1
|
Fan Z, Yuan X, Yuan Y. Circular RNAs in coronary heart disease: From molecular mechanism to promising clinical application (Review). Int J Mol Med 2025; 55:11. [PMID: 39513584 PMCID: PMC11573316 DOI: 10.3892/ijmm.2024.5452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Coronary heart disease (CHD) remains a leading cause of morbidity and mortality worldwide, posing a substantial public health burden. Despite advancements in treatment, the complex etiology of CHD necessitates ongoing exploration of novel diagnostic markers and therapeutic targets. Circular RNAs (circRNAs), a distinct class of non‑coding RNAs with a covalently closed loop structure, have emerged as significant regulators in various diseases, including CHD. Their high stability, tissue‑specific expression and evolutionary conservation underscore their potential as biomarkers and therapeutic agents in CHD. This review discusses the current knowledge on circRNAs in the context of CHD and explores the molecular mechanisms by which circRNAs influence the pathophysiology of CHD, including cardiomyocyte death, endothelial injury, vascular dysfunction and inflammation. It also summarizes the emerging evidence highlighting the differential expression of circRNAs in patients with CHD and their potential utilities as non‑invasive diagnostic and prognostic biomarkers and therapeutic targets for this disease.
Collapse
Affiliation(s)
- Zengguang Fan
- Department of Cardiology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, P.R. China
| | - Xingxing Yuan
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang 150006, P.R. China
| | - Ye Yuan
- Department of Cardiology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
2
|
Dabravolski SA, Churov AV, Ravani AL, Karimova AE, Luchinkin IG, Sukhorukov VN, Orekhov AN. The role of Epsins in atherosclerosis: From molecular mechanisms to therapeutic applications. Vascul Pharmacol 2024; 158:107457. [PMID: 39672315 DOI: 10.1016/j.vph.2024.107457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
Atherosclerosis is a multifaceted disease characterised by chronic inflammation and vascular remodelling, leading to plaque formation and cardiovascular complications. Recent evidence highlights the critical role of epsins, a family of endocytic proteins, in the pathogenesis of atherosclerosis. This manuscript explores the multifarious functions of epsins in atherosclerosis, focusing on their involvement in angiogenesis, lymphangiogenesis, and the modulation of key signalling pathways. We discuss how epsins facilitate EndoMT through their interaction with the TGFβ signalling pathway, which contributes to vascular smooth muscle cell-like phenotypes and plaque instability. Additionally, we examine the therapeutic potential of targeting epsins, elucidating their interactions with crucial partners such as LDLR, LRP-1, and TLR 2/4, among others, in mediating lipid metabolism and inflammation. Furthermore, we highlight the promising prospects of epsin-targeting peptides and small interfering RNAs as therapeutic agents for atherosclerosis treatment. Despite these advancements, the research faces limitations, including a reliance on specific mouse models and a need for comprehensive studies on the long-term effects of epsin modulation. Therefore, future investigations should focus on elucidating the detailed mechanisms of epsin function and their implications in cardiovascular health, fostering collaborations to translate basic research into innovative therapeutic strategies. This work underscores the necessity for further exploration of epsins to unlock their full therapeutic potential in combating atherosclerosis and related cardiovascular diseases.
Collapse
Affiliation(s)
- Siarhei A Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, P.O. Box 78, Karmiel 2161002, Israel.
| | - Alexey V Churov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow 125315, Russia; Pirogov Russian National Research Medical University, Russia Gerontology Clinical Research Centre, Moscow, Institute on Ageing Research, Russian Federation, 16 1st Leonova Street, 129226 Moscow, Russia
| | - Alessio L Ravani
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, 121609 Moscow, Russia
| | - Amina E Karimova
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, 33, Profsoyuznaya Street, Building 4, 117418 Moscow, Russia
| | - Igor G Luchinkin
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow 125315, Russia
| | - Vasily N Sukhorukov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow 125315, Russia; Institute of Human Morphology, Petrovsky Russian National Center of Surgery, 2 Abrikosovsky Lane, 119991 Moscow, Russia
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow 125315, Russia
| |
Collapse
|
3
|
Ye W, Shen B, Tang Q, Fang C, Wang L, Xie L, He Q. Identification of a novel immune infiltration-related gene signature, MCEMP1, for coronary artery disease. PeerJ 2024; 12:e18135. [PMID: 39346078 PMCID: PMC11438437 DOI: 10.7717/peerj.18135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
Background This study aims to identify a novel gene signature for coronary artery disease (CAD), explore the role of immune cell infiltration in CAD pathogenesis, and assess the cell function of mast cell-expressed membrane protein 1 (MCEMP1) in human umbilical vein endothelial cells (HUVECs) treated with oxidized low-density lipoprotein (ox-LDL). Methods To identify differentially expressed genes (DEGs) of CAD, datasets GSE24519 and GSE61145 were downloaded from the Gene Expression Omnibus (GEO) database using the R "limma" package with p < 0.05 and |log2 FC| > 1. Gene ontology (GO) and pathway analyses were conducted to determine the biological functions of DEGs. Hub genes were identified using support vector machine-recursive feature elimination (SVM-RFE) and least absolute shrinkage and selection operator (LASSO). The expression levels of these hub genes in CAD were validated using the GSE113079 dataset. CIBERSORT program was used to quantify the proportion of immune cell infiltration. Western blot assay and qRT-PCR were used to detect the expression of hub genes in ox-LDL-treated HUVECs to validate the bioinformatics results. Knockdown interference sequences for MCEMP1 were synthesized, and cell proliferation and apoptosis were examined using a CCK8 kit and Muse® Cell Analyzer, respectively. The concentrations of IL-1β, IL-6, and TNF-α were measured with respective enzyme-linked immunosorbent assay (ELISA) kits. Results A total of 73 DEGs (four down-regulated genes and 69 up-regulated genes) were identified in the metadata (GSE24519 and GSE61145) cohort. GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis results indicated that these DEGs might be associated with the regulation of platelet aggregation, defense response or response to bacterium, NF-kappa B signaling pathway, and lipid and atherosclerosis. Using SVM-RFE and LASSO, seven hub genes were obtained from the metadata. The upregulated expression of DIRC2 and MCEMP1 in CAD was confirmed in the GSE113079 dataset and in ox-LDL-treated HUVECs. The associations between the two hub genes (DIRC2 and MCEMP1) and the 22 types of immune cell infiltrates in CAD were found. MCEMP1 knockdown accelerated cell proliferation and suppressed cell apoptosis for ox-LDL-treated HUVECs. Additionally, MCEMP1 knockdown appeared to decrease the expression of inflammatory factors IL-1β, IL-6, and TNF-α. Conclusions The results of this study indicate that MCEMP1 may play an important role in CAD pathophysiology.
Collapse
Affiliation(s)
- Wei Ye
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Chengzhi Fang
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Wang
- Department of Cardiology, HanChuan Hospital, Hanchuan, China
| | - Lili Xie
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qi He
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Zhao Q, Pedroza A, Sharma D, Gu W, Dalal A, Weldy C, Jackson W, Li DY, Ryan Y, Nguyen T, Shad R, Palmisano BT, Monteiro JP, Worssam M, Berezwitz A, Iyer M, Shi H, Kundu R, Limbu L, Kim JB, Kundaje A, Fischbein M, Wirka R, Quertermous T, Cheng P. A cell and transcriptome atlas of the human arterial vasculature. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612293. [PMID: 39314359 PMCID: PMC11419041 DOI: 10.1101/2024.09.10.612293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Vascular beds show different propensities for different vascular pathologies, yet mechanisms explaining these fundamental differences remain unknown. We sought to build a transcriptomic, cellular, and spatial atlas of human arterial cells across multiple different arterial segments to understand this phenomenon. We found significant cell type-specific segmental heterogeneity. Determinants of arterial identity are predominantly encoded in fibroblasts and smooth muscle cells, and their differentially expressed genes are particularly enriched for vascular disease-associated loci and genes. Adventitial fibroblast-specific heterogeneity in gene expression coincides with numerous vascular disease risk genes, suggesting a previously unrecognized role for this cell type in disease risk. Adult arterial cells from different segments cluster not by anatomical proximity but by embryonic origin, with differentially regulated genes heavily influenced by developmental master regulators. Non-coding transcriptomes across arterial cells contain extensive variation in lnc-RNAs expressed in cell type- and segment-specific patterns, rivaling heterogeneity in protein coding transcriptomes, and show enrichment for non-coding genetic signals for vascular diseases.
Collapse
|
5
|
Velarde-Acosta K, Moscoso Ramirez JY, Rojas P, Susanibar L, Reusche LDQ, Cachicatari A, Baltodano-Arellano R. Shaggy aorta: ideal substrate for disaster. Updated review. ARCHIVOS PERUANOS DE CARDIOLOGIA Y CIRUGIA CARDIOVASCULAR 2024; 5:143-152. [PMID: 39411013 PMCID: PMC11473078 DOI: 10.47487/apcyccv.v5i3.410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/02/2024] [Indexed: 10/19/2024]
Abstract
Shaggy aorta (SA) is characterized by a critical and extensive atheromatous disease of the thoracic and abdominal aorta. This degenerative and dangerous pathology is the result of the confluence of multiple modifiable and non-modifiable risk factors. The clinical importance of this pathology relies on the various syndromes that can develop from its etiopathogenesis, which generates great morbidity and mortality in the affected patients. In this document, we present an updated and detailed review of this entity, developing aspects of its pathophysiology, diagnosis, including the importance of multimodal imaging, and its therapeutic approach. Finally, we present the clinical settings of patients with SA in different aortic scenarios (aortic dissection, ulcerated plaques, and thrombosed aneurysms) that denote the nature of this disease and its high mortality.
Collapse
Affiliation(s)
- Kevin Velarde-Acosta
- Clinical Cardiology Department; Hospital Guillermo Almenara Irigoyen - EsSalud, Lima, PerúClinical Cardiology DepartmentHospital Guillermo Almenara Irigoyen - EsSaludLimaPerú
| | - Josh Yefry Moscoso Ramirez
- Clinical Cardiology Department; Hospital Guillermo Almenara Irigoyen - EsSalud, Lima, PerúClinical Cardiology DepartmentHospital Guillermo Almenara Irigoyen - EsSaludLimaPerú
| | - Paol Rojas
- Clinical Cardiology Department; Hospital Guillermo Almenara Irigoyen - EsSalud, Lima, PerúClinical Cardiology DepartmentHospital Guillermo Almenara Irigoyen - EsSaludLimaPerú
- Interventional Cardiology Department; Hospital Guillermo Almenara Irigoyen - EsSalud, Lima, PerúInterventional Cardiology DepartmentHospital Guillermo Almenara Irigoyen - EsSaludLimaPerú
| | - Lucy Susanibar
- Clinical Cardiology Department; Hospital Guillermo Almenara Irigoyen - EsSalud, Lima, PerúClinical Cardiology DepartmentHospital Guillermo Almenara Irigoyen - EsSaludLimaPerú
| | - Lady Diana Quintana Reusche
- Clinical Cardiology Department; Hospital Guillermo Almenara Irigoyen - EsSalud, Lima, PerúClinical Cardiology DepartmentHospital Guillermo Almenara Irigoyen - EsSaludLimaPerú
| | - Angela Cachicatari
- Cardiac imaging area of Cardiology Department, Hospital Guillermo Almenara Irigoyen - EsSalud, Lima, PerúLimaPerú
| | - Roberto Baltodano-Arellano
- Cardiac imaging area of Cardiology Department, Hospital Guillermo Almenara Irigoyen - EsSalud, Lima, PerúLimaPerú
- School of Medicine, Universidad Nacional Mayor de San Marcos, Lima, PerúLimaPerú
| |
Collapse
|
6
|
Huang X, Jiang F, Ma Y, Zhu K, Wang Z, Hua Z, Yu J, Zhang L. A bibliometric analysis of endoplasmic reticulum stress and atherosclerosis. Front Physiol 2024; 15:1392454. [PMID: 38938744 PMCID: PMC11210825 DOI: 10.3389/fphys.2024.1392454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
The mechanisms underlying the occurrence and development of atherosclerosis (AS) are diverse, among which endoplasmic reticulum stress (ERS) is an important mechanism that should not be overlooked. However, up to now, there has been no bibliometric study on the relationship between ERS and AS. To understand the research progress in ERS and AS, this paper conducted a statistical analysis of publications in this field using bibliometrics. A total of 1,035 records were retrieved from the Web of Science Core Collection. CiteSpace, VOSviewer, and the R package "bibliometric" were used to analyze the spatiotemporal distribution, countries, authors, institutions, journals, references, and keywords of the literature, and to present the basic information of this field through visualized maps, as well as determine the collaboration relationships among researchers in this field. This field has gradually developed and stabilized over the past 20 years. The current research hotspots in this field mainly include the relationship between ERS and AS-related cells, the mechanisms by which ERS promotes AS, related diseases, and associated cytokines, etc. Vascular calcification, endothelial dysfunction, NLRP3 inflammasome, and heart failure represent the frontier research in this field and are becoming new research hotspots. It is hoped that this study will provide new insights for research and clinical work in the field of ERS and AS.
Collapse
Affiliation(s)
- Xinyu Huang
- Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Feng Jiang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Yongbo Ma
- Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Kunpeng Zhu
- Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Zhenyuan Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Zhen Hua
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Jie Yu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandon, China
| | - Lei Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandon, China
| |
Collapse
|
7
|
Sheng Y, Meng G, Li G, Wang J. Red wine alleviates atherosclerosis-related inflammatory markers in healthy subjects rather than in high cardiovascular risk subjects: A systematic review and meta-analysis. Medicine (Baltimore) 2024; 103:e38229. [PMID: 38847707 PMCID: PMC11155606 DOI: 10.1097/md.0000000000038229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/23/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Moderate red wine (RW) consumption is associated with a low risk of cardiovascular disease (CVD). However, few studies have evaluated the effects of RW and white wine (WW) on inflammatory markers related to atherosclerosis in healthy individuals and high-risk subjects for CVD. This study aimed to assess the effect of RW on inflammatory markers in healthy individuals and high-risk subjects for CVD compared with moderate alcohol consumption. METHODS The Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 (PRISMA) was followed in this study. The PubMed, Embase, Cochrane, Web of Science, SinoMed, EbscoHost, and ScienceDirect databases were searched. The risk of bias and quality of the included trials were assessed using the Cochrane Handbook. The main results are summarized in Stata 12. RESULTS Twelve studies were included in the meta-analysis. The results demonstrated that RW significantly decreased circulating intercellular cell adhesion molecule-1, vascular cell adhesion molecule-1 (VCAM-1), tumor necrosis factor-alpha (TNF-α), lymphocyte function-associated antigen-1, and Sialyl-Lewis X expression on the surface of monocytes in healthy subjects, but not in patients with CVD. Additionally, RW significantly decreased Sialyl-Lewis X but increased clusters of differentiation 40 (CD40) expressed on the surface of T lymphocytes and significantly decreased C-C chemokine receptor type 2 (CCR2) and very late activation antigen 4 (VLA-4) expressed on the surface of monocytes. Interestingly, subgroup analysis also found that RW significantly decreased circulating interleukin-6 (IL-6) in Spain but not in other countries, and significantly increased αMβ2 (Mac-1) in the group that had an intervention duration of less than 3 weeks. CONCLUSIONS Moderate consumption of RW is more effective than WW in alleviating atherosclerosis-related inflammatory markers in healthy people rather than high-risk subjects for CVD, but this needs to be further confirmed by studies with larger sample sizes.
Collapse
Affiliation(s)
- Yingkun Sheng
- Xingzhi College, Zhejiang Normal University, Lanxi, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guibing Meng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guidong Li
- Foshan Fosun Chancheng Hospital, Foshan City, China
| | - Jianfeng Wang
- Xingzhi College, Zhejiang Normal University, Lanxi, China
| |
Collapse
|
8
|
Poznyak AV, Yakovlev AA, Popov MА, Zhigmitova EB, Sukhorukov VN, Orekhov AN. Atherosclerosis originating from childhood: Specific features. J Biomed Res 2024; 38:233-240. [PMID: 38777340 PMCID: PMC11144930 DOI: 10.7555/jbr.37.20230198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 05/25/2024] Open
Abstract
Atherosclerosis is extremely widespread. Traditionally, it is considered a disease of older people, who most often experience problems with the heart and blood vessels. While much attention from the scientific community has been paid to studying the association between aging and atherosclerosis, as well as its consequences, there is evidence that atherosclerosis occurs at an early age. Atherosclerosis may form both during intrauterine development and in childhood. Nutrition plays an important role in childhood atherosclerosis, along with previous infectious diseases and excess weight of both the child and the mother. In the present review, we examined the development of atherosclerosis and the prerequisites in childhood.
Collapse
Affiliation(s)
| | - Alexey A. Yakovlev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 109240, Russia
| | - Mikhail А. Popov
- Department of Cardiac Surgery, Moscow Regional Research and Clinical Institute, Moscow 129110, Russia
| | - Elena B. Zhigmitova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow 125315, Russia
| | - Vasily N. Sukhorukov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow 125315, Russia
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow 125315, Russia
| |
Collapse
|
9
|
Elmarasi M, Elmakaty I, Elsayed B, Elsayed A, Zein JA, Boudaka A, Eid AH. Phenotypic switching of vascular smooth muscle cells in atherosclerosis, hypertension, and aortic dissection. J Cell Physiol 2024; 239:e31200. [PMID: 38291732 DOI: 10.1002/jcp.31200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/12/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Vascular smooth muscle cells (VSMCs) play a critical role in regulating vasotone, and their phenotypic plasticity is a key contributor to the pathogenesis of various vascular diseases. Two main VSMC phenotypes have been well described: contractile and synthetic. Contractile VSMCs are typically found in the tunica media of the vessel wall, and are responsible for regulating vascular tone and diameter. Synthetic VSMCs, on the other hand, are typically found in the tunica intima and adventitia, and are involved in vascular repair and remodeling. Switching between contractile and synthetic phenotypes occurs in response to various insults and stimuli, such as injury or inflammation, and this allows VSMCs to adapt to changing environmental cues and regulate vascular tone, growth, and repair. Furthermore, VSMCs can also switch to osteoblast-like and chondrocyte-like cell phenotypes, which may contribute to vascular calcification and other pathological processes like the formation of atherosclerotic plaques. This provides discusses the mechanisms that regulate VSMC phenotypic switching and its role in the development of vascular diseases. A better understanding of these processes is essential for the development of effective diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Mohamed Elmarasi
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ibrahim Elmakaty
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Basel Elsayed
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Abdelrahman Elsayed
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Jana Al Zein
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Ammar Boudaka
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
10
|
Lindenhahn P, Richter J, Pepelanova I, Seeger B, Volk HA, Hinkel R, Hiebl B, Scheper T, Hinrichs JB, Becker LS, Haverich A, Kaufeld T. A Novel Artificial Coronary Plaque to Model Coronary Heart Disease. Biomimetics (Basel) 2024; 9:197. [PMID: 38667208 PMCID: PMC11048636 DOI: 10.3390/biomimetics9040197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Experimental coronary artery interventions are currently being performed on non-diseased blood vessels in healthy animals. To provide a more realistic pathoanatomical scenario for investigations on novel interventional and surgical therapies, we aimed to fabricate a stenotic lesion, mimicking the morphology and structure of a human atherosclerotic plaque. METHODS In an interdisciplinary setting, we engineered a casting mold to create an atherosclerotic plaque with the dimensions to fit in a porcine coronary artery. Oscillatory rheology experiments took place along with long-term stability tests assessed by microscopic examination and weight monitoring. For the implantability in future in vivo setups, we performed a cytotoxicity assessment, inserted the plaque in resected pig hearts, and performed diagnostic imaging to visualize the plaque in its final position. RESULTS The most promising composition consists of gelatin, cholesterol, phospholipids, hydroxyapatite, and fine-grained calcium carbonate. It can be inserted in the coronary artery of human-sized pig hearts, producing a local partial stenosis and interacting like the atherosclerotic plaque by stretching and shrinking with the vessel wall and surrounding tissue. CONCLUSION This artificial atherosclerotic plaque model works as a simulating tool for future medical testing and could be crucial for further specified research on coronary artery disease and is going to help to provide information about the optimal interventional and surgical care of the disease.
Collapse
Affiliation(s)
- Philipp Lindenhahn
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30559 Hannover, Germany; (A.H.); (T.K.)
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hanover, 30559 Hannover, Germany
| | - Jannik Richter
- Institute of Technical Chemistry, Leibniz University of Hannover, 30167 Hannover, Germany; (J.R.); (T.S.)
| | - Iliyana Pepelanova
- Institute of Technical Chemistry, Leibniz University of Hannover, 30167 Hannover, Germany; (J.R.); (T.S.)
| | - Bettina Seeger
- Institute for Food Quality and Food Safety, University of Veterinary Medicine, 30559 Hannover, Germany;
| | - Holger A. Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hanover, 30559 Hannover, Germany
| | - Rabea Hinkel
- Department of Laboratory Animal Science, Leibnitz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, Kellnerweg 4, 37077 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, University of Veterinary Medicine, 30559 Hannover, Germany;
| | - Bernhard Hiebl
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, University of Veterinary Medicine, 30559 Hannover, Germany;
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University of Hannover, 30167 Hannover, Germany; (J.R.); (T.S.)
| | - Jan B. Hinrichs
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (J.B.H.); (L.S.B.)
| | - Lena S. Becker
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (J.B.H.); (L.S.B.)
| | - Axel Haverich
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30559 Hannover, Germany; (A.H.); (T.K.)
| | - Tim Kaufeld
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30559 Hannover, Germany; (A.H.); (T.K.)
| |
Collapse
|
11
|
Khandayataray P, Samal D, Murthy MK. Arsenic and adipose tissue: an unexplored pathway for toxicity and metabolic dysfunction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8291-8311. [PMID: 38165541 DOI: 10.1007/s11356-023-31683-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Arsenic-contaminated drinking water can induce various disorders by disrupting lipid and glucose metabolism in adipose tissue, leading to insulin resistance. It inhibits adipocyte development and exacerbates insulin resistance, though the precise impact on lipid synthesis and lipolysis remains unclear. This review aims to explore the processes and pathways involved in adipogenesis and lipolysis within adipose tissue concerning arsenic-induced diabetes. Although arsenic exposure is linked to type 2 diabetes, the specific role of adipose tissue in its pathogenesis remains uncertain. The review delves into arsenic's effects on adipose tissue and related signaling pathways, such as SIRT3-FOXO3a, Ras-MAP-AP-1, PI(3)-K-Akt, endoplasmic reticulum stress proteins, CHOP10, and GPCR pathways, emphasizing the role of adipokines. This analysis relies on existing literature, striving to offer a comprehensive understanding of different adipokine categories contributing to arsenic-induced diabetes. The findings reveal that arsenic detrimentally impacts white adipose tissue (WAT) by reducing adipogenesis and promoting lipolysis. Epidemiological studies have hinted at a potential link between arsenic exposure and obesity development, with limited research suggesting a connection to lipodystrophy. Further investigations are needed to elucidate the mechanistic association between arsenic exposure and impaired adipose tissue function, ultimately leading to insulin resistance.
Collapse
Affiliation(s)
- Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, Odisha, 752057, India
| | - Dibyaranjan Samal
- Department of Biotechnology, Sri Satya Sai University of Technical and Medical Sciences, Sehore, Madhya Pradesh, 466001, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, 140401, India.
| |
Collapse
|
12
|
Hua R, Gao H, He C, Xin S, Wang B, Zhang S, Gao L, Tao Q, Wu W, Sun F, Xu J. An emerging view on vascular fibrosis molecular mediators and relevant disorders: from bench to bed. Front Cardiovasc Med 2023; 10:1273502. [PMID: 38179503 PMCID: PMC10764515 DOI: 10.3389/fcvm.2023.1273502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Vascular fibrosis is a widespread pathologic condition that arises during vascular remodeling in cardiovascular dysfunctions. According to previous studies, vascular fibrosis is characterized by endothelial matrix deposition and vascular wall thickening. The RAAS and TGF-β/Smad signaling pathways have been frequently highlighted. It is, however, far from explicit in terms of understanding the cause and progression of vascular fibrosis. In this review, we collected and categorized a large number of molecules which influence the fibrosing process, in order to acquire a better understanding of vascular fibrosis, particularly of pathologic dysfunction. Furthermore, several mediators that prevent vascular fibrosis are discussed in depth in this review, with the aim that this will contribute to the future prevention and treatment of related conditions.
Collapse
Affiliation(s)
- Rongxuan Hua
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Han Gao
- Department of Clinical Laboratory, Aerospace Center Hospital, Peking University, Beijing, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Boya Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing, China
| | - Sitian Zhang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lei Gao
- Department of Biomedical Informatics, School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Qiang Tao
- Department of Biomedical Informatics, School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Wenqi Wu
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing, China
| | - Fangling Sun
- Department of Experimental Animal Laboratory, Xuan-Wu Hospital of Capital Medical University, Beijing, China
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Poznyak AV, Sukhorukov VN, Popov MA, Chegodaev YS, Postnov AY, Orekhov AN. Mechanisms of the Wnt Pathways as a Potential Target Pathway in Atherosclerosis. J Lipid Atheroscler 2023; 12:223-236. [PMID: 37800111 PMCID: PMC10548192 DOI: 10.12997/jla.2023.12.3.223] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 10/07/2023] Open
Abstract
The proteins of the Wnt family are involved in a variety of physiological processes by means of several canonical and noncanonical signaling pathways. Wnt signaling has been recently identified as a major player in atherogenesis. In this review, we summarize the existing knowledge on the influence of various components of the Wnt signaling pathways on the initiation and progression of atherosclerosis and associated conditions. We used the PubMed database to search for recent papers on the involvement of the Wnt pathways in atherosclerosis. We used the combination of "Wnt" and "atherosclerosis" keywords to find the initial papers, and chose papers published after 2018. In the first section of the paper, we describe the general mechanisms of the Wnt signaling pathways and their components. The next section is dedicated to existing studies assessing the implication of Wnt signaling elements in different atherogenic processes, such as cholesterol retention, endothelial dysfunction, vascular inflammation, and atherosclerotic calcification of the vessels. Lastly, various therapeutic strategies based on interference with the Wnt signaling pathways are considered. We also compare the efficacy and availability of the proposed treatment methods. Wnt signaling can be considered a potential target in the treatment and prevention of atherosclerosis. Therefore, in this review, we reviewed evidences showing that wnt signaling is an important signal for developing appropriate treatment strategies for atherosclerosis.
Collapse
Affiliation(s)
| | - Vasily N. Sukhorukov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI "Petrovsky NRCS"), Moscow, Russia
| | - Mikhail A. Popov
- Department of Cardiac Surgery, Moscow Regional Research and Clinical Institute (MONIKI), Moscow, Russia
| | - Yegor S Chegodaev
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI "Petrovsky NRCS"), Moscow, Russia
| | - Anton Y. Postnov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI "Petrovsky NRCS"), Moscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI "Petrovsky NRCS"), Moscow, Russia
| |
Collapse
|
14
|
Yang X, Zong Y, Zhang Z, Zhao Y, Gao X, Zhang J, Hou Q, Li R, Xiao B. Identification of Potential Abnormal Methylation-Modified Genes in Coronary Artery Ectasia. Int J Genomics 2023; 2023:4969605. [PMID: 37662558 PMCID: PMC10474963 DOI: 10.1155/2023/4969605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/20/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Background Coronary artery ectasia (CAE) is an easily recognized abnormality of coronary artery anatomy and morphology. However, its pathogenesis remains unclear. Objectives This study aimed to identify abnormal methylation-modified genes in patients with CAE, which could provide a research basis for CAE. Methods Peripheral venous blood samples from patients with CAE were collected for RNA sequencing to identify differentially expressed genes (DEGs), followed by functional enrichment. Then, the DNA methylation profile of CAE was downloaded from GSE87016 (HumanMethylation450 BeadChip data, involving 11 cases and 12 normal controls) to identify differentially methylated genes (DMGs). Finally, after taking interaction genes between DEGs and DMGs, abnormal methylation-modified genes were identified, followed by protein-protein interaction analysis and expression validation using reverse transcriptase polymerase chain reaction. Results A total of 152 DEGs and 4318 DMGs were obtained from RNA sequencing and the GSE87016 dataset, respectively. After taking interaction genes, 9 down-regulated DEGs due to hypermethylation and 11 up-regulated DEGs due to hypomethylation were identified in CAE. A total of 10 core abnormal methylation-modified genes were identified, including six down-regulated DEGs due to hypermethylation (netrin G1, ADAM metallopeptidase domain 12, immunoglobulin superfamily member 10, sarcoglycan dela, Dickkopf WNT signaling pathway inhibitor 3, and GATA binding protein 6), and four up-regulated DEGs due to hypomethylation (adrenomedullin, ubiquitin specific peptidase 18, lymphocyte antigen 6 family member E, and MX dynamin-like GTPase 1). Some signaling pathways were identified in patients with CAE, including cell adhesion molecule, O-glycan biosynthesis, and the renin-angiotensin system. Conclusions Abnormal methylation-modified DEGs involved in signaling pathways may be involved in CAE development.
Collapse
Affiliation(s)
- Xiuchun Yang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yijun Zong
- School of Nursing, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhentian Zhang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Zhao
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xueying Gao
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jie Zhang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qian Hou
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Renyi Li
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bing Xiao
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
15
|
Dolmaci OB, Klautz RJM, Poelmann RE, Lindeman JHN, Sprengers R, Kroft L, Grewal N. Thoracic aortic atherosclerosis in patients with a bicuspid aortic valve; a case-control study. BMC Cardiovasc Disord 2023; 23:363. [PMID: 37468858 DOI: 10.1186/s12872-023-03396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023] Open
Abstract
INTRODUCTION Bicuspid aortic valve (BAV) patients have an increased risk to develop thoracic aortic complications. Little is known about the prevalence and severity of atherosclerosis in the BAV ascending aortic wall. This study evaluates and compares the prevalence of thoracic aortic atherosclerosis in BAV and tricuspid aortic valve (TAV) patients. METHODS Atherosclerosis was objectified using three diagnostic modalities in two separate BAV patient cohorts (with and without an aortic dilatation). Within the first group, atherosclerosis was graded histopathologically according to the modified AHA classification scheme proposed by Virmani et al. In the second group, the calcific load of the ascending aorta and coronary arteries, coronary angiographies and cardiovascular risk factors were studied. Patients were selected from a surgical database (treated between 2006-2020), resulting in a total of 128 inclusions. RESULTS Histopathology showed atherosclerotic lesions to be more prevalent and severe in all TAV as compared to all BAV patients (OR 1.49 (95%CI 1.14 - 1.94); p = 0.003). Computed tomography showed no significant differences in ascending aortic wall calcification between all BAV and all TAV patients, although a tendency of lower calcific load in favor of BAV was seen. Coronary calcification was higher in all TAV as compared to all BAV (OR 1.30 (95%CI 1.06 - 1.61); p = 0.014). CONCLUSION Ascending aortic atherosclerotic plaques were histologically more pronounced in TAV as compared to the BAV patients, while CT scans revealed equal amounts of calcific depositions within the ascending aortic wall. This study confirms less atherosclerosis in the ascending aortic wall and coronary arteries of BAV patients as compared to TAV patients. These results were not affected by the presence of a thoracic aortic aneurysm.
Collapse
Affiliation(s)
- Onur B Dolmaci
- Department of Cardiothoracic Surgery, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Robert J M Klautz
- Department of Cardiothoracic Surgery, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Robert E Poelmann
- Institute of Biology, Animal Sciences and Health, Leiden University, Leiden, The Netherlands
| | - Jan H N Lindeman
- Department of Vascular Surgery, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Ralf Sprengers
- Department of Radiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Lucia Kroft
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nimrat Grewal
- Department of Cardiothoracic Surgery, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, The Netherlands.
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
16
|
Jeong SJ, Oh GT. Unbalanced Redox With Autophagy in Cardiovascular Disease. J Lipid Atheroscler 2023; 12:132-151. [PMID: 37265853 PMCID: PMC10232220 DOI: 10.12997/jla.2023.12.2.132] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/27/2023] [Accepted: 04/13/2023] [Indexed: 06/03/2023] Open
Abstract
Precise redox balance is essential for the optimum health and physiological function of the human body. Furthermore, an unbalanced redox state is widely believed to be part of numerous diseases, ultimately resulting in death. In this review, we discuss the relationship between redox balance and cardiovascular disease (CVD). In various animal models, excessive oxidative stress has been associated with increased atherosclerotic plaque formation, which is linked to the inflammation status of several cell types. However, various antioxidants can defend against reactive oxidative stress, which is associated with an increased risk of CVD and mortality. The different cardiovascular effects of these antioxidants are presumably due to alterations in the multiple pathways that have been mechanistically linked to accelerated atherosclerotic plaque formation, macrophage activation, and endothelial dysfunction in animal models of CVD, as well as in in vitro cell culture systems. Autophagy is a regulated cell survival mechanism that removes dysfunctional or damaged cellular organelles and recycles the nutrients for the generation of energy. Furthermore, in response to atherogenic stress, such as the generation of reactive oxygen species, oxidized lipids, and inflammatory signaling between cells, autophagy protects against plaque formation. In this review, we characterize the broad spectrum of oxidative stress that influences CVD, summarize the role of autophagy in the content of redox balance-associated pathways in atherosclerosis, and discuss potential therapeutic approaches to target CVD by stimulating autophagy.
Collapse
Affiliation(s)
- Se-Jin Jeong
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Goo Taeg Oh
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul, Korea
| |
Collapse
|
17
|
Belhoul-Fakir H, Wu J, Yeow YL, Musk GC, Kershaw H, Ingley E, Zhao BS, Reid CM, Lagat C, Evans B, Thompson PL, Brown ML, Hamzah J, Jansen S. Injury to the tunica media initiates atherogenesis in the presence of hyperlipidemia. Front Cardiovasc Med 2023; 10:1152124. [PMID: 37063951 PMCID: PMC10098105 DOI: 10.3389/fcvm.2023.1152124] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
Background and aims Fatty streaks initiating the formation of atheromatous plaque appear in the tunica intima. The tunica media is not known to be a nidus for lipid accumulation initiating atherogenesis. We assessed changes to the tunica media in response to a micro-injury produced in the pig aorta. In addition, we assessed human carotid endarterectomy plaques for indication of atheroma initiation in the tunica media. Methods Three healthy landrace female pigs underwent laparotomy to inject autologous blood and create micro-hematomas at 6 sites within the tunica media of the infrarenal abdominal aorta. These pigs were fed a high-fat diet (HFD) for 4-12 weeks. Post-mortem aortas from all pigs, including a control group of healthy pigs, were serially stained to detect lipid deposits, vasa vasora (VV), immune cell infiltration and inflammatory markers, as well as changes to the vascular smooth muscle cell (vSMC) compartment. Moreover, 25 human carotid endarterectomy (CEA) specimens were evaluated for their lipid composition in the tunica media and intima. Results High lipid clusters, VV density, and immune cell infiltrates were consistently observed at 5 out of 6 injection sites under prolonged hyperlipidemia. The hyperlipidemic diet also affected the vSMC compartment in the tunica media adjacent to the tunica adventitia, which correlated with VV invasion and immune cell infiltration. Analysis of human carotid specimens post-CEA indicated that 32% of patients had significantly greater atheroma in the tunica media than in the arterial intima. Conclusion The arterial intima is not the only site for atherosclerosis initiation. We show that injury to the media can trigger atherogenesis.
Collapse
Affiliation(s)
- Hanane Belhoul-Fakir
- Curtin Medical School, Curtin University, Bentley, Perth, WA, Australia
- Laboratory of Targeted Drug Delivery, Imaging & Therapy, Harry Perkins Institute of Medical Research, QEII MedicalCentre, Nedlands, WA, Australia
- Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
| | - Jiansha Wu
- Laboratory of Targeted Drug Delivery, Imaging & Therapy, Harry Perkins Institute of Medical Research, QEII MedicalCentre, Nedlands, WA, Australia
- Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
| | - Yen L. Yeow
- Laboratory of Targeted Drug Delivery, Imaging & Therapy, Harry Perkins Institute of Medical Research, QEII MedicalCentre, Nedlands, WA, Australia
| | - Gabrielle C. Musk
- Animal Care Services, The University of Western Australia, Crawley, Perth, WA, Australia
| | - Helen Kershaw
- Animal Care Services, The University of Western Australia, Crawley, Perth, WA, Australia
| | - Evan Ingley
- Discipline of Medical, Molecular, and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
- School of Biomedical Sciences, Pharmacology, and Toxicology, The University of Western Australia, Perth, WA, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Bichen Sophie Zhao
- Curtin Medical School, Curtin University, Bentley, Perth, WA, Australia
- Laboratory of Targeted Drug Delivery, Imaging & Therapy, Harry Perkins Institute of Medical Research, QEII MedicalCentre, Nedlands, WA, Australia
| | - Christopher M. Reid
- School of Public Health and Preventive Medicine, Monash University, Clayton, VIC, Australia
- School of Population Health, Curtin University, Bentley, Perth, WA, Australia
| | - Christopher Lagat
- Western Australia School of Mine: Minerals, Energy and Chemical Engineering, Curtin University, Kensington, Perth, WA, Australia
| | - Brian Evans
- Western Australia School of Mine: Minerals, Energy and Chemical Engineering, Curtin University, Kensington, Perth, WA, Australia
| | - Peter L. Thompson
- Laboratory of Targeted Drug Delivery, Imaging & Therapy, Harry Perkins Institute of Medical Research, QEII MedicalCentre, Nedlands, WA, Australia
- Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
| | - Michael L. Brown
- School of Population Health, Curtin University, Bentley, Perth, WA, Australia
| | - Juliana Hamzah
- Curtin Medical School, Curtin University, Bentley, Perth, WA, Australia
- Laboratory of Targeted Drug Delivery, Imaging & Therapy, Harry Perkins Institute of Medical Research, QEII MedicalCentre, Nedlands, WA, Australia
- Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
| | - Shirley Jansen
- Curtin Medical School, Curtin University, Bentley, Perth, WA, Australia
- Laboratory of Targeted Drug Delivery, Imaging & Therapy, Harry Perkins Institute of Medical Research, QEII MedicalCentre, Nedlands, WA, Australia
- Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
- Department of Vascular and Endovascular Surgery, Sir Charles Gairdner Hospital, Nedlands, Perth, WA, Australia
| |
Collapse
|
18
|
Omar N, Yeoh BS, Chellappan K, Chui SZ, Salamt N, Aminuddin A. The effects of pedometer-based exercise on central and peripheral vascular functions among young sedentary men with CVD risk factors. Front Physiol 2023; 14:1062751. [PMID: 37057183 PMCID: PMC10088098 DOI: 10.3389/fphys.2023.1062751] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Introduction: Cardiovascular diseases (CVDs) remain the main cause of morbidity and mortality in Malaysia and worldwide. This is mainly due to an increase in the prevalence of CVD risk factors such as hypertension, dyslipidemia, smoking, and obesity. Increased physical activity has been recommended as a modality to improve CVD risk. Pulse wave velocity (PWVCF), augmentation index (AI), and finger photoplethysmography fitness (PPGF) index have been introduced to assess the vascular functions related to CVD risk factors. The effects of long-term exercise on PPGF index are not established. Materials and Methods: A total of 70 young men who were sedentary with two or more cardiovascular risk factors were recruited. Subjects were randomly assigned to a control group (CG) (n = 34; no change in walking) and pedometer group (PG) (n = 36; minimum target: 8,000 steps/day). PWVCF and AI were measured via the Vicorder system. The PPGF index was obtained via the finger photoplethysmography method. All parameters were measured at baseline and after 6 and 12 weeks. Results: After intervention, the PG had significant increased step count from 4,996 ± 805 to 10,128 ± 511 steps/day (p < 0.001). The PG showed significant improvement in anthropometric variables, lipid, PWVCF, AI, and PPGF index (time and group effect p < 0.001). No changes were observed in CG. Conclusion: This signifies that pedometer-based walking program is beneficial in improving markers of vascular functions among young working sedentary men with CVD risk factors. Pedometer-based exercise should be encouraged to improve cardiovascular health.
Collapse
Affiliation(s)
- Norsuhana Omar
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Boon Seng Yeoh
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Kalaivani Chellappan
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Sara Zijiun Chui
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Norizam Salamt
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Amilia Aminuddin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Abedalqader NN, Rababa'h AM, Ababneh M. The protective effect of rivaroxaban with or without aspirin on inflammation, oxidative stress, and platelet reactivity in isoproterenol-induced cardiac injury in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:337-351. [PMID: 36334131 DOI: 10.1007/s00210-022-02319-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Coronary artery diseases are principal sources of mortality and disability in global human population. Progressively, rivaroxaban is being evaluated for the prevention of atherosclerotic thrombi, particularly with anti-platelet agents. Hence, the current report aimed to investigate the cardioprotective effect of rivaroxaban on isoproterenol (ISO)-induced cardiac injury model in rats and the possible synergistic effect when combined with aspirin. Male Wistar rats were randomly assigned into five different groups. Cardiac injury was induced by subcutaneous injection of ISO (85 mg/kg) for 2 consecutive days. Rat tail bleeding time was performed prior to sacrifice. Cardiac enzymes, platelet activity, inflammatory, and oxidative stress biomarkers levels were measured using enzyme-linked immunoassay (ELISA). Pre-administration of rivaroxaban alone and on combination with aspirin prevented ISO-induced increase in cardiac thiobarbituric acid reactive substances (TBARS), interleukin 6 (IL-6), and thromboxane B2 (TXB2) levels. Moreover, a significant prolongation of bleeding time was demonstrated among aspirin, rivaroxaban, and aspirin plus rivaroxaban treated groups. On the other hand, the combination treatment of aspirin plus rivaroxaban showed no marked difference in these biomarkers and bleeding time relative to either drug administered separately. However, a prominent decrease of cardiac 6-keto prostaglandin F1α (6-Keto-PGF1α) level was displayed in the combination treatment when compared with ISO and rivaroxaban-treated groups, whereas no significant improvement was seen in cardiac glycoprotein V (GPV) levels except in aspirin-treated group. The study results demonstrated that rivaroxaban decreases cardiac oxidative stress, inflammation, and platelets reactivity. However, the addition of rivaroxaban to aspirin did not seem to show synergistic antioxidant, anti-inflammatory, or antiplatelet effect.
Collapse
Affiliation(s)
- Nour N Abedalqader
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, PO Box 3030, Irbid, 22110, Jordan
| | - Abeer M Rababa'h
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, PO Box 3030, Irbid, 22110, Jordan.
| | - Mera Ababneh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, PO Box 3030, Irbid, 22110, Jordan
| |
Collapse
|
20
|
Yang GH, Kang D, An S, Ryu JY, Lee K, Kim JS, Song MY, Kim YS, Kwon SM, Jung WK, Jeong W, Jeon H. Advances in the development of tubular structures using extrusion-based 3D cell-printing technology for vascular tissue regenerative applications. Biomater Res 2022; 26:73. [PMID: 36471437 PMCID: PMC9720982 DOI: 10.1186/s40824-022-00321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/13/2022] [Indexed: 12/11/2022] Open
Abstract
Until recent, there are no ideal small diameter vascular grafts available on the market. Most of the commercialized vascular grafts are used for medium to large-sized blood vessels. As a solution, vascular tissue engineering has been introduced and shown promising outcomes. Despite these optimistic results, there are limitations to commercialization. This review will cover the need for extrusion-based 3D cell-printing technique capable of mimicking the natural structure of the blood vessel. First, we will highlight the physiological structure of the blood vessel as well as the requirements for an ideal vascular graft. Then, the essential factors of 3D cell-printing including bioink, and cell-printing system will be discussed. Afterwards, we will mention their applications in the fabrication of tissue engineered vascular grafts. Finally, conclusions and future perspectives will be discussed.
Collapse
Affiliation(s)
- Gi Hoon Yang
- Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc, 55 Hanyangdaehak-Ro, Ansan, Gyeonggi-Do 15588 South Korea
| | - Donggu Kang
- Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc, 55 Hanyangdaehak-Ro, Ansan, Gyeonggi-Do 15588 South Korea
| | - SangHyun An
- Preclinical Research Center, K Medi-hub, 80 Cheombok-ro, Dong-gu, Daegu, 41061 South Korea
| | - Jeong Yeop Ryu
- grid.258803.40000 0001 0661 1556Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, 130 Dongdeok‑ro, Jung‑gu, Daegu, 41944 South Korea
| | - KyoungHo Lee
- Preclinical Research Center, K Medi-hub, 80 Cheombok-ro, Dong-gu, Daegu, 41061 South Korea
| | - Jun Sik Kim
- Preclinical Research Center, K Medi-hub, 80 Cheombok-ro, Dong-gu, Daegu, 41061 South Korea
| | - Moon-Yong Song
- Medical Safety Center, Bio Division, Korea Conformity Laboratories 8, Gaetbeol-ro 145beon-gil, Yeonsu-gu, Incheon, 21999 South Korea
| | - Young-Sik Kim
- Medical Safety Center, Bio Division, Korea Conformity Laboratories 8, Gaetbeol-ro 145beon-gil, Yeonsu-gu, Incheon, 21999 South Korea
| | - Sang-Mo Kwon
- grid.262229.f0000 0001 0719 8572Department of Physiology, School of Medicine, Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Pusan National University, Yangsan, 626-870 South Korea
| | - Won-Kyo Jung
- grid.412576.30000 0001 0719 8994Division of Biomedical Engineering and Research Center for Marine Integrated Bionics Technology, Pukyong National University, Daeyeon-dong, Nam-gu, Busan, 48513 South Korea
| | - Woonhyeok Jeong
- grid.412091.f0000 0001 0669 3109Department of Plastic and Reconstructive Surgery, Dongsan Medical Center, Keimyung University College of Medicine, 1035 Dalgubeol-daero, Dalseo-gu, Daegu, 42601 South Korea
| | - Hojun Jeon
- Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc, 55 Hanyangdaehak-Ro, Ansan, Gyeonggi-Do 15588 South Korea
| |
Collapse
|
21
|
Wang M, Xiang Q, Sun W, Zhang H, Shi R, Guo J, Tong H, Fan M, Ding Y, Shi H, Yu P, Shen L, Wang Q, Chen X. Qihuang Zhuyu Formula Attenuates Atherosclerosis via Targeting PPAR γ to Regulate Cholesterol Efflux and Endothelial Cell Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2226168. [PMID: 36518993 PMCID: PMC9744610 DOI: 10.1155/2022/2226168] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/20/2022] [Accepted: 11/07/2022] [Indexed: 01/19/2024]
Abstract
At present, due to the limitations of drug therapy targets for atherosclerosis, some patients fail to achieve satisfactory efficacy. Cholesterol efflux dysfunction and endothelial cell inflammation are considered to be important factors in the development of atherosclerosis. Peroxisome proliferator-activated receptor gamma (PPARγ), a promising therapeutic target for atherosclerosis, plays a dual role in regulating cholesterol efflux and endothelial cell inflammation. However, the use of PPARγ agonist in clinical practice is greatly limited as it could lead to water and sodium retention and hence result in congestive heart failure. Qihuang Zhuyu Formula (QHZYF) is a hospital preparation of Jiangsu Province Hospital of Chinese Medicine which has definite effect in the treatment of atherosclerosis, but its pharmacological mechanism has not been clear. In this study, we successfully predicted that QHZYF might regulate cholesterol efflux and endothelial inflammation via targeting PPARγ-mediated PPARγ/LXRα/ABCA1-ABCG1 and PPARγ/NF-κB p65 pathways by using UPLC-Q-TOF/MS, network pharmacology, bioinformatics analysis, and molecular docking technology. Subsequently, we confirmed in vivo that QHZYF could attenuate atherosclerosis in ApoE-/- mice and regulate the expression levels of related molecules in PPARγ/LXRα/ABCA1-ABCG1 and PPARγ/NF-κB p65 pathways of ApoE-/- mice and C57BL/6 wild-type mice. Finally, in in vitro experiments, we found that QHZYF could reduce lipid content and increase cholesterol efflux rate of RAW 264.7 cells, inhibit the inflammatory response of HUVECs, and regulate the expression levels of related molecules in the two pathways. In addition, the above effects of QHZYF were significantly weakened after PPARγ knockdown in the two kinds of cells. In conclusion, our study revealed that QHZYF attenuates atherosclerosis via targeting PPARγ-mediated PPARγ/LXRα/ABCA1-ABCG1 and PPARγ/NF-κB p65 pathways to regulate cholesterol efflux and endothelial cell inflammation. More importantly, our study offers a promising complementary and alternative therapy which is expected to make up for the limitation of current drug treatment methods and provide a valuable reference for new drugs development in the future.
Collapse
Affiliation(s)
- Mengxi Wang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qian Xiang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weixin Sun
- Department of Cardiology, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng 224000, China
| | - Haowen Zhang
- College of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruijie Shi
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jun Guo
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huaqin Tong
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Manlu Fan
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuhan Ding
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haibo Shi
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Peng Yu
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Le Shen
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Qiong Wang
- Laboratory of Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Laboratory of Pharmacology, Jiangsu Province Hospital of Chinese Medicine, 210029 Nanjing, China
| | - Xiaohu Chen
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| |
Collapse
|
22
|
Wang Z, Xia Q, Su W, Zhang M, Gu Y, Xu J, Chen W, Jiang T. The commonness in immune infiltration of rheumatoid arthritis and atherosclerosis: Screening for central targets via microarray data analysis. Front Immunol 2022; 13:1013531. [PMID: 36311761 PMCID: PMC9606677 DOI: 10.3389/fimmu.2022.1013531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Although increasing evidence has reported an increased risk of atherosclerosis (AS) in rheumatoid arthritis (RA), the communal molecular mechanism of this phenomenon is still far from being fully elucidated. Hence, this article aimed to explore the pathogenesis of RA complicated with AS. Methods Based on the strict inclusion/exclusion criteria, four gene datasets were downloaded from the Gene Expression Omnibus (GEO) database. After identifying the communal differentially expressed genes (DEGs) and hub genes, comprehensive bioinformatics analysis, including functional annotation, co-expression analysis, expression validation, drug-gene prediction, and TF-mRNA-miRNA regulatory network construction, was conducted. Moreover, the immune infiltration of RA and AS was analyzed and compared based on the CIBERSORT algorithm, and the correlation between hub genes and infiltrating immune cells was evaluated in RA and AS respectively. Results A total of 54 upregulated and 12 downregulated communal DEGs were screened between GSE100927 and GSE55457, and functional analysis of these genes indicated that the potential pathogenesis lies in immune terms. After the protein-protein interaction (PPI) network construction, a total of six hub genes (CCR5, CCR7, IL7R, PTPRC, CD2, and CD3D) were determined as hub genes, and the subsequent comprehensive bioinformatics analysis of the hub genes re-emphasized the importance of the immune system in RA and AS. Additionally, three overlapping infiltrating immune cells were found between RA and AS based on the CIBERSORT algorithm, including upregulated memory B cells, follicular helper T cells and γδT cells. Conclusions Our study uncover the communal central genes and commonness in immune infiltration between RA and AS, and the analysis of six hub genes and three immune cells profile might provide new insights into potential pathogenesis therapeutic direction of RA complicated with AS.
Collapse
Affiliation(s)
- Zuoxiang Wang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qingyue Xia
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenxing Su
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Mingyang Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yiyu Gu
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jialiang Xu
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Weixiang Chen
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Weixiang Chen, ; Tingbo Jiang,
| | - Tingbo Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Weixiang Chen, ; Tingbo Jiang,
| |
Collapse
|
23
|
Dabravolski SA, Markin AM, Andreeva ER, Eremin II, Orekhov AN, Melnichenko AA. Molecular Mechanisms Underlying Pathological and Therapeutic Roles of Pericytes in Atherosclerosis. Int J Mol Sci 2022; 23:11663. [PMID: 36232962 PMCID: PMC9570222 DOI: 10.3390/ijms231911663] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Pericytes are multipotent mesenchymal stromal cells playing an active role in angiogenesis, vessel stabilisation, maturation, remodelling, blood flow regulation and are able to trans-differentiate into other cells of the mesenchymal lineage. In this review, we summarised recent data demonstrating that pericytes play a key role in the pathogenesis and development of atherosclerosis (AS). Pericytes are involved in lipid accumulation, inflammation, growth, and vascularization of the atherosclerotic plaque. Decreased pericyte coverage, endothelial and pericyte dysfunction is associated with intraplaque angiogenesis and haemorrhage, calcification and cholesterol clefts deposition. At the same time, pericytes can be used as a novel therapeutic target to promote vessel maturity and stability, thus reducing plaque vulnerability. Finally, we discuss recent studies exploring effective AS treatments with pericyte-mediated anti-atherosclerotic, anti-inflammatory and anti-apoptotic effects.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Biotechnology Engineering, ORT Braude College, Snunit 51, P.O. Box 78, Karmiel 2161002, Israel
| | - Alexander M. Markin
- Petrovsky National Research Center of Surgery, Abrikosovsky Lane, 2, 119991 Moscow, Russia
| | - Elena R. Andreeva
- Laboratory of Cell Physiology, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse, 76a, 123007 Moscow, Russia
| | - Ilya I. Eremin
- Petrovsky National Research Center of Surgery, Abrikosovsky Lane, 2, 119991 Moscow, Russia
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia
| | | |
Collapse
|
24
|
Zhang W, Lv Z, Zhang Y, Gopinath SCB, Yuan Y, Huang D, Miao L. Targeted Diagnosis, Therapeutic Monitoring, and Assessment of Atherosclerosis Based on Mesoporous Silica Nanoparticles Coated with cRGD-Platelets. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6006601. [PMID: 36211824 PMCID: PMC9537012 DOI: 10.1155/2022/6006601] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/20/2022] [Indexed: 12/07/2022]
Abstract
Objective The off-target effects and severe side effects of PPARα and LXRα agonists greatly limit their application in atherosclerosis (AS). Therefore, this study intended to use mesoporous silica nanoparticles as carriers to generate MnO nanoparticles in situ with T1WI-MRI in mesoporous pores and simultaneously load PPARα and LXRα agonists. Afterward, cRGD-chelated platelet membranes can be used for coating to construct a new nanotheranostic agent. Methods cRGD-platelet@MnO/MSN@PPARα/LXRα nanoparticles were synthesized by a chemical method. Dynamic light scattering (DLS) was utilized to detect the size distribution and polydispersity index (PDI) of the nanoparticles. The safety of the nanoparticles was detected by CCK8 in vitro and HE staining and kidney function in vivo. Cell apoptosis was detected by flow cytometry detection and TUNEL staining. Oxidative stress responses (ROS, SOD, MDA, and NOX levels) were tested via a DCFH-DA assay and commercial kits. Immunofluorescence and phagocytosis experiments were used to detect the targeting of nanoparticles. Magnetic resonance imaging (MRI) was used to detect the imaging performance of cRGD-platelet@MnO/MSN@PPARα/LXRα nanoparticles. Using western blotting, the expression changes in LXRα and ABCA1 were identified. Results cRGD-platelet@MnO/MSN@PPARα/LXRα nanoparticles were successfully established, with a particle size of approximately 150 nm and PDI less than 0.3, and showed high safety both in vitro and in vivo. cRGD-platelet@MnO/MSN@PPARα/LXRα nanoparticles showed good targeting properties and better MRI imaging performance in AS. cRGD-platelet@MnO/MSN@PPARα/LXRα nanoparticles showed better antioxidative capacities, MRI imaging performance, and diagnostic and therapeutic effects on AS by regulating the expression of LXRα and ABCA1. Conclusion In the present study, cRGD-platelet@MnO/MSN@PPARα/LXRα nanoparticles with high safety and the capacity to target vulnerable plaques of AS were successfully established. They showed better performance on MRI images and treatment effects on AS by promoting cholesterol efflux through the regulation of ABCA1. These findings might address the problems of off-target effects and side effects of nanoparticle-mediated drug delivery, which will enhance the efficiency of AS treatment and provide new ideas for the clinical treatment of AS.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Radiology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi 545006, China
| | - Zheng Lv
- Department of Radiology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China
| | - Yupeng Zhang
- Department of Radiology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China
| | - Subash C. B. Gopinath
- Faculty of Chemical Engineering & Technology, Micro System Technology, Centre of Excellence (CoE), and Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Yi Yuan
- Institute of Life Sciences, Jiangsu University, Zhengjiang, Jiangsu 212013, China
| | - Deyou Huang
- Department of Radiology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Liu Miao
- Department of Cardiology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi 545006, China
| |
Collapse
|
25
|
Aspirin Resistance in Vascular Disease: A Review Highlighting the Critical Need for Improved Point-of-Care Testing and Personalized Therapy. Int J Mol Sci 2022; 23:ijms231911317. [PMID: 36232618 PMCID: PMC9570127 DOI: 10.3390/ijms231911317] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Aspirin resistance describes a phenomenon where patients receiving aspirin therapy do not respond favorably to treatment, and is categorized by continued incidence of adverse cardiovascular events and/or the lack of reduced platelet reactivity. Studies demonstrate that one in four patients with vascular disease are resistant to aspirin therapy, placing them at an almost four-fold increased risk of major adverse limb and adverse cardiovascular events. Despite the increased cardiovascular risk incurred by aspirin resistant patients, strategies to diagnose or overcome this resistance are yet to be clinically validated and integrated. Currently, five unique laboratory assays have shown promise for aspirin resistance testing: Light transmission aggregometry, Platelet Function Analyzer-100, Thromboelastography, Verify Now, and Platelet Works. Newer antiplatelet therapies such as Plavix and Ticagrelor have been tested as an alternative to overcome aspirin resistance (used both in combination with aspirin and alone) but have not proven to be superior to aspirin alone. A recent breakthrough discovery has demonstrated that rivaroxaban, an anticoagulant which functions by inhibiting active Factor X when taken in combination with aspirin, improves outcomes in patients with vascular disease. Current studies are determining how this new regime may benefit those who are considered aspirin resistant.
Collapse
|
26
|
Impact of Non-Pharmacological Interventions on the Mechanisms of Atherosclerosis. Int J Mol Sci 2022; 23:ijms23169097. [PMID: 36012362 PMCID: PMC9409393 DOI: 10.3390/ijms23169097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Atherosclerosis remains the leading cause of mortality and morbidity worldwide characterized by the deposition of lipids and fibrous elements in the form of atheroma plaques in vascular areas which are hemodynamically overloaded. The global burden of atherosclerotic cardiovascular disease is steadily increasing and is considered the largest known non-infectious pandemic. The management of atherosclerotic cardiovascular disease is increasing the cost of health care worldwide, which is a concern for researchers and physicians and has caused them to strive to find effective long-term strategies to improve the efficiency of treatments by managing conventional risk factors. Primary prevention of atherosclerotic cardiovascular disease is the preferred method to reduce cardiovascular risk. Fasting, a Mediterranean diet, and caloric restriction can be considered useful clinical tools. The protective impact of physical exercise over the cardiovascular system has been studied in recent years with the intention of explaining the mechanisms involved; the increase in heat shock proteins, antioxidant enzymes and regulators of cardiac myocyte proliferation concentration seem to be the molecular and biochemical shifts that are involved. Developing new therapeutic strategies such as vagus nerve stimulation, either to prevent or slow the disease’s onset and progression, will surely have a profound effect on the lives of millions of people.
Collapse
|
27
|
Niazi SA, Bakhsh A. Association between Endodontic Infection, Its Treatment and Systemic Health: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:931. [PMID: 35888650 PMCID: PMC9319780 DOI: 10.3390/medicina58070931] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 02/06/2023]
Abstract
The 'Focal Infection Era in Dentistry' in the late 19th and early 20th century resulted in widespread implementation of tooth extraction and limited the progress of endodontics. The theory proposed that bacteria and toxins entrapped in dentinal tubules could disseminate systemically to remote body parts, resulting in many types of degenerative systemic diseases. This theory was eventually refuted due to anecdotal evidence. However, lately there has been increased interest in investigating whether endodontic disease could have an impact on general health. There are reviews that have previously been carried out on this subject, but as new data have emerged since then, this review aims to appraise the available literature investigating the dynamic associations between apical periodontitis, endodontic treatment, and systemic health. The available evidence regarding focal infection theory, bacteraemia and inflammatory markers was appraised. The review also collated the available research arguing the associations of apical periodontitis with cardiovascular diseases, diabetes mellitus, adverse pregnancy outcome and autoimmune disorders, along with the effect of statins and immunomodulators on apical periodontitis prevalence and endodontic treatment prognosis. There is emerging evidence that bacteraemia and low-grade systemic inflammation associated with apical periodontitis may negatively impact systemic health, e.g., development of cardiovascular diseases, adverse pregnancy outcomes, and diabetic metabolic dyscontrol. However, there is limited information supporting the effect of diabetes mellitus or autoimmune disorders on the prevalence and prognosis post endodontic treatment. Furthermore, convincing evidence supports that successful root canal treatment has a beneficial impact on systemic health by reducing the inflammatory burden, thereby dismissing the misconceptions of focal infection theory. Although compelling evidence regarding the association between apical periodontitis and systemic health is present, further high-quality research is required to support and establish the benefits of endodontic treatment on systemic health.
Collapse
Affiliation(s)
- Sadia Ambreen Niazi
- Department of Endodontics, Centre of Oral Clinical & Translational Sciences, Faculty of Dentistry, Oral & Craniofacial Sciences, Guy’s Dental Hospital, King’s College London, London SE1 9RT, UK
| | - Abdulaziz Bakhsh
- Department of Restorative Dentistry, Faculty of Dentistry, Umm Al-Qura University, Makkah 24381, Saudi Arabia;
| |
Collapse
|
28
|
Kytikova OY, Novgorodtseva TP, Denisenko YK, Antonyuk MV, Gvozdenko TA, Atamas OV. Brain-Derived Neurotrophic Factor And Coronary Artery Disease. RUSSIAN OPEN MEDICAL JOURNAL 2022. [DOI: 10.15275/rusomj.2022.0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Coronary artery disease (CAD) is defined as myocardial damage developing as a result of its organic and functional changes, and leading to impaired blood flow through the coronary arteries. An important pathogenetic component of CAD is atherosclerosis. Currently, key aspects of the molecular relationship between inflammation and atherosclerosis are being actively studied, the immunometabolic theory of atherosclerosis is being discussed, along with an involvement of perivascular adipose tissue in the pathogenesis of this pathology, due to its ability to respond to atherogenic stimuli via developing inflammatory reactions. Evidence has been accumulated that in patients with CAD, both in their blood and perivascular adipose tissue, the level of neurotrophic factors (in particular, brain-derived neurotrophic factor, BDNF) changes, which may be a promising area of research from the standpoint of studying this factor as a therapeutic target for atherosclerosis in CAD. Neurotrophic growth factors control the functioning of both immune and nervous systems, and the balance of energy metabolism and innervation of adipose tissue. They affect vascular homeostasis, and are also involved in causing and stopping inflammation. Currently, there are data on the role of BDNF in the pathogenesis of cardiovascular, neurodegenerative and metabolic diseases, and on the effect of polyunsaturated fatty acids and eicosanoids on the level of BDNF and, accordingly, the development and progression of coronary artery atherosclerosis. Our review summarizes published data (2019-2021) on the pathophysiological and pathogenetic mechanisms of the relationship between BDNF and CAD (atherosclerosis).
Collapse
Affiliation(s)
- Oksana Yu. Kytikova
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, Scientific Research Institute of Medical Climatology and Rehabilitation Therapy, Vladivostok, Russia
| | - Tatyana P. Novgorodtseva
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, Scientific Research Institute of Medical Climatology and Rehabilitation Therapy, Vladivostok, Russia
| | - Yulia K. Denisenko
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, Scientific Research Institute of Medical Climatology and Rehabilitation Therapy, Vladivostok, Russia
| | - Marina V. Antonyuk
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, Scientific Research Institute of Medical Climatology and Rehabilitation Therapy, Vladivostok, Russia
| | - Tatyana A. Gvozdenko
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, Scientific Research Institute of Medical Climatology and Rehabilitation Therapy, Vladivostok, Russia
| | - Olga V. Atamas
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, Scientific Research Institute of Medical Climatology and Rehabilitation Therapy, Vladivostok, Russia
| |
Collapse
|
29
|
Wang W, Zhu G, Wang Y, Li W, Yi S, Wang K, Fan L, Tang J, Chen R. Multi-Omics Integration in Mice With Parkinson’s Disease and the Intervention Effect of Cyanidin-3-O-Glucoside. Front Aging Neurosci 2022; 14:877078. [PMID: 35572129 PMCID: PMC9099026 DOI: 10.3389/fnagi.2022.877078] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Background Parkinson’s disease (PD) is a multifactorial degenerative disease of the central nervous system, which affects mostly older adults. To date, research has focused on the progression of PD. Simultaneously, it was confirmed that the imbalances in gut microbiota are associated with the onset and progression of PD. Accurate diagnosis and precise treatment of PD are currently deficient due to the absence of effective biomarkers. Methods In this study, the pharmacodynamic study of cyanidin-3-O-glucoside in PD mice was used. It intends to use the “imbalance” and “balance” of intestinal microecology as the starting point to investigate the “gut-to-brain” hypothesis using metabolomic-combined 16S rRNA gene sequencing methods. Simultaneously, metabolomic analysis was implemented to acquire differential metabolites, and microbiome analysis was performed to analyze the composition and filter the remarkably altered gut microbiota at the phylum/genera level. Afterward, metabolic pathway and functional prediction analysis of the screened differential metabolites and gut microbiota were applied using the MetaboAnalyst database. In addition, Pearson’s correlation analysis was used for the differential metabolites and gut microbiota. We found that cyanidin-3-O-glucoside could protect 1-methyl-4-phenyl-1,2,3,6− tetrahydropy ridine (MPTP)-induced PD mice. Results Metabolomic analysis showed that MPTP-induced dysbiosis of the gut microbiota significantly altered sixty-seven metabolites. The present studies have also shown that MPTP-induced PD is related to lipid metabolism, amino acid metabolism, and so on. The 16S rRNA sequencing analysis indicated that 5 phyla and 22 genera were significantly altered. Furthermore, the differential gut microbiota was interrelated with amino acid metabolism, and so on. The metabolites and gut microbiota network diagram revealed significant correlations between 11 genera and 8 differential metabolites. Conclusion In combination, this study offers potential molecular biomarkers that should be validated for future translation into clinical applications for more accurately diagnosing PD. Simultaneously, the results of this study lay a basis for further study of the association between host metabolisms, gut microbiota, and PD.
Collapse
Affiliation(s)
- Wang Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guoxue Zhu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuwen Wang
- The Sixth Outpatient Department, Jinling Hospital, Nanjing, China
| | - Wei Li
- College of Traditional Chinese Medicine, College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shilin Yi
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kai Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lu Fan
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Lu Fan,
| | - Juanjuan Tang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Juanjuan Tang,
| | - Ruini Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Ruini Chen,
| |
Collapse
|
30
|
Atherogenesis, Transcytosis, and the Transmural Cholesterol Flux: A Critical Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2253478. [PMID: 35464770 PMCID: PMC9023196 DOI: 10.1155/2022/2253478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/19/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022]
Abstract
The recently described phenomenon of cholesterol-loaded low-density lipoproteins (LDL) entering the arterial wall from the lumen by transcytosis has been accepted as an alternative for the long-held concept that atherogenesis involves only passive LDL movement across an injured or dysfunctional endothelial barrier. This active transport of LDL can now adequately explain why plaques (atheromas) appear under an intact, uninjured endothelium. However, the LDL transcytosis hypothesis is still questionable, mainly because the process serves no clear physiological purpose. Moreover, central components of the putative LDL transcytosis apparatus are shared by the counter process of cholesterol efflux and reverse cholesterol transport (RCT) and therefore can essentially create an energy-wasting futile cycle and paradoxically be pro- and antiatherogenic simultaneously. Hence, by critically reviewing the literature, we wish to put forward an alternative interpretation that, in our opinion, better fits the experimental evidence. We assert that most of the accumulating cholesterol (mainly as LDL) reaches the intima not from the lumen by transcytosis, but from the artery's inner layers: the adventitia and media. We have named this directional cholesterol transport transmural cholesterol flux (TCF). We suggest that excess cholesterol, diffusing from the avascular (i.e., devoid of blood and lymph vessels) media's smooth muscle cells, is cleared by the endothelium through its apical membrane. A plaque is formed when this cholesterol clearance rate lags behind its rate of arrival by TCF.
Collapse
|
31
|
Muzaffar S, Khan J, Srivastava R, Gorbatyuk MS, Athar M. Mechanistic understanding of the toxic effects of arsenic and warfare arsenicals on human health and environment. Cell Biol Toxicol 2022; 39:85-110. [PMID: 35362847 PMCID: PMC10042769 DOI: 10.1007/s10565-022-09710-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/11/2022] [Indexed: 12/17/2022]
Abstract
Worldwide, more than 200 million people are estimated to be exposed to unsafe levels of arsenic. Chronic exposure to unsafe levels of groundwater arsenic is responsible for multiple human disorders, including dermal, cardiovascular, neurological, pulmonary, renal, and metabolic conditions. Consumption of rice and seafood (where high levels of arsenic are accumulated) is also responsible for human exposure to arsenic. The toxicity of arsenic compounds varies greatly and may depend on their chemical form, solubility, and concentration. Surprisingly, synthetic organoarsenicals are extremely toxic molecules which created interest in their development as chemical warfare agents (CWAs) during World War I (WWI). Among these CWAs, adamsite, Clark I, Clark II, and lewisite are of critical importance, as stockpiles of these agents still exist worldwide. In addition, unused WWII weaponized arsenicals discarded in water bodies or buried in many parts of the world continue to pose a serious threat to the environment and human health. Metabolic inhibition, oxidative stress, genotoxicity, and epigenetic alterations including micro-RNA-dependent regulation are some of the underlying mechanisms of arsenic toxicity. Mechanistic understanding of the toxicity of organoarsenicals is also critical for the development of effective therapeutic interventions. This review provides comprehensive details and a critical assessment of recently published data on various chemical forms of arsenic, their exposure, and implications on human and environmental health.
Collapse
Affiliation(s)
- Suhail Muzaffar
- UAB Research Center of Excellence in Arsenicals and Department of Dermatology, University of Alabama at Birmingham, Volker Hall - Room 509 1670 University Blvd. , Birmingham, AL, 35294-0019, USA
| | - Jasim Khan
- UAB Research Center of Excellence in Arsenicals and Department of Dermatology, University of Alabama at Birmingham, Volker Hall - Room 509 1670 University Blvd. , Birmingham, AL, 35294-0019, USA
| | - Ritesh Srivastava
- UAB Research Center of Excellence in Arsenicals and Department of Dermatology, University of Alabama at Birmingham, Volker Hall - Room 509 1670 University Blvd. , Birmingham, AL, 35294-0019, USA
| | - Marina S Gorbatyuk
- Department of Optometry and Vision Science, The University of Alabama at Birmingham, School of Optometry, Birmingham, AL, USA
| | - Mohammad Athar
- UAB Research Center of Excellence in Arsenicals and Department of Dermatology, University of Alabama at Birmingham, Volker Hall - Room 509 1670 University Blvd. , Birmingham, AL, 35294-0019, USA.
| |
Collapse
|
32
|
Comariţa IK, Vîlcu A, Constantin A, Procopciuc A, Safciuc F, Alexandru N, Dragan E, Nemecz M, Filippi A, Chiţoiu L, Gherghiceanu M, Georgescu A. Therapeutic Potential of Stem Cell-Derived Extracellular Vesicles on Atherosclerosis-Induced Vascular Dysfunction and Its Key Molecular Players. Front Cell Dev Biol 2022; 10:817180. [PMID: 35478972 PMCID: PMC9037629 DOI: 10.3389/fcell.2022.817180] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a progressive, chronic inflammatory disease of the large arteries caused by the constant accumulation of cholesterol, followed by endothelial dysfunction and vascular inflammation. We hypothesized that delivery of extracellular vesicles (EVs), recognized for their potential as therapeutic targets and tools, could restore vascular function in atherosclerosis. We explored by comparison the potential beneficial effects of EVs from subcutaneous adipose tissue stem cells (EVs (ADSCs)) or bone marrow mesenchymal stem cells (EVs (MSCs)) on the consequences of atherogenic diet on vascular health. Also, the influences of siRNA-targeting Smad2/3 (Smad2/3siRNA) on endothelial dysfunction and its key molecular players were analyzed. For this study, an animal model of atherosclerosis (HH) was transplanted with EVs (ADSCs) or EVs (MSCs) transfected or not with Smad2/3siRNA. For controls, healthy or HH animals were used. The results indicated that by comparison with the HH group, the treatment with EVs(ADSCs) or EVs(MSCs) alone or in combination with Smad2/3siRNA of HH animals induced a significant decrease in the main plasma parameters and a noticeable improvement in the structure and function of the thoracic aorta and carotid artery along with a decrease in the selected molecular and cellular targets mediating their changes in atherosclerosis: 1) a decrease in expression of structural and inflammatory markers COL1A1, α-SMA, Cx43, VCAM-1, and MMP-2; 2) a slight infiltration of total/M1 macrophages and T-cells; 3) a reduced level of cytosolic ROS production; 4) a significant diminution in plasma concentrations of TGF-β1 and Ang II proteins; 5) significant structural and functional improvements (thinning of the arterial wall, increase of the inner diameter, enhanced distensibility, diminished VTI and Vel, and augmented contractile and relaxation responses); 6) a reduced protein expression profile of Smad2/3, ATF-2, and NF-kBp50/p65 and a significant decrease in the expression levels of miR-21, miR-29a, miR-192, miR-200b, miR-210, and miR-146a. We can conclude that 1) stem cell-derived EV therapies, especially the EVs (ADSCs) led to regression of structural and functional changes in the vascular wall and of key orchestrator expression in the atherosclerosis-induced endothelial dysfunction; 2) transfection of EVs with Smad2/3siRNA amplified the ability of EVs(ADSCs) or EVs(MSCs) to regress the inflammation-mediated atherosclerotic process.
Collapse
Affiliation(s)
- Ioana Karla Comariţa
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’ of Romanian Academy, Bucharest, Romania
| | - Alexandra Vîlcu
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’ of Romanian Academy, Bucharest, Romania
| | - Alina Constantin
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’ of Romanian Academy, Bucharest, Romania
| | - Anastasia Procopciuc
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’ of Romanian Academy, Bucharest, Romania
| | - Florentina Safciuc
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’ of Romanian Academy, Bucharest, Romania
| | - Nicoleta Alexandru
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’ of Romanian Academy, Bucharest, Romania
| | - Emanuel Dragan
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’ of Romanian Academy, Bucharest, Romania
| | - Miruna Nemecz
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’ of Romanian Academy, Bucharest, Romania
| | - Alexandru Filippi
- ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest, Romania
| | - Leona Chiţoiu
- ‘Victor Babeș’ National Institute of Pathology, Bucharest, Romania
| | - Mihaela Gherghiceanu
- ‘Victor Babeș’ National Institute of Pathology, Bucharest, Romania
- ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest, Romania
| | - Adriana Georgescu
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’ of Romanian Academy, Bucharest, Romania
- *Correspondence: Adriana Georgescu,
| |
Collapse
|
33
|
Altabas V, Biloš LSK. The Role of Endothelial Progenitor Cells in Atherosclerosis and Impact of Anti-Lipemic Treatments on Endothelial Repair. Int J Mol Sci 2022; 23:ijms23052663. [PMID: 35269807 PMCID: PMC8910333 DOI: 10.3390/ijms23052663] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/16/2022] [Accepted: 02/26/2022] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular complications are associated with advanced atherosclerosis. Although atherosclerosis is still regarded as an incurable disease, at least in its more advanced stages, the discovery of endothelial progenitor cells (EPCs), with their ability to replace old and injured cells and differentiate into healthy and functional mature endothelial cells, has shifted our view of atherosclerosis as an incurable disease, and merged traditional theories of atherosclerosis pathogenesis with evolving concepts of vascular biology. EPC alterations are involved in the pathogenesis of vascular abnormalities in atherosclerosis, but many questions remain unanswered. Many currently available drugs that impact cardiovascular morbidity and mortality have shown a positive effect on EPC biology. This review examines the role of endothelial progenitor cells in atherosclerosis development, and the impact standard antilipemic drugs, including statins, fibrates, and ezetimibe, as well as more novel treatments such as proprotein convertase subtilisin/kexin type 9 (PCSK9) modulating agents and angiopoietin-like proteins (Angtpl3) inhibitors have on EPC biology.
Collapse
Affiliation(s)
- Velimir Altabas
- Department of Endocrinology, Diabetes and Metabolic Diseases, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-1-3787-692
| | | |
Collapse
|
34
|
Zhang R, Hao Y, Zhang J. The lncRNA DANCR promotes development of atherosclerosis by regulating the miR-214-5p/COX20 signaling pathway. Cell Mol Biol Lett 2022; 27:15. [PMID: 35177003 PMCID: PMC8903577 DOI: 10.1186/s11658-022-00310-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/07/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Although long non-coding RNA differentiation antagonizing non-protein coding RNA (DANCR) has been reported to be involved in atherosclerosis (AS) development, its specific mechanism remains unclear. METHODS DANCR expression levels in blood samples of AS patients and oxidized low-density lipoprotein (ox-LDL) treated vascular smooth muscle cells (VSMCs) and human umbilical vein endothelial cells (HUVECs) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The small interfering RNA targeting DANCR (si-DANCR) was used to silence DANCR expression. Cell viability was assessed by CCK-8 assay. Cell apoptosis was evaluated by flow cytometry. Levels of inflammatory cytokines, anti-oxidative enzyme superoxide dismutase (SOD) activity, and malonaldehyde (MDA) were detected by specific commercial kits. An animal AS model was established to confirm the role of DANCR/microR-214-5p/COX20 (the chaperone of cytochrome c oxidase subunit II COX2) in AS development. RESULTS DANCR was significantly increased in the blood samples of AS patients and ox-LDL treated VSMCs and HUVECs. DANCR downregulation obviously increased viability and reduced apoptosis of ox-LDL-treated VSMCs and HUVECs. Meanwhile, DANCR downregulation reduced the levels of inflammatory cytokines, including interleukin (IL)-6 (IL-6), IL-1beta (IL-1β), IL-6 and tumor necrosis factor (TNF)-alpha (TNF-α) and MDA while increasing the SOD level in ox-LDL-treated VSMCs and HUVECs. DANCR regulated COX20 expression by acting as a competing endogenous RNA (ceRNA) of miR-214-5p. Rescue experiments demonstrated that miR-214-5p downregulation obviously attenuated si-DANCR-induced protective effects on ox-LDL-caused endothelial injury. CONCLUSIONS Our results revealed that DANCR promoted AS progression by targeting the miR-214-5p/COX20 axis, suggesting that DANCR might be a potential therapeutic target for AS.
Collapse
Affiliation(s)
- Ruolan Zhang
- Department of Cardiology, Harrison International Peace Hospital, No. 180 Renmin Road, Hengshui City, 053000, Hebei Province, People's Republic of China.
| | - Yuming Hao
- Department of Cardiology, Second Affiliated Hospital of Hebei Medical University, Shijiazhuang City, 05000, Hebei Province, People's Republic of China
| | - Jinrong Zhang
- Department of Cardiology, Harrison International Peace Hospital, No. 180 Renmin Road, Hengshui City, 053000, Hebei Province, People's Republic of China
| |
Collapse
|
35
|
The Role of the VEGF Family in Atherosclerosis Development and Its Potential as Treatment Targets. Int J Mol Sci 2022; 23:ijms23020931. [PMID: 35055117 PMCID: PMC8781560 DOI: 10.3390/ijms23020931] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/09/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
The vascular endothelial growth factor (VEGF) family, the crucial regulator of angiogenesis, lymphangiogenesis, lipid metabolism and inflammation, is involved in the development of atherosclerosis and further CVDs (cardiovascular diseases). This review discusses the general regulation and functions of VEGFs, their role in lipid metabolism and atherosclerosis development and progression. These functions present the great potential of applying the VEGF family as a target in the treatment of atherosclerosis and related CVDs. In addition, we discuss several modern anti-atherosclerosis VEGFs-targeted experimental procedures, drugs and natural compounds, which could significantly improve the efficiency of atherosclerosis and related CVDs' treatment.
Collapse
|
36
|
Shinge SAU, Zhang D, Din AU, Yu F, Nie Y. Emerging Piezo1 signaling in inflammation and atherosclerosis; a potential therapeutic target. Int J Biol Sci 2022; 18:923-941. [PMID: 35173527 PMCID: PMC8771847 DOI: 10.7150/ijbs.63819] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose of Review: Atherosclerosis is the principal cause of cardiovascular diseases (CVDs) which are the major cause of death worldwide. Mechanical force plays an essential role in cardiovascular health and disease. To bring the awareness of mechanosensitive Piezo1 role in atherosclerosis and its therapeutic potentials we review recent literature to highlight its involvement in various mechanisms of the disease. Recent Findings: Recent studies reported Piezo1 channel as a sensor, and transducer of various mechanical forces into biochemical signals, which affect various cellular activities such as proliferation, migration, apoptosis and vascular remodeling including immune/inflammatory mechanisms fundamental phenomenon in atherogenesis. Summary: Numerous evidences suggest Piezo1 as a player in different mechanisms of cell biology, including immune/inflammatory and other cellular mechanisms correlated with atherosclerosis. This review discusses mechanistic insight about this matter and highlights the drugability and therapeutic potentials consistent with emerging functions Piezo1 in various mechanisms of atherosclerosis. Based on the recent works, we suggest Piezo1 as potential therapeutic target and a valid candidate for future research. Therefore, a deeper exploration of Piezo1 biology and translation towards the clinic will be a novel strategy for treating atherosclerosis and other CVDs.
Collapse
Affiliation(s)
- Shafiu A. Umar Shinge
- Cardiovascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan PRC
| | - Daifang Zhang
- Cardiovascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan PRC
- Clinical Research Center, Southwest Medical University, Luzhou, Sichuan PRC
| | - Ahmad Ud Din
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan PRC
| | - FengXu Yu
- Cardiovascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan PRC
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan PRC
| | - YongMei Nie
- Cardiovascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan PRC
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, Sichuan PRC
| |
Collapse
|
37
|
Mikołajczyk K, Spyt D, Zielińska W, Żuryń A, Faisal I, Qamar M, Świniarski P, Grzanka A, Gagat M. The Important Role of Endothelium and Extracellular Vesicles in the Cellular Mechanism of Aortic Aneurysm Formation. Int J Mol Sci 2021; 22:ijms222313157. [PMID: 34884962 PMCID: PMC8658239 DOI: 10.3390/ijms222313157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Homeostasis is a fundamental property of biological systems consisting of the ability to maintain a dynamic balance of the environment of biochemical processes. The action of endogenous and exogenous factors can lead to internal balance disorder, which results in the activation of the immune system and the development of inflammatory response. Inflammation determines the disturbances in the structure of the vessel wall, connected with the change in their diameter. These disorders consist of accumulation in the space between the endothelium and the muscle cells of low-density lipoproteins (LDL), resulting in the formation of fatty streaks narrowing the lumen and restricting the blood flow in the area behind the structure. The effect of inflammation may also be pathological dilatation of the vessel wall associated with the development of aneurysms. Described disease entities strongly correlate with the increased migration of immune cells. Recent scientific research indicates the secretion of specific vesicular structures during migration activated by the inflammation. The review focuses on the link between endothelial dysfunction and the inflammatory response and the impact of these processes on the development of disease entities potentially related to the secretion of extracellular vesicles (EVs).
Collapse
Affiliation(s)
- Klaudia Mikołajczyk
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.M.); (D.S.); (W.Z.); (A.Ż.); (I.F.); (M.Q.); (A.G.)
| | - Dominika Spyt
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.M.); (D.S.); (W.Z.); (A.Ż.); (I.F.); (M.Q.); (A.G.)
| | - Wioletta Zielińska
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.M.); (D.S.); (W.Z.); (A.Ż.); (I.F.); (M.Q.); (A.G.)
| | - Agnieszka Żuryń
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.M.); (D.S.); (W.Z.); (A.Ż.); (I.F.); (M.Q.); (A.G.)
| | - Inaz Faisal
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.M.); (D.S.); (W.Z.); (A.Ż.); (I.F.); (M.Q.); (A.G.)
| | - Murtaz Qamar
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.M.); (D.S.); (W.Z.); (A.Ż.); (I.F.); (M.Q.); (A.G.)
| | - Piotr Świniarski
- Department of Urology and Andrology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland;
| | - Alina Grzanka
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.M.); (D.S.); (W.Z.); (A.Ż.); (I.F.); (M.Q.); (A.G.)
| | - Maciej Gagat
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.M.); (D.S.); (W.Z.); (A.Ż.); (I.F.); (M.Q.); (A.G.)
- Correspondence:
| |
Collapse
|
38
|
Lu Y, Zhang X, Hu W, Yang Q. The Identification of Candidate Biomarkers and Pathways in Atherosclerosis by Integrated Bioinformatics Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:6276480. [PMID: 34804194 PMCID: PMC8598374 DOI: 10.1155/2021/6276480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/19/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Atherosclerosis (AS) is a type of yellow substance containing cholesterol in the intima of large and middle arteries, which is mostly caused by fat metabolism disorders and neurovascular dysfunction. MATERIALS AND METHODS The GSE100927 data got analyzed to find out the differentially expressed genes (DEGs) using the limma package in R software. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of the DEGs were assessed by the Database for Annotation, Visualization, and Integrated Discovery (DAVID). The Search Tool for the Retrieval of Interacting Genes (STRING) visualized the Protein-Protein Interaction (PPI) network of the aggregated DEGs. GSEA software was used to verify the biological process. RESULT We screened 1574 DEGs from 69 groups of atherosclerotic carotid artery and 35 groups of control carotid artery, including 1033 upregulated DEGs and 541 downregulated DEGs. DEGs of AS were chiefly related to immune response, Epstein-Barr virus infection, vascular smooth muscle contraction, and cGMP-PKG signaling pathway. Through PPI networks, we found that the hub genes of AS were PTAFR, VAMP8, RNF19A, VPRBP, RNF217, KLHL42, NEDD4, SH3RF1, UBE2N, PJA2, RNF115, ITCH, SKP1, FBXW4, and UBE2H. GSEA analysis showed that GSE100927 was concentrated in RIPK1-mediated regulated necrosis, FC epsilon receptor fceri signaling, Fceri-mediated NF KB activation, TBC rabgaps, TRAF6-mediated induction of TAK1 complex within TLR4 complex, and RAB regulation of trafficking. CONCLUSION Our analysis reveals that immune response, Epstein-Barr virus infection, and so on were major signatures of AS. PTAFR, VAMP8, VPRBP, RNF217, KLHL42, and NEDD4 might facilitate the AS tumorigenesis, which could be new biomarkers for diagnosis and therapy of AS.
Collapse
Affiliation(s)
- Youwei Lu
- Department of Geriatrics, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai 201199, China
| | - Xi Zhang
- Department of Geriatrics, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai 201199, China
| | - Wei Hu
- Department of Cardiology, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, China 201199
| | - Qianhong Yang
- Department of Geriatrics, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai 201199, China
| |
Collapse
|
39
|
Giralico LC, Makii R, Pray BA, Parker VJ. Myxedema Coma and Acute Hepatopathy in a Dog with Severe Atherosclerosis. Case Rep Vet Med 2021; 2021:6622767. [PMID: 34745683 PMCID: PMC8570892 DOI: 10.1155/2021/6622767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
A 9-year-old male intact mixed-breed dog was presented to The Ohio State University Veterinary Medical Center for evaluation of two days' duration of weakness, lethargy, inappetence, and one episode of vomiting the day of presentation. On presentation, the dog was depressed and tetraparetic. He was noted to be icteric and dehydrated. Obesity and truncal alopecia with a "rat tail" appearance were observed. Diagnostic testing revealed evidence of an acute hepatopathy and peritonitis. Given the dog's neurologic status, physical examination abnormalities, including a "tragic facial expression", and hyperlipidemia, there was concern for possible myxedema coma. A thyroid panel was consistent with hypothyroidism. The dog experienced respiratory arrest prior to initiation of therapy, and an autopsy confirmed the presence of subacute necrotizing cholangiohepatitis, marked atherosclerosis, and severe thyroid atrophy. These clinical and pathologic changes were supportive of myxedema coma.
Collapse
Affiliation(s)
- Leah C. Giralico
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, USA
| | - Rebecca Makii
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, USA
| | - Betsy A. Pray
- Department of Veterinary Biosciences, The Ohio State University College of Veterinary Medicine, USA
| | - Valerie J. Parker
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, USA
| |
Collapse
|
40
|
Translating the advanced glycation end products (AGEs) knowledge into real-world nutrition strategies. Eur J Clin Nutr 2021; 76:922-928. [PMID: 34675400 DOI: 10.1038/s41430-021-01028-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 12/26/2022]
Abstract
Advanced glycation end products (AGEs) are glycated proteins or lipids derived from complex metabolic pathways involved in the pathophysiology of various diseases, especially diabetes and diabetes-related complications. These compounds are omnipresent in human life, with both endogenous and exogenous sources. Despite the well-elucidated disease mechanisms, little is known about the AGEs/nutrition nexus in the circles of clinical practice recommendations. This review seeks to translate the accumulated knowledge about the biochemistry and pathophysiology of AGEs into a nutritional intervention based on real-world prescriptions.
Collapse
|
41
|
Rickel AP, Deng X, Engebretson D, Hong Z. Electrospun nanofiber scaffold for vascular tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112373. [PMID: 34579892 DOI: 10.1016/j.msec.2021.112373] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/28/2021] [Accepted: 08/10/2021] [Indexed: 12/16/2022]
Abstract
Due to the prevalence of cardiovascular diseases, there is a large need for small diameter vascular grafts that cannot be fulfilled using autologous vessels. Although medium to large diameter synthetic vessels are in use, no suitable small diameter vascular graft has been developed due to the unique dynamic environment that exists in small vessels. To achieve long term patency, a successful tissue engineered vascular graft would need to closely match the mechanical properties of native tissue, be non-thrombotic and non-immunogenic, and elicit the proper healing response and undergo remodeling to incorporate into the native vasculature. Electrospinning presents a promising approach to the development of a suitable tissue engineered vascular graft. This review provides a comprehensive overview of the different polymers, techniques, and functionalization approaches that have been used to develop an electrospun tissue engineered vascular graft.
Collapse
Affiliation(s)
- Alex P Rickel
- The Department of Biomedical Engineering, The University of South Dakota, Sioux Falls, SD 57107, United States of America
| | - Xiajun Deng
- The Department of Biomedical Engineering, The University of South Dakota, Sioux Falls, SD 57107, United States of America
| | - Daniel Engebretson
- The Department of Biomedical Engineering, The University of South Dakota, Sioux Falls, SD 57107, United States of America
| | - Zhongkui Hong
- The Department of Biomedical Engineering, The University of South Dakota, Sioux Falls, SD 57107, United States of America.
| |
Collapse
|
42
|
De Luca M, Iacono O, Valente V, Giardino F, Crisci G, Lettieri M, Marra A, Giallauria F, Oliviero U. Can pulse wave velocity (PWV) alone express arterial stiffness? A neglected tool for vascular function assessment. J Basic Clin Physiol Pharmacol 2021; 33:373-379. [PMID: 34284526 DOI: 10.1515/jbcpp-2021-0193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022]
Abstract
Arterial stiffness, defined as the rigidity of the arterial wall, is the consequence of vascular aging and is associated with the full spectrum of cardiovascular diseases. Carotid-femoral pulse wave velocity (cf-PWV) is the gold standard method for arterial stiffness evaluation: it measures the velocity of the arterial pulse along the thoracic and abdominal aorta alongside arterial distensibility. Its value rises as stiffness progresses. Cf-PWV is helpful to assess residual cardiovascular risk (CVR) in hypertension (HT). In fact, an increase in pulsatility and arterial stiffness predicts CVR in patients affected by arterial HT, independently of other risk factors. Arterial stiffness can predict cardiovascular events in several other clinical conditions such as heart failure, diabetes, and pulmonary HT. However, cf-PWV has not been yet included in routine clinical practice so far. A possible reason might be its methodological and theoretical limitations (inaccuracy in the traveled distance, intra and interindividual variability, lack of well-defined references values, and age- and blood pressure-independent cutoff). To exceed these limits a strict adherence to guidelines, use of analytical approaches, and possibility of integrating the results with other stiffness examinations are essential approaches.
Collapse
Affiliation(s)
- Mariarosaria De Luca
- Department of Translational Medical Sciences, "Federico II" University, Naples, Italy
| | - Olimpia Iacono
- Department of Translational Medical Sciences, "Federico II" University, Naples, Italy
| | - Valeria Valente
- Department of Translational Medical Sciences, "Federico II" University, Naples, Italy
| | - Federica Giardino
- Department of Translational Medical Sciences, "Federico II" University, Naples, Italy
| | - Giulia Crisci
- Department of Translational Medical Sciences, "Federico II" University, Naples, Italy
| | - Maddalena Lettieri
- Department of Translational Medical Sciences, "Federico II" University, Naples, Italy
| | - Alberto Marra
- Department of Translational Medical Sciences, "Federico II" University, Naples, Italy
- Center for Pulmonary Hypertension, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Francesco Giallauria
- Department of Translational Medical Sciences, "Federico II" University, Naples, Italy
| | - Ugo Oliviero
- Department of Translational Medical Sciences, "Federico II" University, Naples, Italy
| |
Collapse
|
43
|
Romano E, Rosa I, Fioretto BS, Matucci-Cerinic M, Manetti M. New Insights into Profibrotic Myofibroblast Formation in Systemic Sclerosis: When the Vascular Wall Becomes the Enemy. Life (Basel) 2021; 11:610. [PMID: 34202703 PMCID: PMC8307837 DOI: 10.3390/life11070610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022] Open
Abstract
In systemic sclerosis (SSc), abnormalities in microvessel morphology occur early and evolve into a distinctive vasculopathy that relentlessly advances in parallel with the development of tissue fibrosis orchestrated by myofibroblasts in nearly all affected organs. Our knowledge of the cellular and molecular mechanisms underlying such a unique relationship between SSc-related vasculopathy and fibrosis has profoundly changed over the last few years. Indeed, increasing evidence has suggested that endothelial-to-mesenchymal transition (EndoMT), a process in which profibrotic myofibroblasts originate from endothelial cells, may take center stage in SSc pathogenesis. While in arterioles and small arteries EndoMT may lead to the accumulation of myofibroblasts within the vessel wall and development of fibroproliferative vascular lesions, in capillary vessels it may instead result in vascular destruction and formation of myofibroblasts that migrate into the perivascular space with consequent tissue fibrosis and microvessel rarefaction, which are hallmarks of SSc. Besides endothelial cells, other vascular wall-resident cells, such as pericytes and vascular smooth muscle cells, may acquire a myofibroblast-like synthetic phenotype contributing to both SSc-related vascular dysfunction and fibrosis. A deeper understanding of the mechanisms underlying the differentiation of myofibroblasts inside the vessel wall provides the rationale for novel targeted therapeutic strategies for the treatment of SSc.
Collapse
Affiliation(s)
- Eloisa Romano
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, 50134 Florence, Italy; (E.R.); (B.S.F.); (M.M.-C.)
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy;
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, 50134 Florence, Italy; (E.R.); (B.S.F.); (M.M.-C.)
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, 50134 Florence, Italy; (E.R.); (B.S.F.); (M.M.-C.)
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy;
| |
Collapse
|
44
|
Yeo KP, Lim HY, Angeli V. Leukocyte Trafficking via Lymphatic Vessels in Atherosclerosis. Cells 2021; 10:cells10061344. [PMID: 34072313 PMCID: PMC8229118 DOI: 10.3390/cells10061344] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 02/03/2023] Open
Abstract
In recent years, lymphatic vessels have received increasing attention and our understanding of their development and functional roles in health and diseases has greatly improved. It has become clear that lymphatic vessels are critically involved in acute and chronic inflammation and its resolution by supporting the transport of immune cells, fluid, and macromolecules. As we will discuss in this review, the involvement of lymphatic vessels has been uncovered in atherosclerosis, a chronic inflammatory disease of medium- and large-sized arteries causing deadly cardiovascular complications worldwide. The progression of atherosclerosis is associated with morphological and functional alterations in lymphatic vessels draining the diseased artery. These defects in the lymphatic vasculature impact the inflammatory response in atherosclerosis by affecting immune cell trafficking, lymphoid neogenesis, and clearance of macromolecules in the arterial wall. Based on these new findings, we propose that targeting lymphatic function could be considered in conjunction with existing drugs as a treatment option for atherosclerosis.
Collapse
|
45
|
Wu B, You S, Qian H, Wu S, Lu S, Zhang Y, Sun Y, Zhang N. The role of SIRT2 in vascular-related and heart-related diseases: A review. J Cell Mol Med 2021; 25:6470-6478. [PMID: 34028177 PMCID: PMC8278089 DOI: 10.1111/jcmm.16618] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
At present, cardiovascular disease is one of the important factors of human death, and there are many kinds of proteins involved. Sirtuins family proteins are involved in various physiological and pathological activities of the human body. Among them, there are more and more studies on the relationship between sirtuin2 (SIRT2) protein and cardiovascular diseases. SIRT2 can effectively inhibit pathological cardiac hypertrophy. The effect of SIRT2 on ischaemia‐reperfusion injury has different effects under different conditions. SIRT2 can reduce the level of reactive oxygen species (ROS), which may help to reduce the severity of diabetic cardiomyopathy. SIRT2 can affect a variety of cardiovascular diseases, energy metabolism and the ageing of cardiomyocytes, thereby affecting heart failure. SIRT2 also plays an important role in vascular disease. For endothelial cell damage used by oxidative stress, the role of SIRT2 is bidirectional, which is related to the degree of oxidative stress stimulation. When the degree of stimulation is small, SIRT2 plays a protective role, and when the degree of stimulation increases to a certain level, SIRT2 plays a negative role. In addition, SIRT2 is also involved in the remodelling of blood vessels and the repair of skin damage.
Collapse
Affiliation(s)
- Boquan Wu
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Shilong You
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Hao Qian
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Shaojun Wu
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Saien Lu
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Ying Zhang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
46
|
Kobayashi M, Ohara M, Hashimoto Y, Nakamura N, Fujisato T, Kimura T, Kishida A. Effect of luminal surface structure of decellularized aorta on thrombus formation and cell behavior. PLoS One 2021; 16:e0246221. [PMID: 33999919 PMCID: PMC8128234 DOI: 10.1371/journal.pone.0246221] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/03/2021] [Indexed: 11/18/2022] Open
Abstract
Due to an increasing number of cardiovascular diseases, artificial heart valves and blood vessels have been developed. Although cardiovascular applications using decellularized tissue have been studied, the mechanisms of their functionality remain unknown. To determine the important factors for preparing decellularized cardiovascular prostheses that show good in vivo performance, the effects of the luminal surface structure of the decellularized aorta on thrombus formation and cell behavior were investigated. Various luminal surface structures of a decellularized aorta were prepared by heating, drying, and peeling. The luminal surface structure and collagen denaturation were evaluated by immunohistological staining, collagen hybridizing peptide (CHP) staining, and scanning electron microscopy (SEM) analysis. To evaluate the effects of luminal surface structure of decellularized aorta on thrombus formation and cell behavior, blood clotting tests and recellularization of endothelial cells and smooth muscle cells were performed. The results of the blood clotting test showed that the closer the luminal surface structure is to the native aorta, the higher the anti-coagulant property. The results of the cell seeding test suggest that vascular cells recognize the luminal surface structure and regulate adhesion, proliferation, and functional expression accordingly. These results provide important factors for preparing decellularized cardiovascular prostheses and will lead to future developments in decellularized cardiovascular applications.
Collapse
Affiliation(s)
- Mako Kobayashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, Japan
| | - Masako Ohara
- Department of Bioscience and Engineering, Shibaura Institute of Technology, Minuma-ku, Saitama-shi, Saitama, Japan
| | - Yoshihide Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, Japan
| | - Naoko Nakamura
- Department of Bioscience and Engineering, Shibaura Institute of Technology, Minuma-ku, Saitama-shi, Saitama, Japan
| | - Toshiya Fujisato
- Department of Biomedical Engineering, Osaka Institute of Technology, Asahi-ku, Osaka, Japan
| | - Tsuyoshi Kimura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, Japan
| | - Akio Kishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
47
|
Kutikhin AG, Feenstra L, Kostyunin AE, Yuzhalin AE, Hillebrands JL, Krenning G. Calciprotein Particles: Balancing Mineral Homeostasis and Vascular Pathology. Arterioscler Thromb Vasc Biol 2021; 41:1607-1624. [PMID: 33691479 PMCID: PMC8057528 DOI: 10.1161/atvbaha.120.315697] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Anton G. Kutikhin
- Laboratory for Vascular Biology, Division of Experimental and Clinical Cardiology, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation (A.G.K., A.E.K., A.E.Y.)
| | - Lian Feenstra
- Department of Pathology and Medical Biology, Division of Pathology (L.F., J.-L.H.), University Medical Center Groningen, University of Groningen, the Netherlands
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology (L.F., G.K.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Alexander E. Kostyunin
- Laboratory for Vascular Biology, Division of Experimental and Clinical Cardiology, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation (A.G.K., A.E.K., A.E.Y.)
| | - Arseniy E. Yuzhalin
- Laboratory for Vascular Biology, Division of Experimental and Clinical Cardiology, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation (A.G.K., A.E.K., A.E.Y.)
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, Division of Pathology (L.F., J.-L.H.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Guido Krenning
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology (L.F., G.K.), University Medical Center Groningen, University of Groningen, the Netherlands
- Sulfateq B.V., Admiraal de Ruyterlaan 5, 9726 GN, Groningen, the Netherlands (G.K.)
| |
Collapse
|
48
|
Marques ARA, Ramos C, Machado-Oliveira G, Vieira OV. Lysosome (Dys)function in Atherosclerosis-A Big Weight on the Shoulders of a Small Organelle. Front Cell Dev Biol 2021; 9:658995. [PMID: 33855029 PMCID: PMC8039146 DOI: 10.3389/fcell.2021.658995] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is a progressive insidious chronic disease that underlies most of the cardiovascular pathologies, including myocardial infarction and ischemic stroke. The malfunctioning of the lysosomal compartment has a central role in the etiology and pathogenesis of atherosclerosis. Lysosomes are the degradative organelles of mammalian cells and process endogenous and exogenous substrates in a very efficient manner. Dysfunction of these organelles and consequent inefficient degradation of modified low-density lipoproteins (LDL) and apoptotic cells in atherosclerotic lesions have, therefore, numerous deleterious consequences for cellular homeostasis and disease progression. Lysosome dysfunction has been mostly studied in the context of the inherited lysosomal storage disorders (LSDs). However, over the last years it has become increasingly evident that the consequences of this phenomenon are more far-reaching, also influencing the progression of multiple acquired human pathologies, such as neurodegenerative diseases, cancer, and cardiovascular diseases (CVDs). During the formation of atherosclerotic plaques, the lysosomal compartment of the various cells constituting the arterial wall is under severe stress, due to the tremendous amounts of lipoproteins being processed by these cells. The uncontrolled uptake of modified lipoproteins by arterial phagocytic cells, namely macrophages and vascular smooth muscle cells (VSMCs), is the initial step that triggers the pathogenic cascade culminating in the formation of atheroma. These cells become pathogenic "foam cells," which are characterized by dysfunctional lipid-laden lysosomes. Here, we summarize the current knowledge regarding the origin and impact of the malfunctioning of the lysosomal compartment in plaque cells. We further analyze how the field of LSD research may contribute with some insights to the study of CVDs, particularly how therapeutic approaches that target the lysosomes in LSDs could be applied to hamper atherosclerosis progression and associated mortality.
Collapse
Affiliation(s)
- André R A Marques
- iNOVA4Health, Chronic Diseases Research Center (CEDOC), NOVA Medical School (NMS), Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Cristiano Ramos
- iNOVA4Health, Chronic Diseases Research Center (CEDOC), NOVA Medical School (NMS), Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Gisela Machado-Oliveira
- iNOVA4Health, Chronic Diseases Research Center (CEDOC), NOVA Medical School (NMS), Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Otília V Vieira
- iNOVA4Health, Chronic Diseases Research Center (CEDOC), NOVA Medical School (NMS), Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
49
|
Effects from the induction of heat shock proteins in a murine model due to progression of aortic atherosclerosis. Sci Rep 2021; 11:7025. [PMID: 33782520 PMCID: PMC8007726 DOI: 10.1038/s41598-021-86601-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 03/18/2021] [Indexed: 02/05/2023] Open
Abstract
Heat shock proteins (HSPs) are molecular chaperones that repair denatured proteins. The relationship between HSPs and various diseases has been extensively studied. However, the relationship between HSPs and atherosclerosis remains unclear. In this study, we induced the expression of HSPs and analyzed the effects on the development/progression of atherosclerosis in vivo. Remarkably, when HSPs were induced in apolipoprotein E deficient (ApoE-/-) mice prior to the formation of atheromas, the progression of atherosclerosis was inhibited; the short-term induction of HSPs significantly decreased the mRNA expression of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) in the aorta. In contrast, the induction of HSPs after the formation of atheromas promoted the progression of atherosclerosis. In fact, the short-term induction of HSPs, after the formation of atheromas, significantly increased the mRNA expression of tumor necrosis factor-alpha, and interleukin 6 in the aorta. Of note, the induction of HSPs also promoted the formation of macrophage-derived foam cells. Overall, these results indicate that HSPs exerts different effects in the context of aortic atherosclerosis, depending on its degree of progression. Therefore, the induction and inhibition of HSPs should be considered for the prevention and treatment of atherosclerosis, respectively.
Collapse
|
50
|
Wang Y. Predicting new silent cerebral infarction after intracerebral hemorrhage using serum white blood cell count. CASPIAN JOURNAL OF INTERNAL MEDICINE 2021; 12:97-102. [PMID: 33680405 PMCID: PMC7919177 DOI: 10.22088/cjim.12.1.97] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Background It has been confirmed that incidental silent cerebral infarctions (SCIs) found in healthy people may be risk factors for cerebrovascular diseases such as strokes and vascular dementia. The prospective study aimed to determine the utility of baseline serum white blood cell (WBC) counts to predict the emergence of new SCI after intracranial hemorrhage (ICH). Methods This is a prospective study. From January 2016 to December 2017, we recruited 171 patients admitted to the neurology department of the Affiliated Shuyang Hospital of Xuzhou Medical University with a first episode of ICH. Serum WBC count was measured on admission. SCI was detected by cranial magnetic resonance imaging (MRI) 14 days after the onset of the ICH. Receiver operating characteristic curve analysis was used to calculate the most appropriate cut-off values of the WBC count for differentiating patients with and without SCI at the end of the study period. Results New SCIs were detected in 28.07% of patients by cranial MRI. Multivariate logistic regression analysis showed that cerebral microbleeds (CMBs), raised WBC counts, and leukoaraiosis were independent risk factors for SCI. The most appropriate cut-off WBC count differentiating the two groups was 7.65×109/L (sensitivity: 77.08%, specificity: 63.41%). Conclusion Elevated levels of serum WBC counts in patients with ICH are associated with SCI. There is potential value in using serum WBC counts to predict new SCI after an acute hemorrhagic stroke.
Collapse
Affiliation(s)
- Yuanwei Wang
- 1. Department of Neurology, The Affiliated Shuyang Hospital of Xuzhou Medical University, Shuyang, Jiangsu, China
| |
Collapse
|