1
|
Ertik O, Tunali S, Acar ET, Bal-Demirci T, Ülküseven B, Yanardag R. Antioxidant Activity and Protective Effects of an Oxovanadium (IV) Complex on Heart and Aorta Injury of STZ-Diabetic Rats. Biol Trace Elem Res 2024; 202:2085-2099. [PMID: 37603267 DOI: 10.1007/s12011-023-03802-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023]
Abstract
Diabetic people have a much higher rate of cardiovascular disease than healthy people. Therefore, heart and aortic tissues are target tissues in diabetic research. In recent years, the synthesis of new vanadium complexes and investigation of their antidiabetic/lowering effect on the blood glucose levels and antioxidant properties are increasing day by day. Our study aimed to examine the effects of synthesized oxovanadium (IV) complex of 2-[(2,4-dihydroxybenzylidene]hydrazine-1-[(N-(2-hydroxybenzylidene)](S-methyl)carbothioamide [VOL] on diabetic heart and aortic tissues, as well as in vitro lactate dehydrogenase (LDH) and myeloperoxidase (MPO) inhibition, antioxidant properties, and reducing power. Electrochemical characterization of the VOL was carried out by using Cyclic Voltammetry (CV) and Linear Sweep Voltammetry (LSV) methods. In addition, in silico drug-likeness and ADME prediction were also investigated. For in vivo study, male Swiss albino rats were randomly selected and separated into four groups which are control, control + VOL, diabetic and diabetic + VOL. After the experimental procedure, biochemical parameters were investigated in homogenates of heart and aorta tissues. The results showed that VOL has a protective effect on heart and aortic tissue against oxidative stress. According to electrochemical experiments, one reversible oxidative couple and one irreversible reductive response were observed for the complex. In addition, in vitro LDH and MPO inhibition of VOL was examined. It was found that VOL had a protective effect on heart and aortic tissues of diabetic rats, and caused the inhibition of LDH and MPO in in vitro studies. On the other hand, evaluating the synthesized VOL according to in silico drug-likeness and absorption, distribution, metabolism, and excretion (ADME) prediction, it was found that VOL has drug-like properties and exhibited high gastrointestinal absorption. The VOL had a therapeutic impact on the heart and aortic tissues of diabetic rats, according to the findings.
Collapse
Affiliation(s)
- Onur Ertik
- Division of Biochemistry, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320, Avcilar, Istanbul, Turkey.
| | - Sevim Tunali
- Division of Biochemistry, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320, Avcilar, Istanbul, Turkey
| | - Elif Turker Acar
- Division of Physical Chemistry, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320, Avcilar, Istanbul, Turkey
| | - Tulay Bal-Demirci
- Division of Inorganic Chemistry, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320, Avcilar, Istanbul, Turkey
| | - Bahri Ülküseven
- Division of Inorganic Chemistry, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320, Avcilar, Istanbul, Turkey
| | - Refiye Yanardag
- Division of Biochemistry, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320, Avcilar, Istanbul, Turkey
| |
Collapse
|
2
|
Ghalichi F, Ostadrahimi A, Saghafi-Asl M. Vanadium and biomarkers of inflammation and oxidative stress in diabetes: A systematic review of animal studies. Health Promot Perspect 2022; 12:122-130. [PMID: 36276410 PMCID: PMC9508397 DOI: 10.34172/hpp.2022.16] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/24/2022] [Indexed: 12/09/2022] Open
Abstract
Background: Oxidative stress has a significant role in the commencement and development of hyperglycemia. Vanadium, as a transitional metal with redox properties, enters the redox process, produces free radicals, and distracts the pro-antioxidant balance. The present animal systematic review aimed to assess the effect of vanadium supplementation on inflammation and oxidative stress biomarkers in diabetes-induced animals. Methods: A systematic search was conducted using the PubMed, Scopus, and web of science databases from 1990 to 2021, according to the inclusion and exclusion criteria. The search strategy was based on the guidelines for systematic review of animal experiments and Preferred Reporting Items for Systematic Reviews (PRISMA). Criteria for eligibility were animal-based studies, evaluating the therapeutic effects of vanadium on inflammatory and oxidative stress biomarkers in diabetes. The Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) tool was used for assessing the methodological quality of included studies. Results: In the present study, 341 articles were evaluated out of which 42 studies were eligible for inclusion. The majority of the studies confirmed the advantageous properties of vanadium on inflammatory and oxidative stress biomarkers. A minor risk of bias was reported, based on the SYRCLE's tool. Conclusion: According to the findings, well-designed clinical trials are warranted to assess the long-lasting effects of various vanadium compounds on inflammatory and oxidative stress biomarkers.
Collapse
Affiliation(s)
- Faezeh Ghalichi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ostadrahimi
- Department of Clinical Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Saghafi-Asl
- Nutrition Research Center, Drug Applied Research Center, Department of Clinical Nutrition, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
ORHAN N, TUNALI S, YANARDAĞ R. Ameliorative Effects of Vanadyl Sulfate on Some Biochemical Parameters of Experimental Diabetic Rat Kidneys. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1071151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
4
|
Effects of co-administration of arsenic trioxide and Schiff base oxovanadium complex on the induction of apoptosis in acute promyelocytic leukemia cells. Biometals 2021; 34:1067-1080. [PMID: 34255251 DOI: 10.1007/s10534-021-00330-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Acute promyelocytic leukaemia (APL) is commonly treated with arsenic trioxide (As2O3) that has many side effects. Given the increasing trend of studies on beneficial therapeutic properties of synthetic compounds containing vanadium, the present study sought to use Schiff base oxovanadium complex to reduce the needed concentration of arsenic trioxide. The HL-60 cell line, which is a model of APL, was selected and the effects of arsenic trioxide and Schiff base oxovanadium complex were individually and simultaneously evaluated on the cell viability by the MTT assay. Flow cytometry and Real-time RT-PCR were also performed to investigate the rate of apoptosis and the expression of P53 and P21 genes, respectively. The IC50 of arsenic trioxide and Schiff base oxovanadium complex on Hl-60 cells was 8.37 ± 0.36 µM and 34.12 ± 1.52 µg/ml, respectively. At the simultaneous administration of both compounds, the maximum decrease in the cell viability was seen in co-administration of 40 µg/ml of Schiff base oxovanadium complex and 0.001 µM of arsenic trioxide. Real-time RT-PCR indicated that the co-administration of Schiff base oxovanadium complex 40 µg/ml and arsenic trioxide 0.001 µM could increase the expression of P53 and P21 genes by 3.76 ± 0.19 and 6.57 ± 1.29 fold change, respectively to the control sample. The flow cytometry studies also indicated that this co-administration could induce apoptosis up to 67% ± 0.9% significantly higher than the control sample. The use of Schiff base oxovanadium complex could significantly reduce the required dose of arsenic trioxide to induce apoptosis in HL-60 cells.
Collapse
|
5
|
Turkyilmaz IB, Bayrak BB, Sacan O, Mutlu O, Akev N, Yanardag R. Zinc Supplementation Restores Altered Biochemical Parameters in Stomach Tissue of STZ Diabetic Rats. Biol Trace Elem Res 2021; 199:2259-2265. [PMID: 32820429 DOI: 10.1007/s12011-020-02352-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
The stomach is among the organs grossly affected organ by diabetic complications. The present study was aimed at investigating the protective role of zinc on stomach of streptozotocin (STZ)-induced diabetes mellitus. Female Swiss albino rats were divided in four experimental groups: Group I, control; group II, control + zinc sulfate; group III, STZ-induced diabetic animals; and group IV, STZ-diabetic + zinc sulfate. Diabetes was induced by intraperitoneal injection of STZ, at a dose of 65 mg/kg body weight. Zinc sulfate (100 mg/kg body weight) was given daily by gavage for 60 days to groups II and IV. At the end of the experiment, the rats were sacrificed, and the tissues were taken. In the diabetic group, hexose, hexosamine, fucose, and sialic acid levels, as well as tissue factor, adenosine deaminase, carbonic anhydrase, xanthine oxidase, lactate dehydrogenase, prolidase activities, advanced oxidized protein products, homocysteine, and TNF-α levels were increased in the stomach tissue homogenates. Whereas, catalase, superoxide dismutase, glutathione-S-transferase, glutathione peroxidase, glutathione reductase, paraoxonase, and aryl esterase activities were decreased in the diabetic group. The administration of zinc reversed all the deformities. These findings suggest that zinc has protective role in ameliorating several mechanisms of STZ-induced diabetic stomach injury.
Collapse
Affiliation(s)
- Ismet Burcu Turkyilmaz
- Department of Chemistry, Faculty of Engineering, Biochemistry Division, Istanbul University-Cerrahpasa, Avcilar, 34320, Istanbul, Turkey.
| | - Bertan Boran Bayrak
- Department of Chemistry, Faculty of Engineering, Biochemistry Division, Istanbul University-Cerrahpasa, Avcilar, 34320, Istanbul, Turkey
| | - Ozlem Sacan
- Department of Chemistry, Faculty of Engineering, Biochemistry Division, Istanbul University-Cerrahpasa, Avcilar, 34320, Istanbul, Turkey
| | - Ozgur Mutlu
- Department of Chemistry, Faculty of Engineering, Biochemistry Division, Istanbul University-Cerrahpasa, Avcilar, 34320, Istanbul, Turkey
| | - Nuriye Akev
- Department of Biochemistry, Faculty of Pharmacy, Istanbul University, 34116, Istanbul, Turkey
| | - Refiye Yanardag
- Department of Chemistry, Faculty of Engineering, Biochemistry Division, Istanbul University-Cerrahpasa, Avcilar, 34320, Istanbul, Turkey
| |
Collapse
|
6
|
Abstract
The vanadium(V) complexes have been investigated as potential anticancer agents which makes it essential to evaluate their toxicity for safe use in the clinic. The large-scale synthesis and the acute oral toxicity in mice of the oxidovanadium(V) Schiff base catecholate complex, abbreviated as [VO(HSHED)dtb] containing a redox-active ligand with tridentate Schiff base (HSHED = N-(salicylideneaminato)-N’-(2-hydroxyethyl)-1,2-ethylenediamine) and dtb = 3,5-di-(t-butyl)catechol ligands were carried out. The body weight, food consumption, water intake as well biomarkers of liver and kidney toxicity of the [VO(HSHED)dtb] were compared to the precursors, sodium orthovanadate, and free ligand. The 10-fold scale-up synthesis of the oxidovanadium(V) complex resulting in the preparation of material in improved yield leading to 2–3 g (79%) material suitable for investigating the toxicity of vanadium complex. No evidence of toxicity was observed in animals when acutely exposed to a single dose of 300 mg/kg for 14 days. The toxicological results obtained with biochemical and hematological analyses did not show significant changes in kidney and liver parameters when compared with reference values. The low oral acute toxicity of the [VO(HSHED)dtb] is attributed to redox chemistry taking place under biological conditions combined with the hydrolytic stability of the oxidovanadium(V) complex. These results document the design of oxidovanadium(V) complexes that have low toxicity but still are antioxidant and anticancer agents.
Collapse
|
7
|
Ścibior A, Kurus J. Vanadium and Oxidative Stress Markers - In Vivo Model: A Review. Curr Med Chem 2019; 26:5456-5500. [PMID: 30621554 DOI: 10.2174/0929867326666190108112255] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/23/2018] [Accepted: 12/26/2018] [Indexed: 12/26/2022]
Abstract
This review article is an attempt to summarize the current state of knowledge of the impact of Vanadium (V) on Oxidative Stress (OS) markers in vivo. It shows the results of our studies and studies conducted by other researchers on the influence of different V compounds on the level of selected Reactive Oxygen Species (ROS)/Free Radicals (FRs), markers of Lipid peroxidation (LPO), as well as enzymatic and non-enzymatic antioxidants. It also presents the impact of ROS/peroxides on the activity of antioxidant enzymes modulated by V and illustrates the mechanisms of the inactivation thereof caused by this metal and reactive oxygen metabolites. It also focuses on the mechanisms of interaction of V with some nonenzymatic compounds of the antioxidative system. Furthermore, we review the routes of generation of oxygen-derived FRs and non-radical oxygen derivatives (in which V is involved) as well as the consequences of FR-mediated LPO (induced by this metal) together with the negative/ positive effects of LPO products. A brief description of the localization and function of some antioxidant enzymes and low-molecular-weight antioxidants, which are able to form complexes with V and play a crucial role in the metabolism of this element, is presented as well. The report also shows the OS historical background and OS markers (determined in animals under V treatment) on a timeline, collects data on interactions of V with one of the elements with antioxidant potential, and highlights the necessity and desirability of conducting studies of mutual interactions between V and antioxidant elements.
Collapse
Affiliation(s)
- Agnieszka Ścibior
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Joanna Kurus
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| |
Collapse
|
8
|
Tunali S, Catal T, Bolkent S, Yanardag R. The effects of vitamins and selenium mixture against brain tissue induced byd‐galactosamine. J Biochem Mol Toxicol 2019; 33:e22347. [DOI: 10.1002/jbt.22347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/18/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Sevim Tunali
- Department of Chemistry, Faculty of EngineeringIstanbul University‐Cerrahpasa Istanbul Turkey
| | - Tunc Catal
- Department of Molecular Biology and GeneticsUskudar University Istanbul Turkey
- Faculty of Engineering and Natural ScienceIstanbul Protein Research‐Application and Innovation Center (PROMER), Uskudar University Istanbul Turkey
| | - Sehnaz Bolkent
- Department of Biology, Faculty of ScienceIstanbul University Istanbul Turkey
| | - Refiye Yanardag
- Department of Chemistry, Faculty of EngineeringIstanbul University‐Cerrahpasa Istanbul Turkey
| |
Collapse
|
9
|
Abstract
Ultra-trace elements or occasionally beneficial elements (OBE) are the new categories of minerals including vanadium (V). The importance of V is attributed due to its multifaceted biological roles, i.e., glucose and lipid metabolism as an insulin-mimetic, antilipemic and a potent stress alleviating agent in diabetes when vanadium is administered at lower doses. It competes with iron for transferrin (binding site for transportation) and with lactoferrin as it is secreted in milk also. The intracellular enzyme protein tyrosine phosphatase, causing the dephosphorylation at beta subunit of the insulin receptor, is inhibited by vanadium, thus facilitating the uptake of glucose inside the cell but only in the presence of insulin. Vanadium could be useful as a potential immune-stimulating agent and also as an antiinflammatory therapeutic metallodrug targeting various diseases. Physiological state and dose of vanadium compounds hold importance in causing toxicity also. Research has been carried out mostly on laboratory animals but evidence for vanadium importance as a therapeutic agent are available in humans and large animals also. This review examines the potential biochemical and molecular role, possible kinetics and distribution, essentiality, immunity, and toxicity-related study of vanadium in a biological system.
Collapse
Affiliation(s)
| | - Veena Mani
- National Dairy Research Institute, Karnal, Haryana, India
| | | |
Collapse
|
10
|
Lee HJ, Peredo HA, Cantú SM, Donoso AS, Puyó AM, Choi MR. Effects of sodium tungstate and vanadyl sulphate on the liberation of prostanoids of the mesenteric vascular bed in diabetic rats. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2018; 30:249-257. [PMID: 29887329 DOI: 10.1016/j.arteri.2018.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/20/2018] [Accepted: 04/05/2018] [Indexed: 01/06/2023]
Abstract
The loss of the modulator role of the endothelium could be involved in the pathogenesis of diabetic vascular complications. Transition metal compounds, such as tungsten and vanadium, have been proposed as possible agents in the treatment of diabetes by simulating the effects of insulin. The mesenteric vascular bed intervenes in vascular resistance and is a source of vasoactive compounds, such as prostanoids. The aim of this work was to study the effects of sodium tungstate and vanadyl sulphate treatments on the metabolic parameters and the release of prostanoids of the mesenteric vascular bed in an experimental model of Streptozotocin-induced diabetes. In diabetic rats, a significant increase was observed in plasma levels of glucose, triglycerides and total cholesterol. On the other hand, there was a significant reduction in the release of vasodilator prostanoids, such as prostacyclin and prostaglandin E2 and vasoconstrictor thromboxane A2 through the mesenteric vascular bed. Both sodium tungstate and vanadyl sulphate normalised glycaemia, triglyceridaemia and cholesterolaemia in rats diabetics. On the other hand, only treatment with sodium tungstate reversed the reduction in the release of vasodilator prostanoids, improving in diabetic animals the prostacyclin/thromboxane ratio, an indicator of vascular dysfunction. In conclusion, unlike vanadyl sulphate, sodium tungstate is shown to be more effective in controlling metabolic changes and the production of vasodilator prostanoids observed in experimental diabetes induced by streptozotocin.
Collapse
Affiliation(s)
- Hyun Jin Lee
- Cátedra de Anatomía e Histología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Horacio A Peredo
- Cátedra de Anatomía e Histología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvana M Cantú
- Cátedra de Anatomía e Histología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Adriana S Donoso
- Cátedra de Anatomía e Histología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana M Puyó
- Cátedra de Anatomía e Histología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Marcelo R Choi
- Cátedra de Anatomía e Histología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Facultad de Medicina, Universidad de Buenos Aires, Instituto de Investigaciones Cardiológicas (ININCA), UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
11
|
|
12
|
Da Silva LM, da Silva RDCMVDAF, Maria-Ferreira D, Beltrame OC, da Silva-Santos JE, Werner MFDP. Vitamin C Improves Gastroparesis in Diabetic Rats: Effects on Gastric Contractile Responses and Oxidative Stress. Dig Dis Sci 2017. [PMID: 28639130 DOI: 10.1007/s10620-017-4632-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Diabetic gastroparesis is a common complication of diabetes mellitus, which mainly affects women. Previous studies have demonstrated that oxidative stress is involved in its onset and development. AIMS This study evaluated the role of vitamin C on diabetes-associated gastric dysmotility. METHODS Female rats with streptozotocin-induced diabetes were treated with vehicle (water, 1 mL/kg, p.o.), vitamin C (300 mg/kg/day, p.o.), or insulin (6 IU/day, s.c.). Gastric emptying, in vitro gastric contractility, and biochemistry parameters were analyzed at the end of the treatment (i.e. 8 weeks after the diabetes induction). RESULTS Vitamin C reversed the delayed gastric emptying of diabetic rats to normal levels, and avoided the changes in the contractile responses to acetylcholine (0.1 nM-1 µM), but not to 5-hydroxytryptamine (0.1 nM-1 µM), in the pylorus and fundus from diabetic rats. Moreover, the contraction evoked by KCl (40 mM) in the fundus, but not in the pylorus, was intensely increased in diabetic rats treated with vitamin C. Notably, the vitamin C reestablished the reduced glutathione levels by 77% and decreased the reactive oxygen species content by 60% in the gastric tissue from diabetic rats. Despite the effects on gastric motility, vitamin C treatment did not change the fasting glycaemia or the glycated hemoglobin of diabetic rats. Unsurprisingly, insulin treatment normalized all parameters evaluated. CONCLUSIONS Vitamin C exhibited a remarkable beneficial effect on gastric emptying dysfunction in diabetic rats, which was mediated by attenuation of oxidative stress and maintenance of the cholinergic contractile responses in fundus and pylorus.
Collapse
Affiliation(s)
- Luisa Mota Da Silva
- Departamento de Farmacologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, Brazil. .,Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade do Vale do Itajaí, Itajaí, SC, Brazil.
| | | | - Daniele Maria-Ferreira
- Departamento de Farmacologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Olair Carlos Beltrame
- Departamento de Medicina Veterinária, Hospital Veterinário, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - José Eduardo da Silva-Santos
- Laboratory of Cardiovascular Biology, Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | |
Collapse
|
13
|
Refat MS, El-Megharbel SM, Kobeasy MI, Mahamoud GI, Al-Omar MA, Naglah AM. Synthesis, spectroscopic characterizations and biological activities of vanadyl(II) folate compound as a new anti-DNA damage and antioxidant agent. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.04.104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Abstract
The purpose of this study was to define the toxic effects of vanadium on thymic development in broilers fed on diets supplemented with 0, 5, 15, 30, 45 and 60 mg/kg of vanadium for 42 days. We examined the changes of relative weigh, cell cycle phase, apoptotic cells, and protein expression of Bcl-2, Bax, and caspase-3 in the thymus by the methods of flow cytometry, TUNEL (terminal-deoxynucleotidyl transferase mediated nick end labeling) and immunohistochemistry. The results showed that dietary high vanadium (30 mg/kg, 45 mg/kg and 60 mg/kg) caused the toxic effects on thymic development, which was characterized by decreasing relative weigh, increasing G0/G1 phase (a prolonged nondividing state), reducing S phase (DNA replication) and proliferating index (PI), and increasing percentages of apoptotic thymocytes. Concurrently, the protein expression levels of Bax and caspase-3 were increased, and protein expression levels of Bcl-2 were decreased. The thymic development suppression caused by dietary high vanadium further leads to inhibitive effects on T lymphocyte maturity and activity, and cellular immune function. The above-mentioned results provide new evidences for further understanding the vanadium immunotoxicity. In contrast, dietary 5 mg/kg vanadium promoted the thymic development by increasing relative weigh, decreasing G0/G1 phase, increasing S phase and PI, and reducing percentages of apoptotic thymocytes when compared to the control group and high vanadium groups.
Collapse
Affiliation(s)
- Wei Cui
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an, China
| | - Hongrui Guo
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an, China
| | - Hengmin Cui
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an, China
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|