilization of in vitro drug screening methods to choose effective molecules against viral infections. Beyond acute management, the significance of comprehensive post-COVID-19 management strategies, like remedial measures including nutritional guidance, multidisciplinary care, and follow-up, has become increasingly evident. As the understanding of COVID-19 pathogenesis deepens, it is becoming increasingly evident that a tailored approach to therapy is imperative. This review focuses on effective treatment measures aimed at mitigating COVID-19 severity and highlights the significance of comprehensive COVID-19 management strategies that show promise in the battle against COVID-19.
Collapse
Affiliation(s)
- Alakesh Das
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Madhavi Premkumar
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Chitra Veena Sarpparajan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Esther Raichel Balaji
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Asim K Duttaroy
- Department of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India.
| |
Collapse
|
3
|
Méndez Rodríguez ML, Ponciano-Gómez A, Campos-Aguilar M, Tapia-Sánchez WD, Duarte-Martínez CL, Romero-Herrera JS, Olivas-Quintero S, Saucedo-Campos AD, Méndez-Cruz AR, Jimenez-Flores R, Ortiz-Navarrete V, Romero-Ramírez H, Santos-Argumedo L, Rosales-García VH. Neutrophil-to-Lymphocyte Ratio and Cytokine Profiling as Predictors of Disease Severity and Survival in Unvaccinated COVID-19 Patients. Vaccines (Basel) 2024; 12:861. [PMID: 39203987 PMCID: PMC11360520 DOI: 10.3390/vaccines12080861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/18/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND During the COVID-19 pandemic, identifying reliable biomarkers for predicting disease severity and patient outcomes in unvaccinated individuals is essential. This study evaluates the efficacy of key hematological markers, including leukocyte and neutrophil counts, Neutrophil-to-Lymphocyte Ratio (NLR), and cytokine profiles (IL-6, INF-γ, TNF-α, IL-17A, CCL2, and CXCL10) for predicting the necessity for mechanical ventilation and assessing survival probabilities. METHODS We conducted an in-depth analysis on a cohort of COVID-19 patients, emphasizing the relationship between NLR, cytokine profiles, and clinical outcomes, utilizing routine leukocyte counting and cytokine quantification by flow cytometry. RESULTS Elevated leukocyte and neutrophil counts, increased NLR, and significant cytokine elevations such as IL-6 and IL-10 were strongly associated with the need for mechanical ventilation, reflecting a pronounced systemic inflammatory response indicative of severe disease outcomes. CONCLUSION Integrating hematological markers, particularly NLR and cytokine profiles, is crucial in predicting mechanical ventilation needs and survival in non-vaccinated COVID-19 patients. Our findings provide critical insights into the pathophysiology of COVID-19, supporting the development of more targeted clinical interventions and potentially informing future strategies for managing infectious disease outbreaks.
Collapse
Affiliation(s)
- Miguel Leonardo Méndez Rodríguez
- Servicio de Inmunología y Alergia, Centro Médico Naval (CEMENAV), Secretaria de Marina (SEMAR), Avenida Heroica Escuela Naval Militar 745, Coapa, Presidentes Ejidales 1ra Sección, Coyoacán, Mexico City 04470, Mexico; (M.L.M.R.); (J.S.R.-H.)
| | - Alberto Ponciano-Gómez
- Laboratorio de Inmunología (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico; (A.P.-G.); (M.C.-A.); (A.D.S.-C.); (A.R.M.-C.); (R.J.-F.)
| | - Myriam Campos-Aguilar
- Laboratorio de Inmunología (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico; (A.P.-G.); (M.C.-A.); (A.D.S.-C.); (A.R.M.-C.); (R.J.-F.)
| | - Wilfrido David Tapia-Sánchez
- Diagnóstico Molecular de Leucemias y Terapia Celular (DILETEC), Basiliso Romo Anguiano 124, Industrial, Gustavo A. Madero, Mexico City 07800, Mexico; (W.D.T.-S.); (C.L.D.-M.)
| | - Carlos Leonardo Duarte-Martínez
- Diagnóstico Molecular de Leucemias y Terapia Celular (DILETEC), Basiliso Romo Anguiano 124, Industrial, Gustavo A. Madero, Mexico City 07800, Mexico; (W.D.T.-S.); (C.L.D.-M.)
| | - Jesús Salvador Romero-Herrera
- Servicio de Inmunología y Alergia, Centro Médico Naval (CEMENAV), Secretaria de Marina (SEMAR), Avenida Heroica Escuela Naval Militar 745, Coapa, Presidentes Ejidales 1ra Sección, Coyoacán, Mexico City 04470, Mexico; (M.L.M.R.); (J.S.R.-H.)
| | - Sandra Olivas-Quintero
- Departamento de Ciencias de la Salud Culiacán, Universidad Autónoma de Occidente, Culiacan 80020, Sinaloa, Mexico;
| | - Alberto Daniel Saucedo-Campos
- Laboratorio de Inmunología (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico; (A.P.-G.); (M.C.-A.); (A.D.S.-C.); (A.R.M.-C.); (R.J.-F.)
| | - Adolfo Rene Méndez-Cruz
- Laboratorio de Inmunología (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico; (A.P.-G.); (M.C.-A.); (A.D.S.-C.); (A.R.M.-C.); (R.J.-F.)
| | - Rafael Jimenez-Flores
- Laboratorio de Inmunología (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico; (A.P.-G.); (M.C.-A.); (A.D.S.-C.); (A.R.M.-C.); (R.J.-F.)
| | - Vianney Ortiz-Navarrete
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico; (V.O.-N.); (H.R.-R.); (L.S.-A.)
| | - Hector Romero-Ramírez
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico; (V.O.-N.); (H.R.-R.); (L.S.-A.)
- Centro de Investigación Sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Leopoldo Santos-Argumedo
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico; (V.O.-N.); (H.R.-R.); (L.S.-A.)
- Centro de Investigación Sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Victor Hugo Rosales-García
- Diagnóstico Molecular de Leucemias y Terapia Celular (DILETEC), Basiliso Romo Anguiano 124, Industrial, Gustavo A. Madero, Mexico City 07800, Mexico; (W.D.T.-S.); (C.L.D.-M.)
- Laboratorios Nacionales de Servicios Experimentales, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 14330, Mexico
| |
Collapse
|
4
|
Ali I, Zhang H, Zaidi SAA, Zhou G. Understanding the intricacies of cellular senescence in atherosclerosis: Mechanisms and therapeutic implications. Ageing Res Rev 2024; 96:102273. [PMID: 38492810 DOI: 10.1016/j.arr.2024.102273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/16/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Cardiovascular disease is currently the largest cause of mortality and disability globally, surpassing communicable diseases, and atherosclerosis is the main contributor to this epidemic. Aging is intimately linked to atherosclerosis development and progression, however, the mechanism of aging in atherosclerosis is not well known. To emphasize the significant research on the involvement of senescent cells in atherosclerosis, we begin by outlining compelling evidence that indicates various types of senescent cells and SASP factors linked to atherosclerotic phenotypes. We subsequently provide a comprehensive summary of the existing knowledge, shedding light on the intricate mechanisms through which cellular senescence contributes to the pathogenesis of atherosclerosis. Further, we cover that senescence can be identified by both structural changes and several senescence-associated biomarkers. Finally, we discuss that preventing accelerated cellular senescence represents an important therapeutic potential, as permanent changes may occur in advanced atherosclerosis. Together, the review summarizes the relationship between cellular senescence and atherosclerosis, and inspects the molecular knowledge, and potential clinical significance of senescent cells in developing senescent-based therapy, thus providing crucial insights into their biology and potential therapeutic exploration.
Collapse
Affiliation(s)
- Ilyas Ali
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Sciences Center, Shenzhen University, Shenzhen 518060, PR China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, PR China
| | - Hongliang Zhang
- Shenzhen University General Hospital, Shenzhen University, Shenzhen 518060, PR China
| | - Syed Aqib Ali Zaidi
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Sciences Center, Shenzhen University, Shenzhen 518060, PR China
| | - Guangqian Zhou
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Sciences Center, Shenzhen University, Shenzhen 518060, PR China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, PR China.
| |
Collapse
|
5
|
Aleebrahim-Dehkordi E, Soveyzi F, Deravi N, Saghazadeh A, Rezaei N. Mental Healthcare in Pediatrics During the COVID-19 Pandemic: A Call for International Public Health Action. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1458:19-34. [PMID: 39102187 DOI: 10.1007/978-3-031-61943-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Public health measures associated with coronavirus disease 2019 (COVID-19), such as lockdowns and quarantine of suspected cases, can negatively affect children's mental health status. Although the current crisis provides personal growth and family cohesion opportunities, pitfalls appear to outweigh the benefits. The magnitude and quality of its impact on children depend on several factors, including anxiety, lack of social contact, and a reduced opportunity for stress regulation, along with an increased risk for parental mental health issues, child maltreatment, and domestic violence. Children with special needs and social disadvantages like trauma experiences, disabilities, pre-existing mental illness, e.g., autism spectrum disorders and hyperactivity, and low socioeconomic status, may be at higher risk in this context. Here, the potentials social support can provide for pediatrics, both healthy children and children with special needs, are reviewed after an overview of quarantine's adverse effects on this special population during a pandemic. The most common psychological issues associated with the COVID-19 pandemic are sleep disorders, mood swings, depression, anxiety, decreased attention, stress, irritability, anger, and fear. Moreover, the impact of COVID-19 on children's physical health includes weight gain, reduced physical activity, immune dysregulation, and cardiometabolic disorders. All support systems, involving parents, teachers/school counselors, pediatricians, mental healthcare workers, and Health and Art (HEART) groups, need to enter the scene and make their share of children's mental health care.
Collapse
Affiliation(s)
- Elahe Aleebrahim-Dehkordi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Faezeh Soveyzi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Radiology Resident at MUMS, Radiology Department Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Deravi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student's Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amene Saghazadeh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, 14194, Tehran, Iran
- MetaCognition Interest Group (MCIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, 14194, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
6
|
Bjørklund G, Lysiuk R, Semenova Y, Lenchyk L, Dub N, Doşa MD, Hangan T. Herbal Substances with Antiviral Effects: Features and Prospects for the Treatment of Viral Diseases with Emphasis on Pro-Inflammatory Cytokines. Curr Med Chem 2024; 31:393-409. [PMID: 36698239 DOI: 10.2174/0929867330666230125121758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 01/26/2023]
Abstract
Viral diseases have a significant impact on human health, and three novel coronaviruses (CoV) have emerged during the 21st century. In this review, we have emphasized the potential of herbal substances with antiviral effects. Our investigation focused on the features and prospects of viral disease treatment, with a particular emphasis on proinflammatory cytokines. We conducted comprehensive searches of various databases, including Science Direct, CABI Direct, Web of Science, PubMed, and Scopus. Cytokine storm mechanisms play a crucial role in inducing a pro-inflammatory response by triggering the expression of cytokines and chemokines. This response leads to the recruitment of leukocytes and promotes antiviral effects, forming the first line of defense against viruses. Numerous studies have investigated the use of herbal medicine candidates as immunomodulators or antivirals. However, cytokine-storm-targeted therapy is recommended for patients with acute respiratory distress syndrome caused by SARS-CoV to survive severe pulmonary failure. Our reviews have demonstrated that herbal formulations could serve as alternative medicines and significantly reduce complicated viral infections. Furthermore, they hold promising potential as specific antiviral agents in experimental animal models.
Collapse
Affiliation(s)
- Geir Bjørklund
- Department of Research, Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Yuliya Semenova
- School of Medicine, Nazarbayev University , Astana, Kazakhstan
| | - Larysa Lenchyk
- Department of Research, National University of Pharmacy, Kharkiv, Ukraine
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Natalia Dub
- Andrei Krupynskyi Lviv Medical Academy, Lviv, Ukraine
| | | | - Tony Hangan
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
| |
Collapse
|
7
|
Feng CH, Kuo PC, Shih PC, Wei JCC. Illuminating the connection: Unearthing the mechanisms linking COVID-19 and rheumatoid arthritis. Int J Rheum Dis 2023; 26:2134-2136. [PMID: 37910027 DOI: 10.1111/1756-185x.14870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/02/2023] [Indexed: 11/03/2023]
Affiliation(s)
- Chi-Hsiang Feng
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Cheng Kuo
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Po-Cheng Shih
- Division of Allergy, Immunology, Rheumatology, Changhua Christian Hospital, Changhua, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - James Cheng-Chung Wei
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Nursing, Chung Shan Medical University, Taichung, Taiwan
- Division of Allergy, Immunology, Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
8
|
DE Lorenzo R, Cinel E, Cilla M, Compagnone N, Ferrante M, Falbo E, Patrizi A, Castellani J, Magnaghi C, Calvisi SL, Arcidiacono T, Lanzani C, Canti V, Mazza MG, Martinenghi S, Vitali G, Benedetti F, Ciceri F, Conte C, Rovere Querini P. Physical and psychological sequelae at three months after acute illness in COVID-19 survivors. Panminerva Med 2023; 65:312-320. [PMID: 34060280 DOI: 10.23736/s0031-0808.21.04399-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) may leave behind an altered health status early after recovery. We evaluated the clinical status of COVID-19 survivors at three months after hospital discharge. METHODS In this prospective observational cohort study, hospitalized patients aged ≥18 years, evaluated at one (M1) and three (M3) months post-discharge were enrolled. 251 patients (71.3% males, median [IQR] age 61.8 [53.5-70.7] years) were included. Median (IQR) time from discharge to M3 was 89 (79.5-101) days. Primary outcome was residual respiratory dysfunction (RRD), defined by tachypnea, moderate to very severe dyspnea, or peripheral oxygen saturation ≤95% on room air at M3. RESULTS RRD was found in 30.4% of patients, with no significant difference compared with M1. Chronic obstructive pulmonary disease and length of stay were independent predictors of RRD at multivariable logistic regression (OR [95% CI]: 4.13 [1.17-16.88], P=0.033; OR [95% CI]: 1.02 [1.00-1.04], P=0.047, respectively). Obesity and C-reactive protein levels upon admission were additional predictors at regression tree analysis. Impaired quality of life (QoL) was reported by 53.2% of patients. Anxiety and insomnia were each present in 25.5% of patients, and PTSD in 22.4%. No difference was found between M1 and M3 in QoL, anxiety or PTSD. Insomnia decreased at M3. Current major psychiatric disorder as well as anxiety, insomnia and PSTD at M1 independently predicted PTSD at M3. CONCLUSIONS Clinical damage may persist at three months after discharge in COVID-19 survivors. Post-recovery follow-up is an essential component of patient management.
Collapse
Affiliation(s)
| | - Elena Cinel
- Vita-Salute San Raffaele University, Milan, Italy
| | - Marta Cilla
- Vita-Salute San Raffaele University, Milan, Italy
| | | | | | | | | | | | - Cristiano Magnaghi
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Hospital, Milan, Italy
| | - Stefania L Calvisi
- Unit of General Medicine and Advanced Care, IRCCS San Raffaele Scientific Hospital, Milan, Italy
| | - Teresa Arcidiacono
- Unit of Nephrology, IRCCS San Raffaele Scientific Hospital, Milan, Italy
| | - Chiara Lanzani
- Unit of Nephrology, IRCCS San Raffaele Scientific Hospital, Milan, Italy
| | - Valentina Canti
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Hospital, Milan, Italy
| | - Mario G Mazza
- Unit of Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Hospital, Milan, Italy
| | - Sabina Martinenghi
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Hospital, Milan, Italy
| | - Giordano Vitali
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Hospital, Milan, Italy
| | - Francesco Benedetti
- Unit of Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Hospital, Milan, Italy
| | - Fabio Ciceri
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Hospital, Milan, Italy
| | - Caterina Conte
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Hospital, Milan, Italy
| | - Patrizia Rovere Querini
- Vita-Salute San Raffaele University, Milan, Italy -
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Hospital, Milan, Italy
| |
Collapse
|
9
|
Ghanbari Naeini L, Abbasi L, Karimi F, Kokabian P, Abdi Abyaneh F, Naderi D. The Important Role of Interleukin-2 in COVID-19. J Immunol Res 2023; 2023:7097329. [PMID: 37649897 PMCID: PMC10465260 DOI: 10.1155/2023/7097329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/04/2023] [Accepted: 07/13/2023] [Indexed: 09/01/2023] Open
Abstract
There is controversial literature about the effects of the interleukin-2 (IL-2) cytokine family in COVID-19 pathogenesis and immunity. So we aimed to identify the potential in the role of the IL-2 family in COVID-19. A narrative review search was done through online databases, including PubMed, Scopus, and Web of Science. The search deadline was up to December 2022. We applied no time limits for the searching strategy. After retrieving articles from the databases, the authors summarized the data into two data extraction tables. The first data extraction table described the changes in the IL-2 cytokine family in COVID-19 and the second table described the therapeutic interventions targeting IL-2 family cytokines. The results of the literature on the role of the IL-2 cytokine family do not show a singular rule. IL-2 cytokine family can change during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Some studies suggest that IL-2 cytokine family rise during the infection and cause severe inflammatory response and cytokine storm. These cytokines are shown to be increased in immunocompromised patients and worsen their prognosis. In individuals without underlying disease, the upregulation of the IL-2 family shows the clinical outcome of the disease and rises with disease severity. However, some other studies show that these cytokines do not significantly change. IL-2 cytokine family is mostly upregulated in healthy individuals who had vaccination, but immunocompromised patients did not show significant changes after a single dose of vaccines, which shows that these patients need booster doses for efficient immunity. IL-2 cytokine family can also be used as immunotherapy agents in COVID-19.
Collapse
Affiliation(s)
| | - Laleh Abbasi
- Guilan University of Medical Sciences, Rasht, Iran
| | | | - Pajman Kokabian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Delaram Naderi
- Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
10
|
Nie Y, Mou L, Long Q, Deng D, Hu R, Cheng J, Wu J. SARS-CoV-2 ORF3a positively regulates NF-κB activity by enhancing IKKβ-NEMO interaction. Virus Res 2023; 328:199086. [PMID: 36894068 PMCID: PMC10009424 DOI: 10.1016/j.virusres.2023.199086] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a global pandemic caused by SARS-CoV-2 infection. Patients with severe COVID-19 exhibit robust induction of proinflammatory cytokines, which are closely associated with the development of acute respiratory distress syndrome. However, the underlying mechanisms of the NF-κB activation mediated by SARS-CoV-2 infection remain poorly understood. Here, we screened SARS-CoV-2 genes and found that ORF3a induces proinflammatory cytokines by activating the NF-κB pathway. Moreover, we found that ORF3a interacts with IKKβ and NEMO and enhances the interaction of IKKβ-NEMO, thereby positively regulating NF-κB activity. Together, these results suggest ORF3a may play pivotal roles in the pathogenesis of SARS-CoV-2 and provide novel insights into the interaction between host immune responses and SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ying Nie
- Department of Parasitology, Provincial Key Laboratory of Modern Pathogen Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; These authors contributed equally: Ying Nie, Lumin Mou
| | - Lumin Mou
- Department of Parasitology, Provincial Key Laboratory of Modern Pathogen Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China; These authors contributed equally: Ying Nie, Lumin Mou
| | - Qizhou Long
- Department of Parasitology, Provincial Key Laboratory of Modern Pathogen Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Dongqing Deng
- Department of Parasitology, Provincial Key Laboratory of Modern Pathogen Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Rongying Hu
- The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Jinzhi Cheng
- Department of Parasitology, Provincial Key Laboratory of Modern Pathogen Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Jiahong Wu
- Department of Parasitology, Provincial Key Laboratory of Modern Pathogen Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
11
|
Koh B, Sulaiman N, Fauzi MB, Law JX, Ng MH, Yuan TL, Azurah AGN, Mohd Yunus MH, Idrus RBH, Yazid MD. A Three-Dimensional Xeno-Free Culture Condition for Wharton's Jelly-Mesenchymal Stem Cells: The Pros and Cons. Int J Mol Sci 2023; 24:ijms24043745. [PMID: 36835154 PMCID: PMC9960744 DOI: 10.3390/ijms24043745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 02/15/2023] Open
Abstract
Xeno-free three-dimensional cultures are gaining attention for mesenchymal stem cell (MSCs) expansion in clinical applications. We investigated the potential of xeno-free serum alternatives, human serum and human platelet lysate, to replace the current conventional use of foetal bovine serum for subsequent MSCs microcarrier cultures. In this study, Wharton's Jelly MSCs were cultured in nine different media combinations to identify the best xeno-free culture media for MSCs culture. Cell proliferation and viability were identified, and the cultured MSCs were characterised in accordance with the minimal criteria for defining multipotent mesenchymal stromal cells by the International Society for Cellular Therapy (ISCT). The selected culture media was then used in the microcarrier culture of MSCs to determine the potential of a three-dimensional culture system in the expansion of MSCs for future clinical applications, and to identify the immunomodulatory potential of cultured MSCs. Low Glucose DMEM (LG) + Human Platelet (HPL) lysate media appeared to be good candidates for replacing conventional MSCs culture media in our monolayer culture system. MSCs cultured in LG-HPL achieved high cell yield, with characteristics that remained as described by ISCT, although the overall mitochondrial activity of the cells was lower than the control and the subsequent effects remained unknown. MSC microcarrier culture, on the other hand, showed comparable cell characteristics with monolayer culture, yet had stagnated cell proliferation, which is potentially due to the inactivation of FAK. Nonetheless, both the MSCs monolayer culture and the microcarrier culture showed high suppressive activity on TNF-α, and only the MSC microcarrier culture has a better suppression of IL-1 secretion. In conclusion, LG-HPL was identified as a good xeno-free media for WJMSCs culture, and although further mechanistic research is needed, the results show that the xeno-free three-dimensional culture maintained MSC characteristics and improved immunomodulatory activities, suggesting the potential of translating the monolayer culture into this culture system in MSC expansion for future clinical application.
Collapse
Affiliation(s)
- Benson Koh
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Ming Medical Sdn Bhd, D3-3 (2nd Floor), Block D3 Dana 1 Commercial Centre, Jalan PJU 1a/46, Petaling Jaya 47301, Malaysia
| | - Nadiah Sulaiman
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Jia Xian Law
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Min Hwei Ng
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Too Lih Yuan
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Abdul Ghani Nur Azurah
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mohd Heikal Mohd Yunus
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Ruszymah Bt Hj Idrus
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Correspondence: ; Tel.: +60-3-9145-6995
| |
Collapse
|
12
|
Cockrell C, Larie D, An G. Preparing for the next pandemic: Simulation-based deep reinforcement learning to discover and test multimodal control of systemic inflammation using repurposed immunomodulatory agents. Front Immunol 2022; 13:995395. [PMID: 36479109 PMCID: PMC9720328 DOI: 10.3389/fimmu.2022.995395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022] Open
Abstract
Background Preparation to address the critical gap in a future pandemic between non-pharmacological measures and the deployment of new drugs/vaccines requires addressing two factors: 1) finding virus/pathogen-agnostic pathophysiological targets to mitigate disease severity and 2) finding a more rational approach to repurposing existing drugs. It is increasingly recognized that acute viral disease severity is heavily driven by the immune response to the infection ("cytokine storm" or "cytokine release syndrome"). There exist numerous clinically available biologics that suppress various pro-inflammatory cytokines/mediators, but it is extremely difficult to identify clinically effective treatment regimens with these agents. We propose that this is a complex control problem that resists standard methods of developing treatment regimens and accomplishing this goal requires the application of simulation-based, model-free deep reinforcement learning (DRL) in a fashion akin to training successful game-playing artificial intelligences (AIs). This proof-of-concept study determines if simulated sepsis (e.g. infection-driven cytokine storm) can be controlled in the absence of effective antimicrobial agents by targeting cytokines for which FDA-approved biologics currently exist. Methods We use a previously validated agent-based model, the Innate Immune Response Agent-based Model (IIRABM), for control discovery using DRL. DRL training used a Deep Deterministic Policy Gradient (DDPG) approach with a clinically plausible control interval of 6 hours with manipulation of six cytokines for which there are existing drugs: Tumor Necrosis Factor (TNF), Interleukin-1 (IL-1), Interleukin-4 (IL-4), Interleukin-8 (IL-8), Interleukin-12 (IL-12) and Interferon-γ(IFNg). Results DRL trained an AI policy that could improve outcomes from a baseline Recovered Rate of 61% to one with a Recovered Rate of 90% over ~21 days simulated time. This DRL policy was then tested on four different parameterizations not seen in training representing a range of host and microbe characteristics, demonstrating a range of improvement in Recovered Rate by +33% to +56. Discussion The current proof-of-concept study demonstrates that significant disease severity mitigation can potentially be accomplished with existing anti-mediator drugs, but only through a multi-modal, adaptive treatment policy requiring implementation with an AI. While the actual clinical implementation of this approach is a projection for the future, the current goal of this work is to inspire the development of a research ecosystem that marries what is needed to improve the simulation models with the development of the sensing/assay technologies to collect the data needed to iteratively refine those models.
Collapse
Affiliation(s)
| | | | - Gary An
- Department of Surgery, University of Vermont Larner College of Medicine, Burlington, VT, United States
| |
Collapse
|
13
|
Benzophenone and coumarin derivatives as 3-CLPro inhibitors: Targeting cytokine storm through in silico and in vitro approaches. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
The JAK1/2 Inhibitor Baricitinib Mitigates the Spike-Induced Inflammatory Response of Immune and Endothelial Cells In Vitro. Biomedicines 2022; 10:biomedicines10092324. [PMID: 36140425 PMCID: PMC9496399 DOI: 10.3390/biomedicines10092324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
The purpose of this study was to examine the effect of the JAK-STAT inhibitor baricitinib on the inflammatory response of human monocyte-derived macrophages (MDM) and endothelial cells upon exposure to the spike S1 protein from SARS-CoV-2. The effect of the drug has been evaluated on the release of cytokines and chemokines from spike-treated MDM, as well as on the activation of endothelial cells (HUVECs) after exposure to conditioned medium collected from spike-activated MDM. Results obtained indicate that, in MDM, baricitinib prevents the S1-dependent phosphorylation of STAT1 and STAT3, along with the induction of IP-10- and MCP-1 secretion; the release of IL-6 and TNFα is also reduced, while all other mediators tested (IL-1β, IL-8, RANTES, MIP-1α and MIP-1β) are not modified. Baricitinib is, instead, poorly effective on endothelial activation when HUVECs are exposed to supernatants from S1-activated macrophages; the induction of VCAM-1, indeed, is not affected by the drug, while that of ICAM-1 is only poorly inhibited. The drug, however, also exerts protective effects on the endothelium by limiting the expression of pro-inflammatory mediators, specifically IL-6, RANTES and IP-10. No effect of baricitinib has been observed on IL-8 synthesis and, consistently, on neutrophils chemiotaxis. Our in vitro findings reveal that the efficacy of baricitinib is limited, with effects mainly focused on the inhibition of the IL-6-mediated inflammatory loop.
Collapse
|
15
|
Puhl AC, Gomes GF, Damasceno S, Fritch EJ, Levi JA, Johnson NJ, Scholle F, Premkumar L, Hurst BL, Lee-Montiel F, Veras FP, Batah SS, Fabro AT, Moorman NJ, Yount BL, Dickmander RJ, Baric RS, Pearce KH, Cunha FQ, Alves-Filho JC, Cunha TM, Ekins S. Vandetanib Blocks the Cytokine Storm in SARS-CoV-2-Infected Mice. ACS OMEGA 2022; 7:31935-31944. [PMID: 36097511 PMCID: PMC9454268 DOI: 10.1021/acsomega.2c02794] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
The portfolio of SARS-CoV-2 small molecule drugs is currently limited to a handful that are either approved (remdesivir), emergency approved (dexamethasone, baricitinib, paxlovid, and molnupiravir), or in advanced clinical trials. Vandetanib is a kinase inhibitor which targets the vascular endothelial growth factor receptor (VEGFR), the epidermal growth factor receptor (EGFR), as well as the RET-tyrosine kinase. In the current study, it was tested in different cell lines and showed promising results on inhibition versus the toxic effect on A549-hACE2 cells (IC50 0.79 μM) while also showing a reduction of >3 log TCID50/mL for HCoV-229E. The in vivo efficacy of vandetanib was assessed in a mouse model of SARS-CoV-2 infection and statistically significantly reduced the levels of IL-6, IL-10, and TNF-α and mitigated inflammatory cell infiltrates in the lungs of infected animals but did not reduce viral load. Vandetanib also decreased CCL2, CCL3, and CCL4 compared to the infected animals. Vandetanib additionally rescued the decreased IFN-1β caused by SARS-CoV-2 infection in mice to levels similar to that in uninfected animals. Our results indicate that the FDA-approved anticancer drug vandetanib is worthy of further assessment as a potential therapeutic candidate to block the COVID-19 cytokine storm.
Collapse
Affiliation(s)
- Ana C. Puhl
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Giovanni F. Gomes
- Center for
Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, Sao Paulo, Brazil
| | - Samara Damasceno
- Center for
Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, Sao Paulo, Brazil
| | - Ethan J. Fritch
- Department
of Microbiology and Immunology, University
of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - James A. Levi
- Department
of Biological Sciences, North Carolina State
University, Raleigh, North Carolina 27695-7001, United States
| | - Nicole J. Johnson
- Department
of Biological Sciences, North Carolina State
University, Raleigh, North Carolina 27695-7001, United States
| | - Frank Scholle
- Department
of Biological Sciences, North Carolina State
University, Raleigh, North Carolina 27695-7001, United States
| | - Lakshmanane Premkumar
- Department
of Microbiology and Immunology, University
of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Brett L. Hurst
- Institute
for Antiviral Research, Utah State University, Logan, Utah 84322-1400, United States
- Department
of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah 84322-1400, United States
| | - Felipe Lee-Montiel
- PhenoVista
Biosciences, 6195 Cornerstone
Ct E. #114, San Diego, California 92121, United States
| | - Flavio P. Veras
- Center for
Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, Sao Paulo, Brazil
| | - Sabrina S. Batah
- Department
of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14090900, Brazil
| | - Alexandre T. Fabro
- Department
of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14090900, Brazil
| | - Nathaniel J. Moorman
- Department
of Microbiology and Immunology, University
of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
- Rapidly Emerging
Antiviral Drug Discovery Initiative, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
- Center
for Integrative Chemical Biology and Drug Discovery, Chemical Biology
and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Boyd L. Yount
- Department
of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Rebekah J. Dickmander
- Department
of Microbiology and Immunology, University
of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
- Rapidly Emerging
Antiviral Drug Discovery Initiative, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
- Center
for Integrative Chemical Biology and Drug Discovery, Chemical Biology
and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Ralph S. Baric
- Department
of Microbiology and Immunology, University
of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
- Rapidly Emerging
Antiviral Drug Discovery Initiative, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
- Department
of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Kenneth H. Pearce
- Center
for Integrative Chemical Biology and Drug Discovery, Chemical Biology
and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- UNC Lineberger
Comprehensive Cancer Center, Chapel
Hill, North Carolina 27599, United States
| | - Fernando Q. Cunha
- Center for
Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, Sao Paulo, Brazil
| | - José C. Alves-Filho
- Center for
Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, Sao Paulo, Brazil
| | - Thiago M. Cunha
- Center for
Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, Sao Paulo, Brazil
| | - Sean Ekins
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
16
|
Shao L, Pelayo A, Shi R, Ma J, Liu H, Cai Y, Prochazkova M, Somerville RP, Panch SR, Shah NN, Stroncek DF, Jin P. Identification of genomic determinants contributing to cytokine release in immunotherapies and human diseases. J Transl Med 2022; 20:338. [PMID: 35902861 PMCID: PMC9331024 DOI: 10.1186/s12967-022-03531-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cytokine release syndrome (CRS) is a strong immune system response that can occur as a result of the reaction of a cellular immunotherapy with malignant cells. While the frequency and management of CRS in CAR T-cell therapy has been well documented, there is emerging interest in pre-emptive treatment to reduce CRS severity and improve overall outcomes. Accordingly, identification of genomic determinants that contribute to cytokine release may lead to the development of targeted therapies to prevent or abrogate the severity of CRS. METHODS Forty three clinical CD22 CAR T-cell products were collected for RNA extraction. 100 ng of mRNA was used for Nanostring assay analysis which is based on the nCounter platform. Several public datasets were used for validation purposes. RESULTS We found the expression of the PFKFB4 gene and glycolytic pathway activity were upregulated in CD22 CAR T-cells given to patients who developed CRS compared to those who did not experience CRS. Moreover, these results were further validated in cohorts with COVID-19, influenza infections and autoimmune diseases, and in tumor tissues. The findings were similar, except that glycolytic pathway activity was not increased in patients with influenza infections and systemic lupus erythematosus (SLE). CONCLUSION Our data strongly suggests that PFKFB4 acts as a driving factor in mediating cytokine release in vivo by regulating glycolytic activity. Our results suggest that it would beneficial to develop drugs targeting PFKFB4 and the glycolytic pathway for the treatment of CRS.
Collapse
Affiliation(s)
- Lipei Shao
- Department of Transfusion Medicine, Center for Cellular Engineering, NIH Clinical Center, Bethesda, MD, 20892, USA
| | - Alejandra Pelayo
- Department of Transfusion Medicine, Center for Cellular Engineering, NIH Clinical Center, Bethesda, MD, 20892, USA
| | - Rongye Shi
- Department of Transfusion Medicine, Center for Cellular Engineering, NIH Clinical Center, Bethesda, MD, 20892, USA
| | - Jinxia Ma
- Department of Transfusion Medicine, Center for Cellular Engineering, NIH Clinical Center, Bethesda, MD, 20892, USA
| | - Hui Liu
- Department of Transfusion Medicine, Center for Cellular Engineering, NIH Clinical Center, Bethesda, MD, 20892, USA
| | - Yihua Cai
- Department of Transfusion Medicine, Center for Cellular Engineering, NIH Clinical Center, Bethesda, MD, 20892, USA
| | - Michaela Prochazkova
- Department of Transfusion Medicine, Center for Cellular Engineering, NIH Clinical Center, Bethesda, MD, 20892, USA
| | - Robert P Somerville
- Department of Transfusion Medicine, Center for Cellular Engineering, NIH Clinical Center, Bethesda, MD, 20892, USA
| | - Sandhya R Panch
- Department of Transfusion Medicine, Center for Cellular Engineering, NIH Clinical Center, Bethesda, MD, 20892, USA
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research, NIH NCI, Bethesda, MD, 20892, USA
| | - David F Stroncek
- Department of Transfusion Medicine, Center for Cellular Engineering, NIH Clinical Center, Bethesda, MD, 20892, USA.
| | - Ping Jin
- Department of Transfusion Medicine, Center for Cellular Engineering, NIH Clinical Center, Bethesda, MD, 20892, USA.
| |
Collapse
|
17
|
Puhl AC, Gomes GF, Damasceno S, Godoy AS, Noske GD, Nakamura AM, Gawriljuk VO, Fernandes RS, Monakhova N, Riabova O, Lane TR, Makarov V, Veras FP, Batah SS, Fabro AT, Oliva G, Cunha FQ, Alves-Filho JC, Cunha TM, Ekins S. Pyronaridine Protects against SARS-CoV-2 Infection in Mouse. ACS Infect Dis 2022; 8:1147-1160. [PMID: 35609344 PMCID: PMC9159503 DOI: 10.1021/acsinfecdis.2c00091] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/23/2022]
Abstract
There are currently relatively few small-molecule antiviral drugs that are either approved or emergency-approved for use against severe acute respiratory coronavirus 2 (SARS-CoV-2). One of these is remdesivir, which was originally repurposed from its use against Ebola. We evaluated three molecules we had previously identified computationally with antiviral activity against Ebola and Marburg and identified pyronaridine, which inhibited the SARS-CoV-2 replication in A549-ACE2 cells. The in vivo efficacy of pyronaridine has now been assessed in a K18-hACE transgenic mouse model of COVID-19. Pyronaridine treatment demonstrated a statistically significant reduction of viral load in the lungs of SARS-CoV-2-infected mice, reducing lung pathology, which was also associated with significant reduction in the levels of pro-inflammatory cytokines/chemokine and cell infiltration. Pyronaridine inhibited the viral PLpro activity in vitro (IC50 of 1.8 μM) without any effect on Mpro, indicating a possible molecular mechanism involved in its ability to inhibit SARS-CoV-2 replication. We have also generated several pyronaridine analogs to assist in understanding the structure activity relationship for PLpro inhibition. Our results indicate that pyronaridine is a potential therapeutic candidate for COVID-19.
Collapse
Affiliation(s)
- Ana C. Puhl
- Collaborations Pharmaceuticals,
Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606,
United States
| | - Giovanni F. Gomes
- Center for Research in Inflammatory Diseases (CRID),
Ribeirao Preto Medical School, University of São Paulo,
Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, São Paulo,
Brazil
| | - Samara Damasceno
- Center for Research in Inflammatory Diseases (CRID),
Ribeirao Preto Medical School, University of São Paulo,
Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, São Paulo,
Brazil
| | - Andre S. Godoy
- Institute of Physics of Sao Carlos,
University of São Paulo, Av. Joao Dagnone, 1100 -
Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Gabriela D. Noske
- Institute of Physics of Sao Carlos,
University of São Paulo, Av. Joao Dagnone, 1100 -
Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Aline M. Nakamura
- Institute of Physics of Sao Carlos,
University of São Paulo, Av. Joao Dagnone, 1100 -
Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Victor O. Gawriljuk
- Institute of Physics of Sao Carlos,
University of São Paulo, Av. Joao Dagnone, 1100 -
Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Rafaela S. Fernandes
- Institute of Physics of Sao Carlos,
University of São Paulo, Av. Joao Dagnone, 1100 -
Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Natalia Monakhova
- Research Center of Biotechnology
RAS, Leninsky prospect, 33, Building 2, 119071 Moscow,
Russia
| | - Olga Riabova
- Research Center of Biotechnology
RAS, Leninsky prospect, 33, Building 2, 119071 Moscow,
Russia
| | - Thomas R. Lane
- Collaborations Pharmaceuticals,
Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606,
United States
| | - Vadim Makarov
- Research Center of Biotechnology
RAS, Leninsky prospect, 33, Building 2, 119071 Moscow,
Russia
| | - Flavio P. Veras
- Center for Research in Inflammatory Diseases (CRID),
Ribeirao Preto Medical School, University of São Paulo,
Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, São Paulo,
Brazil
| | - Sabrina S. Batah
- Department of Pathology and Legal Medicine,
Ribeirão Preto Medical School, University of São
Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, São
Paulo, Brazil
| | - Alexandre T. Fabro
- Department of Pathology and Legal Medicine,
Ribeirão Preto Medical School, University of São
Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, São
Paulo, Brazil
| | - Glaucius Oliva
- Institute of Physics of Sao Carlos,
University of São Paulo, Av. Joao Dagnone, 1100 -
Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Fernando Q. Cunha
- Center for Research in Inflammatory Diseases (CRID),
Ribeirao Preto Medical School, University of São Paulo,
Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, São Paulo,
Brazil
| | - José C. Alves-Filho
- Center for Research in Inflammatory Diseases (CRID),
Ribeirao Preto Medical School, University of São Paulo,
Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, São Paulo,
Brazil
| | - Thiago M. Cunha
- Center for Research in Inflammatory Diseases (CRID),
Ribeirao Preto Medical School, University of São Paulo,
Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, São Paulo,
Brazil
| | - Sean Ekins
- Collaborations Pharmaceuticals,
Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606,
United States
| |
Collapse
|
18
|
Rubio-Casillas A, Gupta RC, Redwa EM, Uversky VN, Badierah R. Early taurine administration as a means for halting the cytokine storm progression in COVID-19 patients. EXPLORATION OF MEDICINE 2022:234-248. [DOI: 10.37349/emed.2022.00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/09/2022] [Indexed: 01/04/2025] Open
Abstract
Around the world, more than 6.2 million individuals have died as a result of coronavirus disease 2019 (COVID-19). According to a recent survey conducted among immunologists, epidemiologists, and virologists, this disease is expected to become endemic. This implies that the disease could have a continuous presence and/or normal frequency in the population. Pharmacological interventions to prevent infection, as well as to treat the patients at an early phase of illness to avoid hospitalization are essential additions to the vaccines. Taurine is known to inhibit the generation of all inflammatory mediators linked to the cytokine storm. It can also protect against lung injury by suppressing increased oxidants production and promoting the resolution of the inflammatory process. Neutrophil lactoferrin degranulation stimulated by taurine may have antiviral effects against SARS-CoV-2, limiting viral replication. It is hypothesized that if taurine is administered early in the onset of COVID-19 disease, it may stop the cytokine storm from progressing, lowering morbidity and mortality.
Collapse
Affiliation(s)
- Alberto Rubio-Casillas
- 1Autlán Regional Hospital, Health Secretariat, Autlán, Jalisco 48900, Mexico 2Biology Laboratory, Autlán Regional High School, University of Guadalajara, Autlán, Jalisco 48900, Mexico
| | - Ramesh C. Gupta
- 3School of Agricultural Sciences and Rural Development, Nagaland University, Medziphema 797004, India
| | - Elrashdy M. Redwa
- 4Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia 5Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria 21934, Egypt
| | - Vladimir N. Uversky
- 6Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Raied Badierah
- 7Medical Laboratory, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
19
|
Gudowska-Sawczuk M, Mroczko B. The Role of Nuclear Factor Kappa B (NF-κB) in Development and Treatment of COVID-19: Review. Int J Mol Sci 2022; 23:ijms23095283. [PMID: 35563673 PMCID: PMC9101079 DOI: 10.3390/ijms23095283] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes Coronavirus Disease 19 (COVID-19), a disease that has affected more than 500 million people worldwide since the end of 2019. Due to its high complications and death rates, there is still a need to find the best therapy for SARS-CoV-2 infection. The dysregulation of the inflammatory response in COVID-19 plays a very important role in disease progression. It has been observed that abnormal activity of Nuclear Factor kappa B (NF-κB) is directly associated with, inter alia, increased synthesis of proinflammatory factors. Therefore, this review paper focuses on the functions of NF-κB in the development of SARS-CoV-2 infection and potential application of NF-κB inhibitors in COVID-19 immunotherapy. A comprehensive literature search was performed using the MEDLINE/PubMed database. In the current review, it is highlighted that NF-κB plays important functions in the modulation of an adaptive inflammatory response, including inducing the expression of proinflammatory genes. Increased activation of NF-κB in SARS-CoV-2 infection was observed. The association between NF-κB activation and the expression of SARS-CoV-2 structural and non-structural proteins were also reported. It was observed that modulation of NF-κB using, e.g., traditional Chinese medicine or glucocorticosteroids resulted in decreased synthesis of proinflammatory factors caused by SARS-CoV-2 infection. This review summarizes the role of NF-κB in COVID-19 and describes its potential immunotherapeutic target in treatment of SARS-CoV-2 infection. However, indisputably more studies involving patients with a severe course of COVID-19 are sorely needed.
Collapse
Affiliation(s)
- Monika Gudowska-Sawczuk
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland;
- Correspondence: ; Tel.: +48-85-831-8703
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland;
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
20
|
Niedźwiedzka-Rystwej P, Majchrzak A, Kurkowska S, Małkowska P, Sierawska O, Hrynkiewicz R, Parczewski M. Immune Signature of COVID-19: In-Depth Reasons and Consequences of the Cytokine Storm. Int J Mol Sci 2022; 23:4545. [PMID: 35562935 PMCID: PMC9105989 DOI: 10.3390/ijms23094545] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 02/06/2023] Open
Abstract
In the beginning of the third year of the fight against COVID-19, the virus remains at least still one step ahead in the pandemic "war". The key reasons are evolving lineages and mutations, resulting in an increase of transmissibility and ability to evade immune system. However, from the immunologic point of view, the cytokine storm (CS) remains a poorly understood and difficult to combat culprit of the extended number of in-hospital admissions and deaths. It is not fully clear whether the cytokine release is a harmful result of suppression of the immune system or a positive reaction necessary to clear the virus. To develop methods of appropriate treatment and therefore decrease the mortality of the so-called COVID-19-CS, we need to look deeply inside its pathogenesis, which is the purpose of this review.
Collapse
Affiliation(s)
| | - Adam Majchrzak
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, 71-455 Szczecin, Poland; (A.M.); (M.P.)
| | - Sara Kurkowska
- Department of Nuclear Medicine, Pomeranian Medical University, 71-252 Szczecin, Poland;
| | - Paulina Małkowska
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland; (P.M.); (O.S.); (R.H.)
- Doctoral School, University of Szczecin, 71-412 Szczecin, Poland
| | - Olga Sierawska
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland; (P.M.); (O.S.); (R.H.)
- Doctoral School, University of Szczecin, 71-412 Szczecin, Poland
| | - Rafał Hrynkiewicz
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland; (P.M.); (O.S.); (R.H.)
| | - Miłosz Parczewski
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, 71-455 Szczecin, Poland; (A.M.); (M.P.)
| |
Collapse
|
21
|
Burgasova OA, Dolinniy SV, Tetova VB, Ogarkova DA, Odnoralov MA, Bakalin VV, Smetanina SV, Antipyat NA, Taranova MV. Experience of tocilizumab in hospital patients with moderate COVID-19. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Severe form of COVID 19 has been linked to the phenomenon of dysregulated inflammation with excessive cytokine release and elevated interleukin 6 (IL6) levels. Suppressive agents enabling specific inhibition of cytokines, notably monoclonal antibodies to IL6 and its receptors, have been applied as a rescue therapy in COVID 19 despite the underexplored clinical scope for these biologic medications. This study aimed to evaluate the clinical utility of IL6 receptor antagonist tocilizumab in moderate symptomatic COVID 19 prone to aggravation. The retrospective cohort study enrolled two groups of hospitalized patients (a total of n = 72) diagnosed with moderate COVID-19. The main group received a single 400 mg dose of tocilizumab (TCZ) on top of standard therapy. The comparative analysis included statistical evaluation for a number of clinical and laboratory parameters at reference time points and disease outcomes with regard to treatment strategy. Overall, TCZ administration provided no advantages in terms of oxygen supplementation status, disease progression, or survival. Lethal cases constituted 19.2% (10 pts) and 5% (1 pt) in TCZ and comparison groups, respectively. The results indicate that administration of monoclonal antibody drugs in hospital patients with COVID-19 must follow differential schemes with regard to the disease severity and comorbidities, as well as proper commencement schedules.
Collapse
Affiliation(s)
- OA Burgasova
- Peoples’ Friendship University of Russia, Moscow, Russia
| | - SV Dolinniy
- Clinical Hospital for Infectious Diseases №1, Moscow, Russia
| | - VB Tetova
- Peoples’ Friendship University of Russia, Moscow, Russia
| | - DA Ogarkova
- Gamaleya National Research Center for Epidemiology and Microbiology, Moscow, Russia
| | - MA Odnoralov
- Peoples’ Friendship University of Russia, Moscow, Russia
| | - VV Bakalin
- Peoples’ Friendship University of Russia, Moscow, Russia
| | - SV Smetanina
- Clinical Hospital for Infectious Diseases №1, Moscow, Russia
| | - NA Antipyat
- Clinical Hospital for Infectious Diseases №1, Moscow, Russia
| | - MV Taranova
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
22
|
Elahi R, Karami P, Heidary AH, Esmaeilzadeh A. An updated overview of recent advances, challenges, and clinical considerations of IL-6 signaling blockade in severe coronavirus disease 2019 (COVID-19). Int Immunopharmacol 2022; 105:108536. [PMID: 35074571 PMCID: PMC8747952 DOI: 10.1016/j.intimp.2022.108536] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/01/2022] [Accepted: 01/07/2022] [Indexed: 02/07/2023]
Abstract
Since 2019, COVID-19 has become the most important health dilemma around the world. The dysregulated immune response which results in ARDS and cytokine storm has an outstanding role in the progression of pulmonary damage in COVID-19. IL-6, through induction of pro-inflammatory chemokines and cytokines, is the pioneer of the hyperinflammatory condition and cytokine storm in severe COVID-19. Therefore, IL-6 pathway blockade is considered an emerging approach with high efficacy to reduce lung damage in COVID-19. This article aims to review the pleiotropic roles of the IL-6 pathway in lung damage and ARDS in severe COVID-19, and the rationale for IL-6 signaling blockade at different levels, including IL-6 soluble and membrane receptor pathways, IL-6 downstream signaling (such as JAK-STAT) inhibition, and non-specific anti-inflammatory therapeutic approaches. Recent clinical data of each method, with specific concentration on tocilizumab, along with other new drugs, such as sarilumab and siltuximab, have been discussed. Challenges of IL-6 signaling inhibition, such as the risk of superinfection and hepatic injury, and possible solutions have also been explained. Moreover, to achieve the highest efficacy, ongoing clinical trials and special clinical considerations of using different IL-6 inhibitors have been discussed in detail. Special considerations, including the appropriate timing and dosage, monotherapy or combination therapy, and proper side effect managment must be noticed regarding the clinical administration of these drugs. Future studies are still necessary to improve the productivity and unknown aspects of IL-6 signaling blockade for personalized treatment of severe COVID-19.
Collapse
Affiliation(s)
- Reza Elahi
- Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parsa Karami
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran; Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
23
|
Fedorchenko Y, Zimba O. CYTOKINES AS POTENTIAL MARKERS OF COVID-19 SEVERITY AND OUTCOMES. CENTRAL ASIAN JOURNAL OF MEDICAL HYPOTHESES AND ETHICS 2022. [DOI: 10.47316/cajmhe.2022.3.1.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The continual propagation of SARS-CoV-2 has changed health care systems globally. Ranging degrees of clinical severity in COVID-19 patients have been noted in numerous literature sources. Cytokines play a crucial role in the development of key immunological processes in COVID-19. SARS-CoV-2 causes imbalance of the immune system and might culminate in cytokine storm and multiple organ involvement. The prevailing role of some special cytokines might serve as indicators of disease severity. Further stratification of patients in the context of specific cytokines can be beneficial for diagnosing disease stages. It can prevent critical states owing to timely diagnosis and targeted therapy. Targeting peculiar cytokines can markedly reduce complications. The aim of this article is to comprehensively overview the role of the main cytokines in COVID-19 pathogenesis and distinguish prognostic factors. Insights into specific cytokine involvement in COVID-19 pathogenesis may open new avenues for diagnosing hyperinflammatory COVID-19, predicting its outcomes and providing individualized cytokine-targeted therapeutic approaches.
Collapse
|
24
|
De Hert M, Mazereel V, Stroobants M, De Picker L, Van Assche K, Detraux J. COVID-19-Related Mortality Risk in People With Severe Mental Illness: A Systematic and Critical Review. Front Psychiatry 2022; 12:798554. [PMID: 35095612 PMCID: PMC8793909 DOI: 10.3389/fpsyt.2021.798554] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/03/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Increasing clinical evidence suggests that people with severe mental illness (SMI), including schizophrenia spectrum disorders, bipolar disorder (BD), and major depressive disorder (MDD), are at higher risk of dying from COVID-19. Several systematic reviews examining the association between psychiatric disorders and COVID-19-related mortality have recently been published. Although these reviews have been conducted thoroughly, certain methodological limitations may hinder the accuracy of their research findings. Methods: A systematic literature search, using the PubMed, Embase, Web of Science, and Scopus databases (from inception to July 23, 2021), was conducted for observational studies assessing the risk of death associated with COVID-19 infection in adult patients with pre-existing schizophrenia spectrum disorders, BD, or MDD. Methodological quality of the included studies was assessed using the Newcastle-Ottawa Scale (NOS). Results: Of 1,446 records screened, 13 articles investigating the rates of death in patients with pre-existing SMI were included in this systematic review. Quality assessment scores of the included studies ranged from moderate to high. Most results seem to indicate that patients with SMI, particularly patients with schizophrenia spectrum disorders, are at significantly higher risk of COVID-19-related mortality, as compared to patients without SMI. However, the extent of the variation in COVID-19-related mortality rates between studies including people with schizophrenia spectrum disorders was large because of a low level of precision of the estimated mortality outcome(s) in certain studies. Most studies on MDD and BD did not include specific information on the mood state or disease severity of patients. Due to a lack of data, it remains unknown to what extent patients with BD are at increased risk of COVID-19-related mortality. A variety of factors are likely to contribute to the increased mortality risk of COVID-19 in these patients. These include male sex, older age, somatic comorbidities (particularly cardiovascular diseases), as well as disease-specific characteristics. Conclusion: Methodological limitations hamper the accuracy of COVID-19-related mortality estimates for the main categories of SMIs. Nevertheless, evidence suggests that SMI is associated with excess COVID-19 mortality. Policy makers therefore must consider these vulnerable individuals as a high-risk group that should be given particular attention. This means that targeted interventions to maximize vaccination uptake among these patients are required to address the higher burden of COVID-19 infection in this already disadvantaged group.
Collapse
Affiliation(s)
- Marc De Hert
- Department of Neurosciences, Center for Clinical Psychiatry, University Psychiatric Center, KU Leuven, Kortenberg, Belgium
- Antwerp Health Law and Ethics Chair, University of Antwerp, Antwerp, Belgium
| | - Victor Mazereel
- Department of Neurosciences, Center for Clinical Psychiatry, University Psychiatric Center, KU Leuven, Kortenberg, Belgium
| | - Marc Stroobants
- Biomedical Library, University Psychiatric Center, KU Leuven, Kortenberg, Belgium
| | - Livia De Picker
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium
- University Psychiatric Hospital Campus Duffel, Duffel, Belgium
| | - Kristof Van Assche
- Antwerp Health Law and Ethics Chair, University of Antwerp, Antwerp, Belgium
- Research Group Personal Rights and Property Rights, Faculty of Law, University of Antwerp, Antwerp, Belgium
| | - Johan Detraux
- Department of Neurosciences, Public Health Psychiatry, University Psychiatric Center, KU Leuven, Kortenberg, Belgium
| |
Collapse
|
25
|
Puhl AC, Gomes GF, Damasceno S, Fritch EJ, Levi JA, Johnson NJ, Scholle F, Premkumar L, Hurst BL, LeeMontiel F, Veras FP, Batah SS, Fabro AT, Moorman NJ, Yount BL, Dickmander R, Baric R, Pearce KH, Cunha FQ, Alves-Filho JC, Cunha TM, Ekins S. Vandetanib Reduces Inflammatory Cytokines and Ameliorates COVID-19 in Infected Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.12.16.472155. [PMID: 34981062 PMCID: PMC8722599 DOI: 10.1101/2021.12.16.472155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The portfolio of SARS-CoV-2 small molecule drugs is currently limited to a handful that are either approved (remdesivir), emergency approved (dexamethasone, baricitinib) or in advanced clinical trials. We have tested 45 FDA-approved kinase inhibitors in vitro against murine hepatitis virus (MHV) as a model of SARS-CoV-2 replication and identified 12 showing inhibition in the delayed brain tumor (DBT) cell line. Vandetanib, which targets the vascular endothelial growth factor receptor (VEGFR), the epidermal growth factor receptor (EGFR), and the RET-tyrosine kinase showed the most promising results on inhibition versus toxic effect on SARS-CoV-2-infected Caco-2 and A549-hACE2 cells (IC50 0.79 μM) while also showing a reduction of > 3 log TCID50/mL for HCoV-229E. The in vivo efficacy of vandetanib was assessed in a mouse model of SARS-CoV-2 infection and statistically significantly reduced the levels of IL-6, IL-10, TNF-α, and mitigated inflammatory cell infiltrates in the lungs of infected animals but did not reduce viral load. Vandetanib rescued the decreased IFN-1β caused by SARS-CoV-2 infection in mice to levels similar to that in uninfected animals. Our results indicate that the FDA-approved vandetanib is a potential therapeutic candidate for COVID-19 positioned for follow up in clinical trials either alone or in combination with other drugs to address the cytokine storm associated with this viral infection.
Collapse
Affiliation(s)
- Ana C. Puhl
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| | - Giovanni F. Gomes
- Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto, 14049-900 ; Sao Paulo, Brazil
| | - Samara Damasceno
- Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto, 14049-900 ; Sao Paulo, Brazil
| | - Ethan J. Fritch
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| | - James A. Levi
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Nicole J. Johnson
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Frank Scholle
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| | - Brett L. Hurst
- Institute for Antiviral Research, Utah State University, Logan, UT, USA
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Felipe LeeMontiel
- PhenoVista Biosciences, 6195 Cornerstone Ct E. #114 San Diego CA 92121
| | - Flavio P. Veras
- Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto, 14049-900 ; Sao Paulo, Brazil
| | - Sabrina S. Batah
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Alexandre T. Fabro
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Nathaniel J. Moorman
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
- Rapidly Emerging Antiviral Drug Discovery Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Boyd L. Yount
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rebekah Dickmander
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
- Rapidly Emerging Antiviral Drug Discovery Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Ralph Baric
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
- Rapidly Emerging Antiviral Drug Discovery Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth H. Pearce
- Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina 27599, USA
| | - Fernando Q. Cunha
- Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto, 14049-900 ; Sao Paulo, Brazil
| | - José C. Alves-Filho
- Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto, 14049-900 ; Sao Paulo, Brazil
| | - Thiago M. Cunha
- Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto, 14049-900 ; Sao Paulo, Brazil
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| |
Collapse
|
26
|
Al-Kuraishy HM, Al-Gareeb AI, Mostafa-Hedeab G, Kasozi KI, Zirintunda G, Aslam A, Allahyani M, Welburn SC, Batiha GES. Effects of β-Blockers on the Sympathetic and Cytokines Storms in Covid-19. Front Immunol 2021; 12:749291. [PMID: 34867978 PMCID: PMC8637815 DOI: 10.3389/fimmu.2021.749291] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/15/2021] [Indexed: 12/24/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a causative virus in the development of coronavirus disease 2019 (Covid-19) pandemic. Respiratory manifestations of SARS-CoV-2 infection such as acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) leads to hypoxia, oxidative stress, and sympatho-activation and in severe cases leads to sympathetic storm (SS). On the other hand, an exaggerated immune response to the SARS-CoV-2 invasion may lead to uncontrolled release of pro-inflammatory cytokine development of cytokine storm (CS). In Covid-19, there are interactive interactions between CS and SS in the development of multi-organ failure (MOF). Interestingly, cutting the bridge between CS and SS by anti-inflammatory and anti-adrenergic agents may mitigate complications that are induced by SARS-CoV-2 infection in severely affected Covid-19 patients. The potential mechanisms of SS in Covid-19 are through different pathways such as hypoxia, which activate the central sympathetic center through carotid bodies chemosensory input and induced pro-inflammatory cytokines, which cross the blood-brain barrier and activation of the sympathetic center. β2-receptors signaling pathway play a crucial role in the production of pro-inflammatory cytokines, macrophage activation, and B-cells for the production of antibodies with inflammation exacerbation. β-blockers have anti-inflammatory effects through reduction release of pro-inflammatory cytokines with inhibition of NF-κB. In conclusion, β-blockers interrupt this interaction through inhibition of several mediators of CS and SS with prevention development of neural-cytokine loop in SARS-CoV-2 infection. Evidence from this study triggers an idea for future prospective studies to confirm the potential role of β-blockers in the management of Covid-19.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali Ismail Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department, Health Sciences Research Unit, Medical College, Jouf University, Sakaka, Saudi Arabia
| | - Keneth Iceland Kasozi
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom.,School of Medicine, Kabale Unviersity, Kabale, Uganda
| | - Gerald Zirintunda
- Department of Animal Production and Management, Faculty of Agriculture and Animal Sciences, Busitema University, Tororo, Uganda
| | - Akhmed Aslam
- Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mamdouh Allahyani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Susan Christina Welburn
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
27
|
Olajide OA, Iwuanyanwu VU, Adegbola OD, Al-Hindawi AA. SARS-CoV-2 Spike Glycoprotein S1 Induces Neuroinflammation in BV-2 Microglia. Mol Neurobiol 2021; 59:445-458. [PMID: 34709564 PMCID: PMC8551352 DOI: 10.1007/s12035-021-02593-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023]
Abstract
In addition to respiratory complications produced by SARS‐CoV‐2, accumulating evidence suggests that some neurological symptoms are associated with the disease caused by this coronavirus. In this study, we investigated the effects of the SARS‐CoV‐2 spike protein S1 stimulation on neuroinflammation in BV-2 microglia. Analyses of culture supernatants revealed an increase in the production of TNF-α, IL-6, IL-1β and iNOS/NO. S1 also increased protein levels of phospho-p65 and phospho-IκBα, as well as enhanced DNA binding and transcriptional activity of NF-κB. These effects of the protein were blocked in the presence of BAY11-7082 (1 µM). Exposure of S1 to BV-2 microglia also increased the protein levels of NLRP3 inflammasome and enhanced caspase-1 activity. Increased protein levels of p38 MAPK was observed in BV-2 microglia stimulated with the spike protein S1 (100 ng/ml), an action that was reduced in the presence of SKF 86,002 (1 µM). Results of immunofluorescence microscopy showed an increase in TLR4 protein expression in S1-stimulated BV-2 microglia. Furthermore, pharmacological inhibition with TAK 242 (1 µM) and transfection with TLR4 small interfering RNA resulted in significant reduction in TNF-α and IL-6 production in S1-stimulated BV-2 microglia. These results have provided the first evidence demonstrating S1-induced neuroinflammation in BV-2 microglia. We propose that induction of neuroinflammation by this protein in the microglia is mediated through activation of NF-κB and p38 MAPK, possibly as a result of TLR4 activation. These results contribute to our understanding of some of the mechanisms involved in CNS pathologies of SARS-CoV-2.
Collapse
Affiliation(s)
- Olumayokun A Olajide
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | - Victoria U Iwuanyanwu
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Oyinkansola D Adegbola
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Alaa A Al-Hindawi
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| |
Collapse
|
28
|
Olajide OA, Iwuanyanwu VU, Lepiarz-Raba I, Al-Hindawi AA, Aderogba MA, Sharp HL, Nash RJ. Garcinia kola and garcinoic acid suppress SARS-CoV-2 spike glycoprotein S1-induced hyper-inflammation in human PBMCs through inhibition of NF-κB activation. Phytother Res 2021; 35:6963-6973. [PMID: 34697842 PMCID: PMC8661957 DOI: 10.1002/ptr.7315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/14/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022]
Abstract
Symptoms and complications associated with severe SARS-CoV-2 infection such as acute respiratory distress syndrome (ARDS) and organ damage have been linked to SARS-CoV-2 spike protein S1-induced increased production of pro-inflammatory cytokines by immune cells. In this study, the effects of an extract of Garcinia kola seeds and garcinoic acid were investigated in SARS-CoV-2 spike protein S1-stimulated human PBMCs. Results of ELISA experiments revealed that Garcinia kola extract (6.25, 12.5, and 25 μg/ml) and garcinoic acid (1.25, 2.5, and 5 μM) significantly reduced SARS-CoV-2 spike protein S1-induced secretion of TNFα, IL-6, IL-1β, and IL-8 in PBMCs. In-cell western assays showed that pre-treatment with Garcinia kola extract and garcinoic acid reduced expressions of both phospho-p65 and phospho-IκBα proteins, as well as NF-κB DNA binding capacity and NF-κB-driven luciferase expression following stimulation of PBMCs with spike protein S1. Furthermore, pre-treatment of PBMCs with Garcinia kola extract prior to stimulation with SARS-CoV-2 spike protein S1 resulted in reduced damage to adjacent A549 lung epithelial cells. These results suggest that the seed of Garcinia kola and garcinoic acid are natural products which may possess pharmacological/therapeutic benefits in reducing cytokine storm in severe SARS-CoV-2 and other coronavirus infections.
Collapse
Affiliation(s)
- Olumayokun A Olajide
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Victoria U Iwuanyanwu
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Izabela Lepiarz-Raba
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Alaa A Al-Hindawi
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Mutalib A Aderogba
- Department of Chemistry, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Nigeria
| | | | | |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Given the role of inflammation in severe forms of COVID-19, glucocorticoids and disease-modifying antirheumatic drugs (DMARDs) have been assessed as potential COVID-19 therapies. RECENT FINDINGS Randomized controlled trials (RCTs) have shown that glucocorticoids reduce mortality in severe COVID-19. RCTs of DMARDs have shown mixed results varying on intervention and inclusion criteria. DMARDs, including colchicine or biologic agents, may improve COVID-19 outcomes in specific patient populations. SUMMARY Glucocorticoids are an effective treatment for the management of severe COVID-19. Further studies are needed to better define the patient populations who could benefit from DMARD use, as well as provide guidance regarding the timing of these interventions.
Collapse
Affiliation(s)
- Sebastian E. Sattui
- Division of Rheumatology, Department of Medicine, Hospital for Special Surgery
| | - Mary K. Crow
- Division of Rheumatology, Department of Medicine, Hospital for Special Surgery
| | - Iris Navarro-Millán
- Division of Rheumatology, Department of Medicine, Hospital for Special Surgery
- Division of General Internal Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
30
|
Mirbeyk M, Saghazadeh A, Rezaei N. A systematic review of pregnant women with COVID-19 and their neonates. Arch Gynecol Obstet 2021; 304:5-38. [PMID: 33797605 PMCID: PMC8017514 DOI: 10.1007/s00404-021-06049-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 03/27/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND In December 2019, a novel coronavirus disease (COVID-19) emerged in Wuhan, China, with an incredible contagion rate. However, the vertical transmission of COVID-19 is uncertain. OBJECTIVES This is a systematic review of published studies concerning pregnant women with confirmed COVID-19 and their neonates. SEARCH STRATEGY We carried out a systematic search in multiple databases, including PubMed, Web of Science, Google Scholar, Scopus, and WHO COVID-19 database using the following keywords: (Coronavirus) OR (novel coronavirus) OR (COVID-19) OR (COVID19) OR (COVID 19) OR (SARS-CoV2) OR (2019-nCoV)) and ((pregnancy) OR (pregnant) OR (vertical transmission) OR (neonate) OR (newborn) OR (placenta) OR (fetus) OR (Fetal)). The search took place in April 2020. SELECTION CRITERIA Original articles published in English were eligible if they included pregnant patients infected with COVID-19 and their newborns. DATA COLLECTION AND ANALYSES The outcomes of interest consisted of clinical manifestations of COVID-19 in pregnant patients with COVID-19 and also the effect of COVID-19 on neonatal and pregnancy outcomes. MAIN RESULTS 37 articles involving 364 pregnant women with COVID-19 and 302 neonates were included. The vast majority of pregnant patients were in their third trimester of pregnancy, and only 45 cases were in the first or second trimester (12.4%). Most mothers described mild to moderate manifestations of COVID-19. Of 364 pregnant women, 25 were asymptomatic at the time of admission. The most common symptoms were fever (62.4%) and cough (45.3%). Two maternal deaths occurred. Some pregnant patients (12.1%) had a negative SARS-CoV-2 test but displayed clinical manifestations and abnormalities in computed tomography (CT) scan related to COVID-19. Twenty-two (6.0%) pregnant patients developed severe pneumonia. Two maternal deaths occurred from severe pneumonia and multiple organ dysfunction. Studies included a total of 302 neonates from mothers with COVID-19. Of the studies that provided data on the timing of birth, there were 65 (23.6%) preterm neonates. One baby was born dead from a mother who also died from COVID-19. Of the babies born alive from mothers with COVID-19, five newborns faced critical conditions, and two later died. A total of 219 neonates underwent nasopharyngeal specimen collection for SARS-CoV-2, of which 11 tested positive (5%). Seventeen studies examined samples of the placenta, breast milk, umbilical cord, and amniotic fluid, and all tested negative except one amniotic fluid sample. CONCLUSIONS A systematic review of published studies confirm that the course of COVID-19 in pregnant women resembles that of other populations. However, there is not sufficient evidence to establish an idea that COVID-19 would not complicate pregnancy.
Collapse
Affiliation(s)
- Mona Mirbeyk
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amene Saghazadeh
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, 14194, Tehran, Iran.
| |
Collapse
|
31
|
Di Pierro F, Iqtadar S, Khan A, Ullah Mumtaz S, Masud Chaudhry M, Bertuccioli A, Derosa G, Maffioli P, Togni S, Riva A, Allegrini P, Khan S. Potential Clinical Benefits of Quercetin in the Early Stage of COVID-19: Results of a Second, Pilot, Randomized, Controlled and Open-Label Clinical Trial. Int J Gen Med 2021; 14:2807-2816. [PMID: 34194240 PMCID: PMC8238537 DOI: 10.2147/ijgm.s318949] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Background The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing global pandemic known as COVID-19. Based on the potential antiviral role of quercetin, and on its described anti-blood clotting, anti-inflammatory and antioxidant properties, we hypothesize that subjects with mild COVID-19 treated with Quercetin Phytosome® (QP), a novel bioavailable form of quercetin, may have a shorter time to virus clearance, a milder symptomatology, and higher probabilities of a benign earlier resolution of the disease. Methods In our 2-week, randomized, open-label, and controlled clinical study, we have enrolled 42 COVID-19 outpatients. Twenty-one have been treated with the standard of care (SC), and 21 with QP as add-on supplementation to the SC. Our main aims were to check virus clearance and symptoms. Results The interim results reveal that after 1 week of treatment, 16 patients of the QP group were tested negative for SARS-CoV-2 and 12 patients had all their symptoms diminished; in the SC group, 2 patients were tested SARS-CoV-2 negative and 4 patients had their symptoms partially improved. By 2 weeks, the remaining 5 patients of the QP group tested negative for SARS-CoV-2, whereas in the SC group out of 19 remaining patients, 17 tested negatives by week 2, one tested negative by week 3 and one patient, still positive, expired by day 20. Concerning blood parameters, the add on therapy with QP, reduced LDH (−35.5%), Ferritin (−40%), CRP (−54.8%) and D-dimer (−11.9%). Conclusion QP statistically shortens the timing of molecular test conversion from positive to negative, reducing at the same time symptoms severity and negative predictors of COVID-19.
Collapse
Affiliation(s)
- Francesco Di Pierro
- Scientific & Research Department, Velleja Research, Milan, Italy.,Digestive Endoscopy, Fondazione Poliambulanza, Brescia, Italy
| | - Somia Iqtadar
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | - Amjad Khan
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.,University of Health Sciences, Lahore, Pakistan
| | - Sami Ullah Mumtaz
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | | | | | - Giuseppe Derosa
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy.,Laboratory of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Pamela Maffioli
- Laboratory of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | | | | | - Saeed Khan
- Department of Molecular Pathology, Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
32
|
Pourriyahi H, Saghazadeh A, Rezaei N. Altered immunoemotional regulatory system in COVID-19: From the origins to opportunities. J Neuroimmunol 2021; 356:577578. [PMID: 33933818 PMCID: PMC8050399 DOI: 10.1016/j.jneuroim.2021.577578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/19/2021] [Accepted: 04/13/2021] [Indexed: 10/26/2022]
Abstract
The emergence of the novel coronavirus (SARS-CoV-2) and the worldwide spread of the coronavirus disease (COVID-19) have led to social regulations that caused substantial changes in manners of daily life. The subsequent loneliness and concerns of the pandemic during social distancing, quarantine, and lockdown are psychosocial stressors that negatively affect the immune system. These effects occur through mechanisms controlled by the sympathetic nervous system (SNS) and the hypothalamic-pituitary-adrenocortical (HPA) axis that alter immune regulation, namely the conserved transcriptional response to adversity (CTRA), which promotes inflammation and diminishes antiviral responses, leading to inadequate protection against viral disease. Unhealthy eating habits, physical inactivity, sleep disturbances, and mental health consequences of COVID-19 add on to the pathological effects of loneliness, making immunity against this ferocious virus an even tougher fight. Therefore, social isolation, with its unintended consequences, has inherently paradoxical effects on immunity in relation to viral disease. Though this paradox can present a challenge, its acknowledgment can serve as an opportunity to address the associated issues and find ways to mitigate the adverse effects. In this review, we aim to explore, in detail, the pathological effects of the new social norms on immunity and present suggested methods to improve our physical, psychological, and healthcare abilities to fight viral infection in the context of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Homa Pourriyahi
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amene Saghazadeh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; MetaCognition Interest Group (MCIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
33
|
Induction of Exaggerated Cytokine Production in Human Peripheral Blood Mononuclear Cells by a Recombinant SARS-CoV-2 Spike Glycoprotein S1 and Its Inhibition by Dexamethasone. Inflammation 2021; 44:1865-1877. [PMID: 33860869 PMCID: PMC8050229 DOI: 10.1007/s10753-021-01464-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/30/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023]
Abstract
An understanding of the pathological inflammatory mechanisms involved in SARS-CoV-2 virus infection is necessary in order to discover new molecular pharmacological targets for SARS-CoV-2 cytokine storm. In this study, the effects of a recombinant SARS-CoV-2 spike glycoprotein S1 was investigated in human peripheral blood mononuclear cells (PBMCs). Stimulation of PBMCs with spike glycoprotein S1 (100 ng/mL) resulted in significant elevation in the production of TNFα, IL-6, IL-1β and IL-8. However, pre-treatment with dexamethasone (100 nM) caused significant reduction in the release of these cytokines. Further experiments revealed that S1 stimulation of PBMCs increased phosphorylation of NF-κB p65 and IκBα, and IκBα degradation. DNA binding of NF-κB p65 was also significantly increased following stimulation with spike glycoprotein S1. Treatment of PBMCs with dexamethasone (100 nM) or BAY11-7082 (1 μM) resulted in inhibition of spike glycoprotein S1-induced NF-κB activation. Activation of p38 MAPK by S1 was blocked in the presence of dexamethasone and SKF 86002. CRID3, but not dexamethasone pre-treatment, produced significant inhibition of S1-induced activation of NLRP3/caspase-1. Further experiments revealed that S1-induced increase in the production of TNFα, IL-6, IL-1β and IL-8 was reduced in the presence of BAY11-7082 and SKF 86002, while CRID3 pre-treatment resulted in the reduction of IL-1β production. These results suggest that SARS-CoV-2 spike glycoprotein S1 stimulated PBMCs to release pro-inflammatory cytokines through mechanisms involving activation of NF-κB, p38 MAPK and NLRP3 inflammasome. It is proposed that the clinical benefits of dexamethasone in COVID-19 are possibly due to its anti-inflammatory activity in reducing SARS-CoV-2 cytokine storm.
Collapse
|
34
|
Saghazadeh A, Rezaei N. Biosensing surfaces and therapeutic biomaterials for the central nervous system in COVID-19. EMERGENT MATERIALS 2021; 4:293-312. [PMID: 33718777 PMCID: PMC7944718 DOI: 10.1007/s42247-021-00192-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/17/2021] [Indexed: 05/02/2023]
Abstract
COVID-19 can affect the central nervous system (CNS) indirectly by inflammatory mechanisms and even directly enter the CNS. Thereby, COVID-19 can evoke a range of neurosensory conditions belonging to infectious, inflammatory, demyelinating, and degenerative classes. A broad range of non-specific options, including anti-viral agents and anti-inflammatory protocols, is available with varying therapeutic. Due to the high mortality and morbidity in COVID-19-related brain damage, some changes to these general protocols, however, are necessary for ensuring the delivery of therapeutic(s) to the specific components of the CNS to meet their specific requirements. The biomaterials approach permits crossing the blood-brain barrier (BBB) and drug delivery in a more accurate and sustained manner. Beyond the BBB, drugs can protect neural cells, stimulate endogenous stem cells, and induce plasticity more effectively. Biomaterials for cell delivery exist, providing an efficient tool to improve cell retention, survival, differentiation, and integration. This paper will review the potentials of the biomaterials approach for the damaged CNS in COVID-19. It mainly includes biomaterials for promoting synaptic plasticity and modulation of inflammation in the post-stroke brain, extracellular vesicles, exosomes, and conductive biomaterials to facilitate neural regeneration, and artificial nerve conduits for treatment of neuropathies. Also, biosensing surfaces applicable to the first sensory interface between the host and the virus that encourage the generation of accelerated anti-viral immunity theoretically offer hope in solving COVID-19.
Collapse
Affiliation(s)
- Amene Saghazadeh
- Research Center for Immunodeficiencies, Children’s Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194 Iran
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children’s Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194 Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
35
|
Maslennikov R, Ivashkin V, Vasilieva E, Chipurik M, Semikova P, Semenets V, Russkova T, Levshina A, Grigoriadis D, Magomedov S, Efremova I, Dzhakhaya N. Interleukin 17 antagonist netakimab is effective and safe in the new coronavirus infection (COVID-19). Eur Cytokine Netw 2021; 32:8-14. [PMID: 34346869 PMCID: PMC8491178 DOI: 10.1684/ecn.2021.0463] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytokine release syndrome is a serious complication of the new coronavirus infection (COVID-19). The aim of the study was to assess effectiveness and safety of the IL-17 antagonist nekatimab for its treatment. The retrospective study included COVID-19 patients with C-reactive protein levels >60 mg/L. Patients received either netakimab (group NET), IL-6 antagonist tocilizumab (group TOC) or no anti-cytokine treatment (group CON). Forty-four patients were enrolled in the NET group, 27 patients in the TOC group, and 47 patients in the CON group. Mortality was lower in the NET group than in TOC and CON groups (2.3% vs. 14.8% and 31.9%; p = 0.018 and p < 0.001). NET group patients required intensive care unit admission (6.8% vs. 25.9% and 46.3%; p = 0.025 and p < 0.001) and mechanical ventilation (4.6% vs. 22.2% and 31.9%; p = 0.022 and p = 0.002) less frequently than patients of the TOC and CON groups. After 7-10 days of anti-cytokine drug administration, a reduction in lung lesion volume (p = 0.016) and an increase in the proportion of patients who did not need oxygen support (p = 0.005) or stayed in prone position (p = 0.044) was observed in the NET group only group; C-reactive protein levels were the same in the TOC and NET groups (p = 0.136) and lower in the CON group (p < 0.001 and p = 0.005). IL-6 levels decreased in the NET group (p = 0.005) and did not change in the TOC group (p = 0.953). There was no difference in the incidence of side effects between groups. The IL-17 antagonist netakimab is effective and safe in the treatment of cytokine release syndrome in COVID-19.
Collapse
Affiliation(s)
- Roman Maslennikov
- grid.448878.f0000 0001 2288 8774Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Pogodinskaya str., 1, bld. 1, Moscow, 119435 Russian Federation
| | - Vladimir Ivashkin
- grid.448878.f0000 0001 2288 8774Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Pogodinskaya str., 1, bld. 1, Moscow, 119435 Russian Federation
| | - Ekaterina Vasilieva
- grid.448878.f0000 0001 2288 8774Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Pogodinskaya str., 1, bld. 1, Moscow, 119435 Russian Federation
| | - Maxim Chipurik
- grid.448878.f0000 0001 2288 8774Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Pogodinskaya str., 1, bld. 1, Moscow, 119435 Russian Federation
| | - Polina Semikova
- grid.448878.f0000 0001 2288 8774Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Pogodinskaya str., 1, bld. 1, Moscow, 119435 Russian Federation
| | - Victoria Semenets
- grid.448878.f0000 0001 2288 8774Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Pogodinskaya str., 1, bld. 1, Moscow, 119435 Russian Federation
| | - Tatyana Russkova
- grid.448878.f0000 0001 2288 8774Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Pogodinskaya str., 1, bld. 1, Moscow, 119435 Russian Federation
| | - Anna Levshina
- grid.448878.f0000 0001 2288 8774Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Pogodinskaya str., 1, bld. 1, Moscow, 119435 Russian Federation
| | - Diana Grigoriadis
- grid.448878.f0000 0001 2288 8774Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Pogodinskaya str., 1, bld. 1, Moscow, 119435 Russian Federation
| | - Shamil Magomedov
- grid.448878.f0000 0001 2288 8774Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Pogodinskaya str., 1, bld. 1, Moscow, 119435 Russian Federation
| | - Irina Efremova
- grid.448878.f0000 0001 2288 8774Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Pogodinskaya str., 1, bld. 1, Moscow, 119435 Russian Federation
| | - Natiya Dzhakhaya
- grid.448878.f0000 0001 2288 8774Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Pogodinskaya str., 1, bld. 1, Moscow, 119435 Russian Federation
| |
Collapse
|