1
|
De Leo I, Mosca N, Pezzullo M, Valletta D, Manfrevola F, Mele VG, Chianese R, Russo A, Potenza N. Transcriptomic-Based Identification of miR-125a Novel Targets in Human Hepatocarcinoma Cells. Biomolecules 2025; 15:144. [PMID: 39858538 PMCID: PMC11763984 DOI: 10.3390/biom15010144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most aggressive and lethal human tumors. Many functional studies have demonstrated the role of non-coding RNAs (ncRNA), particularly microRNAs (miRNA), in the regulation of hepatocarcinogenesis driving pathways. MiR-125a-5p (miR-125a) has been consistently reported as an oncosuppressive miRNA, as demonstrated in vivo and in vitro. However, its HCC relevant targets and molecular mechanisms are still largely unknown. Here, a genome-wide perspective of the whole miR-125a targetome has been achieved. In particular, two different HCC cell lines were subjected to a miRNA boosting by mimic transfections, and consequently many genes were de-regulated, as observed by a transcriptomic approach. The merging of down-regulated genes with results from bioinformatic predictive tools yielded a number of candidate direct targets that were further experimentally validated by luciferase-based reporter assays. Different novel targets were found, in particular ARID3A, CCNJ, LIPA, NR6A1, and NUP210, oncogenes in various tumors and here also related to HCC through miR-125a regulation. The RNA interactions investigated in this work could pave the way to piece together the RNA regulatory networks governed by the miRNA impacting on hepatocarcinogenesis, and be exploited in the future for identifying novel biomarkers and therapeutic targets in HCC.
Collapse
Affiliation(s)
- Ilenia De Leo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (I.D.L.); (N.M.); (M.P.); (D.V.); (A.R.)
- Genomix4Life S.r.l., 84081 Baronissi, Italy
| | - Nicola Mosca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (I.D.L.); (N.M.); (M.P.); (D.V.); (A.R.)
| | - Mariaceleste Pezzullo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (I.D.L.); (N.M.); (M.P.); (D.V.); (A.R.)
| | - Danila Valletta
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (I.D.L.); (N.M.); (M.P.); (D.V.); (A.R.)
| | - Francesco Manfrevola
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (F.M.); (V.G.M.); (R.C.)
| | - Vincenza Grazia Mele
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (F.M.); (V.G.M.); (R.C.)
| | - Rosanna Chianese
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (F.M.); (V.G.M.); (R.C.)
| | - Aniello Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (I.D.L.); (N.M.); (M.P.); (D.V.); (A.R.)
| | - Nicoletta Potenza
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (I.D.L.); (N.M.); (M.P.); (D.V.); (A.R.)
| |
Collapse
|
2
|
Kao SW, Kuo WW, Tsai BCK, Mwakalinga EC, Mhone TG, Chen MC, Kuo CH, Liu YS, Lin SZ, Huang CY. Hepatocellular Carcinoma Cells in Humans Exhibit Resistance to Suberoylanilide Hydroxamic Acid (SAHA) Owing to the Diminished Level of Hsa-miR-125a-5p. Chem Biol Drug Des 2025; 105:e70040. [PMID: 39792645 DOI: 10.1111/cbdd.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 10/04/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
Hepatocellular carcinoma (HCC) presents an escalating public health challenge globally. However, drug resistance has emerged as a major impediment to successful HCC treatment, limiting the efficacy of curative interventions. Despite numerous investigations into the diverse impacts of hsa-miR-125a-5p on tumor growth across different cancer types, its specific involvement in chemotherapy resistance in HCC remains elusive. Our study aims to explore the potential involvement of hsa-miR-125a-5p in HCC drug resistance using HA22T cell lines: HA22T and HA22T-HDACi-resistance cells. The HA22T-HDACi-resistance cell line is an established liver cancer cell line that is resistant to histone deacetylase inhibitors (HDACi), apicidin, and suberoylanilide hydroxamic acid (SAHA). Utilizing qPCR, the levels of hsa-miR-125a-5p showed a notable decrease in the HA22T-HDACi-resistance cell line compared with HA22T cells. Subsequently, we examined the influence of hsa-miR-125a-5p expression on cell death in both cell lines. The findings demonstrated that alterations in hsa-miR-125a-5p levels directly impacted apoptosis in both HA22T and HA22T-HDACi-resistance cell lines with SAHA treatment. Afterwards, we recognized TRAF6 as a target gene of hsa-miR-125a-5p, shedding light on its potential role in modulating apoptosis via targeting TRAF6 in HCC. These findings underscore the potential significance of hsa-miR-125a-5p in overcoming drug resistance in HCC, offering insights into its dual role in apoptosis modulation and TRAF6 targeting. The study suggests that hsa-miR-125a-5p may inhibit expression of TRAF6 in HCC, presenting a promising avenue for gene therapy in HCC with HDACi resistance.
Collapse
Affiliation(s)
- Shih-Wen Kao
- Department of Orthopedic surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
- Ph.D. Program for Aging, China Medical University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Ebro Chawesa Mwakalinga
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Thomas Gabriel Mhone
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Ming-Cheng Chen
- Division of Colorectal Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
- School of Physical Education and Sports Science, Soochow University, Suzhou, China
| | - Yi-Sheng Liu
- Division of Hematology and Oncology, Department of Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Buddhist Tzu Chi Foundation Hospital, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
3
|
Ke R, Kumar S, Singh SK, Rana A, Rana B. Molecular insights into the role of mixed lineage kinase 3 in cancer hallmarks. Biochim Biophys Acta Rev Cancer 2024; 1879:189157. [PMID: 39032538 DOI: 10.1016/j.bbcan.2024.189157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Mixed-lineage kinase 3 (MLK3) is a serine/threonine kinase of the MAPK Kinase kinase (MAP3K) family that plays critical roles in various biological processes, including cancer. Upon activation, MLK3 differentially activates downstream MAPKs, such as JNK, p38, and ERK. In addition, it regulates various non-canonical signaling pathways, such as β-catenin, AMPK, Pin1, and PAK1, to regulate cell proliferation, apoptosis, invasion, and metastasis. Recent studies have also uncovered other potentially diverse roles of MLK3 in malignancy, which include metabolic reprogramming, cancer-associated inflammation, and evasion of cancer-related immune surveillance. The role of MLK3 in cancer is complex and cancer-specific, and an understanding of its function at the molecular level aligned specifically with the cancer hallmarks will have profound therapeutic implications for diagnosing and treating MLK3-dependent cancers. This review summarizes the current knowledge about the effect of MLK3 on the hallmarks of cancer, providing insights into its potential as a promising anticancer drug target.
Collapse
Affiliation(s)
- Rong Ke
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
4
|
Ke R, Viswakarma N, Menhart M, Singh SK, Kumar S, Srivastava P, Vishnoi K, Kashyap T, Srivastava D, Nair RS, Maienschein-Cline M, Wang X, Rana A, Rana B. MLK3 promotes prooncogenic signaling in hepatocellular carcinoma via TGFβ pathway. Oncogene 2024; 43:2307-2324. [PMID: 38858590 DOI: 10.1038/s41388-024-03055-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 06/12/2024]
Abstract
Advanced hepatocellular carcinoma (HCC) is a lethal disease, with limited therapeutic options. Mixed Lineage Kinase 3 (MLK3) is a key regulator of liver diseases, although its role in HCC remains unclear. Analysis of TCGA databases suggested elevated MAP3K11 (MLK3 gene) expression, and TMA studies showed higher MLK3 activation in human HCCs. To understand MLK3's role in HCC, we utlized carcinogen-induced HCC model and compared between wild-type and MLK3 knockout (MLK3-/-) mice. Our studies showed that MLK3 kinase activity is upregulated in HCC, and MLK3 deficiency alleviates HCC progression. MLK3 deficiency reduced proliferation in vivo and MLK3 inhibition reduced proliferation and colony formation in vitro. To obtain further insight into the mechanism and identify newer targets mediating MLK3-induced HCCs, RNA-sequencing analysis was performed. These showed that MLK3 deficiency modulates various gene signatures, including EMT, and reduces TGFB1&2 expressions. HCC cells overexpressing MLK3 promoted EMT via autocrine TGFβ signaling. Moreover, MLK3 deficiency attenuated activated hepatic stellate cell (HSC) signature, which is increased in wild-type. Interestingly, MLK3 promotes HSC activation via paracrine TGFβ signaling. These findings reveal TGFβ playing a key role at different steps of HCC, downstream of MLK3, implying MLK3-TGFβ axis to be an ideal drug target for advanced HCC management.
Collapse
Affiliation(s)
- Rong Ke
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Navin Viswakarma
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, 60612, USA
- O2M Technologies, LLC, Chicago, IL, 60612, USA
| | - Mary Menhart
- Department of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, 60612, USA
- University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Piush Srivastava
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Kanchan Vishnoi
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Tanushree Kashyap
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Deepti Srivastava
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Rakesh Sathish Nair
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | | | - Xiaowei Wang
- Department of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, 60612, USA
- University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
5
|
Luo H, Jing H, Chen W. An extensive overview of the role of lncRNAs generated from immune cells in the etiology of cancer. Int Immunopharmacol 2024; 133:112063. [PMID: 38677091 DOI: 10.1016/j.intimp.2024.112063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024]
Abstract
Long non-coding RNAs (lncRNAs) are involved in the control of critical tumor-suppressor and oncogenic pathways in cancer. These types of non-coding RNAs could affect both immune and cancer cells. The thorough analysis of lncRNAs derived from immune cells and the incorporation of new findings significantly advance our understanding of the complex role of lncRNAs in the context of cancer. This work highlights the promise of lncRNAs for translational therapeutic approaches while also establishing a solid foundation for comprehending the complex link between lncRNAs and cancer through a coherent narrative. The main findings of this article are that types of lncRNAs derived from immune cells, such as MM2P and MALAT1, can affect the behaviors of cancer cells, like invasion, angiogenesis, and proliferation. As research in this area grows, the therapeutic potential of targeting these lncRNAs offers promising opportunities for expanding our understanding of cancer biology and developing cutting-edge, precision-based therapies for cancer therapy.
Collapse
Affiliation(s)
- Hong Luo
- Department of Oncology, Yancheng Branch of Nanjing Drum Tower Hospital, Yancheng, Jiangsu Province, China.
| | - Hailiang Jing
- Department of Integrative Medicine, Yancheng Branch of Nanjing Drum Tower Hospital, Yancheng, Jiangsu Province, China
| | - Wei Chen
- Department of Oncology, Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
6
|
Sartorius K, Sartorius B, Winkler C, Chuturgoon A, Shen TW, Zhao Y, An P. Serum microRNA Profiles and Pathways in Hepatitis B-Associated Hepatocellular Carcinoma: A South African Study. Int J Mol Sci 2024; 25:975. [PMID: 38256049 PMCID: PMC10815595 DOI: 10.3390/ijms25020975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
The incidence and mortality of hepatocellular carcinoma (HCC) in Sub-Saharan Africa is projected to increase sharply by 2040 against a backdrop of limited diagnostic and therapeutic options. Two large South African-based case control studies have developed a serum-based miRNome for Hepatitis B-associated hepatocellular carcinoma (HBV-HCC), as well as identifying their gene targets and pathways. Using a combination of RNA sequencing, differential analysis and filters including a unique molecular index count (UMI) ≥ 10 and log fold change (LFC) range > 2: <-0.5 (p < 0.05), 91 dysregulated miRNAs were characterized including 30 that were upregulated and 61 were downregulated. KEGG analysis, a literature review and other bioinformatic tools identified the targeted genes and HBV-HCC pathways of the top 10 most dysregulated miRNAs. The results, which are based on differentiating miRNA expression of cases versus controls, also develop a serum-based miRNA diagnostic panel that indicates 95.9% sensitivity, 91.0% specificity and a Youden Index of 0.869. In conclusion, the results develop a comprehensive African HBV-HCC miRNome that potentially can contribute to RNA-based diagnostic and therapeutic options.
Collapse
Affiliation(s)
- Kurt Sartorius
- Faculty of Commerce, Law and Management, University of the Witwatersrand, Johannesburg 2001, South Africa
- School of Laboratory Medicine and Molecular Sciences, University of Kwazulu-Natal, Durban 4041, South Africa;
- Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL 32224, USA
| | - Benn Sartorius
- School of Public Health, University of Queensland, Brisbane, QLD 4102, Australia
| | - Cheryl Winkler
- Centre for Cancer Research, Basic Research Laboratory, National Cancer Institute, Frederick Natifol Laboratory for Cancer Research, National Institute of Health, Frederick, MD 21701, USA
| | - Anil Chuturgoon
- School of Laboratory Medicine and Molecular Sciences, University of Kwazulu-Natal, Durban 4041, South Africa;
| | - Tsai-Wei Shen
- CCR-SF Bioinformatics Group, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Yongmei Zhao
- CCR-SF Bioinformatics Group, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Ping An
- Centre for Cancer Research, Basic Research Laboratory, National Cancer Institute, Frederick Natifol Laboratory for Cancer Research, National Institute of Health, Frederick, MD 21701, USA
| |
Collapse
|
7
|
Ali M, Mishra D, Singh RP. Cancer Pathways Targeted by Berberine: Role of microRNAs. Curr Med Chem 2024; 31:5178-5198. [PMID: 38303534 DOI: 10.2174/0109298673275121231228124031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/26/2023] [Accepted: 12/06/2023] [Indexed: 02/03/2024]
Abstract
Cancer is a complex and heterogeneous malignant disease. Due to its multifactorial nature, including progressive changes in genetic, epigenetic, transcript, and protein levels, conventional therapeutics fail to save cancer patients. Evidence indicates that dysregulation of microRNA (miRNA) expression plays a crucial role in tumorigenesis, metastasis, cell proliferation, differentiation, metabolism, and signaling pathways. Moreover, miRNAs can be used as diagnostic and prognostic markers and therapeutic targets in cancer. Berberine, a naturally occurring plant alkaloid, has a wide spectrum of biological activities in different types of cancers. Inhibition of cell proliferation, metastasis, migration, invasion, and angiogenesis, as well as induction of cell cycle arrest and apoptosis in cancer cells, is reported by berberine. Recent studies suggested that berberine regulates many oncogenic and tumor suppressor miRNAs implicated in different phases of cancer. This review discussed how berberine inhibits cancer growth and propagation and regulates miRNAs in cancer cells. And how berberine-mediated miRNA regulation changes the landscape of transcripts and proteins that promote or suppress cancer progression. Overall, the underlying molecular pathways altered by berberine and miRNA influencing the tumor pathophysiology will enhance our understanding to combat the malignancy.
Collapse
Affiliation(s)
- Mansoor Ali
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Deepali Mishra
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rana Pratap Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
8
|
Zhang L, Wang T, Song J, Guo F. Effect of RhD and RhE sample phenotypic blood transfusion on the prognosis of hepatocellular carcinoma. Medicine (Baltimore) 2023; 102:e36369. [PMID: 38065917 PMCID: PMC10713101 DOI: 10.1097/md.0000000000036369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
OBJECTIVE This study aimed to analyze the therapeutic effects and clinical outcomes of HCC patients, who received both RhD and RhE same phenotypic blood transfusion during perioperative period. METHODS Microcolumn gel technology (MGT) was used to detect Rh blood group phenotyping in 98 HCC patients. Patients received RhD and RhE same phenotypic transfusion were defined experimental group, and those received only RhD same phenotypic but RhE different phenotypic transfusion were included in control group. Hemoglobin (Hb) and hematocrit (HCT) before and after perioperative transfusion were analyzed. The occurrence of adverse transfusion reactions were observed. Survival analysis was performed using the Kaplan-Meier method. RESULTS After the transfusion treatment, the Hb (118.9 ± 34.8 g/L vs 99.6 ± 26.9 g/L) and HCT [(34.0 ± 7.6)% vs (29.9 ± 8.8)%] of experimental group and the Hb (104.3 ± 36.2 g/L vs 94.8 ± 25.0 g/L) of control group were significantly higher than those before blood transfusion, respectively (all P < .05). In addition, Hb and HCT in experimental group were significantly higher than those in the control group after transfusion (P < .05). For the adverse blood transfusion reactions, the incidence of backache was reduced in the patients received Rh same phenotypic transfusion compared with those in control group (1.9% vs 15.2%, P = .024). The overall survival of patients in experimental group was better than that in control group (log-rank P = .036). CONCLUSION Our study indicated that both RhD and RhE same phenotypic transfusion significantly increased Hb and HCT and reduced backache incidence than RhE different phenotypic transfusion in HCC patients. The overall survival of patients was improved by RhD and RhE same phenotypic transfusion.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Blood Transfusion, Zibo Central Hospital, Zibo, Shandong, China
| | - Tao Wang
- Department of Blood Transfusion, Zibo Central Hospital, Zibo, Shandong, China
| | - Jieqiong Song
- Department of Blood Transfusion, Zibo Central Hospital, Zibo, Shandong, China
| | - Feng Guo
- Department of Blood Transfusion, Zibo Central Hospital, Zibo, Shandong, China
| |
Collapse
|
9
|
Wu ZY, Wang Y, Hu H, Ai XN, Zhang Q, Qin YG. Long Noncoding RNA Cytoskeleton Regulator RNA Suppresses Apoptosis in Hepatoma Cells by Modulating the miR-125a-5p/HS1-Associated Protein X-1 Axis to Induce Caspase-9 Inactivation. Gut Liver 2023; 17:916-925. [PMID: 36700300 PMCID: PMC10651376 DOI: 10.5009/gnl210572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/01/2022] [Accepted: 05/13/2022] [Indexed: 01/27/2023] Open
Abstract
Background/Aims The involvement of long noncoding RNAs in the carcinogenesis of hepatocellular carcinoma (HCC) has been well documented by substantial evidence. However, whether cytoskeleton regulator RNA (CYTOR) could affect the progression of HCC remains unclear. Methods The relative expression of CYTOR, miR-125a-5p and HS1-associated protein X-1 (HAX-1) mRNA in HCC cells were determined via quantitative real-time polymerase chain reaction. The viability of treated HCC cells was measured by Cell Counting Kit-8 assay. Cell apoptosis was estimated by flow cytometry analysis, assessment of caspase-9 activity and terminal deoxynucleotidyl transferase dUTP nick-end labeling staining, and Western blot of apoptosis-related proteins. The interplay between CYTOR or HAX-1 and miR-125a-5p was validated by dual-luciferase reporter assay. Results CYTOR was upregulated and miR-125a-5p was downregulated in HCC cells. CYTOR silencing inhibited cell proliferation and promoted cell apoptosis in HepG2 and SMMC-7721 cells. miR-125a-5p was sponged and negatively regulated by CYTOR, and HAX-1 was directly targeted and negatively modulated by miR-125a-5p. Overexpression of miR-125a-5p enhanced the repressive effects of CYTOR knockdown on HCC cells, and knockdown of HAX-1 enhanced the inhibitory effects of miR-125a-5p mimics on HCC cells. Conclusions CYTOR silencing facilitates HCC cell apoptosis in vitro via the miR-125a-5p/HAX-1 axis.
Collapse
Affiliation(s)
- Zhen-Yu Wu
- Department of Hepatobiliary Surgery, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Hao Hu
- Department of Hepatobiliary Surgery, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Xiang-Nan Ai
- Department of Hepatobiliary Surgery, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Qiang Zhang
- Department of Hepatobiliary Surgery, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Yu-Gang Qin
- Department of Hepatobiliary Surgery, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| |
Collapse
|
10
|
Comprehensive Bioinformatics Analysis Reveals PTPN1 (PTP1B) Is a Promising Immunotherapy Target Associated with T Cell Function for Liver Cancer. JOURNAL OF HEALTHCARE ENGINEERING 2023; 2023:1533794. [PMID: 36741874 PMCID: PMC9897930 DOI: 10.1155/2023/1533794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/13/2022] [Accepted: 01/05/2023] [Indexed: 01/28/2023]
Abstract
Recently, PTP1B was identified as a novel immune checkpoint whose removal can unleash T cell responses. However, research on the influence of PTP1B as an immune regulator on liver cancer is limited. This study aimed to investigate the immunological correlation and function of PTP1B in liver cancer. The expression profiles and corresponding clinical information of liver cancer patients were obtained from the TCGA and ICGC databases. GSE146115 and GSE98638 retrieved from the GEO database were used for the single-cell RNA-seq analysis. The mRNA expression of PTP1B (PTPN1) was increased in patients with most malignancies (all p < 0.05), including liver cancer (p < 0.001). Furthermore, up-regulated PTPN1 was connected to advanced tumor stage (p < 0.05) and worse prognosis (p < 0.01) in liver cancer. Through Cox regression analysis, PTPN1 was considered as an independent prognosis factor of overall survival (p < 0.05) and acted as a high-risk factor (hazard ratio > 1). Gene function and pathway analysis suggested PTPN1 was involved in T cell-related immune responses. Moreover, a close relationship was also found between PTPN1 expression and immune checkpoints as well as immune cells, especially with T cell-related checkpoints (all p < 0.001) and T cells (all p < 0.001). Single-cell RNA-seq analysis further illustrated that the enrichment of PTPN1 in the T cell population may be linked to its exhaustion in the liver cancer microenvironment. Overall, PTPN1 (PTP1B) closely related to T cell may function as an immunotherapy target for liver cancer.
Collapse
|
11
|
Galiveti CR, Kuhnell D, Biesiada J, Zhang X, Kelsey KT, Takiar V, Tang AL, Wise‐Draper TM, Medvedovic M, Kasper S, Langevin SM. Small extravesicular microRNA in head and neck squamous cell carcinoma and its potential as a liquid biopsy for early detection. Head Neck 2023; 45:212-224. [PMID: 36271833 PMCID: PMC9742186 DOI: 10.1002/hed.27231] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/14/2022] [Accepted: 10/12/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The objective was to assess secretion of small extracellular vesicular microRNA (exo-miRNA) in head and neck squamous cell carcinoma (HNSCC) according to human papillomavirus (HPV) status, and determine the translational potential as a liquid biopsy for early detection. METHODS This study employed a combination of cell culture and case-control study design using archival pretreatment serum. Small extracellular vesicles (sEV) were isolated from conditioned culture media and human serum samples via differential ultracentrifugation. miRNA-sequencing was performed on each sEV isolate. RESULTS There were clear exo-miRNA profiles that distinguished HNSCC cell lines from nonpathologic oral epithelial control cells. While there was some overlap among profiles across all samples, there were apparent differences in exo-miRNA profiles according to HPV-status. Importantly, differential exo-miRNA profiles were also apparent in serum from early-stage HNSCC cases relative to cancer-free controls. CONCLUSIONS Our findings indicate that exo-miRNA are highly dysregulated in HNSCC and support the potential of exo-miRNA as biomarkers for HNSCC.
Collapse
Affiliation(s)
- Chenna R. Galiveti
- Division of Epidemiology, Department of Environmental & Public Health SciencesUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Damaris Kuhnell
- Division of Epidemiology, Department of Environmental & Public Health SciencesUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Jacek Biesiada
- Division of Biostatistics and Bioinformatics, Department of Environmental & Public Health SciencesUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Xiang Zhang
- Division of Environmental Genetics & Molecular Toxicology, Department of Environmental & Public Health SciencesUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Karl T. Kelsey
- Department of EpidemiologyBrown University School of Public HealthProvidenceRhode IslandUSA
- Department of Pathology & Laboratory Medicine, Alpert Medical SchoolBrown UniversityProvidenceRhode IslandUSA
| | - Vinita Takiar
- Department of Radiation OncologyUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
- Cincinnati VA Medical CenterCincinnatiOhioUSA
- University of Cincinnati Cancer CenterCincinnatiOhioUSA
| | - Alice L. Tang
- University of Cincinnati Cancer CenterCincinnatiOhioUSA
- Department of OtolaryngologyUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Trisha M. Wise‐Draper
- University of Cincinnati Cancer CenterCincinnatiOhioUSA
- Division of Hematology & Oncology, Department of Internal MedicineUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Mario Medvedovic
- Division of Biostatistics and Bioinformatics, Department of Environmental & Public Health SciencesUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
- University of Cincinnati Cancer CenterCincinnatiOhioUSA
| | - Susan Kasper
- Division of Environmental Genetics & Molecular Toxicology, Department of Environmental & Public Health SciencesUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
- University of Cincinnati Cancer CenterCincinnatiOhioUSA
| | - Scott M. Langevin
- Division of Epidemiology, Department of Environmental & Public Health SciencesUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
- University of Cincinnati Cancer CenterCincinnatiOhioUSA
| |
Collapse
|
12
|
Kaczmarek M, Baj-Krzyworzeka M, Bogucki Ł, Dutsch-Wicherek M. HPV-Related Cervical Cancer and Extracellular Vesicles. Diagnostics (Basel) 2022; 12:2584. [PMID: 36359429 PMCID: PMC9689649 DOI: 10.3390/diagnostics12112584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/03/2023] Open
Abstract
Cervical cancer is the fourth most common type of cancer in females worldwide. Infection with a human papillomavirus is crucial to the etiopathogenesis of cervical cancer. The natural trajectory of HPV infection comprises HPV acquisition, HPV persistence versus clearance, and progression to precancer and invasive cancer. The majority of HPV infections are cleared and controlled by the immune system within 2 years, but some infections may become quiescent or undetectable. The persistence of high-risk HPV infection for a longer period of time enhances the risk of malignant transformation of infected cells; however, the mechanisms responsible for the persistence of infection are not yet well-understood. It is estimated that 10-15% of infections do persist, and the local microenvironment is now recognized as an important cofactor promoting infection maintenance. Extracellular vesicles (EVs) are small membrane vesicles derived from both normal cells and cancer cells. EVs contain various proteins, such as cytoskeletal proteins, adhesion molecules, heat shock proteins, major histocompatibility complex, and membrane fusion proteins. EVs derived from HPV-infected cells also contain viral proteins and nucleic acids. These biologically active molecules are transferred via EVs to target cells, constituting a kind of cell-to-cell communication. The viral components incorporated into EVs are transmitted independently of the production of infectious virions. This mode of transfer makes EVs a perfect vector for viruses and their components. EVs participate in both physiological and pathological conditions; they have also been identified as one of the mediators involved in cancer metastasis. This review discusses the potential role of EVs in remodeling the cervical cancer microenvironment which may be crucial to tumor development and the acquisition of metastatic potential. EVs are promising as potential biomarkers in cervical cancer.
Collapse
Affiliation(s)
- Magdalena Kaczmarek
- Department of Endoscopic Otorhinolaryngology, Centre of Postgraduate Medical Education (CMKP), 01-813 Warsaw, Poland
| | - Monika Baj-Krzyworzeka
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, 30-663 Kraków, Poland
| | - Łukasz Bogucki
- Department of Endoscopic Otorhinolaryngology, Centre of Postgraduate Medical Education (CMKP), 01-813 Warsaw, Poland
| | - Magdalena Dutsch-Wicherek
- Department of Endoscopic Otorhinolaryngology, Centre of Postgraduate Medical Education (CMKP), 01-813 Warsaw, Poland
| |
Collapse
|
13
|
Wang Q, Feng J, Tang L. Non-Coding RNA Related to MAPK Signaling Pathway in Liver Cancer. Int J Mol Sci 2022; 23:11908. [PMID: 36233210 PMCID: PMC9570382 DOI: 10.3390/ijms231911908] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
The advancement in high-throughput sequencing analysis and the evaluation of chromatin state maps have revealed that eukaryotic cells produce many non-coding transcripts/RNAs. Further, a strong association was observed between some non-coding RNAs and cancer development. The mitogen-activated protein kinases (MAPK) belong to the serine-threonine kinase family and are the primary signaling pathways involved in cell proliferation from the cell surface to the nucleus. They play an important role in various human diseases. A few non-coding RNAs associated with the MAPK signaling pathway play a significant role in the development of several malignancies, including liver cancer. In this review, we summarize the molecular mechanisms and interactions of microRNA, lncRNA, and other non-coding RNAs in the development of liver cancer that are associated with the MAPK signaling pathway. Further, we briefly discuss the therapeutic strategies for liver cancer related to ncRNA and the MAPK signaling pathway.
Collapse
Affiliation(s)
- Qiuxia Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou 646000, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
14
|
Guo J, Yuan Q, Fang Y, Liao J, Zhang Z. Long non-coding RNA NEAT1 promotes angiogenesis in hepatoma carcinoma via the miR-125a-5p/VEGF pathway. Open Life Sci 2022; 17:1229-1239. [PMID: 36213383 PMCID: PMC9490857 DOI: 10.1515/biol-2022-0498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 05/17/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
The study’s purpose was to investigate the biological function of long non-coding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) in hepatoma carcinoma (HCC). HCC tissues and cells exhibited increased levels of NEAT1 and decreased levels of miR-125a-5p. Reduction in the expression of NEAT suppressed HepG2 cell proliferation and increased apoptosis. This was accompanied by suppression of the AKT/mTOR and ERK pathways, while the opposite was observed for miR-125a-5p. Angiogenesis assay results indicated that NEAT was proangiogenic. A dual-luciferase reporter assay indicated that NEAT1 was bound to miR-125a-5p and miR-125a-5p was bound to vascular endothelial growth factor (VEGF). The proangiogenic effects of NEAT and its stimulation of AKT/mTOR and ERK were reversed by miR-125a-5p. The anti-angiogenic effects of miR-125a-5p and its inhibitory effect on AKT/mTOR and ERK pathways were reversed by co-incubation with VEGF. The conclusion was that NEAT1 enhances angiogenesis in HCC by VEGF via a competing endogenous RNA (ceRNA) of miR-125a-5p that regulates AKT/mTOR and ERK pathways.
Collapse
Affiliation(s)
- Jingyun Guo
- Department of Hepatopathy, The Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61, Jiefang Road West, Changsha, Hunan, 410005, China
| | - Qi Yuan
- Department of Hepatopathy, The Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61, Jiefang Road West, Changsha, Hunan, 410005, China
| | - Yuan Fang
- Department of Hepatopathy, The Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61, Jiefang Road West, Changsha, Hunan, 410005, China
| | - Jinmao Liao
- Department of Hepatopathy, The Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61, Jiefang Road West, Changsha, Hunan, 410005, China
| | - Zheng Zhang
- Department of Hepatopathy, The Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61, Jiefang Road West, Changsha, Hunan, 410005, China
| |
Collapse
|
15
|
Li H, Xu L, Yi P, Li L, Yan T, Xie L, Zhu Z. High-throughput circular RNA sequencing reveals the profiles of circular RNA in non-cirrhotic hepatocellular carcinoma. BMC Cancer 2022; 22:857. [PMID: 35931993 PMCID: PMC9356431 DOI: 10.1186/s12885-022-09909-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 06/21/2022] [Indexed: 02/08/2023] Open
Abstract
Background Liver cirrhosis is a well-known risk factor for hepatocellular carcinoma (HCC). However, some HCC cases can also originate from non-cirrhotic livers. The aim of this study was to identify key circular RNAs (circRNAs) associated with the tumorigenesis of non-cirrhotic liver disease. Methods The differently expressed circRNAs between non-cirrhotic and cirrhotic HCCs were assessed with use of high-throughput circRNAs sequencing and validated with quantitative reverse transcription polymerase chain reaction (qRT-PCR). Potential biological functions of these dysregulated circRNAs were predicted with use of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. A circRNA-miRNA-mRNA regulation network was constructed as achieved with use of miRanda software and visualized using Cytoscape software. Biological functions of the four most prominent dysregulated circRNAs identified were confirmed by in vitro experiments. Moreover, possible translations of these dysregulated circRNAs were also predicted. Results A total of 393 dysregulated circRNAs were identified between non-cirrhotic and cirrhotic HCC, including 213 that were significantly up-regulated and 180 significantly down-regulated circRNAs. Expression levels of the six most prominent dysregulated circRNAs were further validated using qRT-PCR. Many tumor related miRNAs were involved in the circRNA-miRNA-mRNA networks, including miR-182-5p, miR-561-3p, miR-125a-5p, miR-145, miR-23b-3p and miR-30e-3p, and downstream mRNAs of dysregulated circRNAs were significantly related with biological processes involved in the progression of tumors, including proliferation, migration, differentiation, and focal adhesion. Results from the in vitro experiments demonstrated that the most prominent dysregulated circRNAs exerted notable effects upon the proliferation and migration of HCC cells. Finally, we also identified 19 dysregulated circRNAs having potential for the coding of functional peptides. Conclusion The results of this present study indicate that circRNAs may play important roles in tumorigenesis of non-cirrhotic HCC. Such findings provide some novel insights and pave the way for the development of future studies directed at investigating the initiation and treatment of HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09909-2.
Collapse
Affiliation(s)
- Hongyu Li
- Department of Liver Transplantation, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Liangliang Xu
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pengsheng Yi
- Department of Hepato-Biliary-Pancreas, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan Province, China
| | - Lian Li
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Yan
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liang Xie
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhijun Zhu
- Department of Liver Transplantation, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
16
|
Tang X, Qi C, Zhou H, Liu Y. Critical roles of PTPN family members regulated by non-coding RNAs in tumorigenesis and immunotherapy. Front Oncol 2022; 12:972906. [PMID: 35957898 PMCID: PMC9360549 DOI: 10.3389/fonc.2022.972906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/04/2022] [Indexed: 12/22/2022] Open
Abstract
Since tyrosine phosphorylation is reversible and dynamic in vivo, the phosphorylation state of proteins is controlled by the opposing roles of protein tyrosine kinases (PTKs) and protein tyrosine phosphatase (PTPs), both of which perform critical roles in signal transduction. Of these, intracellular non-receptor PTPs (PTPNs), which belong to the largest class I cysteine PTP family, are essential for the regulation of a variety of biological processes, including but not limited to hematopoiesis, inflammatory response, immune system, and glucose homeostasis. Additionally, a substantial amount of PTPNs have been identified to hold crucial roles in tumorigenesis, progression, metastasis, and drug resistance, and inhibitors of PTPNs have promising applications due to striking efficacy in antitumor therapy. Hence, the aim of this review is to summarize the role played by PTPNs, including PTPN1/PTP1B, PTPN2/TC-PTP, PTPN3/PTP-H1, PTPN4/PTPMEG, PTPN6/SHP-1, PTPN9/PTPMEG2, PTPN11/SHP-2, PTPN12/PTP-PEST, PTPN13/PTPL1, PTPN14/PEZ, PTPN18/PTP-HSCF, PTPN22/LYP, and PTPN23/HD-PTP, in human cancer and immunotherapy and to comprehensively describe the molecular pathways in which they are implicated. Given the specific roles of PTPNs, identifying potential regulators of PTPNs is significant for understanding the mechanisms of antitumor therapy. Consequently, this work also provides a review on the role of non-coding RNAs (ncRNAs) in regulating PTPNs in tumorigenesis and progression, which may help us to find effective therapeutic agents for tumor therapy.
Collapse
Affiliation(s)
- Xiaolong Tang
- Department of Clinical Laboratory Diagnostics, Binzhou Medical University, Binzhou, China
| | - Chumei Qi
- Department of Clinical Laboratory, Dazhou Women and Children’s Hospital, Dazhou, China
| | - Honghong Zhou
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Honghong Zhou, ; Yongshuo Liu,
| | - Yongshuo Liu
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- *Correspondence: Honghong Zhou, ; Yongshuo Liu,
| |
Collapse
|
17
|
Nazarnezhad MA, Barazesh M, Kavousipour S, Mohammadi S, Eftekhar E, Jalili S. The Computational Analysis of Single Nucleotide Associated with MicroRNA Affecting Hepatitis B Infection. Microrna 2022; 11:139-162. [PMID: 35579134 DOI: 10.2174/2211536611666220509103724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/16/2022] [Accepted: 03/15/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) have a pivotal role in Hepatitis B Virus (HBV) infection and its complications by targeting the cellular transcription factors required for gene expression or directly binding to HBV transcripts. Single Nucleotide Polymorphisms (SNPs) in miRNA genes affect their expression and the regulation of target genes, clinical course, diagnosis, and therapeutic interventions of HBV infection. METHODS Computational assessment and cataloging of miRNA gene polymorphisms targeting mRNA transcripts straightly or indirectly through the regulation of hepatitis B infection by annotating the functional impact of SNPs on mRNA-miRNA and miRNA-RBS (miRNA binding sites) interaction were screened by applying various universally available datasets such as the miRNA SNP3.0 software. RESULTS 2987 SNPs were detected in 139 miRNAs affecting hepatitis B infection. Among them, 313 SNPs were predicted to have a significant role in the progression of hepatitis B infection. The computational analysis also revealed that 45 out of the 313 SNPs were located in the seed region and were more important than others. Has-miR-139-3p had the largest number of SNPs in the seed region (n=6). On the other hand, proteoglycans in cancer, adherens junction, lysine degradation, NFkappa B signaling cascade, ECM-receptor binding, viral carcinogenesis, fatty acid metabolism, TGF-beta signaling pathway, p53 signaling pathway, immune evasion related pathways, and fatty acid biosynthesis were the most important pathways affected by these 139 miRNAs. CONCLUSION The results revealed 45 SNPs in the seed region of 25 miRNAs as the catalog in miRNA genes that regulated the hepatitis B infection. The results also showed the most important pathways regulated by these miRNAs that can be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Mirza Ali Nazarnezhad
- Infectious and Tropical Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahdi Barazesh
- Department of Biotechnology, School of Paramedical Sciences, Gerash University of Medical Sciences, Gerash, Iran
| | - Soudabeh Kavousipour
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas 7919915519, Iran
| | - Shiva Mohammadi
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ebrahim Eftekhar
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas 7919915519, Iran
| | - Sajad Jalili
- Department of Orthopedics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
18
|
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Alshaer W, Hasan H, Albakri KA, Alkhafaji E, Issa NN, Al-Holy MA, Abderrahman SM, Abdallah AM, Mohamud R. Immunomodulatory Properties of Human Breast Milk: MicroRNA Contents and Potential Epigenetic Effects. Biomedicines 2022; 10:1219. [PMID: 35740242 PMCID: PMC9219990 DOI: 10.3390/biomedicines10061219] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Infants who are exclusively breastfed in the first six months of age receive adequate nutrients, achieving optimal immune protection and growth. In addition to the known nutritional components of human breast milk (HBM), i.e., water, carbohydrates, fats and proteins, it is also a rich source of microRNAs, which impact epigenetic mechanisms. This comprehensive work presents an up-to-date overview of the immunomodulatory constituents of HBM, highlighting its content of circulating microRNAs. The epigenetic effects of HBM are discussed, especially those regulated by miRNAs. HBM contains more than 1400 microRNAs. The majority of these microRNAs originate from the lactating gland and are based on the remodeling of cells in the gland during breastfeeding. These miRNAs can affect epigenetic patterns by several mechanisms, including DNA methylation, histone modifications and RNA regulation, which could ultimately result in alterations in gene expressions. Therefore, the unique microRNA profile of HBM, including exosomal microRNAs, is implicated in the regulation of the genes responsible for a variety of immunological and physiological functions, such as FTO, INS, IGF1, NRF2, GLUT1 and FOXP3 genes. Hence, studying the HBM miRNA composition is important for improving the nutritional approaches for pregnancy and infant's early life and preventing diseases that could occur in the future. Interestingly, the composition of miRNAs in HBM is affected by multiple factors, including diet, environmental and genetic factors.
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman 11942, Jordan;
| | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Khaled A. Albakri
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Enas Alkhafaji
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Nada N. Issa
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Murad A. Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Salim M. Abderrahman
- Department of Biology and Biotechnology, Faculty of Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| |
Collapse
|
19
|
Yuan F, Gao Q, Tang H, Shi J, Zhou Y. Ophiopogonin‑B targets PTP1B to inhibit the malignant progression of hepatocellular carcinoma by regulating the PI3K/AKT and AMPK signaling pathways. Mol Med Rep 2022; 25:122. [PMID: 35169857 PMCID: PMC8864608 DOI: 10.3892/mmr.2022.12638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/23/2021] [Indexed: 11/06/2022] Open
Abstract
Ophiopogonin‑B (OP‑B) is a bioactive component from the root of Ophiopogon japonicus, which can exert anticancer effects on multiple malignant tumors. The present study aimed to uncover the effects of OP‑B on hepatocellular carcinoma (HCC) and the underlying mechanisms. An HCC‑xenografted mouse model was established and subsequently treated with OP‑B (15 and 75 mg/kg) to observe the effects of OP‑B on HCC progression and protein tyrosine phosphatase 1B (PTP1B) expression in vivo. The HCC cell line MHCC97‑H was transfected with either PTP1B overexpression (Ov)‑PTP1B or empty vector control, and then exposed to different concentrations of OP‑B. Subsequently, PTP1B expression, cell viability, proliferation, apoptosis, migration, invasion and angiogenesis were evaluated by western blotting, reverse transcription‑quantitative PCR, Cell Counting Kit‑8, colony formation, TUNEL staining, wound healing, Transwell and tube formation assays. The expression of phosphatidylinositol 3 kinase (PI3K)/AKT and adenosine 5'‑monophosphate‑activated protein kinase (AMPK) was also assessed by western blot assay. The results showed that OP‑B inhibited tumor growth and the expression of Ki67, CD31, VEGFA and PTP1B in HCC xenograft model. The expression of PTP1B in HCC cells was also inhibited by OP‑B in a concentration‑dependent manner. Results from the in vitro studies revealed that OP‑B suppressed cell proliferation, migration, invasion and angiogenesis, and promoted apoptosis of HCC cells. However, PTP1B overexpression reversed the effect of OP‑B on HCC cells. PI3K/AKT was inactivated and AMPK was activated by OP‑B exposure in HCC cells, and PTP1B overexpression blocked these effects. In conclusion, OP‑B effectively inhibited the progression of HCC both in vivo and in vitro. These effects may depend on downregulating PTP1B expression, thereby inactivating the PI3K/AKT pathway and activating the AMPK pathway.
Collapse
Affiliation(s)
- Fang Yuan
- Department of Liver Disease, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, Jiangsu 215101, P.R. China
| | - Qian Gao
- Department of Liver Disease, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, Jiangsu 215101, P.R. China
| | - Hailin Tang
- Department of Liver Disease, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, Jiangsu 215101, P.R. China
| | - Jun Shi
- Department of Liver Disease, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, Jiangsu 215101, P.R. China
| | - Yiqun Zhou
- Department of Liver Disease, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, Jiangsu 215101, P.R. China
| |
Collapse
|
20
|
Zhu X, Zhao J, Xu J. Long noncoding RNA LINC01426 promotes the progression of lung adenocarcinoma via regulating miRNA-125a-5p/ casein kinase 2 alpha 1 axis. Bioengineered 2022; 13:7020-7033. [PMID: 35266446 PMCID: PMC9208474 DOI: 10.1080/21655979.2022.2044251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Although long noncoding RNAs (lncRNAs) in lung adenocarcinoma (LUAD) have been increasingly studied, LINC01426 has not been fully investigated in LUAD. The GEPIA database revealed that LINC01426 was upregulated in LUAD tissues. In our study, we further verified the significantly high expression of LINC01426 in LUAD tissues and cell lines. We also analyzed the LINC01426 expression level and LUAD clinical features and found that high LINC01426 expression was associated with tumor diameter; tumor, node, and metastases (TNM) staging; lymph node metastasis (LNM); and overall survival (OS) rate of LUAD patients. In vitro experiments revealed that suppression of LINC01426 could repress the proliferation, migration and invasion of LUAD cells. Then, the bioinformatic analysis revealed that there were binding domains between miR-125a-5p and the 3′-UTR of LINC01426. As revealed by dual-luciferase reporter gene experiment and RNA Binding Protein Immunoprecipitation (RIP) assay, miR-125a-5p could bind to LINC01426. Additionally, the results of qRT-PCR and Pearson’s analysis respectively revealed that miR-125a-5p was slightly expressed in LUAD and its expression was negatively correlated with LINC01426. Moreover, casein kinase 2 alpha 1 (CSNK2A1) was predicted to bind to miR-125a-5p. CSNK2A1 expression was remarkably high in LUAD tissues, negatively associated with miR-125a-5p, and positively correlated with LINC01426. Subsequently, our results showed that CSNK2A1 enhanced the malignant progression of LUAD cells. Overall, our study revealed that LINC01426 might regulate the malignant phenotype of LUAD via the miR-125a-5p/CSNK2A1 axis.
Collapse
Affiliation(s)
- Xiaoling Zhu
- Department of Oncology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Jianguo Zhao
- Department of Oncology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Jun Xu
- Department of Radiation Oncology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|
21
|
Liu Y, Geng X. Long non-coding RNA (lncRNA) CYTOR promotes hepatocellular carcinoma proliferation by targeting the microRNA-125a-5p/LASP1 axis. Bioengineered 2022; 13:3666-3679. [PMID: 35081873 PMCID: PMC8974008 DOI: 10.1080/21655979.2021.2024328] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/24/2022] Open
Abstract
This study investigated the function of long non-coding RNA (lncRNA) cytoskeleton regulator RNA (CYTOR) in hepatocellular carcinoma (HCC). In HCC, the expression of CYTOR and microRNA (miR)-125a-5p were measured by quantitative real-time PCR (qRT-PCR). The expression of actin skeletal protein 1 (LASP1) was evaluated by Western blot analysis. Flow cytometry assays, transwell assays, colony formation assay, and cell counting kit-8 (CCK-8) assay were used to evaluate the roles of miR-125a-5p and CYTOR in HCC cells. The target genes of CYTOR and miR-125a-5p were identified by bioinformatics analysis and Luciferase assay. CYTOR was upregulated in HCC cell lines, and knockdown of CYTOR inhibited HCC cell growth. MiR-125a-5p was downregulated in HCC cells and a target of CYTOR in regulating HCC progression. Furthermore, LASP1 was a downstream target of miR-125a-5p. Finally, CYTOR was found to be involved in HCC progression in vivo. CYTOR promotes HCC development by regulating the miR-125a-5p/LASP1 axis.
Collapse
Affiliation(s)
- Yadong Liu
- Department of Orthopedics, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian City, Liaoning Province, PR. China
| | - Xiaoling Geng
- Department of Gastroenterology& Hepatology, First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, PR. China
| |
Collapse
|
22
|
Wu H, Ma H, Wang L, Zhang H, Lu L, Xiao T, Cheng C, Wang P, Yang Y, Wu M, Wang S, Zhang J, Liu Q. Regulation of lung epithelial cell senescence in smoking-induced COPD/emphysema by microR-125a-5p via Sp1 mediation of SIRT1/HIF-1a. Int J Biol Sci 2022; 18:661-674. [PMID: 35002516 PMCID: PMC8741857 DOI: 10.7150/ijbs.65861] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/27/2021] [Indexed: 01/10/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) affects the health of more than 300 million people worldwide; at present, there is no effective drug to treat COPD. Smoking is the most important risk factor, but the molecular mechanism by which smoking causes the disease is unclear. The senescence of lung epithelial cells is related to development of COPD. Regulation of miRNAs is the main epigenetic mechanism related to aging. β-Galactose staining showed that the lung tissues of smokers have a higher degree of cellular senescence, and the expression of miR-125a-5p is high. This effect is obvious for smokers with COPD/emphysema, and there is a negative correlation between miR-125a-5p levels and values for forced expiratory volume in one second (FEV1)/forced vital capacity (FVC). After Balb/c mice were chronically exposed to various concentrations of cigarette smoke (CS), plethysmography showed that lung function was impaired, lung tissue senescence was increased, and the senescence-associated secretory phenotype (SASP) in bronchoalveolar lavage fluid was increased. For mouse lung epithelial (MLE)-12 cells treated with cigarette smoke extract (CSE), Sp1 and SIRT1 levels were low, HIF-1α acetylation levels were high, and cell senescence and secretion of SASP factors were elevated. Down-regulation of miR-125a-5p or up-regulation of Sp1 reversed these effects. In addition, compared with mice exposed to CS, knockdown of miR-125a-5p reduced lung epithelial cell senescence and COPD/emphysema. Therefore, in smoking-induced COPD, elevated miR-125a-5p participates in the senescence of lung epithelial cells through Sp1/SIRT1/HIF-1α. These findings provide evidence related to the pathogenesis of COPD/emphysema caused by chronic smoking.
Collapse
Affiliation(s)
- Hao Wu
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China.,Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Huimin Ma
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Lumin Wang
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Huazhong Zhang
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Lu Lu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Tian Xiao
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Cheng Cheng
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Peiwen Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yi Yang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Meng Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Suhua Wang
- Department of Toxicology, School of Public Health, Baotou Medical College, Baotou, 014040, Inner Mongolia, People's Republic of China
| | - Jinsong Zhang
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| |
Collapse
|
23
|
Guo L, Ma H, Kong Y, Leng G, Liu G, Zhang Y. Long non-coding RNA TNK2 AS1/microRNA-125a-5p axis promotes tumor growth and modulated phosphatidylinositol 3 kinase/AKT pathway. J Gastroenterol Hepatol 2022; 37:124-133. [PMID: 34494305 DOI: 10.1111/jgh.15683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/06/2021] [Accepted: 08/30/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIM Long non-coding RNA (lncRNA) TNK2 AS1 is a noncoding RNA with the capability of affecting microRNAs (miRNAs) levels and gene expression. The study was designed to investigate the mechanism of TNK2 AS1 in gastric cancer. METHODS The loss and gain of function of TNK2 AS1 were investigated by analyzing the malignant behavior of AGS cells including the abilities of migration, invasion, and epithelial-mesenchymal transition (EMT) process via wound healing and transwell assay, as well as western blot. The targeting relationship of LncRNA TNK2 AS1 was analyzed through searching bioinformatics database, luciferase reporter assay, and RNA immunoprecipitation (RIP) assay. Tumor-bearing experiment in nude mice was performed to further confirm the regulatory role of TNK2 AS1 in vivo. Immunofluorescence assay for Ki67 expression was carried out in tumor tissues of mice model. RESULTS The results showed that TNK2 AS1 overexpression promoted the malignant behaviors of AGS cells, which could be weakened by miR-125a-5p mimic addition. In addition, Jumonji, At-rich interaction domain (JARID2), and phosphatidylinositol 3 kinase (PI3K)/AKT pathway were regulated by TNK2-AS1/miR-125a-5p axis. In vivo, TNK2 AS1/miR-125a-5p axis promoted tumor growth and led to increases in green fluorescence intensity and vimentin expression and a decrease in E-cadherin level, which could be mediated by JARID2 and PI3K/AKT pathway. CONCLUSION Therefore, a conclusion was drawn that TNK2-AS1/miR-125a-5p promoted the progression of gastric cancer.
Collapse
Affiliation(s)
- Liuqing Guo
- Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Hanwei Ma
- Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Yin Kong
- Lanzhou University Second Hospital, Lanzhou, P.R. China
| | | | - Guiyuan Liu
- Lanzhou University Second Hospital, Lanzhou, P.R. China
| | | |
Collapse
|
24
|
Kasimu A, Apizi X, Talifujiang D, Ma X, Fang L, Zhou X. miR-125a-5p in astrocytes attenuates peripheral neuropathy in type 2 diabetic mice through targeting TRAF6. ENDOCRINOL DIAB NUTR 2022; 69:43-51. [PMID: 35232559 DOI: 10.1016/j.endien.2022.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/14/2021] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Elimination or blocking of astrocytes could ameliorate neuropathic pain in animal models. MiR-125a-5p, expressed in astrocyte derived extracellular vesicles, could mediate astrocyte function to regulate neuron communication. However, the role of miR-125a-5p in DPN (diabetic peripheral neuropathy) remains elusive. MATERIALS AND METHODS Type 2 diabetic mouse (db/db) was used as DPN model, which was confirmed by detection of body weight, blood glucose, mechanical allodynia, thermal hyperalgesia, glial fibrillary acidic protein (GFAP) and monocyte chemoattractant protein-1 (MCP-1). Astrocyte was isolated from db/db mouse and then subjected to high glucose treatment. The expression of miR-125a-5p in db/db mice and high glucose-induced astrocytes was examined by qRT-PCR analysis. Downstream target of miR-125a-5p was clarified by luciferase reporter assay. Tail vein injection of miR-125a-5p mimic into db/db mice was then performed to investigate role of miR-125a-5p on DPN. RESULTS Type 2 diabetic mice showed higher body weight and blood glucose than normal db/m mice. Thermal hyperalgesia and mechanical allodynia were decreased in db/db mouse compared with db/m mouse, while GFAP and MCP-1 were increased in db/db mouse. High glucose treatment enhanced the protein expression of GFAP and MCP-1 in astrocytes. Sciatic nerve tissues in db/db mice and high glucose-induced astrocytes exhibited a decrease in miR-125a-5p. Systemic administration of miR-125a-5p mimic increased mechanical allodynia and thermal hyperalgesia, whereas it decreased GFAP and MCP-1. TRAF6 (tumor necrosis factor receptor associated factor 6) was validated as target of miR-125a-5p. CONCLUSION MiR-125a-5p in astrocytes attenuated DPN in db/db mice by up-regulation of TRAF6, which indicated the potential therapeutic effect.
Collapse
Affiliation(s)
- Aziguli Kasimu
- Department of Pain Treatment, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi City, Xinjiang Uygur Autonomous Region 830001, China
| | - Xierenguli Apizi
- Department of Pain Treatment, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi City, Xinjiang Uygur Autonomous Region 830001, China
| | - Dilibaier Talifujiang
- Department of Pain Treatment, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi City, Xinjiang Uygur Autonomous Region 830001, China
| | - Xin Ma
- Department of Pain Treatment, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi City, Xinjiang Uygur Autonomous Region 830001, China
| | - Liping Fang
- Department of Endocrinology, Honghu People's Hospital, Jingzhou City, Hubei Province 433200, China
| | - Xiangling Zhou
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan City, Hubei Province 430081, China.
| |
Collapse
|
25
|
Chen M, Hu G, Zhou X, Peng Z, Wen W. Hsa_circ_0016788 regulates hepatocellular carcinoma progression via miR-506-3p/poly-adenosine diphosphate-ribose polymerase. J Gastroenterol Hepatol 2021; 36:3457-3468. [PMID: 34340259 DOI: 10.1111/jgh.15635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Hepatocellular carcinoma (HCC) is a common malignant tumor worldwide. Recent researches have shown that circular RNAs (circRNAs) could affect the progress of HCC, but the mechanism is still indistinct. In this work, we explored the roles of circRNA_0016788 in HCC. METHODS The levels of hsa_circ_0016788, microRNA-506-3p (miR-506-3p), and mRNA of poly-adenosine diphosphate-ribose polymerase, member 14 (PARP14) were detected by quantitative real-time reverse transcription-polymerase chain reaction in HCC tissues. Meanwhile, the level of PARP14 was quantified by Western blot analysis. Besides, the cell functions were examined by commercial kit, Cell Counting Kit-8 assay, EdU assay, colony formation assay, flow cytometry assay, Western blot, and transwell assay. Furthermore, the interplay between miR-506-3p and hsa_circ_0016788 or PARP14 was detected by dual-luciferase reporter assay. Eventually, the in vivo experiments were applied to measure the role of hsa_circ_0016788. RESULTS The levels of hsa_circ_0016788 and PARP14 were upregulated, and the miR-506-3p level was decreased in HCC tissues in contrast to that in normal tissues. For functional analysis, hsa_circ_0016788 deficiency inhibited cell glycolysis metabolism, cell vitality, cell proliferation, colony formation, and invasion in HCC cells whereas promoted cell apoptosis. Moreover, miR-506-3p was confirmed to repress the progression of HCC cells by suppressing PARP14. In mechanism, hsa_circ_0016788 acted as a miR-506-3p sponge to regulate the level of PARP14. In addition, hsa_circ_0016788 knockdown also inhibited tumor growth in vivo. CONCLUSION Hsa_circ_0016788 facilitates the development of HCC through increasing PARP14 expression by regulating miR-506-3p, which also offered an underlying targeted therapy for HCC treatment.
Collapse
Affiliation(s)
- Ming Chen
- The First Affiliated Hospital, Department of Gastroenterology and Hepatology, Hengyang Medical School, University of South China, Hengyang, China
| | - Guangsheng Hu
- The First Affiliated Hospital, Department of Gastroenterology and Hepatology, Hengyang Medical School, University of South China, Hengyang, China
| | - Xin Zhou
- Department of Gastroenterology, Zibo Central Hospital of Shandong Province, Zibo, China
| | - Zhong Peng
- The First Affiliated Hospital, Department of Gastroenterology and Hepatology, Hengyang Medical School, University of South China, Hengyang, China
| | - Wu Wen
- The First Affiliated Hospital, Department of Hepato-Biliary-Pancreatic Surgery, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
26
|
Liu YL, Huang FJ, Du PJ, Wang J, Guo F, Shao MW, Song Y, Liu YX, Qin GJ. Long noncoding RNA MIR22HG promotes Leydig cell apoptosis by acting as a competing endogenous RNA for microRNA-125a-5p that targets N-Myc downstream-regulated gene 2 in late-onset hypogonadism. J Transl Med 2021; 101:1484-1493. [PMID: 34446806 DOI: 10.1038/s41374-021-00645-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 11/09/2022] Open
Abstract
Leydig cells (LCs) apoptosis is responsible for the deficiency of serum testosterone in Late-onset hypogonadism (LOH), while its specific mechanism is still unknown. This study focuses on the role of long noncoding RNA (lncRNA) MIR22HG in LC apoptosis and aims to elaborate its regulatory mechanism. MIR22HG was up-regulated in the testicular tissues of mice with LOH and H2O2-treated TM3 cells (mouse Leydig cell line). Interference of MIR22HG ameliorated cell apoptosis and upregulated miR-125a-5p expression in H2O2-treated TM3 cells. Then, the interaction between MIR22HG and miR-125a-5p was confirmed with RIP and RNA pull-down assay. Further study showed that miR-125a-5p downregulated N-Myc downstream-regulated gene 2 (NDRG2) expression by targeting its 3'-UTR of mRNA. What's more, MIR22HG overexpression aggravated cell apoptosis and reduced testosterone production in TM3 cells via miR-125a-5p/NDRG2 pathway. MIR22HG knockdown elevated testosterone levels in LOH mice. In conclusion, MIR22HG up-regulated NDRG2 expression through targeting miR-125a-5p, thus promoting LC apoptosis in LOH.
Collapse
Affiliation(s)
- Yan-Ling Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Feng-Jiao Huang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Pei-Jie Du
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Jiao Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Feng Guo
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Ming-Wei Shao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Yi Song
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Yan-Xia Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Gui-Jun Qin
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.
| |
Collapse
|
27
|
Li D, Chen L, Zhang X, Wang Y, Huang C, Li J, He F, He W. miR‑125a‑5p reverses epithelial‑mesenchymal transition and restores drug sensitivity by negatively regulating TAFAZZIN signaling in breast cancer. Mol Med Rep 2021; 24:812. [PMID: 34549308 PMCID: PMC8477177 DOI: 10.3892/mmr.2021.12452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/16/2021] [Indexed: 01/04/2023] Open
Abstract
MicroRNA (miR)‑125a‑5p represses tafazzin phospholipid‑lysophospholipid transacylases (TAFAZZIN) expression and inhibits the epithelial‑mesenchymal transition (EMT) of ovarian cancer cells. EMT was found to have a crucial role in the acquisition of chemoresistance. Thus, the present study aimed to determine whether miR‑125a‑5p reverses EMT and restores drug sensitivity by negatively regulating TAFAZZIN in breast cancer. The expression of miR‑125a‑5p/TAFAZZIN and its association with chemotherapy response were determined in tissue samples from patients with breast cancer. Furthermore, the effects of miR‑125a‑5p on breast cancer cells were elucidated using cell proliferation and cell apoptosis assays. Then, the regulatory mechanism of miR‑125a‑5p in breast cancer was investigated by reverse transcription‑quantitative PCR, western blotting, dual‑luciferase reporter and RNA immunoprecipitation assays. The results demonstrated that miR‑125a‑5p inhibited the EMT of MCF‑7/adriamycin (Adr) breast cancer cells, as well as decreased the proliferation and increased the apoptosis of breast cancer cells treated with Adr/docetaxel. In addition, miR‑125a‑5p downregulated the expression levels of TAFAZZIN, Transglutaminase 2, phosphorylated‑AKT, N‑cadherin, vimentin and proliferating cell nuclear antigen, and significantly increased those of E‑cadherin, cleaved caspase-3 and Bax in MCF7/Adr cells. Similar results were obtained with small interfering RNA‑TAFAZZIN. Moreover, TAFAZZIN was identified as a direct target of miR‑125a‑5p in MCF7/Adr breast cancer cells. In addition, increased miR‑125a‑5p expression was observed in breast tumors from patients exhibiting a chemotherapy response, and TAFAZZIN mRNA expression was elevated in patients with no chemotherapy response. Hence, miR‑125a‑5p expression was negatively correlated with TAFAZZIN mRNA expression in breast cancer tissues. All these data suggested that miR‑125a‑5p reverses EMT and restores drug sensitivity by negatively regulating TAFAZZIN in breast cancer and, therefore, has potential as a novel therapeutic target for this disease.
Collapse
Affiliation(s)
- Dongmei Li
- Breast Cancer Center, The Affiliated Cancer Hospital of Nanchang University (Jiangxi Provincial Cancer Hospital), Nanchang, Jiangxi 330029, P.R. China
| | - Limei Chen
- Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Xiaofang Zhang
- Breast Cancer Center, The Affiliated Cancer Hospital of Nanchang University (Jiangxi Provincial Cancer Hospital), Nanchang, Jiangxi 330029, P.R. China
| | - Yanhua Wang
- Breast Cancer Center, The Affiliated Cancer Hospital of Nanchang University (Jiangxi Provincial Cancer Hospital), Nanchang, Jiangxi 330029, P.R. China
| | - Chuansheng Huang
- Breast Cancer Center, The Affiliated Cancer Hospital of Nanchang University (Jiangxi Provincial Cancer Hospital), Nanchang, Jiangxi 330029, P.R. China
| | - Jianglong Li
- Breast Cancer Center, The Affiliated Cancer Hospital of Nanchang University (Jiangxi Provincial Cancer Hospital), Nanchang, Jiangxi 330029, P.R. China
| | - Feilong He
- Breast Cancer Center, The Affiliated Cancer Hospital of Nanchang University (Jiangxi Provincial Cancer Hospital), Nanchang, Jiangxi 330029, P.R. China
| | - Wenxing He
- Breast Cancer Center, The Affiliated Cancer Hospital of Nanchang University (Jiangxi Provincial Cancer Hospital), Nanchang, Jiangxi 330029, P.R. China
| |
Collapse
|
28
|
Kasimu A, Apizi X, Talifujiang D, Ma X, Fang L, Zhou X. miR-125a-5p in astrocytes attenuates peripheral neuropathy in type 2 diabetic mice through targeting TRAF6. ENDOCRINOL DIAB NUTR 2021; 69:S2530-0164(21)00104-X. [PMID: 33958320 DOI: 10.1016/j.endinu.2021.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Elimination or blocking of astrocytes could ameliorate neuropathic pain in animal models. MiR-125a-5p, expressed in astrocyte derived extracellular vesicles, could mediate astrocyte function to regulate neuron communication. However, the role of miR-125a-5p in DPN (diabetic peripheral neuropathy) remains elusive. MATERIALS AND METHODS Type 2 diabetic mouse (db/db) was used as DPN model, which was confirmed by detection of body weight, blood glucose, mechanical allodynia, thermal hyperalgesia, glial fibrillary acidic protein (GFAP) and monocyte chemoattractant protein-1 (MCP-1). Astrocyte was isolated from db/db mouse and then subjected to high glucose treatment. The expression of miR-125a-5p in db/db mice and high glucose-induced astrocytes was examined by qRT-PCR analysis. Downstream target of miR-125a-5p was clarified by luciferase reporter assay. Tail vein injection of miR-125a-5p mimic into db/db mice was then performed to investigate role of miR-125a-5p on DPN. RESULTS Type 2 diabetic mice showed higher body weight and blood glucose than normal db/m mice. Thermal hyperalgesia and mechanical allodynia were decreased in db/db mouse compared with db/m mouse, while GFAP and MCP-1 were increased in db/db mouse. High glucose treatment enhanced the protein expression of GFAP and MCP-1 in astrocytes. Sciatic nerve tissues in db/db mice and high glucose-induced astrocytes exhibited a decrease in miR-125a-5p. Systemic administration of miR-125a-5p mimic increased mechanical allodynia and thermal hyperalgesia, whereas it decreased GFAP and MCP-1. TRAF6 (tumor necrosis factor receptor associated factor 6) was validated as target of miR-125a-5p. CONCLUSION MiR-125a-5p in astrocytes attenuated DPN in db/db mice by up-regulation of TRAF6, which indicated the potential therapeutic effect.
Collapse
Affiliation(s)
- Aziguli Kasimu
- Department of Pain Treatment, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi City, Xinjiang Uygur Autonomous Region 830001, China
| | - Xierenguli Apizi
- Department of Pain Treatment, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi City, Xinjiang Uygur Autonomous Region 830001, China
| | - Dilibaier Talifujiang
- Department of Pain Treatment, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi City, Xinjiang Uygur Autonomous Region 830001, China
| | - Xin Ma
- Department of Pain Treatment, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi City, Xinjiang Uygur Autonomous Region 830001, China
| | - Liping Fang
- Department of Endocrinology, Honghu People's Hospital, Jingzhou City, Hubei Province 433200, China
| | - Xiangling Zhou
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan City, Hubei Province 430081, China.
| |
Collapse
|
29
|
Zidan AM, Saad EA, Ibrahim NE, Hashem MH, Mahmoud A, Hemeida AA. Host pharmacogenetic factors that may affect liver neoplasm incidence upon using direct-acting antivirals for treating hepatitis C infection. Heliyon 2021; 7:e06908. [PMID: 34013078 PMCID: PMC8113831 DOI: 10.1016/j.heliyon.2021.e06908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/07/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
Introduction Direct-acting antivirals (DAAs) represent a breakthrough in hepatitis C virus (HCV) treatment as they directly inhibit HCV nonstructural (NS) proteins (NS3/4A, NS5A, and NS5B). However, ongoing debates exist regarding their relationship with hepatocellular carcinoma (HCC) whose incidence is widely debated among investigators. This study was conducted to identify host pharmacogenetic factors that may influence HCC incidence upon using HCV DAAs. Materials and methods Details regarding 16 HCV DAAs were collected from literature and DrugBank database. Digital structures of these drugs were fed into the pharmacogenomics/pharmacovigilance in-silico pipeline (PHARMIP) to predict the genetic factors that may underpin HCC development. Results We identified 184 unique genes and 40 unique variants that may have key answers for the DAA/HCC paradox. These findings could be used in different methods to aid in the precise application of HCV DAAs and minimize the proposed risk for HCC. All results could be accessed at: https://doi.org/10.17632/8ws8258hn3.2. Discussion All the identified factors are evidence related to HCC and significantly predicted by PHARMIP as DAA targets. We discuss some examples of the methods of using these results to address the DAA/HCC controversy based on the following three primary levels: 1 - individual DAA drug, 2 - DAA subclass, and 3 - the entire DAA class. Further wet laboratory investigation is required to evaluate these results.
Collapse
Affiliation(s)
- Ahmad M Zidan
- Department of Bioinformatics, Genetic Engineering & Biotechnology Research Institute, University of Sadat City, Egypt.,Clinical Research Department, Monof Chest Hospital, Menoufia directorate, Ministry of health & population (MOHP), Egypt
| | - Eman A Saad
- Department of Bioinformatics, Genetic Engineering & Biotechnology Research Institute, University of Sadat City, Egypt
| | - Nasser E Ibrahim
- Department of Bioinformatics, Genetic Engineering & Biotechnology Research Institute, University of Sadat City, Egypt
| | - Medhat H Hashem
- Department of Animal Biotechnology, Genetic Engineering & Biotechnology Research Institute, University of Sadat City, Egypt
| | - Amal Mahmoud
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Alaa A Hemeida
- Department of Bioinformatics, Genetic Engineering & Biotechnology Research Institute, University of Sadat City, Egypt
| |
Collapse
|
30
|
Chen C, Zong Y, Tang J, Ke R, Lv L, Wu M, Lu J. miR-369-3p serves as prognostic factor and regulates cancer progression of hepatocellular carcinoma. Per Med 2021; 18:375-388. [PMID: 33792408 DOI: 10.2217/pme-2020-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background: The aim of this study was to investigate the role of miR-369-3p in hepatocellular carcinoma (HCC). Materials & methods: The expression levels of miR-369-3p were detected using the quantitative real-time reverse transcription-PCR analysis. The cell counting kit-8 and transwell assays were used to explore the effects of miR-369-3p on cell proliferation, migration and invasion of HCC cells. Results: The miR-369-3p expression was downregulated in HCC tissues and cell lines, in comparison to the normal controls, respectively. In vitro, overexpression of miR-369-3p in Hep 3B and Huh7 cells inhibited cell proliferation, migration and invasion. SOX4 was a direct target of miR-369-3p. Conclusion: Our results suggested that miR-369-3p may be a tumor suppressor in HCC by targeting SOX4.
Collapse
Affiliation(s)
- Can Chen
- The Graduate School of Fujian Medical University, Fuzhou, Fujian, 350108, PR China.,Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, 200438, PR China
| | - Yi Zong
- The Graduate School of Fujian Medical University, Fuzhou, Fujian, 350108, PR China.,The 5th Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, 200438, PR China
| | - Jiaojiao Tang
- Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, 200438, PR China
| | - Ruisheng Ke
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, PR China
| | - Lizhi Lv
- Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, Fuzhou, 350025, PR China
| | - Mengchao Wu
- Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, 200438, PR China
| | - Junhua Lu
- The 5th Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, Shanghai, 200438, PR China
| |
Collapse
|
31
|
He D, Zhang X, Zhu X, Maharjan N, Wang Y, Luo P, Liang C, Tu J. Identify and Validate the Transcriptomic, Functional Network, and Predictive Validity of FBXL19-AS1 in Hepatocellular Carcinoma. Front Oncol 2020; 10:609601. [PMID: 33344260 PMCID: PMC7744744 DOI: 10.3389/fonc.2020.609601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/04/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common neoplastic diseases worldwide. Available biomarkers are not sensitive enough for the diagnosis of HCC, hence seeking new biomarkers of HCC is urgent and challenging. The purpose of this study was to investigate the role of F-box and leucine-rich repeat protein 19-antisense RNA 1 (FBXL19-AS1) through a functional network and inquire into its diagnostic and prognostic value in HCC. A comprehensive strategy of genomic data mining, bioinformatics and experimental validation was used to evaluate the clinical value of FBXL19-AS1 in the diagnosis and prognosis of HCC and to identify the pathways in which FBXL19-AS1 might be involved. FBXL19-AS1 was up-regulated in HCC tissues, and its high expression was associated with TNM stage and poor prognosis of HCC patients. The combination of FBXL19-AS1 and alpha-fetoprotein (AFP) in plasma could prominently improve the diagnostic validity for HCC. FBXL19-AS1 might stabilize FBXL19 to reduce the amount of macrophage M1, and then promote the occurrence and development of HCC. Meanwhile, FBXL19-AS1 might participate in regulating HCC related pathways through FBXL19-AS1-miRNA-mRNA network. Our findings indicated that FBXL19-AS1 not only serves as a potential biomarker for HCC diagnosis and prognosis, but also might be functionally carcinogenic.
Collapse
Affiliation(s)
- Dingdong He
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaokang Zhang
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinyu Zhu
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Narayani Maharjan
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yingchao Wang
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Luo
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chunzi Liang
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiancheng Tu
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|