1
|
McLamb F, Feng Z, Vu JP, Griffin L, Vasquez MF, Bozinovic G. Lagging Brain Gene Expression Patterns of Drosophila melanogaster Young Adult Males Confound Comparisons Between Sexes. Mol Neurobiol 2024:10.1007/s12035-024-04427-7. [PMID: 39196495 DOI: 10.1007/s12035-024-04427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024]
Abstract
Many species, including fruit flies (Drosophila melanogaster), are sexually dimorphic. Phenotypic variation in morphology, physiology, and behavior can affect development, reproduction, health, and aging. Therefore, designating sex as a variable and sex-blocking should be considered when designing experiments. The brain regulates phenotypes throughout the lifespan by balancing survival and reproduction, and sex-specific development at each life stage is likely. Changes in morphology and physiology are governed by differential gene expression, a quantifiable molecular marker for age- and sex-specific variations. We assessed the fruit fly brain transcriptome at three adult ages for gene expression signatures of sex, age, and sex-by-age: 6698 genes were differentially expressed between sexes, with the most divergence at 3 days. Between ages, 31.1% of 6084 differentially expressed genes (1890 genes) share similar expression patterns from 3 to 7 days in females, and from 7 to 14 days in males. Most of these genes (90.5%, 1712) were upregulated and enriched for chemical stimulus detection and/or cilium regulation. Our data highlight an important delay in male brain gene regulation compared to females. Because significant delays in expression could confound comparisons between sexes, studies of sexual dimorphism at phenotypically comparable life stages rather than chronological age should be more biologically relevant.
Collapse
Affiliation(s)
- Flannery McLamb
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, USA
| | - Zuying Feng
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA
| | - Jeanne P Vu
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA
- Graduate School of Public Health, San Diego State University, San Diego, CA, USA
| | - Lindsey Griffin
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, USA
| | - Miguel F Vasquez
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, USA
| | - Goran Bozinovic
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA.
- Graduate School of Public Health, San Diego State University, San Diego, CA, USA.
- Center for Life in Extreme Environments, Portland State University, Portland, OR, USA.
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Khan S, Mishra RK. Multigenerational Effect of Heat Stress on the Drosophila melanogaster Sperm Proteome. J Proteome Res 2024. [PMID: 38743012 DOI: 10.1021/acs.jproteome.4c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The effect of the parental environment on offspring through non-DNA sequence-based mechanisms, such as DNA methylation, chromatin modifications, noncoding RNAs, and proteins, could only be established after the conception of "epigenetics". These effects are now broadly referred to as multigenerational epigenetic effects. Despite accumulating evidence of male gamete-mediated multigenerational epigenetic inheritance, little is known about the factors that underlie heat stress-induced multigenerational epigenetic inheritance via the male germline in Drosophila. In this study, we address this gap by utilizing an established heat stress paradigm in Drosophila and investigating its multigenerational effect on the sperm proteome. Our findings indicate that multigenerational heat stress during the early embryonic stage significantly influences proteins in the sperm associated with translation, chromatin organization, microtubule-based processes, and the generation of metabolites and energy. Assessment of life-history traits revealed that reproductive fitness and stress tolerance remained unaffected by multigenerational heat stress. Our study offers initial insights into the chromatin-based epigenetic mechanisms as a plausible means of transmitting heat stress memory through the male germline in Drosophila. Furthermore, it sheds light on the repercussions of early embryonic heat stress on male reproductive potential. The data sets from this study are available at the ProteomeXchange Consortium under the identifier PXD037488.
Collapse
Affiliation(s)
- Shagufta Khan
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad-500 007, Telangana, India
| | - Rakesh K Mishra
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad-500 007, Telangana, India
- Tata Institute for Genetics and Society, Bengaluru-560 065, Karnataka, India
| |
Collapse
|
3
|
Gabrawy MM, Westbrook R, King A, Khosravian N, Ochaney N, DeCarvalho T, Wang Q, Yu Y, Huang Q, Said A, Abadir M, Zhang C, Khare P, Fairman JE, Le A, Milne GL, Vonhoff FJ, Walston JD, Abadir PM. Dual treatment with kynurenine pathway inhibitors and NAD + precursors synergistically extends life span in Drosophila. Aging Cell 2024; 23:e14102. [PMID: 38481042 PMCID: PMC11019140 DOI: 10.1111/acel.14102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 04/17/2024] Open
Abstract
Tryptophan catabolism is highly conserved and generates important bioactive metabolites, including kynurenines, and in some animals, NAD+. Aging and inflammation are associated with increased levels of kynurenine pathway (KP) metabolites and depleted NAD+, factors which are implicated as contributors to frailty and morbidity. Contrastingly, KP suppression and NAD+ supplementation are associated with increased life span in some animals. Here, we used DGRP_229 Drosophila to elucidate the effects of KP elevation, KP suppression, and NAD+ supplementation on physical performance and survivorship. Flies were chronically fed kynurenines, KP inhibitors, NAD+ precursors, or a combination of KP inhibitors with NAD+ precursors. Flies with elevated kynurenines had reduced climbing speed, endurance, and life span. Treatment with a combination of KP inhibitors and NAD+ precursors preserved physical function and synergistically increased maximum life span. We conclude that KP flux can regulate health span and life span in Drosophila and that targeting KP and NAD+ metabolism can synergistically increase life span.
Collapse
Affiliation(s)
- Mariann M. Gabrawy
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Reyhan Westbrook
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Austin King
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| | - Nick Khosravian
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| | - Neeraj Ochaney
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| | - Tagide DeCarvalho
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| | - Qinchuan Wang
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Yuqiong Yu
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Qiao Huang
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Adam Said
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
- Emory UniversityAtlantaGeorgiaUSA
| | - Michael Abadir
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
- University of Maryland, College ParkCollege ParkMarylandUSA
| | | | | | - Jennifer E. Fairman
- Department of Arts as Applied to MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Anne Le
- Gigantest Inc.BaltimoreMarylandUSA
| | - Ginger L. Milne
- Vanderbilt UniversityVanderbilt Brain Institute, Neurochemistry CoreNashvilleTennesseeUSA
| | - Fernando J. Vonhoff
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| | - Jeremy D. Walston
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Peter M. Abadir
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
4
|
Perlegos AE, Byrns CN, Bonini NM. Cell type-specific regulation of m 6 A modified RNAs in the aging Drosophila brain. Aging Cell 2024; 23:e14076. [PMID: 38205931 PMCID: PMC10928574 DOI: 10.1111/acel.14076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The aging brain is highly vulnerable to cellular stress, and neurons employ numerous mechanisms to combat neurotoxic proteins and promote healthy brain aging. The RNA modification m6 A is highly enriched in the Drosophila brain and is critical for the acute heat stress response of the brain. Here we examine m6 A in the fly brain with the chronic stresses of aging and degenerative disease. m6 A levels dynamically increased with both age and disease in the brain, marking integral neuronal identity and signaling pathway transcripts that decline in level with age and disease. Unexpectedly, there is opposing impact of m6 A transcripts in neurons versus glia, which conferred different outcomes on animal health span upon Mettl3 knockdown to reduce m6 A: whereas Mettl3 function is normally beneficial to neurons, it is deleterious to glia. Moreover, knockdown of Mettl3 in glial tauopathy reduced tau pathology and increased animal survival. These findings provide mechanistic insight into regulation of m6 A modified transcripts with age and disease, highlighting an overall beneficial function of Mettl3 in neurons in response to chronic stresses, versus a deleterious impact in glia.
Collapse
Affiliation(s)
- Alexandra E. Perlegos
- Neuroscience Graduate Group, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - China N. Byrns
- Neuroscience Graduate Group, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Medical Scientist Training Program, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Nancy M. Bonini
- Neuroscience Graduate Group, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
5
|
Wu Z, Qu J, Zhang W, Liu GH. Stress, epigenetics, and aging: Unraveling the intricate crosstalk. Mol Cell 2024; 84:34-54. [PMID: 37963471 DOI: 10.1016/j.molcel.2023.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023]
Abstract
Aging, as a complex process involving multiple cellular and molecular pathways, is known to be exacerbated by various stresses. Because responses to these stresses, such as oxidative stress and genotoxic stress, are known to interplay with the epigenome and thereby contribute to the development of age-related diseases, investigations into how such epigenetic mechanisms alter gene expression and maintenance of cellular homeostasis is an active research area. In this review, we highlight recent studies investigating the intricate relationship between stress and aging, including its underlying epigenetic basis; describe different types of stresses that originate from both internal and external stimuli; and discuss potential interventions aimed at alleviating stress and restoring epigenetic patterns to combat aging or age-related diseases. Additionally, we address the challenges currently limiting advancement in this burgeoning field.
Collapse
Affiliation(s)
- Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; The Fifth People's Hospital of Chongqing, Chongqing 400062, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
6
|
Ito A, Matsuda N, Ukita Y, Okumura M, Chihara T. Akaluc/AkaLumine bioluminescence system enables highly sensitive, non-invasive and temporal monitoring of gene expression in Drosophila. Commun Biol 2023; 6:1270. [PMID: 38097812 PMCID: PMC10721803 DOI: 10.1038/s42003-023-05628-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
Bioluminescence generated by luciferase and luciferin has been extensively used in biological research. However, detecting signals from deep tissues in vivo poses a challenge to traditional methods. To overcome this, the Akaluc and AkaLumine bioluminescent systems were developed, resulting in improved signal detection. We evaluate the potential of Akaluc/AkaLumine in Drosophila melanogaster to establish a highly sensitive, non-invasive, and temporal detection method for gene expression. Our results show that oral administration of AkaLumine to flies expressing Akaluc provided a higher luminescence signal than Luc/D-luciferin, with no observed harmful effects on flies. The Akaluc/AkaLumine system allows for monitoring of dynamic temporal changes in gene expression. Additionally, using the Akaluc fusion gene allows for mRNA splicing monitoring. Our findings indicate that the Akaluc/AkaLumine system is a powerful bioluminescence tool for analyzing gene expression in deep tissues and small numbers of cells in Drosophila.
Collapse
Affiliation(s)
- Akira Ito
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| | - Nagisa Matsuda
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| | - Yumiko Ukita
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| | - Misako Okumura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| | - Takahiro Chihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan.
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan.
| |
Collapse
|
7
|
Zhao Y, Su C, He B, Nie R, Wang Y, Ma J, Song J, Yang Q, Hao J. Dispersal from the Qinghai-Tibet plateau by a high-altitude butterfly is associated with rapid expansion and reorganization of its genome. Nat Commun 2023; 14:8190. [PMID: 38081828 PMCID: PMC10713551 DOI: 10.1038/s41467-023-44023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Parnassius glacialis is a typical "Out of the QTP" alpine butterfly that originated on the Qinghai-Tibet Plateau (QTP) and dispersed into relatively low-altitude mountainous. Here we assemble a chromosome-level genome of P. glacialis and resequence 9 populations in order to explore the genome evolution and local adaptation of this species. These results indicated that the rapid accumulation and slow unequal recombination of transposable elements (TEs) contributed to the formation of its large genome. Several ribosomal gene families showed extensive expansion and selective evolution through transposon-mediated processed pseudogenes. Additionally, massive structural variations (SVs) of TEs affected the genetic differentiation of low-altitude populations. These low-altitude populations might have experienced a genetic bottleneck in the past and harbor genes with selective signatures which may be responsible for the potential adaptation to low-altitude environments. These results provide a foundation for understanding genome evolution and local adaptation for "Out of the QTP" of P. glacialis.
Collapse
Affiliation(s)
- Youjie Zhao
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
- College of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming, 650224, Yunnan, China
| | - Chengyong Su
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Bo He
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Ruie Nie
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Yunliang Wang
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Junye Ma
- State Key Laboratory of Palaeobiology and Stratigraphy, Center for Excellence in Life and Palaeoenvironment, Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jingyu Song
- College of Animal Science, Shandong Agricultural University, Taian, 271000, China
| | - Qun Yang
- State Key Laboratory of Palaeobiology and Stratigraphy, Center for Excellence in Life and Palaeoenvironment, Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing, 210008, China.
- Nanjing College, University of Chinese Academy of Sciences, Nanjing, 211135, China.
| | - Jiasheng Hao
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
| |
Collapse
|
8
|
Bodelón A, Fablet M, Siqueira de Oliveira D, Vieira C, García Guerreiro MP. Impact of Heat Stress on Transposable Element Expression and Derived Small RNAs in Drosophila subobscura. Genome Biol Evol 2023; 15:evad189. [PMID: 37847062 PMCID: PMC10627563 DOI: 10.1093/gbe/evad189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023] Open
Abstract
Global warming is forcing insect populations to move and adapt, triggering adaptive genetic responses. Thermal stress is known to alter gene expression, repressing the transcription of active genes, and inducing others, such as those encoding heat shock proteins. It has also been related to the activation of some specific transposable element (TE) families. However, the actual magnitude of this stress on the whole genome and the factors involved in these genomic changes are still unclear. We studied mRNAs and small RNAs in gonads of two Drosophila subobscura populations, considered a good model to study adaptation to temperature changes. In control conditions, we found that a few genes and TE families were differentially expressed between populations, pointing out their putative involvement in the adaptation of populations to their different environments. Under heat stress, sex-specific changes in gene expression together with a trend toward overexpression, mainly of heat shock response-related genes, were observed. We did not observe large changes of TE expression nor small RNA production due to stress. Only population and sex-specific expression changes of some TE families (mainly retrotransposons), or the amounts of siRNAs and piRNAs, derived from specific TE families were observed, as well as the piRNA production from some piRNA clusters. Changes in small RNA amounts and TE expression could not be clearly correlated, indicating that other factors as chromatin modulation could also be involved. This work provides the first whole transcriptomic study including genes, TEs, and small RNAs after a heat stress in D. subobscura.
Collapse
Affiliation(s)
- Alejandra Bodelón
- Grup de Genòmica, Bioinformática i Biologia Evolutiva, Departament de Genètica i Microbiologia (Edifici C), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marie Fablet
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon; Université Lyon 1; CNRS; UMR 5558, Villeurbanne, France
- Institut universitaire de France, Paris, France
| | - Daniel Siqueira de Oliveira
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon; Université Lyon 1; CNRS; UMR 5558, Villeurbanne, France
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São Paulo, Brazil
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon; Université Lyon 1; CNRS; UMR 5558, Villeurbanne, France
| | - Maria Pilar García Guerreiro
- Grup de Genòmica, Bioinformática i Biologia Evolutiva, Departament de Genètica i Microbiologia (Edifici C), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Menail HA, Cormier SB, Léger A, Robichaud S, Hebert-Chatelain E, Lamarre SG, Pichaud N. Age-related flexibility of energetic metabolism in the honey bee Apis mellifera. FASEB J 2023; 37:e23222. [PMID: 37781970 DOI: 10.1096/fj.202300654r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/17/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023]
Abstract
The mechanisms that underpin aging are still elusive. In this study, we suggest that the ability of mitochondria to oxidize different substrates, which is known as metabolic flexibility, is involved in this process. To verify our hypothesis, we used honey bees (Apis mellifera carnica) at different ages, to assess mitochondrial oxygen consumption and enzymatic activities of key enzymes of the energetic metabolism as well as ATP5A1 content (subunit of ATP synthase) and adenylic energy charge (AEC). We also measured mRNA abundance of genes involved in mitochondrial functions and the antioxidant system. Our results demonstrated that mitochondrial respiration increased with age and favored respiration through complexes I and II of the electron transport system (ETS) while glycerol-3-phosphate (G3P) oxidation was relatively decreased. In addition, glycolytic, tricarboxylic acid cycle and ETS enzymatic activities increased, which was associated with higher ATP5A1 content and AEC. Furthermore, we detected an early decrease in the mRNA abundance of subunits of NADH ubiquinone oxidoreductase subunit B2 (NDUFB2, complex I), mitochondrial cytochrome b (CYTB, complex III) of the ETS as well as superoxide dismutase 1 and a later decrease for vitellogenin, catalase and mitochondrial cytochrome c oxidase subunit 1 (COX1, complex IV). Thus, our study suggests that the energetic metabolism is optimized with aging in honey bees, mainly through quantitative and qualitative mitochondrial changes, rather than showing signs of senescence. Moreover, aging modulated metabolic flexibility, which might reflect an underpinning mechanism that explains lifespan disparities between the different castes of worker bees.
Collapse
Affiliation(s)
- Hichem A Menail
- New Brunswick Centre for Precision Medicine, Moncton, New Brunswick, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Simon B Cormier
- New Brunswick Centre for Precision Medicine, Moncton, New Brunswick, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Adèle Léger
- New Brunswick Centre for Precision Medicine, Moncton, New Brunswick, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Samuel Robichaud
- New Brunswick Centre for Precision Medicine, Moncton, New Brunswick, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Etienne Hebert-Chatelain
- New Brunswick Centre for Precision Medicine, Moncton, New Brunswick, Canada
- Department of Biology, Université de Moncton, Moncton, New Brunswick, Canada
| | - Simon G Lamarre
- Department of Biology, Université de Moncton, Moncton, New Brunswick, Canada
| | - Nicolas Pichaud
- New Brunswick Centre for Precision Medicine, Moncton, New Brunswick, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| |
Collapse
|
10
|
Wodrich APK, Scott AW, Giniger E. What do we mean by "aging"? Questions and perspectives revealed by studies in Drosophila. Mech Ageing Dev 2023; 213:111839. [PMID: 37354919 PMCID: PMC10330756 DOI: 10.1016/j.mad.2023.111839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
What is the nature of aging, and how best can we study it? Here, using a series of questions that highlight differing perspectives about the nature of aging, we ask how data from Drosophila melanogaster at the organismal, tissue, cellular, and molecular levels shed light on the complex interactions among the phenotypes associated with aging. Should aging be viewed as an individual's increasing probability of mortality over time or as a progression of physiological states? Are all age-correlated changes in physiology detrimental to vigor or are some compensatory changes that maintain vigor? Why do different age-correlated functions seem to change at different rates in a single individual as it ages? Should aging be considered as a single, integrated process across the scales of biological resolution, from organismal to molecular, or must we consider each level of biological scale as a separate, distinct entity? Viewing aging from these differing perspectives yields distinct but complementary interpretations about the properties and mechanisms of aging and may offer a path through the complexities related to understanding the nature of aging.
Collapse
Affiliation(s)
- Andrew P K Wodrich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States; Interdisciplinary Program in Neuroscience, Georgetown University, Washington DC, United States; College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Andrew W Scott
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States.
| |
Collapse
|
11
|
Vershinina YS, Krasnov GS, Garbuz DG, Shaposhnikov MV, Fedorova MS, Pudova EA, Katunina IV, Kornev AB, Zemskaya NV, Kudryavtsev AA, Bulavkina EV, Matveeva AA, Ulyasheva NS, Guvatova ZG, Anurov AA, Moskalev AA, Kudryavtseva AV. Transcriptomic Analysis of the Effect of Torin-2 on the Central Nervous System of Drosophila melanogaster. Int J Mol Sci 2023; 24:ijms24109095. [PMID: 37240439 DOI: 10.3390/ijms24109095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/24/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Torin-2, a synthetic compound, is a highly selective inhibitor of both TORC1 and TORC2 (target of rapamycin) complexes as an alternative to the well-known immunosuppressor, geroprotector, and potential anti-cancer natural compound rapamycin. Torin-2 is effective at hundreds of times lower concentrations and prevents some negative side effects of rapamycin. Moreover, it inhibits the rapamycin-resistant TORC2 complex. In this work, we evaluated transcriptomic changes in D. melanogaster heads induced with lifetime diets containing Torin-2 and suggested possible neuroprotective mechanisms of Torin-2. The analysis included D. melanogaster of three ages (2, 4, and 6 weeks old), separately for males and females. Torin-2, taken at the lowest concentration being tested (0.5 μM per 1 L of nutrient paste), had a slight positive effect on the lifespan of D. melanogaster males (+4% on the average) and no positive effect on females. At the same time, RNA-Seq analysis revealed interesting and previously undiscussed effects of Torin-2, which differed between sexes as well as in flies of different ages. Among the cellular pathways mostly altered by Torin-2 at the gene expression level, we identified immune response, protein folding (heat shock proteins), histone modification, actin cytoskeleton organization, phototransduction and sexual behavior. Additionally, we revealed that Torin-2 predominantly reduced the expression of Srr gene responsible for the conversion of L-serine to D-serine and thus regulating activity of NMDA receptor. Via western blot analysis, we showed than in old males Torin-2 tends to increase the ratio of the active phosphorylated form of ERK, the lowest node of the MAPK cascade, which may play a significant role in neuroprotection. Thus, the complex effect of Torin-2 may be due to the interplay of the immune system, hormonal background, and metabolism. Our work is of interest for further research in the field of NMDA-mediated neurodegeneration.
Collapse
Affiliation(s)
- Yulia S Vershinina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - David G Garbuz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Maria S Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena A Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Irina V Katunina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey B Kornev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Nadezhda V Zemskaya
- Institute of Biology, Komi Science Center, Ural Branch of RAS, 167000 Syktyvkar, Russia
| | - Alexander A Kudryavtsev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elizaveta V Bulavkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna A Matveeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Natalia S Ulyasheva
- Institute of Biology, Komi Science Center, Ural Branch of RAS, 167000 Syktyvkar, Russia
| | - Zulfiya G Guvatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Artemiy A Anurov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey A Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
12
|
Liang C, Li L, Zhao H, Lan M, Tang Y, Zhang M, Qin D, Wu G, Gao X. Identification and expression analysis of heat shock protein family genes of gall fly (Procecidochares utilis) under temperature stress. Cell Stress Chaperones 2023; 28:303-320. [PMID: 37071342 PMCID: PMC10167091 DOI: 10.1007/s12192-023-01338-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/19/2023] Open
Abstract
Heat shock proteins (HSP) are molecular chaperones involved in many normal cellular processes and environmental stresses. At the genome-wide level, there were no reports on the diversity and phylogeny of the heat shock protein family in Procecidochares utilis. In this study, 43 HSPs were identified from the genome of P. utilis, including 12 small heat shock proteins (sHSPs), 23 heat shock protein 40 (DNAJs), 6 heat shock protein 70 (HSP70s), and 2 heat shock protein 90 (HSP90s). The characteristics of these candidates HSP genes were analyzed by BLAST, and then phylogenetic analysis was carried out. Quantitative real-time PCR (qRT-PCR) was used to analyze the spatiotemporal expression patterns of sHSPs and HSP70s in P. utilis after temperature stress. Results showed that most sHSPs could be induced under heat stress during the adult stage of P. utilis, while a few HSP70s could be induced at the larval stage. This study provides an information framework for the HSP family of P. utilis. Moreover, it lays an important foundation for a better understanding of the role of HSP in the adaptability of P. utilis to various environments.
Collapse
Affiliation(s)
- Chen Liang
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201 China
| | - Lifang Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201 China
| | - Hang Zhao
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201 China
| | - Mingxian Lan
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201 China
| | - Yongyu Tang
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201 China
| | - Man Zhang
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201 China
| | - Deqiang Qin
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201 China
| | - Guoxing Wu
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201 China
| | - Xi Gao
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201 China
| |
Collapse
|
13
|
Castejon-Vega B, Cordero MD, Sanz A. How the Disruption of Mitochondrial Redox Signalling Contributes to Ageing. Antioxidants (Basel) 2023; 12:antiox12040831. [PMID: 37107206 PMCID: PMC10135186 DOI: 10.3390/antiox12040831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
In the past, mitochondrial reactive oxygen species (mtROS) were considered a byproduct of cellular metabolism. Due to the capacity of mtROS to cause oxidative damage, they were proposed as the main drivers of ageing and age-related diseases. Today, we know that mtROS are cellular messengers instrumental in maintaining cellular homeostasis. As cellular messengers, they are produced in specific places at specific times, and the intensity and duration of the ROS signal determine the downstream effects of mitochondrial redox signalling. We do not know yet all the processes for which mtROS are important, but we have learnt that they are essential in decisions that affect cellular differentiation, proliferation and survival. On top of causing damage due to their capacity to oxidize cellular components, mtROS contribute to the onset of degenerative diseases when redox signalling becomes dysregulated. Here, we review the best-characterized signalling pathways in which mtROS participate and those pathological processes in which they are involved. We focus on how mtROS signalling is altered during ageing and discuss whether the accumulation of damaged mitochondria without signalling capacity is a cause or a consequence of ageing.
Collapse
|
14
|
Immonen E, Sayadi A, Stojković B, Savković U, Đorđević M, Liljestrand-Rönn J, Wiberg RAW, Arnqvist G. Experimental Life History Evolution Results in Sex-specific Evolution of Gene Expression in Seed Beetles. Genome Biol Evol 2022; 15:6948356. [PMID: 36542472 PMCID: PMC9830990 DOI: 10.1093/gbe/evac177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The patterns of reproductive timing and senescence vary within and across species owing to differences in reproductive strategies, but our understanding of the molecular underpinnings of such variation is incomplete. This is perhaps particularly true for sex differences. We investigated the evolution of sex-specific gene expression associated with life history divergence in replicated populations of the seed beetle Acanthoscelides obtectus, experimentally evolving under (E)arly or (L)ate life reproduction for >200 generations which has resulted in strongly divergent life histories. We detected 1,646 genes that were differentially expressed in E and L lines, consistent with a highly polygenic basis of life history evolution. Only 30% of differentially expressed genes were similarly affected in males and females. The evolution of long life was associated with significantly reduced sex differences in expression, especially in non-reproductive tissues. The expression differences were overall more pronounced in females, in accordance with their greater phenotypic divergence in lifespan. Functional enrichment analysis revealed differences between E and L beetles in gene categories previously implicated in aging, such as mitochondrial function and defense response. The results show that divergent life history evolution can be associated with profound changes in gene expression that alter the transcriptome in a sex-specific way, highlighting the importance of understanding the mechanisms of aging in each sex.
Collapse
Affiliation(s)
| | - Ahmed Sayadi
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Biljana Stojković
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia,Faculty of Biology, Institute of Zoology, University of Belgrade, Belgrade, Serbia
| | - Uroš Savković
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mirko Đorđević
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | - R Axel W Wiberg
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Yan S, Li N, Guo Y, Chen Y, Ji C, Yin M, Shen J, Zhang J. Chronic exposure to the star polycation (SPc) nanocarrier in the larval stage adversely impairs life history traits in Drosophila melanogaster. J Nanobiotechnology 2022; 20:515. [PMID: 36482441 PMCID: PMC9730587 DOI: 10.1186/s12951-022-01705-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Nanomaterials are widely used as pesticide adjuvants to increase pesticide efficiency and minimize environmental pollution. But it is increasingly recognized that nanocarrier is a double-edged sword, as nanoparticles are emerging as new environmental pollutants. This study aimed to determine the biotoxicity of a widely applied star polycation (SPc) nanocarrier using Drosophila melanogaster, the fruit fly, as an in vivo model. RESULTS The lethal concentration 50 (LC50) value of SPc was identified as 2.14 g/L toward third-instar larvae and 26.33 g/L for adults. Chronic exposure to a sub lethal concentration of SPc (1 g/L) in the larval stage showed long-lasting adverse effects on key life history traits. Exposure to SPc at larval stage adversely impacted the lifespan, fertility, climbing ability as well as stresses resistance of emerged adults. RNA-sequencing analysis found that SPc resulted in aberrant expression of genes involved in metabolism, innate immunity, stress response and hormone production in the larvae. Orally administrated SPc nanoparticles were mainly accumulated in intestine cells, while systemic responses were observed. CONCLUSIONS These findings indicate that SPc nanoparticles are hazardous to fruit flies at multiple levels, which could help us to develop guidelines for further large-scale application.
Collapse
Affiliation(s)
- Shuo Yan
- grid.22935.3f0000 0004 0530 8290Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193 China
| | - Na Li
- grid.22935.3f0000 0004 0530 8290Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193 China
| | - Yuankang Guo
- grid.22935.3f0000 0004 0530 8290Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193 China
| | - Yao Chen
- grid.22935.3f0000 0004 0530 8290Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193 China
| | - Chendong Ji
- grid.48166.3d0000 0000 9931 8406State Key Lab of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Meizhen Yin
- grid.48166.3d0000 0000 9931 8406State Key Lab of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Jie Shen
- grid.22935.3f0000 0004 0530 8290Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193 China
| | - Junzheng Zhang
- grid.22935.3f0000 0004 0530 8290Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
16
|
Ruan HY, Meng JY, Yang CL, Zhou L, Zhang CY. Identification of Six Small Heat Shock Protein Genes in Ostrinia furnacalis (Lepidoptera: Pyralidae) and Analysis of Their Expression Patterns in Response to Environmental Stressors. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:7. [PMID: 36469365 PMCID: PMC9721345 DOI: 10.1093/jisesa/ieac069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 06/17/2023]
Abstract
Ostrinia furnacalis (Guenée) is a major insect pest in maize production that is highly adaptable to the environment. Small heat shock proteins (sHsps) are a class of chaperone proteins that play an important role in insect responses to various environmental stresses. The present study aimed to clarify the responses of six O. furnacalis sHsps to environmental stressors. In particular, we cloned six sHsp genes, namely, OfHsp24.2, OfHsp21.3, OfHsp20.7, OfHsp21.8, OfHsp29.7, and OfHsp19.9, from O. furnacalis. The putative proteins encoded by these genes contained a typical α-crystallin domain. Real-time quantitative polymerase chain reaction was used to analyze the differences in the expression of these genes at different developmental stages, in different tissues of male and female adults, and in O. furnacalis under UV-A and extreme temperature stresses. The six OfsHsp genes were expressed at significantly different levels based on the developmental stage and tissue type in male and female adults. Furthermore, all OfsHsp genes were significantly upregulated in both male and female adults under extreme temperature and UV-A stresses. Thus, O. furnacalis OfsHsp genes play important and unique regulatory roles in the developmental stages of the insect and in response to various environmental stressors.
Collapse
Affiliation(s)
- Hong-Yun Ruan
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou 550025, People’s Republic of China
| | - Jian-Yu Meng
- Guizhou Tobacco Science Research Institute, Guiyang, Guizhou 550081, People’s Republic of China
| | - Chang-Li Yang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou 550025, People’s Republic of China
| | - Lv Zhou
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou 550025, People’s Republic of China
| | | |
Collapse
|
17
|
Shen JL, Doherty J, Allen E, Fortier TM, Baehrecke EH. Atg6 promotes organismal health by suppression of cell stress and inflammation. Cell Death Differ 2022; 29:2275-2287. [PMID: 35523956 PMCID: PMC9614006 DOI: 10.1038/s41418-022-01014-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/08/2022] Open
Abstract
Autophagy targets cytoplasmic materials for degradation, and influences cell health. Alterations in Atg6/Beclin-1, a key regulator of autophagy, are associated with multiple diseases. While the role of Atg6 in autophagy regulation is heavily studied, the role of Atg6 in organism health and disease progression remains poorly understood. Here, we discover that loss of Atg6 in Drosophila results in various alterations to stress, metabolic and immune signaling pathways. We find that the increased levels of circulating blood cells and tumor-like masses in atg6 mutants vary depending on tissue-specific function of Atg6, with contributions from intestine and hematopoietic cells. These phenotypes are suppressed by decreased function of macrophage and inflammatory response receptors crq and drpr. Thus, these findings provide a basis for understanding how Atg6 systemically regulates cell health within multiple organs, and highlight the importance of Atg6 in inflammation to organismal health.
Collapse
Affiliation(s)
- James L Shen
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Johnna Doherty
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Elizabeth Allen
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Tina M Fortier
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
18
|
Güneş E, Şensoy E. Is Turkish coffee protects Drosophila melanogaster on cadmium acetate toxicity by promoting antioxidant enzymes? CHEMOSPHERE 2022; 296:133972. [PMID: 35192850 DOI: 10.1016/j.chemosphere.2022.133972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
With their increasing use in today's industry, heavy metals cause biochemical and biophysical changes by affecting the control and regulatory systems of living things. Cadmium (Cd), a heavy metal, spreads to the environment through both natural sources and industrial activities. It is taken into the organism through water, food, skin contact or smoke. Systems and organs of living things are directly or indirectly affected by Cd toxicity. Besides their recreational usage, herbal products such as coffee are preferred in alternative medicine because of their antioxidant, anti-inflammatory, anticancer and antidiabetic effects. Turkish coffee (TK) is a drink rich in flavorings, phenolic compounds and antioxidant compounds. The study evaluated the possible antioxidant role of TK against oxidative stress induced by Cadmium acetate (CdA) in the fat tissues of old-young female individuals of Drosophila melanogaster. The female flies were fed with either a standard diet, or CdA (10-30 mg), or TK (2%), or both (CdA + TK) for 3 and 10 days. Following the completion of the feeding period, the amounts of fatbody and oxidative stress markers (oxidative stress index, malondialdehyde), activities of antioxidant enzymes (Glutathione-S-transferase, Catalase, and Superoxide dismutase) and their levels were measured. Fat body lipid droplets were high in the individuals exposed to high concentrations of CdA. It was determined that lipid droplets decreased but did not significantly alter oxidative stress in the individuals treated with TK (p = 0.05). This article may be of help in terms of the use of TK compounds as antioxidants to evaluate their effects in preventing heavy metal accumulation and stress in the aging process.
Collapse
Affiliation(s)
- Eda Güneş
- Department of Gastronomy and Culinary Arts, Faculty of Tourism, Necmettin Erbakan University, Konya, Turkey.
| | - Erhan Şensoy
- Department of Midwifery, Faculty of Health Science, Karamanoğlu Mehmetbey University, Karaman, Turkey.
| |
Collapse
|
19
|
Liu J, Peng W, Yu F, Shen Y, Yu W, Lu Y, Lin W, Zhou M, Huang Z, Luo X, You W, Ke C. Genomic selection applications can improve the environmental performance of aquatics: A case study on the heat tolerance of abalone. Evol Appl 2022; 15:992-1001. [PMID: 35782008 PMCID: PMC9234619 DOI: 10.1111/eva.13388] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/02/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022] Open
Abstract
Aquaculture is one of the world's fastest-growing and most traded food industries, but it is under the threat of climate-related risks represented by global warming, marine heatwave (MHW) events, ocean acidification, and deoxygenation. For the sustainable development of aquaculture, selective breeding may be a viable method to obtain aquatic economic species with greater tolerance to environmental stressors. In this study, we estimated the heritability of heat tolerance trait of Pacific abalone Haliotis discus hannai, performed genome-wide association studies (GWAS) analysis for heat tolerance to detect single nucleotide polymorphisms (SNPs) and candidate genes, and assessed the potential of genomic selection (GS) in the breeding of abalone industry. A total of 1120 individuals were phenotyped for their heat tolerance and genotyped with 64,788 quality-controlled SNPs. The heritability of heat tolerance was moderate (0.35-0.42) and the predictive accuracy estimated using BayesB (0.55 ± 0.05) was higher than that using GBLUP (0.40 ± 0.01). A total of 11 genome-wide significant SNPs and 2 suggestive SNPs were associated with heat tolerance of abalone, and 13 candidate genes were identified, including got2,znfx1,l(2)efl, and lrp5. Based on GWAS results, the prediction accuracy using the top 5K SNPs was higher than that using randomly selected SNPs and higher than that using all SNPs. These results suggest that GS is an efficient approach for improving the heat tolerance of abalone and pave the way for abalone selecting breeding programs in rapidly changing oceans.
Collapse
Affiliation(s)
- Junyu Liu
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Wenzhu Peng
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Feng Yu
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Yawei Shen
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Wenchao Yu
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Yisha Lu
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Weihong Lin
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Muzhi Zhou
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Zekun Huang
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Xuan Luo
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Weiwei You
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
- Fujian Key Laboratory of Genetics and Breeding of Marine OrganismsXiamen UniversityXiamenChina
| |
Collapse
|
20
|
Pandey M, Bansal S, Chawla G. Evaluation of lifespan promoting effects of biofortified wheat in Drosophila melanogaster. Exp Gerontol 2022; 160:111697. [PMID: 35016996 PMCID: PMC7613042 DOI: 10.1016/j.exger.2022.111697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/15/2021] [Accepted: 01/05/2022] [Indexed: 11/04/2022]
Abstract
Evaluation of nutritionally enhanced biofortified dietary interventions that increase lifespan may uncover cost-effective and sustainable approaches for treatment of age-related morbidities and increasing healthy life expectancy. In this study, we report that anthocyanin rich, high yielding crossbred blue wheat prolongs lifespan of Drosophila melanogaster in different dietary contexts. In addition to functioning as an antioxidant rich intervention, the biofortified blue wheat also works through modulating expression of DR pathway genes including AMPK alpha, SREBP, PEPCK and Cry. Supplementation with blue- or purple-colored wheat provided better protection against paraquat-induced oxidative stress than control diet and increased survivability of flies in which superoxide dismutase 2 was knocked down conditionally in adults. Lastly, our findings indicate that supplementing biofortified blue wheat formulated diet prevented the decrease in lifespan and cardiac structural pathologies associated with intake of high fat diet. Overall, our findings indicate that plant-based diets formulated with biofortified cereal crops promote healthy ageing and delay progression of diseases that are exacerbated by accumulation of oxidative damage.
Collapse
Affiliation(s)
- Manish Pandey
- RNA Biology Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Sakshi Bansal
- RNA Biology Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Geetanjali Chawla
- RNA Biology Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India.
| |
Collapse
|
21
|
Gu X, Chen W, Perry T, Batterham P, Hoffmann AA. Genomic knockout of hsp23 both decreases and increases fitness under opposing thermal extremes in Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 139:103652. [PMID: 34562590 DOI: 10.1016/j.ibmb.2021.103652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/10/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Under exposure to harmful environmental stresses, organisms exhibit a general stress response involving upregulation of the expression of heat shock proteins (HSPs) which is thought to be adaptive. Small heat shock proteins (sHSPs) are key components of this response, although shsp genes may have other essential roles in development. However, the upregulation of expression of a suite of genes under stress may not necessarily be evidence of an adaptive response to stress that involves those genes. To explore this issue, we used the CRISPR/Cas9 system to investigate pleiotropic effects of the hsp23 gene in Drosophila melanogaster. Transgenic flies carrying a pCFD5 plasmid containing sgRNAs were created to generate a complete knockout of the hsp23 gene. The transgenic line lacking hsp23 showed an increased hatch rate and no major fitness costs under an intermediate temperature used for culturing the flies. In addition, hsp23 knockout affected tolerance to hot and cold temperature extremes but in opposing directions; knockout flies had reduced tolerance to cold, but increased tolerance to heat. Despite this, hsp23 expression (in wild type flies) was increased under both hot and cold conditions. The hsp23 gene was required for heat hardening at the pupal stage, but not at the 1st-instar larval stage, even though the gene was upregulated in wild type controls at that life stage. The phenotypic effects of hsp23 were not compensated for by expression changes in other shsps. Our study shows that the fitness consequences of an hsp gene knockout depends on environmental conditions, with potential fitness benefits of gene loss even under conditions when the gene is normally upregulated.
Collapse
Affiliation(s)
- Xinyue Gu
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia.
| | - Wei Chen
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Trent Perry
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Philip Batterham
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
22
|
Scholl A, Ndoja I, Jiang L. Drosophila Trachea as a Novel Model of COPD. Int J Mol Sci 2021; 22:ijms222312730. [PMID: 34884534 PMCID: PMC8658011 DOI: 10.3390/ijms222312730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/23/2022] Open
Abstract
COPD, a chronic obstructive pulmonary disease, is one of the leading causes of death worldwide. Clinical studies and research in rodent models demonstrated that failure of repair mechanisms to cope with increased ROS and inflammation in the lung leads to COPD. Despite this progress, the molecular mechanisms underlying the development of COPD remain poorly understood, resulting in a lack of effective treatments. Thus, an informative, simple model is highly valued and desired. Recently, the cigarette smoke-induced Drosophila COPD model showed a complex set of pathological phenotypes that resemble those seen in human COPD patients. The Drosophila trachea has been used as a premier model to reveal the mechanisms of tube morphogenesis. The association of these mechanisms to structural changes in COPD can be analyzed by using Drosophila trachea. Additionally, the timeline of structural damage, ROS, and inflammation can be studied in live organisms using fluorescently-tagged proteins. The related function of human COPD genes identified by GWAS can be screened using respective fly homologs. Finally, the Drosophila trachea can be used as a high-throughput drug screening platform to identify novel treatments for COPD. Therefore, Drosophila trachea is an excellent model that is complementary to rodent COPD models.
Collapse
|
23
|
Shih SR, Bach DM, Rondeau NC, Sam J, Lovinger NL, Lopatkin AJ, Snow JW. Honey bee sHSP are responsive to diverse proteostatic stresses and potentially promising biomarkers of honey bee stress. Sci Rep 2021; 11:22087. [PMID: 34764357 PMCID: PMC8586346 DOI: 10.1038/s41598-021-01547-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 10/29/2021] [Indexed: 11/09/2022] Open
Abstract
The pollination services provided by the honey bee are critical in both natural and agricultural ecosystems. Honey bee colonies in the United States have suffered from an increased rate of die-off in recent years, stemming from a complex set of interacting stresses that remain poorly described. Defining specific common cellular processes and cellular stress responses impacted by multiple stressors represent a key step in understanding these synergies. Proteotoxic stresses negatively impact protein synthesis, folding, and degradation. Diverse proteotoxic stresses induce expression of genes encoding small heat shock proteins (sHSP) of the expanded lethal (2) essential for life (l(2)efl) gene family. In addition to upregulation by the Integrated Stress Response (ISR), the Heat Shock Response (HSR), and the Oxidative Stress Response (OSR), our data provide first evidence that sHSP genes are upregulated by the Unfolded Protein Response (UPR). As these genes appear to be part of a core stress response that could serve as a useful biomarker for cellular stress in honey bees, we designed and tested an RT-LAMP assay to detect increased l(2)efl gene expression in response to heat-stress. While this assay provides a powerful proof of principle, further work will be necessary to link changes in sHSP gene expression to colony-level outcomes, to adapt our preliminary assay into a Point of Care Testing (POCT) assay appropriate for use as a diagnostic tool for use in the field, and to couple assay results to management recommendations.
Collapse
Affiliation(s)
- Samantha R Shih
- Biology Department, Barnard College, New York, NY, 10027, USA
| | - Dunay M Bach
- Biology Department, Barnard College, New York, NY, 10027, USA
| | | | - Jessica Sam
- Biology Department, Barnard College, New York, NY, 10027, USA
| | | | | | - Jonathan W Snow
- Biology Department, Barnard College, New York, NY, 10027, USA.
| |
Collapse
|
24
|
Comparison of the transcriptome in circulating leukocytes in early lactation between primiparous and multiparous cows provides evidence for age-related changes. BMC Genomics 2021; 22:693. [PMID: 34563126 PMCID: PMC8466696 DOI: 10.1186/s12864-021-07977-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 09/06/2021] [Indexed: 12/18/2022] Open
Abstract
Background Previous studies have identified many immune pathways which are consistently altered in humans and model organisms as they age. Dairy cows are often culled at quite young ages due to an inability to cope adequately with metabolic and infectious diseases, resulting in reduced milk production and infertility. Improved longevity is therefore a desirable trait which would benefit both farmers and their cows. This study analysed the transcriptome derived from RNA-seq data of leukocytes obtained from Holstein cows in early lactation with respect to lactation number. Results Samples were divided into three lactation groups for analysis: i) primiparous (PP, n = 53), ii) multiparous in lactations 2–3 (MP 2–3, n = 121), and iii) MP in lactations 4–7 (MP > 3, n = 55). Leukocyte expression was compared between PP vs MP > 3 cows with MP 2–3 as background using DESeq2 followed by weighted gene co-expression network analysis (WGCNA). Seven modules were significantly correlated (r ≥ 0.25) to the trait lactation number. Genes from the modules which were more highly expressed in either the PP or MP > 3 cows were pooled, and the gene lists subjected to David functional annotation cluster analysis. The top three clusters from modules more highly expressed in the PP cows all involved regulation of gene transcription, particularly zinc fingers. Another cluster included genes encoding enzymes in the mitochondrial beta-oxidation pathway. Top clusters up-regulated in MP > 3 cows included the terms Glycolysis/Gluconeogenesis, C-type lectin, and Immunity. Differentially expressed candidate genes for ageing previously identified in the human blood transcriptome up-regulated in PP cows were mainly associated with T-cell function (CCR7, CD27, IL7R, CAMK4, CD28), mitochondrial ribosomal proteins (MRPS27, MRPS9, MRPS31), and DNA replication and repair (WRN). Those up-regulated in MP > 3 cows encoded immune defence proteins (LYZ, CTSZ, SREBF1, GRN, ANXA5, ADARB1). Conclusions Genes and pathways associated with lactation number in cows were identified for the first time to date, and we found that many were comparable to those known to be associated with ageing in humans and model organisms. We also detected changes in energy utilization and immune responses in leukocytes from older cows. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07977-5.
Collapse
|
25
|
Landis GN, Hilsabeck TAU, Bell HS, Ronnen-Oron T, Wang L, Doherty DV, Tejawinata FI, Erickson K, Vu W, Promislow DEL, Kapahi P, Tower J. Mifepristone Increases Life Span of Virgin Female Drosophila on Regular and High-fat Diet Without Reducing Food Intake. Front Genet 2021; 12:751647. [PMID: 34659367 PMCID: PMC8511958 DOI: 10.3389/fgene.2021.751647] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
Background: The synthetic steroid mifepristone is reported to have anti-obesity and anti-diabetic effects in mammals on normal and high-fat diets (HFD). We previously reported that mifepristone blocks the negative effect on life span caused by mating in female Drosophila melanogaster. Methods: Here we asked if mifepristone could protect virgin females from the life span-shortening effect of HFD. Mifepristone was assayed for effects on life span in virgin females, in repeated assays, on regular media and on media supplemented with coconut oil (HFD). The excrement quantification (EX-Q) assay was used to measure food intake of the flies after 12 days mifepristone treatment. In addition, experiments were conducted to compare the effects of mifepristone in virgin and mated females, and to identify candidate mifepristone targets and mechanisms. Results: Mifepristone increased life span of virgin females on regular media, as well as on media supplemented with either 2.5 or 5% coconut oil. Food intake was not reduced in any assay, and was significantly increased by mifepristone in half of the assays. To ask if mifepristone might rescue virgin females from all life span-shortening stresses, the oxidative stressor paraquat was tested, and mifepristone produced little to no rescue. Analysis of extant metabolomics and transcriptomics data suggested similarities between effects of mifepristone in virgin and mated females, including reduced tryptophan breakdown and similarities to dietary restriction. Bioinformatics analysis identified candidate mifepristone targets, including transcription factors Paired and Extra-extra. In addition to shortening life span, mating also causes midgut hypertrophy and activation of the lipid metabolism regulatory factor SREBP. Mifepristone blocked the increase in midgut size caused by mating, but did not detectably affect midgut size in virgins. Finally, mating increased activity of a SREBP reporter in abdominal tissues, as expected, but reporter activity was not detectably reduced by mifepristone in either mated or virgin females. Conclusion: Mifepristone increases life span of virgin females on regular and HFD without reducing food intake. Metabolomics and transcriptomics analyses suggest some similar effects of mifepristone between virgin and mated females, however reduced midgut size was observed only in mated females. The results are discussed regarding possible mifepristone mechanisms and targets.
Collapse
Affiliation(s)
- Gary N. Landis
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, United States
| | - Tyler A. U. Hilsabeck
- Buck Institute for Research on Aging, Novato, CA, United States
- Davis School of Gerontology, University of Southern California, University Park, Los Angeles, CA, United States
| | - Hans S. Bell
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, United States
| | - Tal Ronnen-Oron
- Buck Institute for Research on Aging, Novato, CA, United States
| | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Devon V. Doherty
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, United States
| | - Felicia I. Tejawinata
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, United States
| | - Katherine Erickson
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, United States
| | - William Vu
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, United States
| | - Daniel E. L. Promislow
- Department of Biology, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, CA, United States
| | - John Tower
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
26
|
Landis GN, Doherty DV, Yen CA, Wang L, Fan Y, Wang I, Vroegop J, Wang T, Wu J, Patel P, Lee S, Abdelmesieh M, Shen J, Promislow DEL, Curran SP, Tower J. Metabolic Signatures of Life Span Regulated by Mating, Sex Peptide, and Mifepristone/RU486 in Female Drosophila melanogaster. J Gerontol A Biol Sci Med Sci 2021; 76:195-204. [PMID: 32648907 DOI: 10.1093/gerona/glaa164] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
Mating and transfer of male sex peptide (SP), or transgenic expression of SP, causes inflammation and decreased life span in female Drosophila. Mifepristone rescues these effects, yielding dramatic increases in life span. Here targeted metabolomics data were integrated with further analysis of extant transcriptomic data. Each of 7 genes positively correlated with life span were expressed in the brain or eye and involved regulation of gene expression and signaling. Genes negatively correlated with life span were preferentially expressed in midgut and involved protein degradation, amino acid metabolism, and immune response. Across all conditions, life span was positively correlated with muscle breakdown product 1/3-methylhistidine and purine breakdown product urate, and negatively correlated with tryptophan breakdown product kynurenic acid, suggesting a SP-induced shift from somatic maintenance/turnover pathways to the costly production of energy and lipids from dietary amino acids. Some limited overlap was observed between genes regulated by mifepristone and genes known to be regulated by ecdysone; however, mifepristone was unable to compete with ecdysone for activation of an ecdysone-responsive transgenic reporter. In contrast, genes regulated by mifepristone were highly enriched for genes regulated by juvenile hormone (JH), and mifepristone rescued the negative effect of JH analog methoprene on life span in adult virgin females. The data indicate that mifepristone increases life span and decreases inflammation in mated females by antagonizing JH signaling downstream of male SP. Finally, mifepristone increased life span of mated, but not unmated, Caenorhabditis elegans, in 2 of 3 trials, suggesting possible evolutionary conservation of mifepristone mechanisms.
Collapse
Affiliation(s)
- Gary N Landis
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles
| | - Devon V Doherty
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles
| | - Chia-An Yen
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles.,Leonard Davis School of Gerontology, University of Southern California, Los Angeles
| | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle
| | - Yang Fan
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles
| | - Ina Wang
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles
| | - Jonah Vroegop
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles
| | - Tianyi Wang
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles
| | - Jimmy Wu
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles
| | - Palak Patel
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles
| | - Shinwoo Lee
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles
| | - Mina Abdelmesieh
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles
| | - Jie Shen
- College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, China
| | - Daniel E L Promislow
- Department of Biology, University of Washington, Seattle.,Department of Pathology, University of Washington School of Medicine, Seattle
| | - Sean P Curran
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles.,Leonard Davis School of Gerontology, University of Southern California, Los Angeles
| | - John Tower
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles.,Leonard Davis School of Gerontology, University of Southern California, Los Angeles
| |
Collapse
|
27
|
False and true positives in arthropod thermal adaptation candidate gene lists. Genetica 2021; 149:143-153. [PMID: 33963492 DOI: 10.1007/s10709-021-00122-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
Genome-wide studies are prone to false positives due to inherently low priors and statistical power. One approach to ameliorate this problem is to seek validation of reported candidate genes across independent studies: genes with repeatedly discovered effects are less likely to be false positives. Inversely, genes reported only as many times as expected by chance alone, while possibly representing novel discoveries, are also more likely to be false positives. We show that, across over 30 genome-wide studies that reported Drosophila and Daphnia genes with possible roles in thermal adaptation, the combined lists of candidate genes and orthologous groups are rapidly approaching the total number of genes and orthologous groups in the respective genomes. This is consistent with the expectation of high frequency of false positives. The majority of these spurious candidates have been identified by one or a few studies, as expected by chance alone. In contrast, a noticeable minority of genes have been identified by numerous studies with the probabilities of such discoveries occurring by chance alone being exceedingly small. For this subset of genes, different studies are in agreement with each other despite differences in the ecological settings, genomic tools and methodology, and reporting thresholds. We provide a reference set of presumed true positives among Drosophila candidate genes and orthologous groups involved in response to changes in temperature, suitable for cross-validation purposes. Despite this approach being prone to false negatives, this list of presumed true positives includes several hundred genes, consistent with the "omnigenic" concept of genetic architecture of complex traits.
Collapse
|
28
|
Proshkina E, Yushkova E, Koval L, Zemskaya N, Shchegoleva E, Solovev I, Yakovleva D, Pakshina N, Ulyasheva N, Shaposhnikov M, Moskalev A. Tissue-Specific Knockdown of Genes of the Argonaute Family Modulates Lifespan and Radioresistance in Drosophila Melanogaster. Int J Mol Sci 2021; 22:2396. [PMID: 33673647 PMCID: PMC7957547 DOI: 10.3390/ijms22052396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 11/16/2022] Open
Abstract
Small RNAs are essential to coordinate many cellular processes, including the regulation of gene expression patterns, the prevention of genomic instability, and the suppression of the mutagenic transposon activity. These processes determine the aging, longevity, and sensitivity of cells and an organism to stress factors (particularly, ionizing radiation). The biogenesis and activity of small RNAs are provided by proteins of the Argonaute family. These proteins participate in the processing of small RNA precursors and the formation of an RNA-induced silencing complex. However, the role of Argonaute proteins in regulating lifespan and radioresistance remains poorly explored. We studied the effect of knockdown of Argonaute genes (AGO1, AGO2, AGO3, piwi) in various tissues on the Drosophila melanogaster lifespan and survival after the γ-irradiation at a dose of 700 Gy. In most cases, these parameters are reduced or did not change significantly in flies with tissue-specific RNA interference. Surprisingly, piwi knockdown in both the fat body and the nervous system causes a lifespan increase. But changes in radioresistance depend on the tissue in which the gene was knocked out. In addition, analysis of changes in retrotransposon levels and expression of stress response genes allow us to determine associated molecular mechanisms.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
| | - Elena Yushkova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
| | - Liubov Koval
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
| | - Nadezhda Zemskaya
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
| | - Evgeniya Shchegoleva
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
| | - Ilya Solovev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
- Institute of Natural Sciences, Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Daria Yakovleva
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
- Institute of Natural Sciences, Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Natalya Pakshina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
| | - Natalia Ulyasheva
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
- Laboratory of Post-Genomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., 119991 Moscow, Russia
| |
Collapse
|
29
|
Scialo F, Sanz A. Coenzyme Q redox signalling and longevity. Free Radic Biol Med 2021; 164:187-205. [PMID: 33450379 DOI: 10.1016/j.freeradbiomed.2021.01.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 12/29/2022]
Abstract
Mitochondria are the powerhouses of the cell. They produce a significant amount of the energy we need to grow, survive and reproduce. The same system that generates energy in the form of ATP also produces Reactive Oxygen Species (ROS). Mitochondrial Reactive Oxygen Species (mtROS) were considered for many years toxic by-products of metabolism, responsible for ageing and many degenerative diseases. Today, we know that mtROS are essential redox messengers required to determine cell fate and maintain cellular homeostasis. Most mtROS are produced by respiratory complex I (CI) and complex III (CIII). How and when CI and CIII produce ROS is determined by the redox state of the Coenzyme Q (CoQ) pool and the proton motive force (pmf) generated during respiration. During ageing, there is an accumulation of defective mitochondria that generate high levels of mtROS. This causes oxidative stress and disrupts redox signalling. Here, we review how mtROS are generated in young and old mitochondria and how CI and CIII derived ROS control physiological and pathological processes. Finally, we discuss why damaged mitochondria amass during ageing as well as methods to preserve mitochondrial redox signalling with age.
Collapse
Affiliation(s)
- Filippo Scialo
- Dipartimento di Scienze Mediche Traslazionali, Università della Campania "Luigi Vanvitelli", 80131, Napoli, Italy
| | - Alberto Sanz
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, Glasgow, United Kingdom.
| |
Collapse
|
30
|
Zhang H, Morgan TE, Forman HJ. Age-related alteration in HNE elimination enzymes. Arch Biochem Biophys 2021; 699:108749. [PMID: 33417945 DOI: 10.1016/j.abb.2020.108749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 10/22/2022]
Abstract
4-hydroxynonenal (HNE, 4-hydroxy-2-nonenal) is a primary α,β-unsaturated aldehyde product of lipid peroxidation. The accumulation of HNE increases with aging and the mechanisms are mainly attributable to increased oxidative stress and decreased capacity of HNE elimination. In this review article, we summarize the studies on age-related change of HNE concentration and alteration of HNE metabolizing enzymes (GCL, GST, ALDHs, aldose reductase, and 20S-proteasome), and discuss potential mechanism of age-related decrease in HNE-elimination capacity by focusing on Nrf2 redox signaling.
Collapse
Affiliation(s)
- Hongqiao Zhang
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA, 90089, United States
| | - Todd E Morgan
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA, 90089, United States
| | - Henry Jay Forman
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA, 90089, United States.
| |
Collapse
|
31
|
Belyi AA, Alekseev AA, Fedintsev AY, Balybin SN, Proshkina EN, Shaposhnikov MV, Moskalev AA. The Resistance of Drosophila melanogaster to Oxidative, Genotoxic, Proteotoxic, Osmotic Stress, Infection, and Starvation Depends on Age According to the Stress Factor. Antioxidants (Basel) 2020; 9:antiox9121239. [PMID: 33297320 PMCID: PMC7762242 DOI: 10.3390/antiox9121239] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 01/05/2023] Open
Abstract
We studied how aging affects the ability of Drosophila melanogaster to tolerate various types of stress factors. Data were obtained on the resistance of D. melanogaster to oxidative and genotoxic (separately paraquat, Fe3+, Cu2+, and Zn2+ ions), proteotoxic (hyperthermia, Cd2+ ions), and osmotic (NaCl) stresses, starvation, and infection with the pathological Beauveria bassiana fungus at different ages. In all cases, we observed a strong negative correlation between age and stress tolerance. The largest change in the age-dependent decline in survival occurred under oxidative and osmotic stress. In most experiments, we observed that young Drosophila females have higher stress resistance than males. We checked whether it is possible to accurately assess the biological age of D. melanogaster based on an assessment of stress tolerance. We have proposed a new approach for assessing a biological age of D. melanogaster using a two-parameter survival curve model. For the model, we used an algorithm that evaluated the quality of age prediction for different age and gender groups. The best predictions were obtained for females who were exposed to CdCl2 and ZnCl2 with an average error of 0.32 days and 0.36 days, respectively. For males, the best results were observed for paraquat and NaCl with an average error of 0.61 and 0.68 days, respectively. The average accuracy for all stresses in our model was 1.73 days.
Collapse
Affiliation(s)
- Alexei A. Belyi
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (A.A.B.); (A.Y.F.); (E.N.P.); (M.V.S.)
| | - Alexey A. Alekseev
- Department of Biophysics, Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.A.A.); (S.N.B.)
| | - Alexander Y. Fedintsev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (A.A.B.); (A.Y.F.); (E.N.P.); (M.V.S.)
| | - Stepan N. Balybin
- Department of Biophysics, Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.A.A.); (S.N.B.)
| | - Ekaterina N. Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (A.A.B.); (A.Y.F.); (E.N.P.); (M.V.S.)
| | - Mikhail V. Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (A.A.B.); (A.Y.F.); (E.N.P.); (M.V.S.)
| | - Alexey A. Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (A.A.B.); (A.Y.F.); (E.N.P.); (M.V.S.)
- Correspondence: ; Tel.: +78-21-231-2894
| |
Collapse
|
32
|
Abstract
BACKGROUND General anesthetics influence mitochondrial homeostasis, placing individuals with mitochondrial disorders and possibly carriers of recessive mitochondrial mutations at increased risk of perioperative complications. In Drosophila, mutations in the ND23 subunit of complex I of the mitochondrial electron transport chain-analogous to mammalian NDUFS8-replicate key characteristics of Leigh syndrome, an inherited mitochondrial disorder. The authors used the ND23 mutant for testing the hypothesis that anesthetics have toxic potential in carriers of mitochondrial mutations. METHODS The authors exposed wild-type flies and ND23 mutant flies to behaviorally equivalent doses of isoflurane or sevoflurane in 5%, 21%, or 75% oxygen. The authors used percent mortality (mean ± SD, n ≥ 3) at 24 h after exposure as a readout of toxicity and changes in gene expression to investigate toxicity mechanisms. RESULTS Exposure of 10- to 13-day-old male ND23 flies to isoflurane in 5%, 21%, or 75% oxygen resulted in 16.0 ± 14.9% (n = 10), 48.2 ± 16.1% (n = 9), and 99.2 ± 2.0% (n = 10) mortality, respectively. Comparable mortality was observed in females. In contrast, under the same conditions, mortality was less than 5% for all male and female groups exposed to sevoflurane, except 10- to 13-day-old male ND23 flies with 9.6 ± 8.9% (n = 16) mortality. The mortality of 10- to 13-day-old ND23 flies exposed to isoflurane was rescued by neuron- or glia-specific expression of wild-type ND23. Isoflurane and sevoflurane differentially affected expression of antioxidant genes in 10- to 13-day-old ND23 flies. ND23 flies had elevated mortality from paraquat-induced oxidative stress compared with wild-type flies. The mortality of heterozygous ND23 flies exposed to isoflurane in 75% oxygen increased with age, resulting in 54.0 ± 19.6% (n = 4) mortality at 33 to 39 days old, and the percent mortality varied in different genetic backgrounds. CONCLUSIONS Mutations in the mitochondrial complex I subunit ND23 increase susceptibility to isoflurane-induced toxicity and to oxidative stress in Drosophila. Asymptomatic flies that carry ND23 mutations are sensitized to hyperoxic isoflurane toxicity by age and genetic background. EDITOR’S PERSPECTIVE
Collapse
|
33
|
Anantanawat K, Papanicolaou A, Hill K, Xu W. Molecular Response of the Mediterranean Fruit Fly (Diptera: Tephritidae) to Heat. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2495-2504. [PMID: 32725189 DOI: 10.1093/jee/toaa147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Indexed: 06/11/2023]
Abstract
Tephritid fruit flies are highly successful invaders and some-such as the Mediterranean fruit fly, Ceratitis capitata (Wiedemann)-are able to adapt to a large range of crops. Biosecurity controls require that shipments of produce are ensured to be pest-free, which is increasingly difficult due to the ban of key pesticides. Instead, stress-based strategies including controlled atmosphere, temperature, and irradiation can be used to eradicate flies inside products. However, unlike pesticide science, we do not yet have a robust scientific approach to measure cost-effectively whether a sufficiently lethal stress has been delivered and understand what this stress does to the biology of the pest. The latter is crucial as it would enable a combination of stresses targeting multiple molecular pathways and thus allow for lower doses of each to achieve higher lethality and reduce the development of resistance. Using heat as an example, this is the first study investigating the molecular stress response to heat in Tephritidae. Using a novel setup delivering measured doses of heat on C. capitata larvae and a high-density 11 timepoint gene expression experiment, we identified key components of lethal heat-stress response. While unraveling the complete molecular mechanism of fruit fly response to lethal stress would be a long-term project, this work curates and develops 31 potential biomarkers to assess whether sufficient lethal stress has been delivered. Further, as these protocols are straightforward and less expensive than other-omic approaches, our studies and approach will assist other researchers working on stress response.
Collapse
Affiliation(s)
- Kay Anantanawat
- Agricultural Sciences, Murdoch University, Murdoch, WA, Australia
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, Australia
- South Australian Research and Development Institute, Hartley Grove, Urrbrae, SA, Australia
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, Australia
| | - Kelly Hill
- South Australian Research and Development Institute, Hartley Grove, Urrbrae, SA, Australia
| | - Wei Xu
- Agricultural Sciences, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
34
|
Russi M, Martin E, D'Autréaux B, Tixier L, Tricoire H, Monnier V. A Drosophila model of Friedreich ataxia with CRISPR/Cas9 insertion of GAA repeats in the frataxin gene reveals in vivo protection by N-acetyl cysteine. Hum Mol Genet 2020; 29:2831-2844. [PMID: 32744307 DOI: 10.1093/hmg/ddaa170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/10/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Friedreich ataxia (FA) is caused by GAA repeat expansions in the first intron of FXN, the gene encoding frataxin, which results in decreased gene expression. Thanks to the high degree of frataxin conservation, the Drosophila melanogaster fruitfly appears as an adequate animal model to study this disease and to evaluate therapeutic interventions. Here, we generated a Drosophila model of FA with CRISPR/Cas9 insertion of approximately 200 GAA in the intron of the fly frataxin gene fh. These flies exhibit a developmental delay and lethality associated with decreased frataxin expression. We were able to bypass preadult lethality using genetic tools to overexpress frataxin only during the developmental period. These frataxin-deficient adults are short-lived and present strong locomotor defects. RNA-Seq analysis identified deregulation of genes involved in amino-acid metabolism and transcriptomic signatures of oxidative stress. In particular, we observed a progressive increase of Tspo expression, fully rescued by adult frataxin expression. Thus, Tspo expression constitutes a molecular marker of the disease progression in our fly model and might be of interest in other animal models or in patients. Finally, in a candidate drug screening, we observed that N-acetyl cysteine improved the survival, locomotor function, resistance to oxidative stress and aconitase activity of frataxin-deficient flies. Therefore, our model provides the opportunity to elucidate in vivo, the protective mechanisms of this molecule of therapeutic potential. This study also highlights the strength of the CRISPR/Cas9 technology to introduce human mutations in endogenous orthologous genes, leading to Drosophila models of human diseases with improved physiological relevance.
Collapse
Affiliation(s)
- Maria Russi
- Université de Paris, BFA Unit of Functional and Adaptative Biology, UMR 8251, CNRS, Paris F-75013, France
| | - Elodie Martin
- Université de Paris, BFA Unit of Functional and Adaptative Biology, UMR 8251, CNRS, Paris F-75013, France
| | - Benoit D'Autréaux
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France
| | - Laura Tixier
- Université de Paris, BFA Unit of Functional and Adaptative Biology, UMR 8251, CNRS, Paris F-75013, France
| | - Hervé Tricoire
- Université de Paris, BFA Unit of Functional and Adaptative Biology, UMR 8251, CNRS, Paris F-75013, France
| | - Véronique Monnier
- Université de Paris, BFA Unit of Functional and Adaptative Biology, UMR 8251, CNRS, Paris F-75013, France
| |
Collapse
|
35
|
Xu L, Wu Z, He Y, Chen Z, Xu K, Yu W, Fang W, Ma C, Moqbel SAA, Ran J, Xiong Y, Wu L. MFN2 contributes to metabolic disorders and inflammation in the aging of rat chondrocytes and osteoarthritis. Osteoarthritis Cartilage 2020; 28:1079-1091. [PMID: 32416221 DOI: 10.1016/j.joca.2019.11.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Metabolic disorders and inflammation of chondrocytes are major pathological changes in aging cells and osteoarthritis (OA). Recent studies demonstrated age-related mitochondrial dysfunction may be a key contributing factor in the development of OA. Mitofusin 2 (MFN2) is a key regulator of mitochondrial fusion, cell metabolism, autophagy and apoptosis. This study was performed to ascertain whether MFN2 was involved in the aging of chondrocytes and OA. METHODS Metabolic measurements were taken in rat chondrocytes between different ages (3-week, 5-month, 12-month). MFN2 activity was detected in both human and rat chondrocytes during aging and OA. Then, knockdown of MFN2 with small interfering RNA (siRNA) was performed to confirm whether MFN2 contributes to metabolic changes. Lentiviruses were used to establish MFN2-overexpression/knockdown OA models both in vivo and in vitro to confirm whether MFN2 contributes to OA progress. Further, regulatory mechanism of MFN2 was assessed and interaction between MFN2 and PARKIN was performed. RESULTS A metabolic shift to mitochondrial respiration was confirmed in rat chondrocytes during aging. MFN2 expression was elevated in both human and rat chondrocytes during aging and OA. Knockdown of MFN2 with siRNA reversed the age-related metabolic changes in rat chondrocytes. Overexpression of MFN2 exacerbated inflammation and OA progress, while knockdown of MFN2 ameliorated inflammation and OA progress. Further, MFN2 could be ubiquitinated by PARKIN, declined PARKIN expression during aging and OA might result in elevated MFN2 expression. CONCLUSIONS Elevated MFN2 contributes to metabolic changes and inflammation during aging of rat chondrocytes and osteoarthritis.
Collapse
Affiliation(s)
- L Xu
- Department of Orthopedics Surgery, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Z Wu
- Department of Orthopedics Surgery, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Y He
- Department of Orthopedics Surgery, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Z Chen
- Department of Orthopedics Surgery, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - K Xu
- Department of Orthopedics Surgery, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - W Yu
- Department of Orthopedics Surgery, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - W Fang
- Department of Orthopedics Surgery, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - C Ma
- Department of Orthopedics Surgery, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - S A A Moqbel
- Department of Orthopedics Surgery, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - J Ran
- Department of Orthopedics Surgery, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Y Xiong
- Department of Orthopedics Surgery, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - L Wu
- Department of Orthopedics Surgery, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
36
|
Chen C, Condon CH, Boardman L, Meagher RL, Jeffers LA, Beam A, Bailey WD, Hahn DA. Critical PO 2 as a diagnostic biomarker for the effects of low-oxygen modified and controlled atmospheres on phytosanitary irradiation treatments in the cabbage looper Trichoplusia ni (Hübner). PEST MANAGEMENT SCIENCE 2020; 76:2333-2341. [PMID: 32003078 DOI: 10.1002/ps.5768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Phytosanitary irradiation is a sustainable alternative to chemical fumigants for disinfesting fresh commodities from insect pests. However, irradiating insects in modified atmospheres with very low oxygen (<1 kPa O2 ) has repeatedly been shown to increase radioprotective response. Thus, there is a concern that modified atmosphere packaging could reduce the efficacy of phytosanitary irradiation. One hurdle slowing the widespread application of phytosanitary irradiation is a lack of knowledge about how moderate levels of hypoxia relevant to the modified atmosphere packaging of most fresh commodities (3-10 kPa O2 ) may affect phytosanitary irradiation treatments. Therefore, we hypothesize that critical PO2 (Pcrit ), the level of oxygen at which an insect's metabolism becomes impaired, can be used as a diagnostic biomarker to predict the induction of a radioprotective response. RESULTS Using the cabbage looper Trichoplusia ni (Hübner), we show that there is a substantial increase in radiation resistance when larvae are irradiated in atmospheres more hypoxic than their Pcrit (3.3 kPa O2 ). These data are consistent with our hypothesis that Pcrit could be used as a diagnostic biomarker for what levels of hypoxia may induce radioprotective effects that could impact phytosanitary irradiation treatments. CONCLUSION We propose that the relationship between Pcrit and radioprotective effects could allow us to build a framework for predicting the effects of low-oxygen atmospheres on the efficacy of phytosanitary irradiation. However, more widespread studies across pest species are still needed to test the generality of this idea.
Collapse
Affiliation(s)
- Chao Chen
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Catriona H Condon
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Leigh Boardman
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Robert L Meagher
- USDA-ARS, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL, USA
| | - Laura A Jeffers
- USDA-APHIS-PPQ Center for Plant Health Science and Technology, Raleigh, NC, USA
| | - Andrea Beam
- USDA-APHIS-PPQ Center for Plant Health Science and Technology, Miami, FL, USA
| | - Woodward D Bailey
- USDA-APHIS-PPQ Center for Plant Health Science and Technology, Miami, FL, USA
| | - Daniel A Hahn
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
37
|
Gubina N, Naudi A, Stefanatos R, Jove M, Scialo F, Fernandez-Ayala DJ, Rantapero T, Yurkevych I, Portero-Otin M, Nykter M, Lushchak O, Navas P, Pamplona R, Sanz A. Essential Physiological Differences Characterize Short- and Long-Lived Strains of Drosophila melanogaster. J Gerontol A Biol Sci Med Sci 2020; 74:1835-1843. [PMID: 29945183 DOI: 10.1093/gerona/gly143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Indexed: 12/17/2022] Open
Abstract
Aging is a multifactorial process which affects all animals. Aging as a result of damage accumulation is the most accepted explanation but the proximal causes remain to be elucidated. There is also evidence indicating that aging has an important genetic component. Animal species age at different rates and specific signaling pathways, such as insulin/insulin-like growth factor, can regulate life span of individuals within a species by reprogramming cells in response to environmental changes. Here, we use an unbiased approach to identify novel factors that regulate life span in Drosophila melanogaster. We compare the transcriptome and metabolome of two wild-type strains used widely in aging research: short-lived Dahomey and long-lived Oregon R flies. We found that Dahomey flies carry several traits associated with short-lived individuals and species such as increased lipoxidative stress, decreased mitochondrial gene expression, and increased Target of Rapamycin signaling. Dahomey flies also have upregulated octopamine signaling known to stimulate foraging behavior. Accordingly, we present evidence that increased foraging behavior, under laboratory conditions where nutrients are in excess increases damage generation and accelerates aging. In summary, we have identified several new pathways, which influence longevity highlighting the contribution and importance of the genetic component of aging.
Collapse
Affiliation(s)
- Nina Gubina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Alba Naudi
- Department of Experimental Medicine, University of Lleida-IRB, Lleida, Spain
| | - Rhoda Stefanatos
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK
| | - Mariona Jove
- Department of Experimental Medicine, University of Lleida-IRB, Lleida, Spain
| | - Filippo Scialo
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel J Fernandez-Ayala
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, and CIBERER, ISCIII, Seville, Spain
| | - Tommi Rantapero
- Faculty of Medicine and Life Sciences, BioMediTech Institute, University of Tampere, Finland
| | - Ihor Yurkevych
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Manuel Portero-Otin
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK
| | - Matti Nykter
- Faculty of Medicine and Life Sciences, BioMediTech Institute, University of Tampere, Finland
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Placido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, and CIBERER, ISCIII, Seville, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-IRB, Lleida, Spain
| | - Alberto Sanz
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
38
|
Harrison BR, Wang L, Gajda E, Hoffman EV, Chung BY, Pletcher SD, Raftery D, Promislow DEL. The metabolome as a link in the genotype-phenotype map for peroxide resistance in the fruit fly, Drosophila melanogaster. BMC Genomics 2020; 21:341. [PMID: 32366330 PMCID: PMC7199327 DOI: 10.1186/s12864-020-6739-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/15/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Genetic association studies that seek to explain the inheritance of complex traits typically fail to explain a majority of the heritability of the trait under study. Thus, we are left with a gap in the map from genotype to phenotype. Several approaches have been used to fill this gap, including those that attempt to map endophenotype such as the transcriptome, proteome or metabolome, that underlie complex traits. Here we used metabolomics to explore the nature of genetic variation for hydrogen peroxide (H2O2) resistance in the sequenced inbred Drosophila Genetic Reference Panel (DGRP). RESULTS We first studied genetic variation for H2O2 resistance in 179 DGRP lines and along with identifying the insulin signaling modulator u-shaped and several regulators of feeding behavior, we estimate that a substantial amount of phenotypic variation can be explained by a polygenic model of genetic variation. We then profiled a portion of the aqueous metabolome in subsets of eight 'high resistance' lines and eight 'low resistance' lines. We used these lines to represent collections of genotypes that were either resistant or sensitive to the stressor, effectively modeling a discrete trait. Across the range of genotypes in both populations, flies exhibited surprising consistency in their metabolomic signature of resistance. Importantly, the resistance phenotype of these flies was more easily distinguished by their metabolome profiles than by their genotypes. Furthermore, we found a metabolic response to H2O2 in sensitive, but not in resistant genotypes. Metabolomic data further implicated at least two pathways, glycogen and folate metabolism, as determinants of sensitivity to H2O2. We also discovered a confounding effect of feeding behavior on assays involving supplemented food. CONCLUSIONS This work suggests that the metabolome can be a point of convergence for genetic variation influencing complex traits, and can efficiently elucidate mechanisms underlying trait variation.
Collapse
Affiliation(s)
- Benjamin R Harrison
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98195, USA.
| | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98105, USA
| | - Erika Gajda
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Elise V Hoffman
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Brian Y Chung
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Scott D Pletcher
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Daniel E L Promislow
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
39
|
Kukushkina IV, Makhnovskii PA, Nefedova LN, Balakireva EA, Romanova NI, Kuzmin IV, Lavrenov AR, Kim AI. A Study of the Fertility of a Drosophila melanogaster MS Strain with Impaired Transposition Control of the gypsy Mobile Element. Mol Biol 2020. [DOI: 10.1134/s0026893320030097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Domesticated gag Gene of Drosophila LTR Retrotransposons Is Involved in Response to Oxidative Stress. Genes (Basel) 2020; 11:genes11040396. [PMID: 32268600 PMCID: PMC7231272 DOI: 10.3390/genes11040396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
Drosophila melanogaster is one of the most extensively used genetic model organisms for studying LTR retrotransposons that are represented by various groups in its genome. However, the phenomenon of molecular domestication of LTR retrotransposons has been insufficiently studied in Drosophila, as well as in other invertebrates. The present work is devoted to studying the role of the domesticated gag gene, Gagr, in the Drosophila genome. The Gagr gene has been shown to be involved in the response to stress caused by exposure to ammonium persulfate, but not in the stress response to oligomycin A, zeomycin, and cadmium chloride. Ammonium persulfate tissue specifically activates the expression of Gagr in the tissues of the carcass, but not in the gut. We found that the Gagr gene promoter contains one binding motif for the transcription factor kayak, a component of the JNK signaling pathway, and two binding motifs for the transcription factor Stat92E, a component of the Jak-STAT signaling pathway. Remarkably, Gagr orthologs contain the second binding motif for Stat92E only in D. melanogaster, D. simulans and D. sechellia, whereas in D. yakuba and D. erecta, Gagr orthologs contain a single motif, and there are no binding sites for Stat92E in the promoters of Gagr orthologs in D. ananassae and in species outside the melanogaster group. The data obtained indicate the formation of the protective function of the Gagr gene during evolution.
Collapse
|
41
|
Shilova V, Zatsepina O, Zakluta A, Karpov D, Chuvakova L, Garbuz D, Evgen'ev M. Age-dependent expression profiles of two adaptogenic systems and thermotolerance in Drosophila melanogaster. Cell Stress Chaperones 2020; 25:305-315. [PMID: 32040825 PMCID: PMC7058767 DOI: 10.1007/s12192-020-01074-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/21/2022] Open
Abstract
Here, we monitored the expression of three genes (hsp70, hsp22, and hsf1) involved in heat shock response in Drosophila melanogaster in males and females of different age. Also, we investigated age- and sex-dependent expression of three major genes participating in the production of hydrogen sulfide (H2S) (cse, cbs, and mst), implicated in stress resistance and aging. In addition to the control strain, we monitored the expression of all of these genes in a cbs knockout strain (cbs-/-) generated using the CRISPR technique. The tested strains differ in the induction capacities of the studied genes. Relative to the control strain, under normal conditions, the cbs-/- strain expresses all of the studied genes more abundantly, especially hsp22. In the control strain, aging leads to a dramatic increase in hsp22 synthesis, whereas in the cbs-/- strain, hsp22 induction is not pronounced. Furthermore, in 30-day-old cbs-/- flies, the constitutive expression of hsp70 and mst is decreased. Surprisingly, in the cbs-/- strain, we detected an upregulation of hsf1 transcription in the 30-day-old females. After heat shock in the control strain, hsp70 and hsp22 induction decreased with age in males and hsp22 decreased in females, while in the cbs-/- strain, a pronounced drop in the induction capacity of both hsp genes was seen in 30-day-old males and females. However, in most cases, the expression levels of hsf1 and H2S-producing genes do not exhibit pronounced changes depending on sex, age, or heat shock. Flies of control and cbs-/- strain exhibited strong reduction in basal thermotolerance with age. Our data suggest a cross-talk between the two studied ancient and universal adaptive systems.
Collapse
Affiliation(s)
- V Shilova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991, Russia
| | - O Zatsepina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991, Russia
| | - A Zakluta
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991, Russia
| | - D Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991, Russia
| | - L Chuvakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991, Russia
| | - D Garbuz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991, Russia
| | - M Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991, Russia.
| |
Collapse
|
42
|
Elvira R, Cha SJ, Noh GM, Kim K, Han J. PERK-Mediated eIF2α Phosphorylation Contributes to The Protection of Dopaminergic Neurons from Chronic Heat Stress in Drosophila. Int J Mol Sci 2020; 21:ijms21030845. [PMID: 32013014 PMCID: PMC7037073 DOI: 10.3390/ijms21030845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/23/2020] [Accepted: 01/26/2020] [Indexed: 01/05/2023] Open
Abstract
Environmental high-temperature heat exposure is linked to physiological stress such as disturbed protein homeostasis caused by endoplasmic reticulum (ER) stress. Abnormal proteostasis in neuronal cells is a common pathological factor of Parkinson’s disease (PD). Chronic heat stress is thought to induce neuronal cell death during the onset and progression of PD, but the exact role and mechanism of ER stress and the activation of the unfolded protein response (UPR) remains unclear. Here, we showed that chronic heat exposure induces ER stress mediated by the PKR-like eukaryotic initiation factor 2α kinase (PERK)/eIF2α phosphorylation signaling pathway in Drosophila neurons. Chronic heat-induced eIF2α phosphorylation was regulated by PERK activation and required for neuroprotection from chronic heat stress. Moreover, the attenuated protein synthesis by eIF2α phosphorylation was a critical factor for neuronal cell survival during chronic heat stress. We further showed that genetic downregulation of PERK, specifically in dopaminergic (DA) neurons, impaired motor activity and led to DA neuron loss. Therefore, our findings provide in vivo evidence demonstrating that chronic heat exposure may be a critical risk factor in the onset of PD, and eIF2α phosphorylation mediated by PERK may contribute to the protection of DA neurons against chronic heat stress in Drosophila.
Collapse
Affiliation(s)
- Rosalie Elvira
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, Chungcheongnam-do 31151, Korea; (R.E.); (S.J.C.)
| | - Sun Joo Cha
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, Chungcheongnam-do 31151, Korea; (R.E.); (S.J.C.)
| | - Gyeong-Mu Noh
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Chungcheongnam-do 31538, Korea;
| | - Kiyoung Kim
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Chungcheongnam-do 31538, Korea;
- Correspondence: (K.K.); (J.H.); Tel.: +82-41-413-5024 (K.K.); +82-41-413-5027 (J.H.); Fax: +82-41-413-5006 (K.K. & J.H.)
| | - Jaeseok Han
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, Chungcheongnam-do 31151, Korea; (R.E.); (S.J.C.)
- Correspondence: (K.K.); (J.H.); Tel.: +82-41-413-5024 (K.K.); +82-41-413-5027 (J.H.); Fax: +82-41-413-5006 (K.K. & J.H.)
| |
Collapse
|
43
|
Behdarvandy M, Karimian M, Atlasi MA, Azami Tameh A. Heat shock protein 27 as a neuroprotective biomarker and a suitable target for stem cell therapy and pharmacotherapy in ischemic stroke. Cell Biol Int 2019; 44:356-367. [PMID: 31502740 DOI: 10.1002/cbin.11237] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/08/2019] [Indexed: 12/12/2022]
Abstract
Ischemic stroke is a major common cause of death and long-term disability worldwide. Several pathophysiological events including excitotoxicity, oxidative/nitrative stress, inflammation, and apoptosis are involved in ischemic injuries. Recently, the molecular mechanisms involved in cerebral ischemia through a focus on a member of small heat shock proteins family, Hsp27, has been developed. Notably, following exposure to ischemia, Hsp27 expression in the brain could be increased rather than the normal condition and it may play an important role in neuroprotection after ischemic stroke. The neuroprotection effects of Hsp27 may arise from its anti-oxidant, anti-inflammatory, anti-apoptotic, and chaperonic properties. Moreover, some therapeutic strategies such as stem cell therapy and pharmacotherapy have been developed with Hsp27 targeting. In this review, we describe the function and structure of Hsp27 and its possible role in neuroprotection after ischemic stroke. Finally, we present current studies in stroke therapy, which focused on Hsp27 targeting.
Collapse
Affiliation(s)
- Marjan Behdarvandy
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Qotb-e Ravandi Blvd., 8715988141, Kashan, Iran
| | - Mohammad Karimian
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Qotb-e Ravandi Blvd., 8715988141, Kashan, Iran
| | - Mohammad Ali Atlasi
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Qotb-e Ravandi Blvd., 8715988141, Kashan, Iran
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Qotb-e Ravandi Blvd., 8715988141, Kashan, Iran
| |
Collapse
|
44
|
Zhang H, Zhou L, Davies KJ, Forman HJ. Silencing Bach1 alters aging-related changes in the expression of Nrf2-regulated genes in primary human bronchial epithelial cells. Arch Biochem Biophys 2019; 672:108074. [DOI: 10.1016/j.abb.2019.108074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/12/2019] [Accepted: 08/10/2019] [Indexed: 12/30/2022]
|
45
|
Moskalev AA, Shaposhnikov MV, Zemskaya NV, Koval LА, Schegoleva EV, Guvatova ZG, Krasnov GS, Solovev IA, Sheptyakov MA, Zhavoronkov A, Kudryavtseva AV. Transcriptome Analysis of Long-lived Drosophila melanogaster E(z) Mutants Sheds Light on the Molecular Mechanisms of Longevity. Sci Rep 2019; 9:9151. [PMID: 31235842 PMCID: PMC6591219 DOI: 10.1038/s41598-019-45714-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 06/11/2019] [Indexed: 12/15/2022] Open
Abstract
The E(z) histone methyltransferase heterozygous mutation in Drosophila is known to increase lifespan and stress resistance. However, the longevity mechanisms of E(z) mutants have not been revealed. Using genome-wide transcriptome analysis, we demonstrated that lifespan extension, increase of resistance to hyperthermia, oxidative stress and endoplasmic reticulum stress, and fecundity enhancement in E(z) heterozygous mutants are accompanied by changes in the expression level of 239 genes (p < 0.05). Our results demonstrated sex-specific effects of E(z) mutation on gene expression, which, however, did not lead to differences in lifespan extension in both sexes. We observed that a mutation in an E(z) gene leads to perturbations in gene expression, most of which participates in metabolism, such as Carbohydrate metabolism, Lipid metabolism, Drug metabolism, Nucleotide metabolism. Age-dependent changes in the expression of genes involved in pathways related to immune response, cell cycle, and ribosome biogenesis were found.
Collapse
Affiliation(s)
- Alexey A Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia. .,Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia. .,Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| | | | - Nadezhda V Zemskaya
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia
| | - Liubov А Koval
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia
| | - Eugenia V Schegoleva
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia
| | - Zulfiya G Guvatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ilya A Solovev
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia
| | | | | | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
46
|
Govaere L, Morin MD, Frigault JJ, Boquel S, Cohen A, Lamarre SG, Morin PJ. Transcriptome and proteome analyses to investigate the molecular underpinnings of cold response in the Colorado potato beetle, Leptinotarsa decemlineata. Cryobiology 2019; 88:54-63. [DOI: 10.1016/j.cryobiol.2019.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 12/11/2022]
|
47
|
Monroy Kuhn JM, Meusemann K, Korb J. Long live the queen, the king and the commoner? Transcript expression differences between old and young in the termite Cryptotermes secundus. PLoS One 2019; 14:e0210371. [PMID: 30759161 PMCID: PMC6373952 DOI: 10.1371/journal.pone.0210371] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/20/2018] [Indexed: 01/09/2023] Open
Abstract
Social insects provide promising new avenues for aging research. Within a colony, individuals that share the same genetic background can differ in lifespan by up to two orders of magnitude. Reproducing queens (and in termites also kings) can live for more than 20 years, extraordinary lifespans for insects. We studied aging in a termite species, Cryptotermes secundus, which lives in less socially complex societies with a few hundred colony members. Reproductives develop from workers which are totipotent immatures. Comparing transcriptomes of young and old individuals, we found evidence for aging in reproductives that was especially associated with DNA and protein damage and the activity of transposable elements. By contrast, workers seemed to be better protected against aging. Thus our results differed from those obtained for social insects that live in more complex societies. Yet, they are in agreement with lifespan estimates for the study species. Our data are also in line with expectations from evolutionary theory. For individuals that are able to reproduce, it predicts that aging should only start after reaching maturity. As C. secundus workers are immatures with full reproductive options we expect them to invest into anti-aging processes. Our study illustrates that the degree of aging can differ between social insects and that it may be associated with caste-specific opportunities for reproduction.
Collapse
Affiliation(s)
- José Manuel Monroy Kuhn
- Evolutionary Biology and Ecology, Albert-Ludwigs-Universität Freiburg, Freiburg, Baden-Württemberg, Germany
- * E-mail: (JMMK); (JK)
| | - Karen Meusemann
- Evolutionary Biology and Ecology, Albert-Ludwigs-Universität Freiburg, Freiburg, Baden-Württemberg, Germany
| | - Judith Korb
- Evolutionary Biology and Ecology, Albert-Ludwigs-Universität Freiburg, Freiburg, Baden-Württemberg, Germany
- * E-mail: (JMMK); (JK)
| |
Collapse
|
48
|
Hwang S, Jeong H, Hong EH, Joo HM, Cho KS, Nam SY. Low-dose ionizing radiation alleviates Aβ42-induced cell death via regulating AKT and p38 pathways in Drosophila Alzheimer's disease models. Biol Open 2019; 8:bio.036657. [PMID: 30670376 PMCID: PMC6398453 DOI: 10.1242/bio.036657] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Ionizing radiation is widely used in medicine and is valuable in both the diagnosis and treatment of many diseases. However, its health effects are ambiguous. Here, we report that low-dose ionizing radiation has beneficial effects in human amyloid-β42 (Aβ42)-expressing Drosophila Alzheimer's disease (AD) models. Ionizing radiation at a dose of 0.05 Gy suppressed AD-like phenotypes, including developmental defects and locomotive dysfunction, but did not alter the decreased survival rates and longevity of Aβ42-expressing flies. The same dose of γ-irradiation reduced Aβ42-induced cell death in Drosophila AD models through downregulation of head involution defective (hid), which encodes a protein that activates caspases. However, 4 Gy of γ-irradiation increased Aβ42-induced cell death without modulating pro-apoptotic genes grim, reaper and hid. The AKT signaling pathway, which was suppressed in Drosophila AD models, was activated by either 0.05 or 4 Gy γ-irradiation. Interestingly, p38 mitogen-activated protein-kinase (MAPK) activity was inhibited by exposure to 0.05 Gy γ-irradiation but enhanced by exposure to 4 Gy in Aβ42-expressing flies. In addition, overexpression of phosphatase and tensin homolog (PTEN), a negative regulator of the AKT signaling pathway, or a null mutant of AKT strongly suppressed the beneficial effects of low-dose ionizing radiation in Aβ42-expressing flies. These results indicate that low-dose ionizing radiation suppresses Aβ42-induced cell death through regulation of the AKT and p38 MAPK signaling pathways, suggesting that low-dose ionizing radiation has hormetic effects on the pathogenesis of Aβ42-associated AD. Summary: Low-dose ionizing radiation can reduce cell death by regulating AKT/p38 signaling pathway and improve Aβ42-induced symptoms in Drosophila Alzheimer's disease, suggesting that low-dose ionizing radiation may be applicable for treatment.
Collapse
Affiliation(s)
- Soojin Hwang
- Low-Dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd, Seoul 01450, Korea
| | - Haemin Jeong
- Low-Dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd, Seoul 01450, Korea
| | - Eun-Hee Hong
- Low-Dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd, Seoul 01450, Korea
| | - Hae Mi Joo
- Low-Dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd, Seoul 01450, Korea
| | - Kyoung Sang Cho
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Seon Young Nam
- Low-Dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd, Seoul 01450, Korea
| |
Collapse
|
49
|
Boomgarden AC, Sagewalker GD, Shah AC, Haider SD, Patel P, Wheeler HE, Dubowy CM, Cavanaugh DJ. Chronic circadian misalignment results in reduced longevity and large-scale changes in gene expression in Drosophila. BMC Genomics 2019; 20:14. [PMID: 30616504 PMCID: PMC6323780 DOI: 10.1186/s12864-018-5401-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/20/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Circadian clocks are found in nearly all organisms, from bacteria to mammals, and ensure that behavioral and physiological processes occur at optimal times of day and in the correct temporal order. It is becoming increasingly clear that chronic circadian misalignment (CCM), such as occurs in shift workers or as a result of aberrant sleeping and eating schedules common to modern society, has profound metabolic and cognitive consequences, but the proximate mechanisms connecting CCM with reduced organismal health are unknown. Furthermore, it has been difficult to disentangle whether the health effects are directly induced by misalignment or are secondary to the alterations in sleep and activity levels that commonly occur with CCM. Here, we investigated the consequences of CCM in the powerful model system of the fruit fly, Drosophila melanogaster. We subjected flies to daily 4-h phase delays in the light-dark schedule and used the Drosophila Activity Monitoring (DAM) system to continuously track locomotor activity and sleep while simultaneously monitoring fly lifespan. RESULTS Consistent with previous results, we find that exposing flies to CCM leads to a ~ 15% reduction in median lifespan in both male and female flies. Importantly, we demonstrate that the reduced longevity occurs independent of changes in overall sleep or activity. To uncover potential molecular mechanisms of CCM-induced reduction in lifespan, we conducted whole body RNA-sequencing to assess differences in gene transcription between control and misaligned flies. CCM caused progressive, large-scale changes in gene expression characterized by upregulation of genes involved in response to toxic substances, aging and oxidative stress, and downregulation of genes involved in regulation of development and differentiation, gene expression and biosynthesis. CONCLUSIONS Many of these gene expression changes mimic those that occur during natural aging, consistent with the idea that CCM results in premature organismal decline, however, we found that genes involved in lipid metabolism are overrepresented among those that are differentially regulated by CCM and aging. This category of genes is also among the earliest to exhibit CCM-induced changes in expression, thus highlighting altered lipid metabolism as a potentially important mediator of the negative health consequences of CCM.
Collapse
Affiliation(s)
- Alex C Boomgarden
- Department of Biology, Loyola University Chicago, 1050 W. Sheridan Rd, Chicago, IL, 60660, USA
| | - Gabriel D Sagewalker
- Department of Biology, Loyola University Chicago, 1050 W. Sheridan Rd, Chicago, IL, 60660, USA
| | - Aashaka C Shah
- Department of Biology, Loyola University Chicago, 1050 W. Sheridan Rd, Chicago, IL, 60660, USA
| | - Sarah D Haider
- Department of Biology, Loyola University Chicago, 1050 W. Sheridan Rd, Chicago, IL, 60660, USA
| | - Pramathini Patel
- Department of Biology, Loyola University Chicago, 1050 W. Sheridan Rd, Chicago, IL, 60660, USA
| | - Heather E Wheeler
- Department of Biology, Loyola University Chicago, 1050 W. Sheridan Rd, Chicago, IL, 60660, USA.,Department of Computer Science, Loyola University, Chicago, 60660, USA
| | - Christine M Dubowy
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Daniel J Cavanaugh
- Department of Biology, Loyola University Chicago, 1050 W. Sheridan Rd, Chicago, IL, 60660, USA.
| |
Collapse
|
50
|
Transcriptomic meta-signatures identified in Anopheles gambiae populations reveal previously undetected insecticide resistance mechanisms. Nat Commun 2018; 9:5282. [PMID: 30538253 PMCID: PMC6290077 DOI: 10.1038/s41467-018-07615-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/12/2018] [Indexed: 12/01/2022] Open
Abstract
Increasing insecticide resistance in malaria-transmitting vectors represents a public health threat, but underlying mechanisms are poorly understood. Here, a data integration approach is used to analyse transcriptomic data from comparisons of insecticide resistant and susceptible Anopheles populations from disparate geographical regions across the African continent. An unbiased, integrated analysis of this data confirms previously described resistance candidates but also identifies multiple novel genes involving alternative resistance mechanisms, including sequestration, and transcription factors regulating multiple downstream effector genes, which are validated by gene silencing. The integrated datasets can be interrogated with a bespoke Shiny R script, deployed as an interactive web-based application, that maps the expression of resistance candidates and identifies co-regulated transcripts that may give clues to the function of novel resistance-associated genes. Increasing insecticide resistance of mosquitoes represents a public health threat, and underlying mechanisms are poorly understood. Here, Ingham et al. identify putative insecticide resistance genes in Anopheles gambiae populations across Africa and develop a web-based application that maps their expression.
Collapse
|