1
|
Wang X, Zhu Y, Liu H, Wang X, Zhang H, Chen X. Nitazoxanide alleviates experimental pulmonary fibrosis by inhibiting the development of cellular senescence. Life Sci 2025; 361:123302. [PMID: 39662775 DOI: 10.1016/j.lfs.2024.123302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/26/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease characterized by irreversible lung scarring with a poor prognosis. Emerging evidence has revealed that IPF is an aging-related disease, and the development of cellular senescence plays a pivotal role in persistent remodeling and fibrotic scarring, acting as a key mechanism in the pathophysiology of IPF. Exploring therapeutic strategies for modulating cellular senescence can provide crucial insights into unraveling IPF processes. Here, we have identified Nitazoxanide (NTZ), an FDA-approved antiprotozoal agent, has specific effects on inhibiting cellular senescence development. In the bleomycin and D-galactose-induced senescence model, NTZ effectively inhibits senescence associated-β-gal staining and preserves cell proliferation ability. We also found that NTZ effectively impedes senescence progression in the bleomycin-induced pulmonary fibrosis model, while mitigating the release of senescence-associated secretory phenotype and alleviating pulmonary fibrosis. The anti-senescence effect of NTZ is mechanistically dependent on the preservation of nuclear SIRT1 expression. We observed that PI3K induces a WIPI1-mediated nucleophagic degradation of SIRT1, while NTZ effectively inhibits PI3K and suppresses WIPI1 expression, thereby maintaining SIRT1 expression in the nucleus and exerting its anti-senescence function. Collectively, our research has shown that NTZ can inhibit PI3K in senescence progression, leading to the inhibition of WIPI1-mediated SIRT1 nucleophagic degradation. As a result, NTZ alleviates fibrosis by inhibiting senescence development.
Collapse
Affiliation(s)
- Xianzhe Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Yanyan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Huilin Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Xiangchuan Wang
- Biological Imaging and Stem Cell Core, Faculty of Health Sciences, University of Macau, Taipa, Macao
| | - Hongjie Zhang
- Biological Imaging and Stem Cell Core, Faculty of Health Sciences, University of Macau, Taipa, Macao
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao.
| |
Collapse
|
2
|
Yang MM, Boin F, Wolters PJ. Molecular underpinnings of aging contributing to systemic sclerosis pathogenesis. Curr Opin Rheumatol 2025; 37:86-92. [PMID: 39600291 DOI: 10.1097/bor.0000000000001061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
PURPOSE OF REVIEW Systemic sclerosis (SSc) is a systemic autoimmune disease characterized by diffuse organ fibrosis and vasculopathy. Aberrant aging has been increasingly implicated in fibrotic diseases of the lung and other organs. The aim of this review is to summarize the established mechanisms of aging and how they may contribute to the pathogenesis of SSc. RECENT FINDINGS Shortened telomeres are present in SSc patients with interstitial lung disease (SSc-ILD) and associate with disease severity and mortality. Although the cause of telomere length shortening is unknown, immune mechanisms may be at play. Senescent cells accumulate in affected organs of SSc patients and contribute to a pathologic cellular phenotype that can be profibrotic and inflammatory. In addition to identifying patients with a more severe phenotype, biomarkers of aging may help identify patients who have worse outcomes with immunosuppression. SUMMARY Aging mechanisms, including telomere dysfunction and cellular senescence, likely contribute to the progressive fibrosis, vasculopathy, and immune dysfunction of SSc. Further work is needed to understand whether aberrant aging is an initiator or perpetuator of disease, and whether this is cell or organ specific. A better understanding of the role aging mechanisms play in SSc will contribute to our understanding of the underlying pathobiology and may also influence management of patients exhibiting the aging phenotype.
Collapse
Affiliation(s)
- Monica M Yang
- Division of Rheumatology, Department of Medicine, University of California, San Francisco
| | - Francesco Boin
- Division of Rheumatology, Kao Autoimmunity Institute, Cedar Sinai Medical Center, Los Angeles
| | - Paul J Wolters
- Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
3
|
Lei Y, Zhong C, Zhang J, Zheng Q, Xu Y, Li Z, Huang C, Ren T. Senescent lung fibroblasts in idiopathic pulmonary fibrosis facilitate non-small cell lung cancer progression by secreting exosomal MMP1. Oncogene 2024:10.1038/s41388-024-03236-5. [PMID: 39663393 DOI: 10.1038/s41388-024-03236-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024]
Abstract
Lung cancer is a fatal complication of idiopathic pulmonary fibrosis (IPF) with a poor prognosis. Current treatments are insufficient in improving the prognosis of lung cancer patients with comorbid idiopathic pulmonary fibrosis (IPF-LC). Senescent fibroblasts, as stromal cells in the tumor microenvironment, influence tumor progression via exosomes. With evidence that fibroblast senescence is an important mechanism of IPF, we investigated the impact of senescent IPF lung fibroblast (diseased human lung fibroblasts, DHLF)-derived exosomes on non-small cell lung cancer (NSCLC). We found DHLF expressed significant senescence markers, and promoted NSCLC proliferation, invasion, and epithelial-mesenchymal transition. Specifically, senescent DHLF showed strong secretion of exosomes, and these exosomes enhanced the proliferation and colony-forming ability of cancer cells. Proteomic analysis showed DHLF-derived exosomes exhibited upregulated senescence-associated secretory phenotype (SASP) factors, notably MMP1, which activates the surface receptor PAR1. Knocking down MMP1 or using PAR1 inhibitors reduced the tumor-promoting effects of DHLF-derived exosomes in vivo and in vitro. Mechanistically, MMP1 acted by activating the PI3K-AKT-mTOR pathway. In conclusion, our results suggest that exosomal MMP1 derived from senescent IPF fibroblasts promotes NSCLC proliferation and colony formation by targeting PAR1 and activating the PI3K-AKT-mTOR pathway. These findings provide a novel therapeutic approach for patients with IPF-LC.
Collapse
Affiliation(s)
- Yuqiong Lei
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Cheng Zhong
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jingyuan Zhang
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Qi Zheng
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yongle Xu
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhoubin Li
- Department of Lung Transplantation and Thoracic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Chenwen Huang
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Department of Clinical Research Centre, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Tao Ren
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Stem Cell Center, Shanghai Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
4
|
O'Reilly S, Tsou PS, Varga J. Senescence and tissue fibrosis: opportunities for therapeutic targeting. Trends Mol Med 2024; 30:1113-1125. [PMID: 38890028 DOI: 10.1016/j.molmed.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Abstract
Cellular senescence is a key hallmark of aging. It has now emerged as a key mediator in normal tissue turnover and is associated with a variety of age-related diseases, including organ-specific fibrosis and systemic sclerosis (SSc). This review discusses the recent evidence of the role of senescence in tissue fibrosis, with an emphasis on SSc, a systemic autoimmune rheumatic disease. We discuss the physiological role of these cells, their role in fibrosis, and that targeting these cells specifically could be a new therapeutic avenue in fibrotic disease. We argue that targeting senescent cells, with senolytics or senomorphs, is a viable therapeutic target in fibrotic diseases which remain largely intractable.
Collapse
Affiliation(s)
- Steven O'Reilly
- Bioscience Department, Durham University, South Road, Durham, UK.
| | - Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - John Varga
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Wang W, Zhou K, Wang L, Qin Q, Liu H, Qin L, Yang M, Yuan L, Liu C. Aging in chronic lung disease: Will anti-aging therapy be the key to the cure? Eur J Pharmacol 2024; 980:176846. [PMID: 39067566 DOI: 10.1016/j.ejphar.2024.176846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Chronic lung disease is the third leading cause of death globally, imposing huge burden of death, disability and healthcare costs. However, traditional pharmacotherapy has relatively limited effects in improving the cure rate and reducing the mortality of chronic lung disease. Thus, new treatments are urgently needed for the prevention and treatment of chronic lung disease. It is particularly noteworthy that, multiple aging-related phenotypes were involved in the occurrence and development of chronic lung disease, such as blocked proliferation, telomere attrition, mitochondrial dysfunction, epigenetic alterations, altered nutrient perception, stem cell exhaustion, chronic inflammation, etc. Consequently, senescent cells induce a series of pathological changes in the lung, such as immune dysfunction, airway remodeling, oxidative stress and regenerative dysfunction, which is a critical issue that needs special attention in chronic lung diseases. Therefore, anti-aging interventions may bring new insights into the treatment of chronic lung diseases. In this review, we elaborate the involvement of aging in chronic lung disease and further discuss the application and prospects of anti-aging therapy.
Collapse
Affiliation(s)
- Weijie Wang
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China
| | - Kai Zhou
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China
| | - Leyuan Wang
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China
| | - Qiuyan Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China
| | - Huijun Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China
| | - Ling Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China
| | - Ming Yang
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Lin Yuan
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China.
| | - Chi Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China.
| |
Collapse
|
6
|
Li Y, Yin H, Yuan H, Wang E, Wang C, Li H, Geng X, Zhang Y, Bai J. IL-10 deficiency aggravates cell senescence and accelerates BLM-induced pulmonary fibrosis in aged mice via PTEN/AKT/ERK pathway. BMC Pulm Med 2024; 24:443. [PMID: 39261827 PMCID: PMC11389321 DOI: 10.1186/s12890-024-03260-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Pulmonary fibrosis (PF) is an aging-related progressive lung disorder. The aged lung undergoes functional and structural changes termed immunosenescence and inflammaging, which facilitate the occurrence of fibrosis. Interleukin-10 (IL-10) is a potent anti-inflammatory and immunoregulatory cytokine, yet it remains unclear how IL-10 deficiency-induced immunosenescence participates in the development of PF. METHODS Firstly we evaluated the susceptibility to fibrosis and IL-10 expression in aged mice. Then 13-month-old wild-type (WT) and IL-10 knockout (KO) mice were subjected to bleomycin(BLM) and analyzed senescence-related markers by PCR, western blot and immunohistochemistry staining of p16, p21, p53, as well as DHE and SA-β-gal staining. We further compared 18-month-old WT mice with 13-month-old IL-10KO mice to assess aging-associated cell senescence and inflamation infiltration in both lung and BALF. Moreover, proliferation and apoptosis of alveolar type 2 cells(AT2) were evaluated by FCM, immunofluorescence, TUNEL staining, and TEM analysis. Recombinant IL-10 (rIL-10) was also administered intratracheally to evaluate its therapeutic potential and related mechanism. For the in vitro experiments, 10-week-old naïve pramily lung fibroblasts(PLFs) were treated with the culture medium of 13-month PLFs derived from WT, IL-10KO, or IL-10KO + rIL-10 respectively, and examined the secretion of senescence-associated secretory phenotype (SASP) factors and related pathways. RESULTS The aged mice displayed increased susceptibility to fibrosis and decreased IL-10 expression. The 13-month-old IL-10KO mice exhibited significant exacerbation of cell senescence compared to their contemporary WT mice, and even more severe epithelial-mesenchymal transition (EMT) than that of 18 month WT mice. These IL-10 deficient mice showed heightened inflammatory responses and accelerated PF progression. Intratracheal administration of rIL-10 reduced lung CD45 + cell infiltration by 15%, including a 6% reduction in granulocytes and a 10% reduction in macrophages, and increased the proportion of AT2 cells by approximately 8%. Additionally, rIL-10 significantly decreased α-SMA and collagen deposition, and reduced the expression of senescence proteins p16 and p21 by 50% in these mice. In vitro analysis revealed that conditioned media from IL-10 deficient mice promoted SASP secretion and upregulated senescence genes in naïve lung fibroblasts, which was mitigated by rIL-10 treatment. Mechanistically, rIL-10 inhibited TGF-β-Smad2/3 and PTEN/PI3K/AKT/ERK pathways, thereby suppressing senescence and fibrosis-related proteins. CONCLUSIONS IL-10 deficiency in aged mice leads to accelerated cell senescence and exacerbated fibrosis, with IL-10KO-PLFs displaying increased SASP secretion. Recombinant IL-10 treatment effectively mitigates these effects, suggesting its potential as a therapeutic target for PF.
Collapse
Affiliation(s)
- Yinzhen Li
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200092, China
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Hui Yin
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200092, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang, 422000, China
| | - Huixiao Yuan
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200092, China
| | - Enhao Wang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200092, China
| | - Chunmei Wang
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Hongqiang Li
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xuedi Geng
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200092, China
| | - Ying Zhang
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Jianwen Bai
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
7
|
Espina-Ordoñez M, Balderas-Martínez YI, Torres-Machorro AL, Herrera I, Maldonado M, Romero Y, Toscano-Marquez F, Pardo A, Selman M, Cisneros J. Mir-155-5p targets TP53INP1 to promote proliferative phenotype in hypersensitivity pneumonitis lung fibroblasts. Noncoding RNA Res 2024; 9:865-875. [PMID: 38586316 PMCID: PMC10997802 DOI: 10.1016/j.ncrna.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/11/2024] [Accepted: 02/19/2024] [Indexed: 04/09/2024] Open
Abstract
Background Hypersensitivity pneumonitis (HP) is an inflammatory disorder affecting lung parenchyma and often evolves into fibrosis (fHP). The altered regulation of genes involved in the pathogenesis of the disease is not well comprehended, while the role of microRNAs in lung fibroblasts remains unexplored. Methods We used integrated bulk RNA-Seq and enrichment pathway bioinformatic analyses to identify differentially expressed (DE)-miRNAs and genes (DEGs) associated with HP lungs. In vitro, we evaluated the expression and potential role of miR-155-5p in the phenotype of fHP lung fibroblasts. Loss and gain assays were used to demonstrate the impact of miR-155-5p on fibroblast functions. In addition, mir-155-5p and its target TP53INP1 were analyzed after treatment with TGF-β, IL-4, and IL-17A. Results We found around 50 DEGs shared by several databases that differentiate HP from control and IPF lungs, constituting a unique HP lung transcriptional signature. Additionally, we reveal 18 DE-miRNAs that may regulate these DEGs. Among the candidates likely associated with HP pathogenesis was miR-155-5p. Our findings indicate that increased miR-155-5p in fHP fibroblasts coincides with reduced TP53INP1 expression, high proliferative capacity, and a lack of senescence markers compared to IPF fibroblasts. Induced overexpression of miR-155-5p in normal fibroblasts remarkably increases the proliferation rate and decreases TP53INP1 expression. Conversely, miR-155-5p inhibition reduces proliferation and increases senescence markers. TGF-β, IL-4, and IL-17A stimulated miR-155-5p overexpression in HP lung fibroblasts. Conclusion Our findings suggest a distinctive signature of 53 DEGs in HP, including CLDN18, EEF2, CXCL9, PLA2G2D, and ZNF683, as potential targets for future studies. Likewise, 18 miRNAs, including miR-155-5p, could be helpful to establish differences between these two pathologies. The overexpression of miR-155-5p and downregulation of TP53INP1 in fHP lung fibroblasts may be involved in his proliferative and profibrotic phenotype. These findings may help differentiate and characterize their pathogenic features and understand their role in the disease.
Collapse
Affiliation(s)
- Marco Espina-Ordoñez
- Laboratorio de Biopatología Pulmonar INER-Ciencias-UNAM, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, 14080, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, Piso 1, Circuito de Posgrados, Ciudad Universidad, Coyoacán, C.P 04510, CDMX, Mexico
| | - Yalbi Itzel Balderas-Martínez
- Laboratorio de Biología Computacional, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, 14080, Mexico
| | - Ana Lilia Torres-Machorro
- Laboratorio de Biología Celular, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, 14080, Mexico
| | - Iliana Herrera
- Laboratorio de Biopatología Pulmonar INER-Ciencias-UNAM, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, 14080, Mexico
| | - Mariel Maldonado
- Laboratorio de Biopatología Pulmonar INER-Ciencias-UNAM, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, 14080, Mexico
| | - Yair Romero
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Fernanda Toscano-Marquez
- Laboratorio de Biopatología Pulmonar INER-Ciencias-UNAM, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, 14080, Mexico
| | - Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Moisés Selman
- Laboratorio de Biopatología Pulmonar INER-Ciencias-UNAM, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, 14080, Mexico
| | - José Cisneros
- Departamento de Investigación en Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, 14080, Mexico
| |
Collapse
|
8
|
Enzel D, Kriventsov M, Sataieva T, Malygina V. Cellular and Molecular Genetic Mechanisms of Lung Fibrosis Development and the Role of Vitamin D: A Review. Int J Mol Sci 2024; 25:8946. [PMID: 39201632 PMCID: PMC11355055 DOI: 10.3390/ijms25168946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Idiopathic pulmonary fibrosis remains a relevant problem of the healthcare system with an unfavorable prognosis for patients due to progressive fibrous remodeling of the pulmonary parenchyma. Starting with the damage of the epithelial lining of alveoli, pulmonary fibrosis is implemented through a cascade of complex mechanisms, the crucial of which is the TGF-β/SMAD-mediated pathway, involving various cell populations. Considering that a number of the available drugs (pirfenidone and nintedanib) have only limited effectiveness in slowing the progression of fibrosis, the search and justification of new approaches aimed at regulating the immune response, cellular aging processes, programmed cell death, and transdifferentiation of cell populations remains relevant. This literature review presents the key modern concepts concerning molecular genetics and cellular mechanisms of lung fibrosis development, based mainly on in vitro and in vivo studies in experimental models of bleomycin-induced pulmonary fibrosis, as well as the latest data on metabolic features, potential targets, and effects of vitamin D and its metabolites.
Collapse
Affiliation(s)
| | | | - Tatiana Sataieva
- Medical Institute Named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenina Boulevard 5/7, 295051 Simferopol, Russia; (D.E.); (M.K.); (V.M.)
| | | |
Collapse
|
9
|
Wei Y, Gao S, Li C, Huang X, Xie B, Geng J, Dai H, Wang C. Aldehyde Dehydrogenase 2 Deficiency Aggravates Lung Fibrosis through Mitochondrial Dysfunction and Aging in Fibroblasts. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1458-1477. [PMID: 38777148 DOI: 10.1016/j.ajpath.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/07/2024] [Accepted: 04/09/2024] [Indexed: 05/25/2024]
Abstract
Idiopathic pulmonary fibrosis, a fatal interstitial lung disease, is characterized by fibroblast activation and aberrant extracellular matrix accumulation. Effective therapeutic development is limited because of incomplete understanding of the mechanisms by which fibroblasts become aberrantly activated. Here, we show aldehyde dehydrogenase 2 (ALDH2) in fibroblasts as a potential therapeutic target for pulmonary fibrosis. A decrease in ALDH2 expression was observed in patients with idiopathic pulmonary fibrosis and bleomycin-treated mice. ALDH2 deficiency spontaneously induces collagen accumulation in the lungs of aged mice. Furthermore, young ALDH2 knockout mice exhibited exacerbated bleomycin-induced pulmonary fibrosis and increased mortality compared with that in control mice. Mechanistic studies revealed that transforming growth factor (TGF)-β1 induction and ALDH2 depletion constituted a positive feedback loop that exacerbates fibroblast activation. TGF-β1 down-regulated ALDH2 through a TGF-β receptor 1/Smad3-dependent mechanism. The subsequent deficiency in ALDH2 resulted in fibroblast dysfunction that manifested as impaired mitochondrial autophagy and senescence, leading to fibroblast activation and extracellular matrix production. ALDH2 overexpression markedly suppressed fibroblast activation, and this effect was abrogated by PTEN-induced putative kinase 1 (PINK1) knockdown, indicating that the profibrotic effects of ALDH2 are PINK1- dependent. Furthermore, ALDH2 activated by N-(1,3-benzodioxol-5-ylmethyl)-2,6-dichlorobenzamide (Alda-1) reversed the established pulmonary fibrosis in both young and aged mice. In conclusion, ALDH2 expression inhibited the pathogenesis of pulmonary fibrosis. Strategies to up-regulate or activate ALDH2 expression could be potential therapies for pulmonary fibrosis.
Collapse
Affiliation(s)
- Yanqiu Wei
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China; National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Shuwei Gao
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Chen Li
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoxi Huang
- Department of Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Bingbing Xie
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jing Geng
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Huaping Dai
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Chen Wang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China; National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
10
|
Shao M, Qiu Y, Shen M, Liu W, Feng D, Luo Z, Zhou Y. Procyanidin C1 inhibits bleomycin-induced pulmonary fibrosis in mice by selective clearance of senescent myofibroblasts. FASEB J 2024; 38:e23749. [PMID: 38953707 DOI: 10.1096/fj.202302547rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/05/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024]
Abstract
Pulmonary fibrosis is a formidable challenge in chronic and age-related lung diseases. Myofibroblasts secrete large amounts of extracellular matrix and induce pro-repair responses during normal wound healing. Successful tissue repair results in termination of myofibroblast activity via apoptosis; however, some myofibroblasts exhibit a senescent phenotype and escape apoptosis, causing over-repair that is characterized by pathological fibrotic scarring. Therefore, the removal of senescent myofibroblasts using senolytics is an important method for the treatment of pulmonary fibrosis. Procyanidin C1 (PCC1) has recently been discovered as a senolytic compound with very low toxicity and few side effects. This study aimed to determine whether PCC1 could improve lung fibrosis by promoting apoptosis in senescent myofibroblasts and to investigate the mechanisms involved. The results showed that PCC1 attenuates bleomycin (BLM)-induced pulmonary fibrosis in mice. In addition, we found that PCC1 inhibited extracellular matrix deposition and promoted the apoptosis of senescent myofibroblasts by increasing PUMA expression and activating the BAX signaling pathway. Our findings represent a new method of pulmonary fibrosis management and emphasize the potential of PCC1 as a senotherapeutic agent for the treatment of pulmonary fibrosis, providing hope for patients with pulmonary fibrosis worldwide. Our results advance our understanding of age-related diseases and highlight the importance of addressing cellular senescence in treatment.
Collapse
Affiliation(s)
- Min Shao
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yujia Qiu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Mengxia Shen
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Liu
- Department of Community Nursing, Xiangya Nursing School, Central South University, Changsha, China
| | - Dandan Feng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Ziqiang Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Yan Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
11
|
Kawamura K, Matsumura Y, Kawamura T, Araki H, Hamada N, Kuramoto K, Yagi H, Onoyama I, Asanoma K, Kato K. Endometrial senescence is mediated by interleukin 17 receptor B signaling. Cell Commun Signal 2024; 22:363. [PMID: 39010112 PMCID: PMC11247761 DOI: 10.1186/s12964-024-01740-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 07/06/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND We previously identified Il17RB, a member of the IL17 superfamily, as a candidate marker gene for endometrial aging. While IL17RB has been linked to inflammation and malignancies in several organ systems, its function in the endometrium has not been investigated and is thus poorly understood. In the present study, we performed a functional analysis of this receptor with the aim of determining the effects of its age-associated overexpression on the uterine environment. METHODS We analyzed IL17RB-related signaling pathways and downstream gene expression in an immortalized human endometrial glandular epithelial cell line ("hEM") forced to express the receptor via lentiviral transduction ("IL17RB-hEM"). We also prepared endometrial organoids from human endometrial tissue sourced from hysterectomy patients ("patient-derived EOs") and exposed them to cytokines that are upregulated by IL17RB expression to investigate changes in organoid-forming capacity and senescence markers. We analyzed RNA-seq data (GEO accession number GSE132886) from our previous study to identify the signaling pathways associated with altered IL17RB expression. We also analyzed the effects of the JNK pathway on organoid-forming capacity. RESULTS Stimulation with interleukin 17B enhanced the NF-κB pathway in IL17RB-hEM, resulting in significantly elevated expression of the genes encoding the senescence associated secretory phenotype (SASP) factors IL6, IL8, and IL1β. Of these cytokines, IL1β inhibited endometrial organoid growth. Bioinformatics analysis showed that the JNK signaling pathway was associated with age-related variation in IL17RB expression. When IL17RB-positive cells were cultured in the presence of IL17B, their organoid-forming capacity was slightly but non-significantly lower than in unexposed IL17RB-positive cells, but when IL17B was paired with a JNK inhibitor (SP600125), it was restored to control levels. Further, IL1β exposure significantly reduced organoid-forming capacity and increased p21 expression in endometrial organoids relative to non-exposure (control), but when IL1β was paired with SP600125, both indicators were restored to levels comparable to the control condition. CONCLUSIONS We have revealed an association between IL17RB, whose expression increases in the endometrial glandular epithelium with advancing age, and cellular senescence. Using human endometrial organoids as in vitro model, we found that IL1β inhibits cell proliferation and leads to endometrial senescence via the JNK pathway.
Collapse
Affiliation(s)
- Keiko Kawamura
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yumiko Matsumura
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Teruhiko Kawamura
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiromitsu Araki
- Department of Business and Technology Management, Faculty of Economics, Kyushu University, Fukuoka, Japan
| | - Norio Hamada
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazutaka Kuramoto
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroshi Yagi
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ichiro Onoyama
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazuo Asanoma
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kiyoko Kato
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
12
|
Melo-Narváez MC, Bramey N, See F, Heinzelmann K, Ballester B, Steinchen C, Jain E, Federl K, Hu Q, Dhakad D, Behr J, Eickelberg O, Yildirim AÖ, Königshoff M, Lehmann M. Stimuli-Specific Senescence of Primary Human Lung Fibroblasts Modulates Alveolar Stem Cell Function. Cells 2024; 13:1129. [PMID: 38994981 PMCID: PMC11240317 DOI: 10.3390/cells13131129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
Aging is the main risk factor for chronic lung diseases (CLDs) including idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). Accordingly, hallmarks of aging like cellular senescence are increased in these patients in different lung cell types including fibroblasts. However, little is known about the different triggers that induce a senescence phenotype in different disease backgrounds and its role in CLD pathogenesis. Therefore, we characterized senescence in primary human lung fibroblasts (phLF) from control, IPF, or COPD patients at baseline and after exposure to disease-relevant insults (H2O2, bleomycin, TGF-β1) and studied their capacity to support progenitor cell potential in a lung organoid model. Bulk-RNA sequencing revealed that phLF from IPF and COPD activate different transcriptional programs but share a similar senescence phenotype at baseline. Moreover, H2O2 and bleomycin but not TGF-β1 induced senescence in phLF from different disease origins. Exposure to different triggers resulted in distinct senescence programs in phLF characterized by different SASP profiles. Finally, co-culture with bleomycin- and H2O2-treated phLF reduced the progenitor cell potential of alveolar epithelial progenitor cells. In conclusion, phLF from COPD and IPF share a conserved senescence response that varies depending on the insult and impairs alveolar epithelial progenitor capacity ex vivo.
Collapse
Affiliation(s)
- Maria Camila Melo-Narváez
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), 81377 Munich, Germany; (M.C.M.-N.); (F.S.); (C.S.); (E.J.); (D.D.); (A.Ö.Y.)
- Institute for Lung Research, Philipps-University Marburg, German Center for Lung Research (DZL), 35043 Marburg, Germany
| | - Nora Bramey
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), 81377 Munich, Germany; (M.C.M.-N.); (F.S.); (C.S.); (E.J.); (D.D.); (A.Ö.Y.)
| | - Fenja See
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), 81377 Munich, Germany; (M.C.M.-N.); (F.S.); (C.S.); (E.J.); (D.D.); (A.Ö.Y.)
| | - Katharina Heinzelmann
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), 81377 Munich, Germany; (M.C.M.-N.); (F.S.); (C.S.); (E.J.); (D.D.); (A.Ö.Y.)
| | - Beatriz Ballester
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), 81377 Munich, Germany; (M.C.M.-N.); (F.S.); (C.S.); (E.J.); (D.D.); (A.Ö.Y.)
- Faculty of Health Sciences, Universidad Cardenal Herrera—CEU, CEU Universities, 46115 Valencia, Spain
| | - Carina Steinchen
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), 81377 Munich, Germany; (M.C.M.-N.); (F.S.); (C.S.); (E.J.); (D.D.); (A.Ö.Y.)
| | - Eshita Jain
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), 81377 Munich, Germany; (M.C.M.-N.); (F.S.); (C.S.); (E.J.); (D.D.); (A.Ö.Y.)
| | - Kathrin Federl
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), 81377 Munich, Germany; (M.C.M.-N.); (F.S.); (C.S.); (E.J.); (D.D.); (A.Ö.Y.)
| | - Qianjiang Hu
- Division of Pulmonary, Allergy & Critical Care, and Sleep Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (Q.H.); (O.E.); (M.K.)
| | - Deepesh Dhakad
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), 81377 Munich, Germany; (M.C.M.-N.); (F.S.); (C.S.); (E.J.); (D.D.); (A.Ö.Y.)
| | - Jürgen Behr
- Department of Medicine V, University Hospital Munich, Medical Faculty of the LMU Munich, 81377 Munich, Germany;
| | - Oliver Eickelberg
- Division of Pulmonary, Allergy & Critical Care, and Sleep Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (Q.H.); (O.E.); (M.K.)
| | - Ali Önder Yildirim
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), 81377 Munich, Germany; (M.C.M.-N.); (F.S.); (C.S.); (E.J.); (D.D.); (A.Ö.Y.)
- Institute of Experimental Pneumology, University Hospital Munich, Ludwig-Maximilians University, 81377 Munich, Germany
| | - Melanie Königshoff
- Division of Pulmonary, Allergy & Critical Care, and Sleep Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (Q.H.); (O.E.); (M.K.)
| | - Mareike Lehmann
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), 81377 Munich, Germany; (M.C.M.-N.); (F.S.); (C.S.); (E.J.); (D.D.); (A.Ö.Y.)
- Institute for Lung Research, Philipps-University Marburg, German Center for Lung Research (DZL), 35043 Marburg, Germany
- Lung Aging and Regeneration, Institute for Lung Health (ILH), 35392 Giessen, Germany
| |
Collapse
|
13
|
Jain SS, Burton Sojo G, Sun H, Friedland BN, McNamara ME, Schmidt MO, Wellstein A. The Role of Aging and Senescence in Immune Checkpoint Inhibitor Response and Toxicity. Int J Mol Sci 2024; 25:7013. [PMID: 39000121 PMCID: PMC11241020 DOI: 10.3390/ijms25137013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Cellular senescence accumulates with age and has been shown to impact numerous physiological and pathological processes, including immune function. The role of cellular senescence in cancer is multifaceted, but the impact on immune checkpoint inhibitor response and toxicity has not been fully evaluated. In this review, we evaluate the impact of cellular senescence in various biological compartments, including the tumor, the tumor microenvironment, and the immune system, on immune checkpoint inhibitor efficacy and toxicity. We provide an overview of the impact of cellular senescence in normal and pathological contexts and examine recent studies that have connected aging and cellular senescence to immune checkpoint inhibitor treatment in both the pre-clinical and clinical contexts. Overall, senescence plays a multi-faceted, context-specific role and has been shown to modulate immune-related adverse event incidence as well as immune checkpoint inhibitor response.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anton Wellstein
- Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA; (S.S.J.)
| |
Collapse
|
14
|
Howes AM, Dea NC, Ghosh D, Krishna K, Wang Y, Li Y, Morrison B, Toussaint KC, Dawson MR. Fibroblast senescence-associated extracellular matrix promotes heterogeneous lung niche. APL Bioeng 2024; 8:026119. [PMID: 38855444 PMCID: PMC11161856 DOI: 10.1063/5.0204393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
Senescent cell accumulation in the pulmonary niche is associated with heightened susceptibility to age-related disease, tissue alterations, and ultimately a decline in lung function. Our current knowledge of senescent cell-extracellular matrix (ECM) dynamics is limited, and our understanding of how senescent cells influence spatial ECM architecture changes over time is incomplete. Herein is the design of an in vitro model of senescence-associated extracellular matrix (SA-ECM) remodeling using a senescent lung fibroblast-derived matrix that captures the spatiotemporal dynamics of an evolving senescent ECM architecture. Multiphoton second-harmonic generation microscopy was utilized to examine the spatial and temporal dynamics of fibroblast SA-ECM remodeling, which revealed a biphasic process that established a disordered and heterogeneous architecture. Additionally, we observed that inhibition of transforming growth factor-β signaling during SA-ECM remodeling led to improved local collagen fiber organization. Finally, we examined patient samples diagnosed with pulmonary fibrosis to further tie our results of the in vitro model to clinical outcomes. Moreover, we observed that the senescence marker p16 is correlated with local collagen fiber disorder. By elucidating the temporal dynamics of SA-ECM remodeling, we provide further insight on the role of senescent cells and their contributions to pathological ECM remodeling.
Collapse
Affiliation(s)
| | - Nova C. Dea
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 029012, USA
| | - Deepraj Ghosh
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 029012, USA
| | - Krishangi Krishna
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Yihong Wang
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912, USA
| | - Yanxi Li
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 029012, USA
| | - Braxton Morrison
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 029012, USA
| | - Kimani C. Toussaint
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Michelle R. Dawson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 029012, USA
| |
Collapse
|
15
|
Wang Y, Huang X, Luo G, Xu Y, Deng X, Lin Y, Wang Z, Zhou S, Wang S, Chen H, Tao T, He L, Yang L, Yang L, Chen Y, Jin Z, He C, Han Z, Zhang X. The aging lung: microenvironment, mechanisms, and diseases. Front Immunol 2024; 15:1383503. [PMID: 38756780 PMCID: PMC11096524 DOI: 10.3389/fimmu.2024.1383503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
With the development of global social economy and the deepening of the aging population, diseases related to aging have received increasing attention. The pathogenesis of many respiratory diseases remains unclear, and lung aging is an independent risk factor for respiratory diseases. The aging mechanism of the lung may be involved in the occurrence and development of respiratory diseases. Aging-induced immune, oxidative stress, inflammation, and telomere changes can directly induce and promote the occurrence and development of lung aging. Meanwhile, the occurrence of lung aging also further aggravates the immune stress and inflammatory response of respiratory diseases; the two mutually affect each other and promote the development of respiratory diseases. Explaining the mechanism and treatment direction of these respiratory diseases from the perspective of lung aging will be a new idea and research field. This review summarizes the changes in pulmonary microenvironment, metabolic mechanisms, and the progression of respiratory diseases associated with aging.
Collapse
Affiliation(s)
- Yanmei Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M), Chengdu, China
| | - Xuewen Huang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guofeng Luo
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunying Xu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiqian Deng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhanzhan Wang
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Shuwei Zhou
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Siyu Wang
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Haoran Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Tao
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M), Chengdu, China
| | - Lei He
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M), Chengdu, China
| | - Luchuan Yang
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M), Chengdu, China
| | - Li Yang
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M), Chengdu, China
| | - Yutong Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zi Jin
- Department of Anesthesiology and Pain Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Chengshi He
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohong Zhang
- Department of Emergency Medicine Center, Sichuan Province People’s Hospital University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
16
|
Chen F, Zhao W, Du C, Chen Z, Du J, Zhou M. Bleomycin induces senescence and repression of DNA repair via downregulation of Rad51. Mol Med 2024; 30:54. [PMID: 38649802 PMCID: PMC11036784 DOI: 10.1186/s10020-024-00821-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Bleomycin, a potent antitumor agent, is limited in clinical use due to the potential for fatal pulmonary toxicity. The accelerated DNA damage and senescence in alveolar epithelial cells (AECs) is considered a key factor in the development of lung pathology. Understanding the mechanisms for bleomycin-induced lung injury is crucial for mitigating its adverse effects. METHODS Human lung epithelial (A549) cells were exposed to bleomycin and subsequently assessed for cellular senescence, DNA damage, and double-strand break (DSB) repair. The impact of Rad51 overexpression on DSB repair and senescence in AECs was evaluated in vitro. Additionally, bleomycin was intratracheally administered in C57BL/6 mice to establish a pulmonary fibrosis model. RESULTS Bleomycin exposure induced dose- and time-dependent accumulation of senescence hallmarks and DNA lesions in AECs. These effects are probably due to the inhibition of Rad51 expression, consequently suppressing homologous recombination (HR) repair. Mechanistic studies revealed that bleomycin-mediated transcriptional inhibition of Rad51 might primarily result from E2F1 depletion. Furthermore, the genetic supplement of Rad51 substantially mitigated bleomycin-mediated effects on DSB repair and senescence in AECs. Notably, decreased Rad51 expression was also observed in the bleomycin-induced mouse pulmonary fibrosis model. CONCLUSIONS Our works suggest that the inhibition of Rad51 plays a pivotal role in bleomycin-induced AECs senescence and lung injury, offering potential strategies to alleviate the pulmonary toxicity of bleomycin.
Collapse
Affiliation(s)
- Fuqiang Chen
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Wenna Zhao
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Chenghong Du
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zihan Chen
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jie Du
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, 529030, Guangdong, China.
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
17
|
Chu L, Zhuo J, Huang H, Chen W, Zhong W, Zhang J, Meng X, Zou F, Cai S, Zou M, Dong H. Tetrandrine alleviates pulmonary fibrosis by inhibiting alveolar epithelial cell senescence through PINK1/Parkin-mediated mitophagy. Eur J Pharmacol 2024; 969:176459. [PMID: 38438063 DOI: 10.1016/j.ejphar.2024.176459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal and insidious interstitial lung disease. So far, there are no effective drugs for preventing the disease process. Cellular senescence plays a critical role in the development of IPF, with the senescence and insufficient mitophagy of alveolar epithelial cells being implicated in its pathogenesis. Tetrandrine is a natural alkaloid which is now produced synthetically. It was known that the tetrandrine has anti-fibrotic effects, but the efficacy and mechanisms are still not well evaluated. Here, we reveal the roles of tetrandrine on AECs senescence and the antifibrotic effects by using a bleomycin challenged mouse model of pulmonary fibrosis and a bleomycin-stimulated mouse alveolar epithelial cell line (MLE-12). We performed the β-galactosidase staining, immunohistochemistry and fluorescence to assess senescence in MLE-12 cells. The mitophagy levels were detected by co-localization of LC3 and COVIX. Our findings indicate that tetrandrine suppressed bleomycin-induced fibroblast activation and ultimately blocked the increase of collagen deposition in mouse model lung tissue. It has significantly inhibited the bleomycin-induced senescence and senescence-associated secretory phenotype (SASP) in alveolar epithelial cells (AECs). Mechanistically, tetrandrine suppressed the decrease of mitochondrial autophagy-related protein expression to rescue the bleomycin-stimulated impaired mitophagy in MLE-12 cells. We revealed that knockdown the putative kinase 1 (PINK1) gene by a short interfering RNA (siRNA) could abolish the ability of tetrandrine and reverse the MLE-12 cells senescence, which indicated the mitophagy of MLE-12 cells is PINK1 dependent. Our data suggest the tetrandrine could be a novel and effective drug candidate for lung fibrosis and senescence-related fibrotic diseases.
Collapse
Affiliation(s)
- Lanhe Chu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinzhong Zhuo
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haohua Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weimou Chen
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenshan Zhong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinming Zhang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaojing Meng
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Fei Zou
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengchen Zou
- Department of Endocrinology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
18
|
Wan R, Long S, Ma S, Yan P, Li Z, Xu K, Lian H, Li W, Duan Y, Zhu M, Wang L, Yu G. NR2F2 alleviates pulmonary fibrosis by inhibition of epithelial cell senescence. Respir Res 2024; 25:154. [PMID: 38566093 PMCID: PMC10985909 DOI: 10.1186/s12931-024-02777-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fatal, and aging-associated interstitial lung disease with a poor prognosis and limited treatment options, while the pathogenesis remains elusive. In this study, we found that the expression of nuclear receptor subfamily 2 group F member 2 (NR2F2), a member of the steroid thyroid hormone superfamily of nuclear receptors, was reduced in both IPF and bleomycin-induced fibrotic lungs, markedly in bleomycin-induced senescent epithelial cells. Inhibition of NR2F2 expression increased the expression of senescence markers such as p21 and p16 in lung epithelial cells, and activated fibroblasts through epithelial-mesenchymal crosstalk, inversely overexpression of NR2F2 alleviated bleomycin-induced epithelial cell senescence and inhibited fibroblast activation. Subsequent mechanistic studies revealed that overexpression of NR2F2 alleviated DNA damage in lung epithelial cells and inhibited cell senescence. Adenovirus-mediated Nr2f2 overexpression attenuated bleomycin-induced lung fibrosis and cell senescence in mice. In summary, these data demonstrate that NR2F2 is involved in lung epithelial cell senescence, and targeting NR2F2 may be a promising therapeutic approach against lung cell senescence and fibrosis.
Collapse
Affiliation(s)
- Ruyan Wan
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Pingyuan Laboratory, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Siqi Long
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Pingyuan Laboratory, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Shuaichen Ma
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Pingyuan Laboratory, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Peishuo Yan
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Pingyuan Laboratory, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Zhongzheng Li
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Pingyuan Laboratory, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Kai Xu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Pingyuan Laboratory, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Hui Lian
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Pingyuan Laboratory, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Wenwen Li
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Pingyuan Laboratory, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Yudi Duan
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Pingyuan Laboratory, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Miaomiao Zhu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Pingyuan Laboratory, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Lan Wang
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Pingyuan Laboratory, Henan Normal University, Xinxiang, 453007, Henan, China.
- College of Life Science, Henan Normal University, Xinxiang, Henan, China.
| | - Guoying Yu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Pingyuan Laboratory, Henan Normal University, Xinxiang, 453007, Henan, China.
- College of Life Science, Henan Normal University, Xinxiang, Henan, China.
| |
Collapse
|
19
|
Wrench CL, Baker JR, Monkley S, Fenwick PS, Murray L, Donnelly LE, Barnes PJ. Small airway fibroblasts from patients with chronic obstructive pulmonary disease exhibit cellular senescence. Am J Physiol Lung Cell Mol Physiol 2024; 326:L266-L279. [PMID: 38150543 PMCID: PMC11281792 DOI: 10.1152/ajplung.00419.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 09/26/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023] Open
Abstract
Small airway disease (SAD) is a key early-stage pathology of chronic obstructive pulmonary disease (COPD). COPD is associated with cellular senescence whereby cells undergo growth arrest and express the senescence-associated secretory phenotype (SASP) leading to chronic inflammation and tissue remodeling. Parenchymal-derived fibroblasts have been shown to display senescent properties in COPD, however small airway fibroblasts (SAFs) have not been investigated. Therefore, this study investigated the role of these cells in COPD and their potential contribution to SAD. To investigate the senescent and fibrotic phenotype of SAF in COPD, SAFs were isolated from nonsmoker, smoker, and COPD lung resection tissue (n = 9-17 donors). Senescence and fibrotic marker expressions were determined using iCELLigence (proliferation), qPCR, Seahorse assay, and ELISAs. COPD SAFs were further enriched for senescent cells using FACSAria Fusion based on cell size and autofluorescence (10% largest/autofluorescent vs. 10% smallest/nonautofluorescent). The phenotype of the senescence-enriched population was investigated using RNA sequencing and pathway analysis. Markers of senescence were observed in COPD SAFs, including senescence-associated β-galactosidase, SASP release, and reduced proliferation. Because the pathways driving this phenotype were unclear, we used cell sorting to enrich senescent COPD SAFs. This population displayed increased p21CIP1 and p16INK4a expression and mitochondrial dysfunction. RNA sequencing suggested these senescent cells express genes involved in oxidative stress response, fibrosis, and mitochondrial dysfunction pathways. These data suggest COPD SAFs are senescent and may be associated with fibrotic properties and mitochondrial dysfunction. Further understanding of cellular senescence in SAFs may lead to potential therapies to limit SAD progression.NEW & NOTEWORTHY Fibroblasts and senescence are thought to play key roles in the pathogenesis of small airway disease and COPD; however, the characteristics of small airway-derived fibroblasts are not well explored. In this study we isolate and enrich the senescent small airway-derived fibroblast (SAF) population from COPD lungs and explore the pathways driving this phenotype using bulk RNA-seq.
Collapse
Affiliation(s)
- Catherine L Wrench
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology (R&I), Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Jonathan R Baker
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Sue Monkley
- Translation Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology (R&I), Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Peter S Fenwick
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Lynne Murray
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology (R&I), Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Louise E Donnelly
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Peter J Barnes
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| |
Collapse
|
20
|
Kwon SH, Chung H, Seo JW, Kim HS. Genistein alleviates pulmonary fibrosis by inactivating lung fibroblasts. BMB Rep 2024; 57:143-148. [PMID: 37817434 PMCID: PMC10979345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/11/2023] [Accepted: 09/24/2023] [Indexed: 10/12/2023] Open
Abstract
Pulmonary fibrosis is a serious lung disease that occurs predominantly in men. Genistein is an important natural soybeanderived phytoestrogen that affects various biological functions, such as cell migration and fibrosis. However, the antifibrotic effects of genistein on pulmonary fibrosis are largely unknown. The antifibrotic effects of genistein were evaluated using in vitro and in vivo models of lung fibrosis. Proteomic data were analyzed using nano-LC-ESI-MS/MS. Genistein significantly reduced transforming growth factor (TGF)-β1-induced expression of collagen type I and α-smooth muscle actin (SMA) in MRC-5 cells and primary fibroblasts from patients with idiopathic pulmonary fibrosis (IPF). Genistein also reduced TGF-β1-induced expression of p-Smad2/3 and p-p38 MAPK in fibroblast models. Comprehensive protein analysis confirmed that genistein exerted an anti-fibrotic effect by regulating various molecular mechanisms, such as unfolded protein response, epithelial mesenchymal transition (EMT), mammalian target of rapamycin complex 1 (mTORC1) signaling, cell death, and several metabolic pathways. Genistein was also found to decrease hydroxyproline levels in the lungs of BLM-treated mice. Genistein exerted an anti-fibrotic effect by preventing fibroblast activation, suggesting that genistein could be developed as a pharmacological agent for the prevention and treatment of pulmonary fibrosis. [BMB Reports 2024; 57(3): 143-148].
Collapse
Affiliation(s)
- Seung-hyun Kwon
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul 05368, Korea
| | - Hyunju Chung
- Core Research Laboratory, Medical Science Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 05278, Korea
| | - Jung-Woo Seo
- Core Research Laboratory, Medical Science Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 05278, Korea
| | - Hak Su Kim
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul 05368, Korea
| |
Collapse
|
21
|
Bramey N, Melo-Narvaez MC, See F, Ballester-Lllobell B, Steinchen C, Jain E, Hafner K, Yildirim AÖ, Königshoff M, Lehmann M. Stimuli-specific senescence of primary human lung fibroblasts modulates alveolar stem cell function. RESEARCH SQUARE 2024:rs.3.rs-3879423. [PMID: 38352619 PMCID: PMC10862971 DOI: 10.21203/rs.3.rs-3879423/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Aging is the main risk factor for chronic lung diseases (CLDs) including idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). Accordingly, hallmarks of aging such as cellular senescence are present in different lung cell types such as fibroblasts in these patients. However, whether the senescent phenotype of fibroblasts derived from IPF or COPD patients differs is still unknown. Therefore, we characterized senescence at baseline and after exposure to disease-relevant insults (H 2 O 2 , bleomycin, and TGF-β1) in cultured primary human lung fibroblasts (phLF) from control donors, IPF, or COPD patients. We found that phLF from different disease-origins have a low baseline senescence. H 2 O 2 and bleomycin treatment induced a senescent phenotype in phLF, whereas TGF-β1 had primarily a pro-fibrotic effect. Notably, we did not observe any differences in susceptibility to senescence induction in phLF based on disease origin, while exposure to different stimuli resulted in distinct senescence programs in phLF. Moreover, senescent phLF reduced colony formation efficiency of distal alveolar epithelial progenitor cells in a stimuli-dependent manner. In conclusion, the senescent phenotype of phLF is mainly determined by the senescence inducer and impairs alveolar epithelial progenitor capacity in vitro .
Collapse
|
22
|
Barron SL, Wyatt O, O'Connor A, Mansfield D, Suzanne Cohen E, Witkos TM, Strickson S, Owens RM. Modelling bronchial epithelial-fibroblast cross-talk in idiopathic pulmonary fibrosis (IPF) using a human-derived in vitro air liquid interface (ALI) culture. Sci Rep 2024; 14:240. [PMID: 38168149 PMCID: PMC10761879 DOI: 10.1038/s41598-023-50618-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a devastating form of respiratory disease with a life expectancy of 3-4 years. Inflammation, epithelial injury and myofibroblast proliferation have been implicated in disease initiation and, recently, epithelial-fibroblastic crosstalk has been identified as a central driver. However, the ability to interrogate this crosstalk is limited due to the absence of in vitro models that mimic physiological conditions. To investigate IPF dysregulated cross-talk, primary normal human bronchial epithelial (NHBE) cells and primary normal human lung fibroblasts (NHLF) or diseased human lung fibroblasts (DHLF) from IPF patients, were co-cultured in direct contact at the air-liquid interface (ALI). Intercellular crosstalk was assessed by comparing cellular phenotypes of co-cultures to respective monocultures, through optical, biomolecular and electrical methods. A co-culture-dependent decrease in epithelium thickness, basal cell mRNA (P63, KRT5) and an increase in transepithelial electrical resistance (TEER) was observed. This effect was significantly enhanced in DHLF co-cultures and lead to the induction of epithelial to mesenchymal transition (EMT) and increased mRNA expression of TGFβ-2, ZO-1 and DN12. When stimulated with exogenous TGFβ, NHBE and NHLF monocultures showed a significant upregulation of EMT (COL1A1, FN1, VIM, ASMA) and senescence (P21) markers, respectively. In contrast, direct NHLF/NHBE co-culture indicated a protective role of epithelial-fibroblastic cross-talk against TGFβ-induced EMT, fibroblast-to-myofibroblast transition (FMT) and inflammatory cytokine release (IL-6, IL-8, IL-13, IL-1β, TNF-α). DHLF co-cultures showed no significant phenotypic transition upon stimulation, likely due to the constitutively high expression of TGFβ isoforms prior to any exogenous stimulation. The model developed provides an alternative method to generate IPF-related bronchial epithelial phenotypes in vitro, through the direct co-culture of human lung fibroblasts with NHBEs. These findings highlight the importance of fibroblast TGFβ signaling in EMT but that monocultures give rise to differential responses compared to co-cultures, when exposed to this pro-inflammatory stimulus. This holds implications for any translation conclusions drawn from monoculture studies and is an important step in development of more biomimetic models of IPF. In summary, we believe this in vitro system to study fibroblast-epithelial crosstalk, within the context of IPF, provides a platform which will aid in the identification and validation of novel targets.
Collapse
Affiliation(s)
- Sarah L Barron
- Chemical Engineering and Biotechnology Department, University of Cambridge, Cambridge, UK.
| | - Owen Wyatt
- Research and Early Development, Respiratory and Immunology, Bioscience Asthma and Skin Immunity, AstraZeneca, Cambridge, UK
| | - Andy O'Connor
- Research and Early Development, Respiratory and Immunology, Bioscience Asthma and Skin Immunity, AstraZeneca, Cambridge, UK
| | - David Mansfield
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, AstraZeneca, Cambridge, UK
| | - E Suzanne Cohen
- Research and Early Development, Respiratory and Immunology, Bioscience Asthma and Skin Immunity, AstraZeneca, Cambridge, UK
| | - Tomasz M Witkos
- Analytical Sciences, Bioassay, Biosafety and Impurities, BioPharmaceutical Development, AstraZeneca, Cambridge, UK
| | - Sam Strickson
- Research and Early Development, Respiratory and Immunology, Bioscience Asthma and Skin Immunity, AstraZeneca, Cambridge, UK
| | - Róisín M Owens
- Chemical Engineering and Biotechnology Department, University of Cambridge, Cambridge, UK.
| |
Collapse
|
23
|
Wan R, Wang L, Zhu M, Li W, Duan Y, Yu G. Cellular Senescence: A Troy Horse in Pulmonary Fibrosis. Int J Mol Sci 2023; 24:16410. [PMID: 38003600 PMCID: PMC10671822 DOI: 10.3390/ijms242216410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Pulmonary fibrosis (PF) is a chronic interstitial lung disease characterized by myofibroblast abnormal activation and extracellular matrix deposition. However, the pathogenesis of PF remains unclear, and treatment options are limited. Epidemiological studies have shown that the average age of PF patients is estimated to be over 65 years, and the incidence of the disease increases with age. Therefore, PF is considered an age-related disease. A preliminary study on PF patients demonstrated that the combination therapy of the anti-senescence drugs dasatinib and quercetin improved physical functional indicators. Given the global aging population and the role of cellular senescence in tissue and organ aging, understanding the impact of cellular senescence on PF is of growing interest. This article systematically summarizes the causes and signaling pathways of cellular senescence in PF. It also objectively analyzes the impact of senescence in AECs and fibroblasts on PF development. Furthermore, potential intervention methods targeting cellular senescence in PF treatment are discussed. This review not only provides a strong theoretical foundation for understanding and manipulating cellular senescence, developing new therapies to improve age-related diseases, and extending a healthy lifespan but also offers hope for reversing the toxicity caused by the massive accumulation of senescence cells in humans.
Collapse
Affiliation(s)
- Ruyan Wan
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Lan Wang
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Miaomiao Zhu
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Wenwen Li
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Yudi Duan
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Guoying Yu
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
24
|
Luo W, Gu Y, Fu S, Wang J, Zhang J, Wang Y. Emerging opportunities to treat idiopathic pulmonary fibrosis: Design, discovery, and optimizations of small-molecule drugs targeting fibrogenic pathways. Eur J Med Chem 2023; 260:115762. [PMID: 37683364 DOI: 10.1016/j.ejmech.2023.115762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common fibrotic form of idiopathic diffuse lung disease. Due to limited treatment options, IPF patients suffer from poor survival. About ten years ago, Pirfenidone (Shionogi, 2008; InterMune, 2011) and Nintedanib (Boehringer Ingelheim, 2014) were approved, greatly changing the direction of IPF drug design. However, limited efficacy and side effects indicate that neither can reverse the process of IPF. With insights into the occurrence of IPF, novel targets and agents have been proposed, which have fundamentally changed the treatment of IPF. With the next-generation agents, targeting pro-fibrotic pathways in the epithelial-injury model offers a promising approach. Besides, several next-generation IPF drugs have entered phase II/III clinical trials with encouraging results. Due to the rising IPF treatment requirements, there is an urgent need to completely summarize the mechanisms, targets, problems, and drug design strategies over the past ten years. In this review, we summarize known mechanisms, target types, drug design, and novel technologies of IPF drug discovery, aiming to provide insights into the future development and clinical application of next-generation IPF drugs.
Collapse
Affiliation(s)
- Wenxin Luo
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yilin Gu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Siyu Fu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Jifa Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| |
Collapse
|
25
|
Sui J, Boatz JC, Shi J, Hu Q, Li X, Zhang Y, Königshoff M, Kliment CR. Loss of ANT1 Increases Fibrosis and Epithelial Cell Senescence in Idiopathic Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2023; 69:556-569. [PMID: 37487137 PMCID: PMC10633847 DOI: 10.1165/rcmb.2022-0315oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 07/24/2023] [Indexed: 07/26/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by progressive lung scarring and remodeling. Although treatments exist that slow disease progression, IPF is irreversible, and there is no cure. Cellular senescence, a major hallmark of aging, has been implicated in IPF pathogenesis, and mitochondrial dysfunction is increasingly recognized as a driver of senescence. Adenine nucleotide translocases (ANTs) are abundant mitochondrial ATP-ADP transporters critical for regulating cell fate and maintaining mitochondrial function. We sought to determine how alterations in ANTs influence cellular senescence in pulmonary fibrosis. We found that SLC25A4 (solute carrier family 25 member 4) (ANT1) and SLC25A5 (ANT2) expression is reduced in the lungs of patients with IPF, particularly within alveolar type II (AT2) cells, by single-cell RNA sequencing and tissue staining. Loss of ANT1 by siRNA in lung epithelial cells resulted in increased senescence markers such as β-galactosidase and p21, with a reduction in the ratio of nicotinamide adenine dinucleotide to reduced nicotinamide adenine dinucleotide. Bleomycin-treated ANT1 knockdown cells also had increased senescence markers compared with bleomycin-treated control cells. Loss of ANT1 in AT2 cells resulted in a reduction in alveolar organoid growth, with an increase in p21 by staining. Global loss of ANT1 resulted in worse lung fibrosis and increased senescence in the bleomycin- and asbestos-induced mouse models of pulmonary fibrosis. In summary, loss of ANT1 contributes to IPF pathogenesis through mitochondrial dysfunction, increased senescence, and decreased regenerative capacity of AT2 cells, resulting in enhanced lung fibrosis. Modulation of ANTs presents a new therapeutic avenue that may alter cellular senescence pathways and limit pulmonary fibrosis.
Collapse
Affiliation(s)
- Justin Sui
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jennifer C Boatz
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jian Shi
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Qianjiang Hu
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xiaoyun Li
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yingze Zhang
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Melanie Königshoff
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Corrine R Kliment
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
26
|
Weckerle J, Mayr CH, Fundel-Clemens K, Lämmle B, Boryn L, Thomas MJ, Bretschneider T, Luippold AH, Huber HJ, Viollet C, Rist W, Veyel D, Ramirez F, Klee S, Kästle M. Transcriptomic and Proteomic Changes Driving Pulmonary Fibrosis Resolution in Young and Old Mice. Am J Respir Cell Mol Biol 2023; 69:422-440. [PMID: 37411041 DOI: 10.1165/rcmb.2023-0012oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023] Open
Abstract
Bleomycin-induced pulmonary fibrosis in mice mimics major hallmarks of idiopathic pulmonary fibrosis. Yet in this model, it spontaneously resolves over time. We studied molecular mechanisms of fibrosis resolution and lung repair, focusing on transcriptional and proteomic signatures and the effect of aging. Old mice showed incomplete and delayed lung function recovery 8 weeks after bleomycin instillation. This shift in structural and functional repair in old bleomycin-treated mice was reflected in a temporal shift in gene and protein expression. We reveal gene signatures and signaling pathways that underpin the lung repair process. Importantly, the downregulation of WNT, BMP, and TGFβ antagonists Frzb, Sfrp1, Dkk2, Grem1, Fst, Fstl1, and Inhba correlated with lung function improvement. Those genes constitute a network with functions in stem cell pathways, wound, and pulmonary healing. We suggest that insufficient and delayed downregulation of those antagonists during fibrosis resolution in old mice explains the impaired regenerative outcome. Together, we identified signaling pathway molecules with relevance to lung regeneration that should be tested in-depth experimentally as potential therapeutic targets for pulmonary fibrosis.
Collapse
Affiliation(s)
| | | | | | - Bärbel Lämmle
- Global Computational Biology and Digital Sciences, and
| | | | | | - Tom Bretschneider
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; and
| | - Andreas H Luippold
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; and
| | | | | | - Wolfgang Rist
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; and
| | - Daniel Veyel
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; and
| | - Fidel Ramirez
- Global Computational Biology and Digital Sciences, and
| | - Stephan Klee
- Department of Immunology and Respiratory Disease Research
| | - Marc Kästle
- Department of Immunology and Respiratory Disease Research
| |
Collapse
|
27
|
Mebratu YA, Soni S, Rosas L, Rojas M, Horowitz JC, Nho R. The aged extracellular matrix and the profibrotic role of senescence-associated secretory phenotype. Am J Physiol Cell Physiol 2023; 325:C565-C579. [PMID: 37486065 PMCID: PMC10511170 DOI: 10.1152/ajpcell.00124.2023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an irreversible and fatal lung disease that is primarily found in the elderly population, and several studies have demonstrated that aging is the major risk factor for IPF. IPF is characterized by the presence of apoptosis-resistant, senescent fibroblasts that generate an excessively stiff extracellular matrix (ECM). The ECM profoundly affects cellular functions and tissue homeostasis, and an aberrant ECM is closely associated with the development of lung fibrosis. Aging progressively alters ECM components and is associated with the accumulation of senescent cells that promote age-related tissue dysfunction through the expression of factors linked to a senescence-associated secretary phenotype (SASP). There is growing evidence that SASP factors affect various cell behaviors and influence ECM turnover in lung tissue through autocrine and/or paracrine signaling mechanisms. Since life expectancy is increasing worldwide, it is important to elucidate how aging affects ECM dynamics and turnover via SASP and thereby promotes lung fibrosis. In this review, we will focus on the molecular properties of SASP and its regulatory mechanisms. Furthermore, the pathophysiological process of ECM remodeling by SASP factors and the influence of an altered ECM from aged lungs on the development of lung fibrosis will be highlighted. Finally, recent attempts to target ECM alteration and senescent cells to modulate fibrosis will be introduced.NEW & NOTEWORTHY Aging is the most prominent nonmodifiable risk factor for various human diseases including Idiopathic pulmonary fibrosis. Aging progressively alters extracellular matrix components and is associated with the accumulation of senescent cells that promote age-related tissue dysfunction. In this review, we will discuss the pathological impact of aging and senescence on lung fibrosis via senescence-associated secretary phenotype factors and potential therapeutic approaches to limit the progression of lung fibrosis.
Collapse
Affiliation(s)
- Yohannes A Mebratu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Sourabh Soni
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Lorena Rosas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Mauricio Rojas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Jeffrey C Horowitz
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Richard Nho
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
28
|
Xu M, Zhao C, Song H, Wang C, Li H, Qiu X, Jing H, Zhuang W. Inhibitory effects of Schisandrin C on collagen behavior in pulmonary fibrosis. Sci Rep 2023; 13:13475. [PMID: 37596361 PMCID: PMC10439186 DOI: 10.1038/s41598-023-40631-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023] Open
Abstract
Pulmonary fibrosis (PF) is a serious progressive fibrotic disease that is characterized by excessive accumulation of extracellular matrix (ECM), thus resulting in stiff lung tissues. Lysyl oxidase (LOX) is an enzyme involved in fibrosis by catalyzing collagen cross-linking. Studies found that the ingredients in schisandra ameliorated bleomycin (BLM)-induced PF, but it is unknown whether the anti-PF of schisandra is related to LOX. In this study, we established models of PF including a mouse model stimulated by BLM and a HFL1 cell model induced by transforming growth factor (TGF)-β1 to evaluate the inhibition effects of Schisandrin C (Sch C) on PF. We observed that Sch C treatment decreased pulmonary indexes compared to control group. Treatment of Sch C showed a significant reduction in the accumulation of ECM as evidenced by decreased expressions of α-SMA, FN, MMP2, MMP9, TIMP1 and collagen proteins such as Col 1A1, and Col 3A1. In addition, the expression of LOX in the lung tissue of mice after Sch C treatment was effectively decreased compared with the MOD group. The inhibition effects in vitro were consistent with those in vivo. Mechanistic studies revealed that Sch C significantly inhibited TGF-β1/Smad2/3 and TNF-α/JNK signaling pathways. In conclusion, our data demonstrated that Sch C significantly ameliorated PF in vivo and vitro, which may play an important role by reducing ECM deposition and inhibiting the production of LOX.
Collapse
Affiliation(s)
- Mingchen Xu
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin, 132013, China
| | - Chenghe Zhao
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin, 132013, China
| | - Haiming Song
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin, 132013, China
| | - Chunmei Wang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - He Li
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Xudong Qiu
- Department of Hand Surgery, Affiliated Hospital, Beihua University, Jilin, China
| | - He Jing
- Department of Hand Surgery, Affiliated Hospital, Beihua University, Jilin, China
| | - Wenyue Zhuang
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin, 132013, China.
| |
Collapse
|
29
|
Salminen A. The plasticity of fibroblasts: A forgotten player in the aging process. Ageing Res Rev 2023; 89:101995. [PMID: 37391015 DOI: 10.1016/j.arr.2023.101995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Tissue-resident fibroblasts are mesenchymal cells which possess an impressive plasticity in their ability to modify their properties according to the requirements of the microenvironment. There are diverse subgroups of fibroblast phenotypes associated with different tissue pathological conditions, e.g., cancers, wound healing, and many fibrotic and inflammatory conditions. The heterogeneous phenotypes can be subdivided into fibrogenic and non-fibrogenic, inflammatory and immunosuppressive subtypes as well as cellular senescent subsets. A major hallmark of activated fibroblasts is that they contain different amounts of stress fibers combined with α-smooth muscle actin (α-SMA) protein, i.e., commonly this phenotype has been called the myofibroblast. Interestingly, several stresses associated with the aging process are potent inducers of myofibroblast differentiation, e.g., oxidative and endoplasmic reticulum stresses, extracellular matrix (ECM) disorders, inflammatory mediators, and telomere shortening. Accordingly, anti-aging treatments with metformin and rapamycin inhibited the differentiation of myofibroblasts in tissues. There is evidence that the senescent phenotype induced in cultured fibroblasts does not represent the phenotype of fibroblasts in aged tissues. Considering the versatile plasticity of fibroblasts as well as their frequency and structural importance in tissues, it does seem that fibroblasts are overlooked players in the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
30
|
Hernandez-Gonzalez F, Prats N, Ramponi V, López-Domínguez JA, Meyer K, Aguilera M, Muñoz Martín MI, Martínez D, Agusti A, Faner R, Sellarés J, Pietrocola F, Serrano M. Human senescent fibroblasts trigger progressive lung fibrosis in mice. Aging (Albany NY) 2023; 15:6641-6657. [PMID: 37393107 PMCID: PMC10415539 DOI: 10.18632/aging.204825] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/05/2023] [Indexed: 07/03/2023]
Abstract
Cell senescence has recently emerged as a potentially relevant pathogenic mechanism in fibrosing interstitial lung diseases (f-ILDs), particularly in idiopathic pulmonary fibrosis. We hypothesized that senescent human fibroblasts may suffice to trigger a progressive fibrogenic reaction in the lung. To address this, senescent human lung fibroblasts, or their secretome (SASP), were instilled into the lungs of immunodeficient mice. We found that: (1) human senescent fibroblasts engraft in the lungs of immunodeficient mice and trigger progressive lung fibrosis associated to increasing levels of mouse senescent cells, whereas non-senescent fibroblasts do not trigger fibrosis; (2) the SASP of human senescent fibroblasts is pro-senescence and pro-fibrotic both in vitro when added to mouse recipient cells and in vivo when delivered into the lungs of mice, whereas the conditioned medium (CM) from non-senescent fibroblasts lacks these activities; and, (3) navitoclax, nintedanib and pirfenidone ameliorate lung fibrosis induced by senescent human fibroblasts in mice, albeit only navitoclax displayed senolytic activity. We conclude that human senescent fibroblasts, through their bioactive secretome, trigger a progressive fibrogenic reaction in the lungs of immunodeficient mice that includes the induction of paracrine senescence in the cells of the host, supporting the concept that senescent cells actively contribute to disease progression in patients with f-ILDs.
Collapse
Affiliation(s)
- Fernanda Hernandez-Gonzalez
- Department of Pulmonology, Respiratory Institute, Hospital Clinic, Barcelona 08036, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- School of Medicine, University of Barcelona, Barcelona 08036, Spain
| | - Neus Prats
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Valentina Ramponi
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - José Alberto López-Domínguez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Kathleen Meyer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Mònica Aguilera
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - María Isabel Muñoz Martín
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Daniel Martínez
- Department of Pathology, Hospital Clinic, Barcelona 08036, Spain
| | - Alvar Agusti
- Department of Pulmonology, Respiratory Institute, Hospital Clinic, Barcelona 08036, Spain
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid 28029, Spain
- School of Medicine, University of Barcelona, Barcelona 08036, Spain
| | - Rosa Faner
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid 28029, Spain
- School of Medicine, University of Barcelona, Barcelona 08036, Spain
| | - Jacobo Sellarés
- Department of Pulmonology, Respiratory Institute, Hospital Clinic, Barcelona 08036, Spain
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid 28029, Spain
- School of Medicine, University of Barcelona, Barcelona 08036, Spain
| | - Federico Pietrocola
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge 14183, Sweden
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
- Altos Labs, Cambridge Institute of Science, Cambridge, United Kingdom
| |
Collapse
|
31
|
Fujita Y, Fujimoto S, Miyamoto A, Kaneko R, Kadota T, Watanabe N, Kizawa R, Kawamoto H, Watanabe J, Utsumi H, Wakui H, Minagawa S, Araya J, Ohtsuka T, Ochiya T, Kuwano K. Fibroblast-derived Extracellular Vesicles Induce Lung Cancer Progression in the Idiopathic Pulmonary Fibrosis Microenvironment. Am J Respir Cell Mol Biol 2023; 69:34-44. [PMID: 36848313 DOI: 10.1165/rcmb.2022-0253oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/24/2023] [Indexed: 03/01/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive aging-related lung disease associated with increased lung cancer risk. Although previous studies have shown that IPF worsens the survival of patients with lung cancer, whether IPF independently affects cancer malignancy and prognosis remains inconclusive. Extracellular vesicles (EVs) have recently emerged as active carriers of molecular biomarkers and mediators of intercellular communication in lung homeostasis and pathogenesis. EV cargo-mediated fibroblast-tumor cell communication might participate in the development and progression of lung cancer by modulating various signaling pathways. In this study, we examined the impact of lung fibroblast (LF)-derived EVs on non-small cell lung cancer (NSCLC) malignancy in the IPF microenvironment. Here, we showed that LFs derived from patients with IPF have phenotypes of myofibroblast differentiation and cellular senescence. Furthermore, we found that IPF LF-derived EVs have markedly altered microRNA compositions and exert proproliferative functions on NSCLC cells. Mechanistically, the phenotype was attributed mainly to the enrichment of miR-19a in IPF LF-derived EVs. As a downstream signaling pathway, mir-19a in IPF LF-derived EVs regulates ZMYND11-mediated c-Myc activation in NSCLC, potentially contributing to the poor prognosis of patients with NSCLC with IPF. Our discoveries provide novel mechanistic insights for understanding lung cancer progression in the IPF microenvironment. Accordingly, blocking the secretion of IPF LF-derived EV miR-19a and their signaling pathways is a potential therapeutic strategy for managing IPF and lung cancer progression.
Collapse
Affiliation(s)
- Yu Fujita
- Division of Respiratory Diseases, Department of Internal Medicine
- Department of Translational Research for Exosomes, and
| | - Shota Fujimoto
- Division of Respiratory Diseases, Department of Internal Medicine
| | - Atsushi Miyamoto
- Department of Respiratory Medicine, Respiratory Center, Toranomon Hospital, Tokyo, Japan; and
| | - Reika Kaneko
- Department of Translational Research for Exosomes, and
| | - Tsukasa Kadota
- Division of Respiratory Diseases, Department of Internal Medicine
| | - Naoaki Watanabe
- Division of Respiratory Diseases, Department of Internal Medicine
| | - Ryusuke Kizawa
- Division of Respiratory Diseases, Department of Internal Medicine
- Department of Translational Research for Exosomes, and
| | | | - Junko Watanabe
- Division of Respiratory Diseases, Department of Internal Medicine
| | - Hirofumi Utsumi
- Division of Respiratory Diseases, Department of Internal Medicine
| | - Hiroshi Wakui
- Division of Respiratory Diseases, Department of Internal Medicine
| | | | - Jun Araya
- Division of Respiratory Diseases, Department of Internal Medicine
| | - Takashi Ohtsuka
- Division of Thoracic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Kazuyoshi Kuwano
- Division of Respiratory Diseases, Department of Internal Medicine
| |
Collapse
|
32
|
Dabaghi M, Carpio MB, Saraei N, Moran-Mirabal JM, Kolb MR, Hirota JA. A roadmap for developing and engineering in vitro pulmonary fibrosis models. BIOPHYSICS REVIEWS 2023; 4:021302. [PMID: 38510343 PMCID: PMC10903385 DOI: 10.1063/5.0134177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/03/2023] [Indexed: 03/22/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe form of pulmonary fibrosis. IPF is a fatal disease with no cure and is challenging to diagnose. Unfortunately, due to the elusive etiology of IPF and a late diagnosis, there are no cures for IPF. Two FDA-approved drugs for IPF, nintedanib and pirfenidone, slow the progression of the disease, yet fail to cure or reverse it. Furthermore, most animal models have been unable to completely recapitulate the physiology of human IPF, resulting in the failure of many drug candidates in preclinical studies. In the last few decades, the development of new IPF drugs focused on changes at the cellular level, as it was believed that the cells were the main players in IPF development and progression. However, recent studies have shed light on the critical role of the extracellular matrix (ECM) in IPF development, where the ECM communicates with cells and initiates a positive feedback loop to promote fibrotic processes. Stemming from this shift in the understanding of fibrosis, there is a need to develop in vitro model systems that mimic the human lung microenvironment to better understand how biochemical and biomechanical cues drive fibrotic processes in IPF. However, current in vitro cell culture platforms, which may include substrates with different stiffness or natural hydrogels, have shortcomings in recapitulating the complexity of fibrosis. This review aims to draw a roadmap for developing advanced in vitro pulmonary fibrosis models, which can be leveraged to understand better different mechanisms involved in IPF and develop drug candidates with improved efficacy. We begin with a brief overview defining pulmonary fibrosis and highlight the importance of ECM components in the disease progression. We focus on fibroblasts and myofibroblasts in the context of ECM biology and fibrotic processes, as most conventional advanced in vitro models of pulmonary fibrosis use these cell types. We transition to discussing the parameters of the 3D microenvironment that are relevant in pulmonary fibrosis progression. Finally, the review ends by summarizing the state of the art in the field and future directions.
Collapse
Affiliation(s)
- Mohammadhossein Dabaghi
- Firestone Institute for Respiratory Health—Division of Respirology, Department of Medicine, McMaster University, St. Joseph's Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, Ontario L8N 4A6, Canada
| | - Mabel Barreiro Carpio
- Department of Chemistry and Chemical Biology, McMaster University, Arthur N. Bourns Science Building, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Neda Saraei
- School of Biomedical Engineering, McMaster University, Engineering Technology Building, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | | | - Martin R. Kolb
- Firestone Institute for Respiratory Health—Division of Respirology, Department of Medicine, McMaster University, St. Joseph's Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, Ontario L8N 4A6, Canada
| | | |
Collapse
|
33
|
Moreno-Valladares M, Moncho-Amor V, Silva TM, Garcés JP, Álvarez-Satta M, Matheu A. KRT5 +/p63 + Stem Cells Undergo Senescence in the Human Lung with Pathological Aging. Aging Dis 2023; 14:1013-1027. [PMID: 37191411 DOI: 10.14336/ad.2022.1128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/28/2022] [Indexed: 05/17/2023] Open
Abstract
Adult lungs present high cellular plasticity against stress and injury, mobilizing stem/progenitor populations from conducting airways to maintain tissue homeostasis and gas exchange in alveolar spaces. With aging, pulmonary functional and structural deterioration occurs, mainly in pathological conditions, which is associated with impaired stem cell activity and increased senescence in mice. However, the impact of these processes underlying lung physiopathology in relation to aging has not been explored in humans. In this work, we analyzed stem cell (SOX2, p63, KRT5), senescence (p16INK4A, p21CIP, Lamin B1) and proliferative (Ki67) markers in lung samples from young and aged individuals, with and without pulmonary pathology. We identified a reduction in SOX2+ cells but not p63+ and KRT5+ basal cells in small airways with aging. In alveoli, we revealed the presence of triple SOX2+, p63+ and KRT5+ cells specifically in aged individuals diagnosed with pulmonary pathologies. Notably, p63+ and KRT5+ basal stem cells displayed colocalization with p16INK4A and p21CIP, as well as with low Lamin B1 staining in alveoli. Further studies revealed that senescence and proliferation markers were mutually exclusive in stem cells with a higher percentage colocalizing with senescence markers. These results provide new evidence of the activity of p63+/KRT5+ stem cells on human lung regeneration and point out that regeneration machinery in human lung is activated under stress due to aging, but fails to repair in pathological cases, as stem cells would likely become senescent.
Collapse
Affiliation(s)
- Manuel Moreno-Valladares
- Biodonostia Health Research Institute, Group of Cellular Oncology, San Sebastian, Spain
- Donostia University Hospital, Pathology Department, San Sebastian, Spain
- CIBER of Frailty and Healthy Aging (CIBERfes), Carlos III Institute, Madrid, Spain
| | - Veronica Moncho-Amor
- Biodonostia Health Research Institute, Group of Cellular Oncology, San Sebastian, Spain
- CIBER of Frailty and Healthy Aging (CIBERfes), Carlos III Institute, Madrid, Spain
| | - Tulio M Silva
- Donostia University Hospital, Pathology Department, San Sebastian, Spain
| | - Juan P Garcés
- Donostia University Hospital, Pathology Department, San Sebastian, Spain
| | - María Álvarez-Satta
- Biodonostia Health Research Institute, Group of Cellular Oncology, San Sebastian, Spain
- CIBER of Frailty and Healthy Aging (CIBERfes), Carlos III Institute, Madrid, Spain
| | - Ander Matheu
- Biodonostia Health Research Institute, Group of Cellular Oncology, San Sebastian, Spain
- CIBER of Frailty and Healthy Aging (CIBERfes), Carlos III Institute, Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
34
|
Shaikh SB, Goracci C, Tjitropranoto A, Rahman I. Impact of aging on immune function in the pathogenesis of pulmonary diseases: potential for therapeutic targets. Expert Rev Respir Med 2023; 17:351-364. [PMID: 37078192 PMCID: PMC10330361 DOI: 10.1080/17476348.2023.2205127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/17/2023] [Indexed: 04/21/2023]
Abstract
INTRODUCTION Several immunological alterations that occur during pulmonary diseases often mimic alterations observed in the aged lung. From the molecular perspective, pulmonary diseases and aging partake in familiar mechanisms associated with significant dysregulation of the immune systems. Here, we summarized the findings of how aging alters immunity to respiratory conditions to identify age-impacted pathways and mechanisms that contribute to the development of pulmonary diseases. AREAS COVERED The current review examines the impact of age-related molecular alterations in the aged immune system during various lung diseases, such as COPD, IPF, Asthma, and alongside many others that could possibly improve on current therapeutic interventions. Moreover, our increased understanding of this phenomenon may play a primary role in shaping immunomodulatory strategies to boost outcomes in the elderly. Here, the authors present new insights into the context of lung-related diseases and describe the alterations in the functioning of immune cells during various pulmonary conditions altered with age. EXPERT OPINION The expert opinion provided the concepts on how aging alters immunity during pulmonary conditions, and suggests the associated mechanisms during the development of lung diseases. As a result, it becomes important to comprehend the complex mechanism of aging in the immune lung system.
Collapse
Affiliation(s)
- Sadiya Bi Shaikh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Chiara Goracci
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Ariel Tjitropranoto
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
35
|
Han D, Gong H, Wei Y, Xu Y, Zhou X, Wang Z, Feng F. Hesperidin inhibits lung fibroblast senescence via IL-6/STAT3 signaling pathway to suppress pulmonary fibrosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154680. [PMID: 36736168 DOI: 10.1016/j.phymed.2023.154680] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/19/2022] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and fatal lung disease with obscure pathogenesis. Increasing evidence suggests that cellular senescence is an important mechanism underlying in IPF. Clinical treatment with drugs, such as pirfenidone and nintedanib, reduces the risk of acute exacerbation and delays the decline of pulmonary function in patients with mild to moderate pulmonary fibrosis, and with adverse reactions. Hesperidin was previously shown to alleviate pulmonary fibrosis in rats by attenuating the inflammation response. Our previous research indicated that the Citrus alkaline extracts, hesperidin as the main active ingredient, could exert anti-pulmonary fibrosis effects by inhibiting the senescence of lung fibroblasts. However, whether hesperidin could ameliorate pulmonary fibrosis by inhibiting fibroblast senescence needed further study. PURPOSE This work aimed to investigate whether and how hesperidin can inhibit lung fibroblast senescence and thereby alleviate pulmonary fibrosis METHODS: Bleomycin was used to establish a mouse model of pulmonary fibrosis and doxorubicin was used to establish a model of cellular senescence in MRC-5 cells in vitro. The therapeutic effects of hesperidin on pulmonary fibrosis using haematoxylin-eosin staining, Masson staining, enzyme-linked immunosorbent assay, immunohistochemistry, western blotting and quantitative Real-Time PCR. The anti-senescent effect of hesperidin in vivo and in vitro was assessed by western blotting, quantitative Real-Time PCR and senescence-associated β-galactosidase RESULTS: We demonstrated that hesperidin could alleviate bleomycin-induced pulmonary fibrosis in mice. The expression level of senescence marker proteins p53, p21, and p16 was were downregulated, along with the myofibroblast marker α-SMA. The number of senescence-associated β-galactosidase-positive cells was significantly reduced by hesperidin intervention in vivo and in vitro. In addition, hesperidin could inhibit the IL6/STAT3 signaling pathway. Furthermore, suppression of the IL-6/STAT3 signaling pathway by pretreatment with the IL-6 inhibitor LMT-28 attenuating effect of hesperidin on fibroblast senescence in vitro. CONCLUSIONS These data illustrated that hesperidin may be potentially used in the treatment of IPF based on its ability to inhibit lung fibroblast senescence.
Collapse
Affiliation(s)
- Di Han
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital Of Chinese Medicine, Nanjing, China; Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Haiying Gong
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital Of Chinese Medicine, Nanjing, China
| | - Yun Wei
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital Of Chinese Medicine, Nanjing, China; Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Yong Xu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital Of Chinese Medicine, Nanjing, China; Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China; School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xianmei Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital Of Chinese Medicine, Nanjing, China; Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.
| | - Zhichao Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital Of Chinese Medicine, Nanjing, China; Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.
| | - Fanchao Feng
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital Of Chinese Medicine, Nanjing, China; Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.
| |
Collapse
|
36
|
Role of cellular senescence in inflammatory lung diseases. Cytokine Growth Factor Rev 2023; 70:26-40. [PMID: 36797117 DOI: 10.1016/j.cytogfr.2023.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
Cellular senescence, a characteristic sign of aging, classically refers to permanent cell proliferation arrest and is a vital contributor to the pathogenesis of cancer and age-related illnesses. A lot of imperative scientific research has shown that senescent cell aggregation and the release of senescence-associated secretory phenotype (SASP) components can cause lung inflammatory diseases as well. In this study, the most recent scientific progress on cellular senescence and phenotypes was reviewed, including their impact on lung inflammation and the contributions of these findings to understanding the underlying mechanisms and clinical relevance of cell and developmental biology. Within a dozen pro-senescent stimuli, the irreparable DNA damage, oxidative stress, and telomere erosion are all crucial in the long-term accumulation of senescent cells, resulting in sustained inflammatory stress activation in the respiratory system. An emerging role for cellular senescence in inflammatory lung diseases was proposed in this review, followed by the identification of the main ambiguities, thus further understanding this event and the potential to control cellular senescence and pro-inflammatory response activation. In addition, novel therapeutic strategies for the modulation of cellular senescence that might help to attenuate inflammatory lung conditions and improve disease outcomes were also presented in this research.
Collapse
|
37
|
Chen P, Liu H, Xin H, Cheng B, Sun C, Liu Y, Liu T, Wen Z, Cheng Y. Inhibiting the Cytosolic Phospholipase A2-Arachidonic Acid Pathway With Arachidonyl Trifluoromethyl Ketone Attenuates Radiation-Induced Lung Fibrosis. Int J Radiat Oncol Biol Phys 2023; 115:476-489. [PMID: 35450754 DOI: 10.1016/j.ijrobp.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE Radiation-induced lung fibrosis (RILF) is a serious late complication of thoracic radiation therapy. Inflammation is crucial in fibroblast activation and RILF, and arachidonic acid (AA) is an important inflammatory mediator released by cytosolic phospholipase A2 (cPLA2) and reduced by arachidonyl trifluoromethyl ketone (ATK)-targeting of cPLA2. Here, we aimed to investigate the roles of the cPLA2/AA pathway in RILF and assess the potential of targeting cPLA2 to prevent RILF. METHODS AND MATERIALS A computed tomography scan was used to obtain the mean lung density, and hematoxylin-eosin, Masson's trichrome, and Sirius Red staining were used to assess the histopathologic conditions in mouse models. AA levels in mouse serum and cell supernatants were tested by enzyme-linked immunosorbent assay. Fibroblast phenotype alterations were examined by a Cell Counting Kit-8, manual cell counting, and a Transwell system. The protein levels were evaluated via Western blotting, immunofluorescence, and immunohistochemistry. RESULTS AA protected fibroblasts against radiation-induced growth inhibition and promoted fibroblast activation, which was characterized by enhanced α-smooth muscle actin expression and migration capacity. Radiation could activate fibroblasts by upregulating cPLA2 expression and AA production, which could be reversed by ATK. Moreover, inhibiting cPLA2 with ATK significantly attenuated collagen deposition and radiation-induced pulmonary fibrosis in mouse models. We further identified extracellular-signal regulated protein kinase (ERK) as the downstream target of the radiation-AA regulatory axis. Radiation-induced AA increased phosphorylated-ERK levels, promoting cyclinD1, cyclin-dependent kinase 6, and α-smooth muscle actin expression and contributing to fibroblast activation. Inhibiting P-ERK impaired radiation- and AA-induced fibroblast activation. The related molecular mechanisms were verified using specimens from animal models. CONCLUSIONS Our findings uncover the role of the cPLA2/AA-ERK regulatory axis in response to radiation in pulmonary fibroblast activation and recognize cPLA2 as the key regulatory molecule during RILF for the first time. Targeting cPLA2 may be a promising protective strategy against RILF.
Collapse
Affiliation(s)
- Pengxiang Chen
- Department of Radiation Oncology; Laboratory of Basic Medical Sciences
| | - Hui Liu
- Department of Clinical Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | | | - Bo Cheng
- Shandong Cancer Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Changhua Sun
- Shandong Institute for Food and Drug Control, Jinan, People's Republic of China
| | | | | | | | | |
Collapse
|
38
|
Pantzke J, Offer S, Zimmermann EJ, Kuhn E, Streibel T, Oeder S, Di Bucchianico S, Zimmermann R. An alternative in vitro model considering cell-cell interactions in fiber-induced pulmonary fibrosis. Toxicol Mech Methods 2022:1-16. [DOI: 10.1080/15376516.2022.2156008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jana Pantzke
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Svenja Offer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Elias J. Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Evelyn Kuhn
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Neuherberg, Germany
| | - Thorsten Streibel
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Sebastian Oeder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Neuherberg, Germany
| | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| |
Collapse
|
39
|
Gao AY, Diaz Espinosa AM, Gianì F, Pham TX, Carver CM, Aravamudhan A, Bartman CM, Ligresti G, Caporarello N, Schafer MJ, Haak AJ. Pim-1 kinase is a positive feedback regulator of the senescent lung fibroblast inflammatory secretome. Am J Physiol Lung Cell Mol Physiol 2022; 323:L685-L697. [PMID: 36223640 PMCID: PMC9744654 DOI: 10.1152/ajplung.00023.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 09/01/2022] [Accepted: 09/26/2022] [Indexed: 12/15/2022] Open
Abstract
Cellular senescence is emerging as a driver of idiopathic pulmonary fibrosis (IPF), a progressive and fatal disease with limited effective therapies. The senescence-associated secretory phenotype (SASP), involving the release of inflammatory cytokines and profibrotic growth factors by senescent cells, is thought to be a product of multiple cell types in IPF, including lung fibroblasts. NF-κB is a master regulator of the SASP, and its activity depends on the phosphorylation of p65/RelA. The purpose of this study was to assess the role of Pim-1 kinase as a driver of NF-κB-induced production of inflammatory cytokines from low-passage IPF fibroblast cultures displaying markers of senescence. Our results demonstrate that Pim-1 kinase phosphorylates p65/RelA, activating NF-κB activity and enhancing IL-6 production, which in turn amplifies the expression of PIM1, generating a positive feedback loop. In addition, targeting Pim-1 kinase with a small molecule inhibitor dramatically inhibited the expression of a broad array of cytokines and chemokines in IPF-derived fibroblasts. Furthermore, we provide evidence that Pim-1 overexpression in low-passage human lung fibroblasts is sufficient to drive premature senescence, in vitro. These findings highlight the therapeutic potential of targeting Pim-1 kinase to reprogram the secretome of senescent fibroblasts and halt IPF progression.
Collapse
Affiliation(s)
- Ashley Y Gao
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota
| | - Ana M Diaz Espinosa
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Fiorenza Gianì
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Medical Centel, Catania, Italy
| | - Tho X Pham
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Chase M Carver
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Aja Aravamudhan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Colleen M Bartman
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Giovanni Ligresti
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Nunzia Caporarello
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Marissa J Schafer
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Andrew J Haak
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
40
|
Cai Y, Song W, Li J, Jing Y, Liang C, Zhang L, Zhang X, Zhang W, Liu B, An Y, Li J, Tang B, Pei S, Wu X, Liu Y, Zhuang CL, Ying Y, Dou X, Chen Y, Xiao FH, Li D, Yang R, Zhao Y, Wang Y, Wang L, Li Y, Ma S, Wang S, Song X, Ren J, Zhang L, Wang J, Zhang W, Xie Z, Qu J, Wang J, Xiao Y, Tian Y, Wang G, Hu P, Ye J, Sun Y, Mao Z, Kong QP, Liu Q, Zou W, Tian XL, Xiao ZX, Liu Y, Liu JP, Song M, Han JDJ, Liu GH. The landscape of aging. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2354-2454. [PMID: 36066811 PMCID: PMC9446657 DOI: 10.1007/s11427-022-2161-3] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023]
Abstract
Aging is characterized by a progressive deterioration of physiological integrity, leading to impaired functional ability and ultimately increased susceptibility to death. It is a major risk factor for chronic human diseases, including cardiovascular disease, diabetes, neurological degeneration, and cancer. Therefore, the growing emphasis on "healthy aging" raises a series of important questions in life and social sciences. In recent years, there has been unprecedented progress in aging research, particularly the discovery that the rate of aging is at least partly controlled by evolutionarily conserved genetic pathways and biological processes. In an attempt to bring full-fledged understanding to both the aging process and age-associated diseases, we review the descriptive, conceptual, and interventive aspects of the landscape of aging composed of a number of layers at the cellular, tissue, organ, organ system, and organismal levels.
Collapse
Affiliation(s)
- Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Wei Song
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430071, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Jing
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chuqian Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Liyuan Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Xia Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenhui Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Beibei Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Yongpan An
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Jingyi Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Baixue Tang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Siyu Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xueying Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuxuan Liu
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Cheng-Le Zhuang
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiaotong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Xuefeng Dou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Fu-Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Dingfeng Li
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ya Zhao
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China
| | - Yang Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Lihui Wang
- Institute of Ageing Research, Hangzhou Normal University, School of Basic Medical Sciences, Hangzhou, 311121, China
| | - Yujing Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- The Fifth People's Hospital of Chongqing, Chongqing, 400062, China.
| | - Xiaoyuan Song
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Jie Ren
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Liang Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Jun Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, 100191, China.
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianwei Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Ye Tian
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Gelin Wang
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China.
| | - Ping Hu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiaotong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, 98195, USA.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Qiang Liu
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xiao-Li Tian
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China.
| | - Zhi-Xiong Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Yong Liu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430071, China.
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University, School of Basic Medical Sciences, Hangzhou, 311121, China.
- Department of Immunology and Pathology, Monash University Faculty of Medicine, Prahran, Victoria, 3181, Australia.
- Hudson Institute of Medical Research, and Monash University Department of Molecular and Translational Science, Clayton, Victoria, 3168, Australia.
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
41
|
Kim YJ, Cho MJ, Yu WD, Kim MJ, Kim SY, Lee JH. Links of Cytoskeletal Integrity with Disease and Aging. Cells 2022; 11:cells11182896. [PMID: 36139471 DOI: 10.3390/cells11182896] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Aging is a complex feature and involves loss of multiple functions and nonreversible phenotypes. However, several studies suggest it is possible to protect against aging and promote rejuvenation. Aging is associated with many factors, such as telomere shortening, DNA damage, mitochondrial dysfunction, and loss of homeostasis. The integrity of the cytoskeleton is associated with several cellular functions, such as migration, proliferation, degeneration, and mitochondrial bioenergy production, and chronic disorders, including neuronal degeneration and premature aging. Cytoskeletal integrity is closely related with several functional activities of cells, such as aging, proliferation, degeneration, and mitochondrial bioenergy production. Therefore, regulation of cytoskeletal integrity may be useful to elicit antiaging effects and to treat degenerative diseases, such as dementia. The actin cytoskeleton is dynamic because its assembly and disassembly change depending on the cellular status. Aged cells exhibit loss of cytoskeletal stability and decline in functional activities linked to longevity. Several studies reported that improvement of cytoskeletal stability can recover functional activities. In particular, microtubule stabilizers can be used to treat dementia. Furthermore, studies of the quality of aged oocytes and embryos revealed a relationship between cytoskeletal integrity and mitochondrial activity. This review summarizes the links of cytoskeletal properties with aging and degenerative diseases and how cytoskeletal integrity can be modulated to elicit antiaging and therapeutic effects.
Collapse
Affiliation(s)
- Yu Jin Kim
- CHA Fertility Center Seoul Station, Jung-gu, Seoul 04637, Korea
| | - Min Jeong Cho
- CHA Fertility Center Seoul Station, Jung-gu, Seoul 04637, Korea
| | - Won Dong Yu
- Department of Biomedical Sciences, College of Life Science, CHA University, Pochen 11160, Korea
| | - Myung Joo Kim
- CHA Fertility Center Seoul Station, Jung-gu, Seoul 04637, Korea
| | - Sally Yunsun Kim
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Jae Ho Lee
- CHA Fertility Center Seoul Station, Jung-gu, Seoul 04637, Korea
- Department of Biomedical Sciences, College of Life Science, CHA University, Pochen 11160, Korea
| |
Collapse
|
42
|
Saito S, Deskin B, Rehan M, Yadav S, Matsunaga Y, Lasky JA, Thannickal VJ. Novel mediators of idiopathic pulmonary fibrosis. Clin Sci (Lond) 2022; 136:1229-1240. [PMID: 36043396 DOI: 10.1042/cs20210878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022]
Abstract
Fibrosis involving the lung may occur in many settings, including in association with known environmental agents, connective tissue diseases, and exposure to drugs or radiation therapy. The most common form is referred to as 'idiopathic' since a causal agent or specific association has not been determined; the strongest risk factor for idiopathic pulmonary fibrosis is aging. Emerging studies indicate that targeting certain components of aging biology may be effective in mitigating age-associated fibrosis. While transforming growth factor-β1 (TGF-β1) is a central mediator of fibrosis in almost all contexts, and across multiple organs, it is not feasible to target this canonical pathway at the ligand-receptor level due to the pleiotropic nature of its actions; importantly, its homeostatic roles as a tumor-suppressor and immune-modulator make this an imprudent strategy. However, defining targets downstream of its receptor(s) that mediate fibrogenesis, while relatively dispenable for tumor- and immune-suppressive functions may aid in developing safer and more effective therapies. In this review, we explore molecular targets that, although TGF-β1 induced/activated, may be relatively more selective in mediating tissue fibrosis. Additionally, we explore epigenetic mechanisms with global effects on the fibrogenic process, as well as metabolic pathways that regulate aging and fibrosis.
Collapse
Affiliation(s)
- Shigeki Saito
- Section of Pulmonary Diseases, Critical Care and Environmental Medicine, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| | - Brian Deskin
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| | - Mohammad Rehan
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| | - Santosh Yadav
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| | - Yasuka Matsunaga
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| | - Joseph A Lasky
- Section of Pulmonary Diseases, Critical Care and Environmental Medicine, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| | - Victor J Thannickal
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| |
Collapse
|
43
|
Zhong W, Chen W, Liu Y, Zhang J, Lu Y, Wan X, Qiao Y, Huang H, Zeng Z, Li W, Meng X, Zhao H, Zou M, Cai S, Dong H. Extracellular HSP90α promotes cellular senescence by modulating TGF-β signaling in pulmonary fibrosis. FASEB J 2022; 36:e22475. [PMID: 35899478 DOI: 10.1096/fj.202200406rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 11/11/2022]
Abstract
Recent findings suggest that extracellular heat shock protein 90α (eHSP90α) promotes pulmonary fibrosis, but the underlying mechanisms are not well understood. Aging, especially cellular senescence, is a critical risk factor for idiopathic pulmonary fibrosis (IPF). Here, we aim to investigate the role of eHSP90α on cellular senescence in IPF. Our results found that eHSP90α was upregulated in bleomycin (BLM)-induced mice, which correlated with the expression of senescence markers. This increase in eHSP90α mediated fibroblast senescence and facilitated mitochondrial dysfunction. eHSP90α activated TGF-β signaling through the phosphorylation of the SMAD complex. The SMAD complex binding to p53 and p21 promoters triggered their transcription. In vivo, the blockade of eHSP90α with 1G6-D7, a specific eHSP90α antibody, in old mice attenuated the BLM-induced lung fibrosis. Our findings elucidate a crucial mechanism underlying eHSP90α-induced cellular senescence, providing a framework for aging-related fibrosis interventions.
Collapse
Affiliation(s)
- Wenshan Zhong
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weimou Chen
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuanyuan Liu
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinming Zhang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Lu
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Wan
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yujie Qiao
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haohua Huang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhaojin Zeng
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Li
- Department of Dermatology, The USC-Norris Comprehensive Cancer Center, University of Southern California Keck Medical Center, Los Angeles, California, USA
| | - Xiaojing Meng
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Haijin Zhao
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengchen Zou
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaoxi Cai
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hangming Dong
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
44
|
Liu Y, Schwam J, Chen Q. Senescence-Associated Cell Transition and Interaction (SACTAI): A Proposed Mechanism for Tissue Aging, Repair, and Degeneration. Cells 2022; 11:1089. [PMID: 35406653 PMCID: PMC8997723 DOI: 10.3390/cells11071089] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Aging is a broad process that occurs as a time-dependent functional decline and tissue degeneration in living organisms. On a smaller scale, aging also exists within organs, tissues, and cells. As the smallest functional unit in living organisms, cells "age" by reaching senescence where proliferation stops. Such cellular senescence is achieved through replicative stress, telomere erosion and stem cell exhaustion. It has been shown that cellular senescence is key to tissue degradation and cell death in aging-related diseases (ARD). However, senescent cells constitute only a small percentage of total cells in the body, and they are resistant to death during aging. This suggests that ARD may involve interaction of senescent cells with non-senescent cells, resulting in senescence-triggered death of non-senescent somatic cells and tissue degeneration in aging organs. Here, based on recent research evidence from our laboratory and others, we propose a mechanism-Senescence-Associated Cell Transition and Interaction (SACTAI)-to explain how cell heterogeneity arises during aging and how the interaction between somatic cells and senescent cells, some of which are derived from aging somatic cells, results in cell death and tissue degeneration.
Collapse
Affiliation(s)
| | | | - Qian Chen
- Laboratory of Molecular Biology and Nanomedicine, Department of Orthopaedics, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA; (Y.L.); (J.S.)
| |
Collapse
|
45
|
Kou L, Kou P, Luo G, Wei S. Progress of Statin Therapy in the Treatment of Idiopathic Pulmonary Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6197219. [PMID: 35345828 PMCID: PMC8957418 DOI: 10.1155/2022/6197219] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/24/2022] [Indexed: 11/18/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a type of interstitial lung disease (ILD) characterized by the proliferation of fibroblasts and aberrant accumulation of extracellular matrix. These changes are accompanied by structural destruction of the lung tissue and the progressive decline of pulmonary function. In the past few decades, researchers have investigated the pathogenesis of IPF and sought a therapeutic approach for its treatment. Some studies have shown that the occurrence of IPF is related to pulmonary inflammatory injury; however, its specific etiology and pathogenesis remain unknown, and no effective treatment, with the exception of lung transplantation, has been identified yet. Several basic science and clinical studies in recent years have shown that statins, the traditional lipid-lowering drugs, exert significant antifibrotic effects, which can delay the progression of IPF and impairment of pulmonary function. This article is aimed at summarizing the current understanding of the pathogenesis of IPF, the progress of research on the use of statins in IPF models and clinical trials, and its main molecular targets.
Collapse
Affiliation(s)
- Leiya Kou
- Department of Respiratory Medicine, Wuhan No. 1 Hospital, Wuhan 430022, China
- Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Pei Kou
- Department of Medical Record, Wuhan No. 1 Hospital, Wuhan 430022, China
| | - Guangwei Luo
- Department of Respiratory Medicine, Wuhan No. 1 Hospital, Wuhan 430022, China
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
46
|
He J, Li X. Identification and Validation of Aging-Related Genes in Idiopathic Pulmonary Fibrosis. Front Genet 2022; 13:780010. [PMID: 35211155 PMCID: PMC8863089 DOI: 10.3389/fgene.2022.780010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/19/2022] [Indexed: 12/13/2022] Open
Abstract
Aging plays a significant role in the occurrence and development of idiopathic pulmonary fibrosis (IPF). In this study, we aimed to identify and verify potential aging-associated genes involved in IPF using bioinformatic analysis. The mRNA expression profile dataset GSE150910 available in the Gene Expression Omnibus (GEO) database and R software were used to identify the differentially expressed aging-related genes involved in IPF. Hub gene expression was validated by other GEO datasets. Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed on differentially expressed aging-related genes. Subsequently, aging-related genes were further screened using three techniques (least absolute shrinkage and selection operator (LASSO) regression, support vector machine, and random forest), and the receiver operating characteristic curves were plotted based on screening results. Finally, real-time quantitative polymerase chain reaction (qRT-PCR) was performed to verify the RNA expression of the six differentially expressed aging-related genes using the blood samples of patients with IPF and healthy individuals. Sixteen differentially expressed aging-related genes were detected, of which the expression of 12 were upregulated and four were downregulated. GO and KEGG enrichment analyses indicated the presence of several enriched terms related to senescence and apoptotic mitochondrial changes. Further screening by LASSO regression, support vector machine, and random forest identified six genes (IGF1, RET, IGFBP2, CDKN2A, JUN, and TFAP2A) that could serve as potential diagnostic biomarkers for IPF. Furthermore, qRT-PCR analysis indicated that among the above-mentioned six aging-related genes, only the expression levels of IGF1, RET, and IGFBP2 in patients with IPF and healthy individuals were consistent with the results of bioinformatic analysis. In conclusion, bioinformatics analysis identified 16 potential aging-related genes associated with IPF, and clinical sample validation suggested that among these, IGF1, RET, and IGFBP2 might play a role in the incidence and prognosis of IPF. Our findings may help understand the pathogenesis of IPF.
Collapse
Affiliation(s)
- Jie He
- Clinical Medical College of Chengdu Medical College, Chengdu, China.,Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiaoyan Li
- Clinical Medical College of Chengdu Medical College, Chengdu, China.,Department of Endocrinology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
47
|
Chan M, Yuan H, Soifer I, Maile TM, Wang RY, Ireland A, O'Brien JJ, Goudeau J, Chan LJ, Vijay T, Freund A, Kenyon C, Bennett BD, McAllister FE, Kelley DR, Roy M, Cohen RL, Levinson AD, Botstein D, Hendrickson DG. Novel insights from a multiomics dissection of the hayflick limit. eLife 2022; 11:70283. [PMID: 35119359 PMCID: PMC8933007 DOI: 10.7554/elife.70283] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/31/2022] [Indexed: 01/10/2023] Open
Abstract
The process wherein dividing cells exhaust proliferative capacity and enter into replicative senescence has become a prominent model for cellular aging in vitro. Despite decades of study, this cellular state is not fully understood in culture and even much less so during aging. Here, we revisit Leonard Hayflick’s original observation of replicative senescence in WI-38 human lung fibroblasts equipped with a battery of modern techniques including RNA-seq, single-cell RNA-seq, proteomics, metabolomics, and ATAC-seq. We find evidence that the transition to a senescent state manifests early, increases gradually, and corresponds to a concomitant global increase in DNA accessibility in nucleolar and lamin associated domains. Furthermore, we demonstrate that senescent WI-38 cells acquire a striking resemblance to myofibroblasts in a process similar to the epithelial to mesenchymal transition (EMT) that is regulated by t YAP1/TEAD1 and TGF-β2. Lastly, we show that verteporfin inhibition of YAP1/TEAD1 activity in aged WI-38 cells robustly attenuates this gene expression program.
Collapse
Affiliation(s)
- Michelle Chan
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Han Yuan
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Ilya Soifer
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Tobias M Maile
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Rebecca Y Wang
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Andrea Ireland
- Calico Life Sciences, LLC, South San Francisco, United States
| | | | - Jérôme Goudeau
- Calico Life Sciences LLC, South San Francisco, United States
| | - Leanne Jg Chan
- Calico Life Sciences LLC, South San Francisco, United States
| | - Twaritha Vijay
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Adam Freund
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Cynthia Kenyon
- Calico Life Sciences LLC, South San Francisco, United States
| | | | | | - David R Kelley
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Margaret Roy
- Calico Life Sciences LLC, South San Francisco, United States
| | - Robert L Cohen
- Calico Life Sciences, LLC, South San Francisco, United States
| | | | - David Botstein
- Calico Life Sciences, LLC, South San Francisco, United States
| | | |
Collapse
|
48
|
Lung Fibroblasts from Idiopathic Pulmonary Fibrosis Patients Harbor Short and Unstable Telomeres Leading to Chromosomal Instability. Biomedicines 2022; 10:biomedicines10020310. [PMID: 35203522 PMCID: PMC8869717 DOI: 10.3390/biomedicines10020310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is associated with several hallmarks of aging including telomere shortening, which can result from germline mutations in telomere related genes (TRGs). Here, we assessed the length and stability of telomeres as well as the integrity of chromosomes in primary lung fibroblasts from 13 IPF patients (including seven patients with pathogenic variants in TRGs) and seven controls. Automatized high-throughput detection of telomeric FISH signals highlighted lower signal intensity in lung fibroblasts from IPF patients, suggesting a telomere length defect in these cells. The increased detection of telomere loss and terminal deletion in IPF cells, particularly in TRG-mutated cells (IPF-TRG), supports the notion that these cells have unstable telomeres. Furthermore, fibroblasts from IPF patients with TRGs mutations exhibited dicentric chromosomes and anaphase bridges. Collectively, our study indicates that fibroblasts from IPF patients exhibit telomere and chromosome instability that likely contribute to the physiopathology.
Collapse
|
49
|
Nayeri Rad A, Shams G, Avelar RA, Morowvat MH, Ghasemi Y. Potential senotherapeutic candidates and their combinations derived from transcriptional connectivity and network measures. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
50
|
Gremlich S, Cremona TP, Yao E, Chabenet F, Fytianos K, Roth-Kleiner M, Schittny JC. Tenascin-C: Friend or Foe in Lung Aging? Front Physiol 2021; 12:749776. [PMID: 34777012 PMCID: PMC8578707 DOI: 10.3389/fphys.2021.749776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Lung aging is characterized by lung function impairment, ECM remodeling and airspace enlargement. Tenascin-C (TNC) is a large extracellular matrix (ECM) protein with paracrine and autocrine regulatory functions on cell migration, proliferation and differentiation. This matricellular protein is highly expressed during organogenesis and morphogenetic events like injury repair, inflammation or cancer. We previously showed that TNC deficiency affected lung development and pulmonary function, but little is known about its role during pulmonary aging. In order to answer this question, we characterized lung structure and physiology in 18 months old TNC-deficient and wild-type (WT) mice. Mice were mechanically ventilated with a basal and high tidal volume (HTV) ventilation protocol for functional analyses. Additional animals were used for histological, stereological and molecular biological analyses. We observed that old TNC-deficient mice exhibited larger lung volume, parenchymal volume, total airspace volume and septal surface area than WT, but similar mean linear intercept. This was accompanied by an increase in proliferation, but not apoptosis or autophagy markers expression throughout the lung parenchyma. Senescent cells were observed in epithelial cells of the conducting airways and in alveolar macrophages, but equally in both genotypes. Total collagen content was doubled in TNC KO lungs. However, basal and HTV ventilation revealed similar respiratory physiological parameters in both genotypes. Smooth muscle actin (α-SMA) analysis showed a faint increase in α-SMA positive cells in TNC-deficient lungs, but a marked increase in non-proliferative α-SMA + desmin + cells. Major TNC-related molecular pathways were not up- or down-regulated in TNC-deficient lungs as compared to WT; only minor changes in TLR4 and TGFβR3 mRNA expression were observed. In conclusion, TNC-deficient lungs at 18 months of age showed exaggerated features of the normal structural lung aging described to occur in mice between 12 and 18 months of age. Correlated to the increased pulmonary function parameters previously observed in young adult TNC-deficient lungs and described to occur in normal lung aging between 3 and 6 months of age, TNC might be an advantage in lung aging.
Collapse
Affiliation(s)
- Sandrine Gremlich
- Clinic of Neonatology, Department Woman-Mother-Child, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Eveline Yao
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Farah Chabenet
- Clinic of Neonatology, Department Woman-Mother-Child, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kleanthis Fytianos
- Department for BioMedical Research, University of Bern, Bern, Switzerland.,Division of Pulmonary Medicine, University of Bern, Bern, Switzerland
| | - Matthias Roth-Kleiner
- Clinic of Neonatology, Department Woman-Mother-Child, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|