1
|
Levy JJ, Diallo AB, Saldias Montivero MK, Gabbita S, Salas LA, Christensen BC. Insights to aging prediction with AI based epigenetic clocks. Epigenomics 2025; 17:49-57. [PMID: 39584810 DOI: 10.1080/17501911.2024.2432854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024] Open
Abstract
Over the past century, human lifespan has increased remarkably, yet the inevitability of aging persists. The disparity between biological age, which reflects pathological deterioration and disease, and chronological age, indicative of normal aging, has driven prior research focused on identifying mechanisms that could inform interventions to reverse excessive age-related deterioration and reduce morbidity and mortality. DNA methylation has emerged as an important predictor of age, leading to the development of epigenetic clocks that quantify the extent of pathological deterioration beyond what is typically expected for a given age. Machine learning technologies offer promising avenues to enhance our understanding of the biological mechanisms governing aging by further elucidating the gap between biological and chronological ages. This perspective article examines current algorithmic approaches to epigenetic clocks, explores the use of machine learning for age estimation from DNA methylation, and discusses how refining the interpretation of ML methods and tailoring their inferences for specific patient populations and cell types can amplify the utility of these technologies in age prediction. By harnessing insights from machine learning, we are well-positioned to effectively adapt, customize and personalize interventions aimed at aging.
Collapse
Affiliation(s)
- Joshua J Levy
- Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, Los Angeles, CA, USA
- Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, CA, USA
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, NH, USA
- Department of Dermatology, Dartmouth Health, Lebanon, NH, USA
- Department of Epidemiology, Dartmouth College Geisel School of Medicine, Hanover, NH, USA
| | - Alos B Diallo
- Program in Quantitative Biomedical Sciences, Dartmouth College Geisel School of Medicine, Hanover, NH, USA
| | | | - Sameer Gabbita
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Lucas A Salas
- Department of Epidemiology, Dartmouth College Geisel School of Medicine, Hanover, NH, USA
- Integrative Neuroscience at Dartmouth, Guarini School of Graduate and Advanced Studies at Dartmouth College, Hanover, NH, USA
| | - Brock C Christensen
- Department of Epidemiology, Dartmouth College Geisel School of Medicine, Hanover, NH, USA
- Molecular and Cellular Biology Program, Guarini School of Graduate and Advanced Studies, Hanover, NH, USA
| |
Collapse
|
2
|
Liang R, Tang Q, Chen J, Zhu L. Epigenetic Clocks: Beyond Biological Age, Using the Past to Predict the Present and Future. Aging Dis 2024:AD.2024.1495. [PMID: 39751861 DOI: 10.14336/ad.2024.1495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Predicting health trajectories and accurately measuring aging processes across the human lifespan remain profound scientific challenges. Assessing the effectiveness and impact of interventions targeting aging is even more elusive, largely due to the intricate, multidimensional nature of aging-a process that defies simple quantification. Traditional biomarkers offer only partial perspectives, capturing limited aspects of the aging landscape. Yet, over the past decade, groundbreaking advancements have emerged. Epigenetic clocks, derived from DNA methylation patterns, have established themselves as powerful aging biomarkers, capable of estimating biological age and assessing aging rates across diverse tissues with remarkable precision. These clocks provide predictive insights into mortality and age-related disease risks, effectively distinguishing biological age from chronological age and illuminating enduring questions in gerontology. Despite significant progress in epigenetic clock development, substantial challenges remain, underscoring the need for continued investigation to fully unlock their potential in the science of aging.
Collapse
Affiliation(s)
- Runyu Liang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiang Tang
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jia Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Luwen Zhu
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
3
|
Ryan CP, Corcoran DL, Banskota N, Eckstein Indik C, Floratos A, Friedman R, Kobor MS, Kraus VB, Kraus WE, MacIsaac JL, Orenduff MC, Pieper CF, White JP, Ferrucci L, Horvath S, Huffman KM, Belsky DW. The CALERIE Genomic Data Resource. NATURE AGING 2024:10.1038/s43587-024-00775-0. [PMID: 39672986 DOI: 10.1038/s43587-024-00775-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/04/2024] [Indexed: 12/15/2024]
Abstract
Caloric restriction (CR) slows biological aging and prolongs healthy lifespan in model organisms. Findings from the CALERIE randomized, controlled trial of long-term CR in healthy, nonobese humans broadly supports a similar pattern of effects in humans. To expand our understanding of the molecular pathways and biological processes underpinning CR effects in humans, we generated a series of genomic datasets from stored biospecimens collected from n = 218 participants during the trial. These data constitute a genomic data resource for a randomized controlled trial of an intervention targeting the biology of aging. Datasets include whole-genome single-nucleotide polymorphism genotypes, and three-timepoint-longitudinal DNA methylation, mRNA and small RNA datasets generated from blood, skeletal muscle and adipose tissue samples (total sample n = 2,327). The CALERIE Genomic Data Resource described in this article is available from the Aging Research Biobank. This multi-tissue, multi-omics, longitudinal data resource has great potential to advance translational geroscience. ClinicalTrials.gov registration: NCT00427193 .
Collapse
Affiliation(s)
- C P Ryan
- Robert N. Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA.
| | - D L Corcoran
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - N Banskota
- Intramural Research Program of the National Institute on Aging, NIH, Baltimore, MD, USA
| | - C Eckstein Indik
- Robert N. Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - A Floratos
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
| | - R Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
| | - M S Kobor
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Colombia, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Colombia, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Colombia, Canada
- Child and Brain Development Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
- Edwin S. H. Leong Centre for Healthy Aging, University of British Columbia, Vancouver, British Colombia, Canada
| | - V B Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, USA
| | - W E Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, USA
| | - J L MacIsaac
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Colombia, Canada
| | - M C Orenduff
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - C F Pieper
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - J P White
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, USA
| | - L Ferrucci
- Intramural Research Program of the National Institute on Aging, NIH, Baltimore, MD, USA
| | - S Horvath
- Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - K M Huffman
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, USA
| | - D W Belsky
- Robert N. Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA.
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA.
| |
Collapse
|
4
|
Santin Y, Chiesa M, Alfonso A, Doghri Y, Kang R, Haidar F, Oreja-Fuentes P, Fousset O, Zahreddine R, Guardia M, Lemmel L, Rigamonti M, Rosati G, Florian C, Gauzin S, Guyonnet S, Rolland Y, de Souto Barreto P, Vellas B, Guiard B, Parini A. Computational and digital analyses in the INSPIRE mouse cohort to define sex-specific functional determinants of biological aging. SCIENCE ADVANCES 2024; 10:eadt1670. [PMID: 39671481 PMCID: PMC11641001 DOI: 10.1126/sciadv.adt1670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/08/2024] [Indexed: 12/15/2024]
Abstract
Biological age, which reflects the physiological state of an individual, offers a better predictive value than chronological age for age-related diseases and mortality. Nonetheless, determining accurate functional features of biological age remains challenging due to the multifactorial nature of aging. Here, we established a unique mouse cohort comprising 1576 male and female outbred SWISS mice subjected or not to high-fat, high-sucrose diet to investigate multiorgan/system biological aging throughout adulthood. Comprehensive functional and biological phenotyping at ages of 6, 12, 18, and 24 months revealed notable sex-specific disparities in longitudinal locomotion patterns and multifunctional aging parameters. Topological data analysis enabled the identification of functionally similar mouse clusters irrespective of chronological age. Moreover, our study pinpointed critical functional markers of biological aging such as muscle function, anxiety characteristics, urinary patterns, reticulocyte maturation, cardiac remodeling and function, and metabolic alterations, underscoring muscle function as an early indicator of biological age in male mice.
Collapse
Affiliation(s)
- Yohan Santin
- Institut Hospitalo-Universitaire (IHU) HealthAge, Toulouse, France
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, University of Toulouse, UPS, Toulouse, France
| | - Mattia Chiesa
- Bioinformatics and Artificial Intelligence Facility, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Amélie Alfonso
- Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), CNRS, University of Toulouse, UPS, Toulouse, France
| | - Yosra Doghri
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, University of Toulouse, UPS, Toulouse, France
| | - Ryeonshi Kang
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, University of Toulouse, UPS, Toulouse, France
| | - Fraha Haidar
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, University of Toulouse, UPS, Toulouse, France
| | - Pilar Oreja-Fuentes
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, University of Toulouse, UPS, Toulouse, France
| | - Occiane Fousset
- Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), CNRS, University of Toulouse, UPS, Toulouse, France
| | - Rana Zahreddine
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, University of Toulouse, UPS, Toulouse, France
| | - Mégane Guardia
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, University of Toulouse, UPS, Toulouse, France
| | - Lucas Lemmel
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, University of Toulouse, UPS, Toulouse, France
| | | | | | - Cédrick Florian
- Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), CNRS, University of Toulouse, UPS, Toulouse, France
| | - Sébastien Gauzin
- Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), CNRS, University of Toulouse, UPS, Toulouse, France
| | - Sophie Guyonnet
- Institut Hospitalo-Universitaire (IHU) HealthAge, Toulouse, France
- Gerontopole of Toulouse, Institute of Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France
- University of Toulouse III, Toulouse, France
- CERPOP Inserm UMR 1295, Toulouse, France
| | - Yves Rolland
- Institut Hospitalo-Universitaire (IHU) HealthAge, Toulouse, France
- Gerontopole of Toulouse, Institute of Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France
- University of Toulouse III, Toulouse, France
- CERPOP Inserm UMR 1295, Toulouse, France
| | - Philipe de Souto Barreto
- Institut Hospitalo-Universitaire (IHU) HealthAge, Toulouse, France
- Gerontopole of Toulouse, Institute of Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France
- University of Toulouse III, Toulouse, France
- CERPOP Inserm UMR 1295, Toulouse, France
| | - Bruno Vellas
- Institut Hospitalo-Universitaire (IHU) HealthAge, Toulouse, France
- Gerontopole of Toulouse, Institute of Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France
- University of Toulouse III, Toulouse, France
- CERPOP Inserm UMR 1295, Toulouse, France
| | - Bruno Guiard
- Institut Hospitalo-Universitaire (IHU) HealthAge, Toulouse, France
- Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), CNRS, University of Toulouse, UPS, Toulouse, France
| | - Angelo Parini
- Institut Hospitalo-Universitaire (IHU) HealthAge, Toulouse, France
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, University of Toulouse, UPS, Toulouse, France
| |
Collapse
|
5
|
Min M, Egli C, Dulai AS, Sivamani RK. Critical review of aging clocks and factors that may influence the pace of aging. FRONTIERS IN AGING 2024; 5:1487260. [PMID: 39735686 PMCID: PMC11671503 DOI: 10.3389/fragi.2024.1487260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/29/2024] [Indexed: 12/31/2024]
Abstract
Background and objectives Aging clocks are computational models designed to measure biological age and aging rate based on age-related markers including epigenetic, proteomic, and immunomic changes, gut and skin microbiota, among others. In this narrative review, we aim to discuss the currently available aging clocks, ranging from epigenetic aging clocks to visual skin aging clocks. Methods We performed a literature search on PubMed/MEDLINE databases with keywords including: "aging clock," "aging," "biological age," "chronological age," "epigenetic," "proteomic," "microbiome," "telomere," "metabolic," "inflammation," "glycomic," "lifestyle," "nutrition," "diet," "exercise," "psychosocial," and "technology." Results Notably, several CpG regions, plasma proteins, inflammatory and immune biomarkers, microbiome shifts, neuroimaging changes, and visual skin aging parameters demonstrated roles in aging and aging clock predictions. Further analysis on the most predictive CpGs and biomarkers is warranted. Limitations of aging clocks include technical noise which may be corrected with additional statistical techniques, and the diversity and applicability of samples utilized. Conclusion Aging clocks have significant therapeutic potential to better understand aging and the influence of chronic inflammation and diseases in an expanding older population.
Collapse
Affiliation(s)
- Mildred Min
- Integrative Research Institute, Sacramento, CA, United States
- Integrative Skin Science and Research, Sacramento, CA, United States
- College of Medicine, California Northstate University, Elk Grove, CA, United States
| | - Caitlin Egli
- Integrative Research Institute, Sacramento, CA, United States
- Integrative Skin Science and Research, Sacramento, CA, United States
- College of Medicine, University of St. George’s, University Centre, West Indies, Grenada
| | - Ajay S. Dulai
- Integrative Research Institute, Sacramento, CA, United States
- Integrative Skin Science and Research, Sacramento, CA, United States
| | - Raja K. Sivamani
- Integrative Research Institute, Sacramento, CA, United States
- Integrative Skin Science and Research, Sacramento, CA, United States
- College of Medicine, California Northstate University, Elk Grove, CA, United States
- Pacific Skin Institute, Sacramento, CA, United States
- Department of Dermatology, University of California-Davis, Sacramento, CA, United States
| |
Collapse
|
6
|
Huang H, Chen Y, Xu W, Cao L, Qian K, Bischof E, Kennedy BK, Pu J. Decoding aging clocks: New insights from metabolomics. Cell Metab 2024:S1550-4131(24)00453-4. [PMID: 39657675 DOI: 10.1016/j.cmet.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 09/23/2024] [Accepted: 11/10/2024] [Indexed: 12/12/2024]
Abstract
Chronological age is a crucial risk factor for diseases and disabilities among older adults. However, individuals of the same chronological age often exhibit divergent biological aging states, resulting in distinct individual risk profiles. Chronological age estimators based on omics data and machine learning techniques, known as aging clocks, provide a valuable framework for interpreting molecular-level biological aging. Metabolomics is an intriguing and rapidly growing field of study, involving the comprehensive profiling of small molecules within the body and providing the ultimate genome-environment interaction readout. Consequently, leveraging metabolomics to characterize biological aging holds immense potential. The aim of this review was to provide an overview of metabolomics approaches, highlighting the establishment and interpretation of metabolomic aging clocks while emphasizing their strengths, limitations, and applications, and to discuss their underlying biological significance, which has the potential to drive innovation in longevity research and development.
Collapse
Affiliation(s)
- Honghao Huang
- Division of Cardiology, State Key Laboratory for Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yifan Chen
- Division of Cardiology, State Key Laboratory for Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Xu
- Division of Cardiology, State Key Laboratory for Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Linlin Cao
- Division of Cardiology, State Key Laboratory for Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kun Qian
- Division of Cardiology, State Key Laboratory for Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Evelyne Bischof
- University Hospital of Basel, Division of Internal Medicine, University of Basel, Basel, Switzerland; Shanghai University of Medicine and Health Sciences, College of Clinical Medicine, Shanghai, China
| | - Brian K Kennedy
- Health Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore, Singapore; Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Jun Pu
- Division of Cardiology, State Key Laboratory for Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Aging Biomarker Consortium, China.
| |
Collapse
|
7
|
Kim DJ, Kang JH, Kim JW, Kim SB, Lee YK, Cheon MJ, Lee BC. Assessing the utility of epigenetic clocks for health prediction in South Korean. FRONTIERS IN AGING 2024; 5:1493406. [PMID: 39687863 PMCID: PMC11646986 DOI: 10.3389/fragi.2024.1493406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024]
Abstract
Epigenetic clocks have been developed to track both chronological age and biological age, which is defined by physiological biomarkers and the risk of adverse health outcomes. Epigenetic age acceleration (EAA) has been found to predict various diseases, aging-related factors, and mortality. However, epigenetic clocks have predominantly been developed with individuals of European or Hispanic ancestry, and their association with health outcomes and environmental factors has not been sufficiently assessed in East Asian populations. Here, we investigated nine epigenetic clocks: five trained on chronological age (first-generation) and four on biological age (second-generation), using DNA methylation data from blood samples of South Koreans. EAAs of second-generation epigenetic clocks reflected the risk of chronic diseases (type 2 diabetes and hypertension), levels of health-related blood markers (alanine aminotransferase, aspartate aminotransferase, high density lipoprotein, triglyceride, and high sensitivity C-reactive protein), and lung functions (percentage of predicted FEV1 and percentage of predicted FVC), while EAAs of first generation clocks did not. Using follow-up data, we also found that EAAs of second-generation clocks were associated with the time to onset risks of chronic diseases. Health behavior factors (drinking, smoking, exercise, body mass index, and waist-hip ratio), socioeconomic status (income level and educational attainment), and psychosocial status were associated with EAAs of second-generation clocks, while only smoking status was associated with EAAs of first-generation clocks. We conducted validation analyses in an independent South Korean cohort and replicated the association of EAAs with health outcomes and environmental factors. Age acceleration of epigenetic clocks is influenced by various environmental factors and can serve as an effective predictor of health in South Korea.
Collapse
|
8
|
Ferreri DM, Sutliffe JT, Lopez NV, Sutliffe CA, Smith R, Carreras-Gallo N, Dwaraka VB, Prestrud AA, Fuhrman JH. Slower Pace of Epigenetic Aging and Lower Inflammatory Indicators in Females Following a Nutrient-Dense, Plant-Rich Diet Than Those in Females Following the Standard American Diet. Curr Dev Nutr 2024; 8:104497. [PMID: 39668946 PMCID: PMC11635705 DOI: 10.1016/j.cdnut.2024.104497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/04/2024] [Accepted: 10/22/2024] [Indexed: 12/14/2024] Open
Abstract
Background Plant-based diets are associated with lower inflammatory biomarkers and reduced risk of age-related chronic diseases. Epigenetic biomarkers of aging are DNA methylation-based tools that estimate biological age and rate of aging, providing insights into age-related health risks. Healthy diet and lifestyle indicators correlate with slower epigenetic aging. Objectives Neither inflammatory biomarkers nor epigenetic aging has yet been studied in the nutrient-dense, plant-rich (Nutritarian) diet, a plant-based diet that emphasizes specific plant foods, such as cruciferous vegetables, beans and other legumes, onions and garlic, mushrooms, berries, nuts, and seeds. We aimed to compare inflammatory status and epigenetic age acceleration in females following a Nutritarian diet with those of females following a standard American diet (SAD). Methods We investigated dietary inflammatory potential, epigenetic age acceleration using first, second, and third-generation clocks, and additional health-related epigenetic biomarkers in this retrospective cohort study of 48 females who habitually (≥5 y) follow a Nutritarian diet and 49 females without obesity who habitually (≥5 y) follow a SAD. Participants completed a series of online questionnaires and provided a blood sample. Results Epigenetic age acceleration, indicated by the third-generation clock DunedinPACE, was significantly slower in the Nutritarian group than that in the SAD group (P = 4.26 × 10-6). The Nutritarian diet group showed lower dietary inflammatory potential, as indicated by Empirical Dietary Inflammatory Pattern and Dietary Inflammatory Index. We observed differences in methylation-predicted immune cell subsets (lower neutrophils and higher T regulatory cells) and a lower epigenetic biomarker proxy for C-reactive protein, both of which suggested a lower inflammatory status in the Nutritarian group. Epigenetic biomarker proxies for LDL cholesterol, body mass index (BMI), insulin-like growth factor binding protein 5, and blood glucose were also lower in the Nutritarian group. Conclusions Our findings suggest the Nutritarian diet could help reduce chronic inflammation and slow epigenetic aging.
Collapse
Affiliation(s)
- Deana M Ferreri
- Nutritional Research Foundation, Flemington, NJ, United States
| | - Jay T Sutliffe
- Department of Health Sciences and the PRANDIAL Lab, Northern Arizona University, Flagstaff, AZ, United States
| | - Nanette V Lopez
- Department of Health Sciences and the PRANDIAL Lab, Northern Arizona University, Flagstaff, AZ, United States
| | - Chloe A Sutliffe
- Department of Health Sciences and the PRANDIAL Lab, Northern Arizona University, Flagstaff, AZ, United States
| | - Ryan Smith
- TruDiagnostic, Lexington, KY, United States
| | | | | | | | - Joel H Fuhrman
- Nutritional Research Foundation, Flemington, NJ, United States
| |
Collapse
|
9
|
Perlmutter A, Bland JS, Chandra A, Malani SS, Smith R, Mendez TL, Dwaraka VB. The impact of a polyphenol-rich supplement on epigenetic and cellular markers of immune age: a pilot clinical study. Front Nutr 2024; 11:1474597. [PMID: 39628466 PMCID: PMC11612904 DOI: 10.3389/fnut.2024.1474597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/15/2024] [Indexed: 12/06/2024] Open
Abstract
Age-related alterations in immune function are believed to increase risk for a host of age-related diseases leading to premature death and disability. Programming of the immune system by diet, lifestyle, and environmental factors occurs across the lifespan and influences both makeup and function of the immune system, including immunometabolism. This programming is believed to act in large part through epigenetic modification. Among dietary components that affect this process, polyphenols may play an outsized role. Polyphenols are a widely distributed group of plant nutrients consumed by humans. Certain foods possess distinctive and relatively higher levels of these compounds. One such food is Tartary buckwheat (fagopyrum tataricum), an ancient seed historically prized for its health benefits. It is suggested that the specific composition of polyphenols found in foods like Tartary buckwheat may lead to a unique impact on immunometabolic physiological pathways that could be interrogated through epigenetic analyses. The objective of this study was to investigate the epigenetic effects on peripheral immune cells in healthy individuals of a standardized polyphenol concentrate based on naturally occurring nutrients in Tartary buckwheat. This pilot clinical trial tested the effects of consuming 90 days of this concentrate in 50 healthy male (40%) and female (60%) participants aged 18-85 years using epigenetic age clocks and deconvolution methods. Analysis revealed significant intervention-related changes in multiple epigenetic age clocks and immune markers as well as population-wide alterations in gene ontology (GO) pathways related to longevity and immunity. This study provides previously unidentified insights into the immune, longevity and epigenetic effects of consumption of polyphenol-rich plants and generates additional support for health interventions built around historically consumed plants like Tartary buckwheat while offering compelling opportunities for additional research. Clinical trial registration ClinicalTrials.gov, Identifier: NCT05234203.
Collapse
Affiliation(s)
| | | | - Arti Chandra
- Big Bold Health PBC, Bainbridge Island, WA, United States
| | | | - Ryan Smith
- TruDiagnostic Inc., Lexington, KY, United States
| | | | | |
Collapse
|
10
|
Wang Z, Zhang J. Genetic and epigenetic bases of long-term adverse effects of childhood cancer therapy. Nat Rev Cancer 2024:10.1038/s41568-024-00768-6. [PMID: 39511414 DOI: 10.1038/s41568-024-00768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 11/15/2024]
Abstract
Over the past decade, genome-scale molecular profiling of large childhood cancer survivorship cohorts has led to unprecedented advances in our understanding of the genetic and epigenetic bases of therapy-related adverse health outcomes in this vulnerable population. To facilitate the integration of knowledge generated from these studies into formulating next-generation precision care for survivors of childhood cancer, we summarize key findings of genetic and epigenetic association studies of long-term therapy-related adverse effects including subsequent neoplasms and cardiomyopathies among others. We also discuss therapy-related genotoxicities including clonal haematopoiesis and DNA methylation, which may underlie accelerated molecular ageing. Finally, we highlight enhanced risk prediction models for survivors of childhood cancer that incorporate both genetic factors and treatment exposures, aiming to achieve enhanced accuracy in predicting risks for this population. These new insights will hopefully inspire future studies that harness both expanding omics resources and evolving data science methodology to accelerate the translation of precision medicine for survivors of childhood cancer.
Collapse
Affiliation(s)
- Zhaoming Wang
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
11
|
Bordoni L, Agostinho de Sousa J, Zhuo J, von Meyenn F. Evaluating the connection between diet quality, EpiNutrient intake and epigenetic age: an observational study. Am J Clin Nutr 2024; 120:1143-1155. [PMID: 39510725 DOI: 10.1016/j.ajcnut.2024.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND DNA methylation (DNAm) has unique properties which makes it a potential biomarker for lifestyle-related exposures. Epigenetic clocks, particularly DNAm-based biological age predictors [epigenetic age (EA)], represent an exciting new area of clinical research and deviations of EA from chronological age [epigenetic age acceleration (EAA)] have been linked to overall health, age-related diseases, and environmental exposures. OBJECTIVES This observational study investigates the relationships between biological aging and various dietary factors within the LifeLines-DEEP Cohort. These factors include diet quality, processed food consumption, dietary glycemic load, and intake of vitamins involved in maintaining the epigenetic homeostasis (vitamins B-9, B-12, B-6, B-2, and C). METHODS Dietary records collected using food-frequency questionnaires were used to estimate diet quality [LifeLines Diet Score (LLDS)], measure the intake of unprocessed/ultraprocessed food according to the NOVA food classification system, and the adequacy of the dietary intake of vitamins B-9, B-12, B-2, B-6, and C. EA using Horvath, Hannum, Levine, and Horvath2 epigenetic clock models and DNAm-predicted telomere length (DNAm-TL) were calculated from DNAm data in 760 subjects. Associations between dietary factors and EAA were tested, adjusting for sex, energy intake, and body composition. RESULTS LLDS was associated with EAA (EAA_Horvath: β: -0.148; P = 1 × 10-4; EAA_Hannum: β: -0.148; P = 9 × 10-5; EAA_Levine: β: -0.174; P = 1 × 10-5; and EAA_Horvath2: β: -0.176; P = 4 × 10-6) and DNAm-TL (β: 0.116; P = 0.003). Particularly, EAA was associated with dietary glycemic load (EAA_Horvath: β: 0.476; P = 9 × 10-10; EAA_Hannum: β: 0.565; P = 1 × 10-13; EAA_Levine: β: 0.469; P = 5 × 10-9; EAA_Horvath2: β: 0.569; P = 1 × 10-13; and DNAmTL adjusted for age: β: -0.340; P = 2 × 10-5) and different measures of food processing (NOVA classes 1 and 4). Positive EAA was also associated with inadequate intake of vitamin B-12 (EAA_Horvath: β: -0.167; P = 0.002; EAA_Hannum: β: -0.144; P = 0.007; and EAA_Horvath2: β: -0.126; P = 0.019) and C (EAA_Hannum: β: -0.136; P = 0.010 and EAA_Horvath2: β: -0.151; P = 0.005). CONCLUSIONS Our findings corroborate the hypothesis that nutrition plays a pivotal role in influencing epigenetic homeostasis, especially DNAm, thereby contributing to individual health trajectories and the pace of aging.
Collapse
Affiliation(s)
- Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, Camerino, Italy.
| | - João Agostinho de Sousa
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | - Jingran Zhuo
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | - Ferdinand von Meyenn
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Switzerland.
| |
Collapse
|
12
|
Zhao Y, Li X, Wang K, Iyer G, Sakowski SA, Zhao L, Teener S, Bakulski KM, Dou JF, Traynor BJ, Karnovsky A, Batterman SA, Feldman EL, Sartor MA, Goutman SA. Epigenetic age acceleration is associated with occupational exposures, sex, and survival in amyotrophic lateral sclerosis. EBioMedicine 2024; 109:105383. [PMID: 39369616 PMCID: PMC11491892 DOI: 10.1016/j.ebiom.2024.105383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is linked to ageing and genetic and environmental risk factors, yet underlying mechanisms are incompletely understood. We aimed to evaluate epigenetic age acceleration (EAA), i.e., DNA methylation (DNAm) age acceleration, and its association with ALS case status and survival. METHODS In this study, we included 428 ALS and 288 control samples collected between 2011 and 2021. We calculated EAA using the GrimAge residual method from ALS and control blood samples and grouped participants with ALS into three ageing groups (fast, normal, slow). We associated EAA with ALS case status and survival, stratified by sex, and correlated it with environmental and biological factors through occupational exposure assessments, immune cell proportions, and transcriptome changes. FINDINGS Participants with ALS had higher average EAA by 1.80 ± 0.30 years (p < 0.0001) versus controls. Participants with ALS in the fast ageing group had a hazard ratio of 1.52 (95% confidence interval 1.16-2.00, p = 0.0028) referenced to the normal ageing group. In males, this hazard ratio was 1.55 (95% confidence interval 1.11-2.17, p = 0.010), and EAA was positively correlated with high-risk occupational exposures including particulate matter (adj.p < 0.0001) and metals (adj.p = 0.0087). Also, in male participants with ALS, EAA was positively correlated with neutrophil proportions and was negatively correlated with CD4+ T cell proportions. Pathways dysregulated in participants with ALS with fast ageing included spliceosome, nucleocytoplasmic transport, axon guidance, and interferons. INTERPRETATION EAA was associated with ALS case status and, at least in males, with shorter survival after diagnosis. The effect of EAA on ALS was partially explained by occupational exposures and immune cell proportions in a sex-dependent manner. These findings highlight the complex interactions of ageing and exposures in ALS. FUNDING NIH, CDC/National ALS Registry, ALS Association, Dr. Randall Whitcomb Fund for ALS Genetics, Peter Clark Fund for ALS Research, Sinai Medical Staff Foundation, Scott L. Pranger ALS Clinic Fund, NeuroNetwork Therapeutic Discovery Fund, NeuroNetwork for Emerging Therapies.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Xiayan Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Kai Wang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Gayatri Iyer
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Stacey A Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
| | - Lili Zhao
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Samuel Teener
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
| | - Kelly M Bakulski
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - John F Dou
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Alla Karnovsky
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Stuart A Batterman
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
| | - Maureen A Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA.
| | - Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Mirceta M, Schmidt MHM, Shum N, Prasolava TK, Meikle B, Lanni S, Mohiuddin M, Mckeever PM, Zhang M, Liang M, van der Werf I, Scheers S, Dion PA, Wang P, Wilson MD, Abell T, Philips EA, Sznajder ŁJ, Swanson MS, Mehkary M, Khan M, Yokoi K, Jung C, de Jong PJ, Freudenreich CH, McGoldrick P, Yuen RKC, Abrahão A, Keith J, Zinman L, Robertson J, Rogaeva E, Rouleau GA, Kooy RF, Pearson CE. C9orf72 expansion creates the unstable folate-sensitive fragile site FRA9A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.26.620312. [PMID: 39569145 PMCID: PMC11577248 DOI: 10.1101/2024.10.26.620312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The hyper-unstable Chr9p21 locus, harbouring the interferon gene cluster, oncogenes and C9orf72, is linked to multiple diseases. C9orf72 (GGGGCC)n expansions ( C9orf72 Exp) are associated with incompletely penetrant amyotrophic lateral sclerosis, frontotemporal dementia and autoimmune disorders. C9orf72 Exp patients display hyperactive cGAS-STING-linked interferon immune and DNA damage responses, but the source of immuno-stimulatory or damaged DNA is unknown. Here, we show C9orf72 Exp in pre-symptomatic and ALS-FTD patient cells and brains cause the folate-sensitive chromosomal fragile site, FRA9A. FRA9A centers on >33kb of C9orf72 as highly-compacted chromatin embedded in an 8.2Mb fragility zone spanning 9p21, encompassing 46 genes, making FRA9A one of the largest fragile sites. C9orf72 Exp cells show chromosomal instability, heightened global- and Chr9p-enriched sister-chromatid exchanges, truncated-Chr9s, acentric-Chr9s and Chr9-containing micronuclei, providing endogenous sources of damaged and immunostimulatory DNA. Cells from one C9orf72 Exp patient contained highly-rearranged FRA9A-expressing Chr9 with Chr9-wide dysregulated gene expression. Somatic C9orf72 Exp repeat instability and chromosomal fragility are sensitive to folate-deficiency. Age-dependent repeat instability, chromosomal fragility, and chromosomal instability can be transferred to CNS and peripheral tissues of transgenic C9orf72 Exp mice, implicating C9orf72 Exp as the source. Our results highlight unappreciated effects of C9orf72 expansions that trigger vitamin-sensitive chromosome fragility, adding structural variations to the disease-enriched 9p21 locus, and likely elsewhere.
Collapse
|
14
|
Sehgal R, Borrus D, Kasamato J, Armstrong JF, Gonzalez J, Markov Y, Priyanka A, Smith R, Carreras N, Dwaraka VB, Higgins-Chen A. DNAm aging biomarkers are responsive: Insights from 51 longevity interventional studies in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619522. [PMID: 39484592 PMCID: PMC11526957 DOI: 10.1101/2024.10.22.619522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Aging biomarkers can potentially allow researchers to rapidly monitor the impact of an aging intervention, without the need for decade-spanning trials, by acting as surrogate endpoints. Prior to testing whether aging biomarkers may be useful as surrogate endpoints, it is first necessary to determine whether they are responsive to interventions that target aging. Epigenetic clocks are aging biomarkers based on DNA methylation with prognostic value for many aging outcomes. Many individual studies are beginning to explore whether epigenetic clocks are responsive to interventions. However, the diversity of both interventions and epigenetic clocks in different studies make them difficult to compare systematically. Here, we curate TranslAGE-Response, a harmonized database of 51 public and private longitudinal interventional studies and calculate a consistent set of 16 prominent epigenetic clocks for each study, along with 95 other DNAm biomarkers that help explain changes in each clock. With this database, we discover patterns of responsiveness across a variety of interventions and DNAm biomarkers. For example, clocks trained to predict mortality or pace of aging have the strongest response across all interventions and show consistent agreement with each other, pharmacological and lifestyle interventions drive the strongest response from DNAm biomarkers, and study population and study duration are key factors in driving responsiveness of DNAm biomarkers in an intervention. Some classes of interventions such as TNF-alpha inhibitors have strong, consistent effects across multiple studies, while others such as senolytic drugs have inconsistent effects. Clocks with multiple sub-scores (i.e. "explainable clocks") provide specificity and greater mechanistic insight into responsiveness of interventions than single-score clocks. Our work can help the geroscience field design future clinical trials, by guiding the choice of interventions, specific subsets of epigenetic clocks to minimize multiple testing, study duration, study population, and sample size, with the eventual aim of determining whether epigenetic clocks can be used as surrogate endpoints.
Collapse
|
15
|
Borrus DS, Sehgal R, Armstrong JF, Kasamoto J, Gonzalez J, Higgins-Chen A. When to Trust Epigenetic Clocks: Avoiding False Positives in Aging Interventions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619720. [PMID: 39484440 PMCID: PMC11526921 DOI: 10.1101/2024.10.22.619720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Recent human studies have suggested that aging interventions can reduce aging biomarkers related to morbidity and mortality risk. Such biomarkers may potentially serve as early, rapid indicators of effects on healthspan. An increasing number of studies are measuring intervention effects on epigenetic clocks, commonly used aging biomarkers based on DNA methylation profiles. However, with dozens of clocks to choose from, different clocks may not agree on the effect of an intervention. Furthermore, changes in some clocks may simply be the result of technical noise causing a false positive result. To address these issues, we measured the variability between 6 popular epigenetic clocks across a range of longitudinal datasets containing either an aging intervention or an age-accelerating event. We further compared them to the same clocks re-trained to have high test-retest reliability. We find the newer generation of clocks, trained on mortality or rate-of-aging, capture aging events more reliably than those clocks trained on chronological age, as these show consistent effects (or lack thereof) across multiple clocks including high-reliability versions, and including after multiple testing correction. In contrast, clocks trained on chronological age frequently show sporadic changes that are not replicable when using high-reliability versions of those same clocks, or when using newer generations of clocks and these results do not survive multiple-testing correction. These are likely false positive results, and we note that some of these clock changes were previously published, suggesting the literature should be re-examined. This work lays the foundation for future clinical trials that aim to measure aging interventions with epigenetic clocks, by establishing when to attribute a given change in biological age to a bona fide change in the aging process.
Collapse
Affiliation(s)
- Daniel S Borrus
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Raghav Sehgal
- Program in Computational Biology and Bioinformatics, Yale University School of Medicine, New Haven, CT, USA
| | - Jenel Fraij Armstrong
- Program in Computational Biology and Bioinformatics, Yale University School of Medicine, New Haven, CT, USA
| | - Jessica Kasamoto
- Program in Computational Biology and Bioinformatics, Yale University School of Medicine, New Haven, CT, USA
| | - John Gonzalez
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Albert Higgins-Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
16
|
Hridayanka KSN, Duttaroy AK, Basak S. Bioactive Compounds and Their Chondroprotective Effects for Osteoarthritis Amelioration: A Focus on Nanotherapeutic Strategies, Epigenetic Modifications, and Gut Microbiota. Nutrients 2024; 16:3587. [PMID: 39519419 PMCID: PMC11547880 DOI: 10.3390/nu16213587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
In degenerative joint disease like osteoarthritis (OA), bioactive compounds like resveratrol, epigallocatechin gallate, curcumin, and other polyphenols often target various signalling pathways, including NFκB, TGFβ, and Wnt/β-catenin by executing epigenetic-modifying activities. Epigenetic modulation can target genes of disease pathophysiology via histone modification, promoter DNA methylation, and non-coding RNA expression, some of which are directly involved in OA but have been less explored. OA patients often seek options that can improve the quality of their life in addition to existing treatment with nonsteroidal anti-inflammatory drugs (NSAIDs). Although bioactive and natural compounds exhibit therapeutic potential against OA, several disadvantages loom, like insolubility and poor bioavailability. Nanoformulated bioactive compounds promise a better way to alleviate OA since they also control systemic events, including metabolic, immunological, and inflammatory responses, by modulating host gut microbiota that can regulate OA pathogenesis. Recent data suggest gut dysbiosis in OA. However, limited evidence is available on the role of bioactive compounds as epigenetic and gut modulators in ameliorating OA. Moreover, it is not known whether the effects of polyphenolic bioactive compounds on gut microbial response are mediated by epigenetic modulatory activities in OA. This narrative review highlights the nanotherapeutic strategies utilizing bioactive compounds, reporting their effects on chondrocyte growth, metabolism, and epigenetic modifications in osteoarthritis amelioration.
Collapse
Affiliation(s)
- Kota Sri Naga Hridayanka
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India;
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway;
| | - Sanjay Basak
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India;
| |
Collapse
|
17
|
He K, Xu T, Song X, Fang J, Jiang K, Hu C, He X, Tao Y, Jin L. BMI Mediates the Association between Macronutrient Subtypes and Phenotypic Age Acceleration. Nutrients 2024; 16:3436. [PMID: 39458432 PMCID: PMC11510402 DOI: 10.3390/nu16203436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Background: There is growing evidence that diet and aging are associated; however, few studies have examined the relationship between macronutrient subtypes and phenotypic age acceleration, and the extent to which BMI (body mass index) mediates this association is unclear. Methods: This study included 6911 individuals who were 20 years or older and had participated in the National Health and Nutrition Examination Survey. Daily macronutrient intakes were calculated and classified by the quartile of their subtypes. PhenoAgeAccel was calculated as an aging index using nine chemistry biomarkers. Multivariable linear regression and isocaloric substitution effects were used to evaluate the association of macronutrients with PhenoAgeAccel. Mediation analyses were used to examine the mediation role of BMI in the association. Results: After adjusting for the potential covariates, the consumption of high-quality carbohydrates (β = -1.01, 95% CI: -1.91, -0.12), total protein (β = -2.00, 95% CI: -3.16, -0.84), and plant protein (β = -1.65, 95% CI: -2.52, -0.78) was negatively correlated with PhenoAgeAccel; the consumption of SFAs (β = 1.77, 95% CI: 0.72, 2.81) was positively correlated with PhenoAgeAccel. For every serving of low-quality carbohydrates/animal protein and other calories replaced by one serving of high-quality carbohydrates/plant protein, PhenoAgeAccel would be reduced by about 25 percent. The ratio between BMI-mediated high-quality carbohydrates and PhenoAgeAccel accounted for 19.76% of the total effect, while the ratio between BMI-mediated total fat and PhenoAgeAccel accounted for 30.78% of the total effect. Conclusions: Different macronutrient consumption subtypes are related to PhenoAgeAccel, which is partially mediated by BMI, depending on the quality of macronutrients. Replacing low-quality macronutrients with high-quality macronutrients might slow aging.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuchun Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China; (K.H.); (T.X.); (X.S.); (J.F.); (K.J.); (C.H.); (X.H.)
| | - Lina Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China; (K.H.); (T.X.); (X.S.); (J.F.); (K.J.); (C.H.); (X.H.)
| |
Collapse
|
18
|
Jia Z, Qiu F, He Y, Chen H, Yang C, Liu H, Zheng T, Xu S, Wang S, Li Y. The fetal origins of metabolic health: exploring the association between newborn biological age and metabolism hormones in childhood. BMC Med 2024; 22:429. [PMID: 39379967 PMCID: PMC11462715 DOI: 10.1186/s12916-024-03629-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Telomere length (TL), mitochondrial DNA copy number (mtDNAcn), and DNA methylation age (DNAmAge) are common aging biomarkers. However, research on the associations between these three markers at birth and subsequent metabolic status was limited. This study aimed to evaluate the association between TL, mtDNAcn, and DNAmAge in newborns and the variation in metabolic hormones of children at 3 years old. METHODS This research involved 895 mother-child pairs from a birth cohort in China, with TL and mtDNAcn measured using quantitative real-time PCR, DNA methylation (DNAm) assessed using Infinium MethylationEPIC Beadchip, and DNAm age (DNAmAge) determined using Horvath's epigenetic clock. Insulin and leptin levels were measured via electrochemiluminescence assay. Multivariable adjusted linear regression and restricted cubic spline (RCS) analysis were utilized to examine the association between aging markers and metabolic hormones. RESULTS The linear regression analysis indicated the percentage change of metabolism hormones for per doubling of aging biomarkers alterations and found significant associations between DNAmAge and insulin levels (adjusted percent change (95% CI), - 13.22 (- 23.21 to - 1.94)), TL and leptin levels (adjusted percent change (95% CI), 15.32 (1.32 to 31.24)), and mtDNAcn and leptin levels (adjusted percent change (95% CI), - 14.13 (- 21.59 to - 5.95)). The RCS analysis revealed significant non-linear associations between TL (Ln transformed) and insulin (Ln transformed) (P = 0.024 for nonlinearity), as well as DNAmAge (Ln transformed) and leptin (Ln transformed) (P = 0.043 for nonlinearity). Specifically, for TL and insulin, a positive association was observed when TL (Ln transformed) was less than - 0.05, which transitioned to an inverse association when TL (Ln transformed) was greater than - 0.05. Regarding DNAmAge and leptin, there was a sharp decline when DNAmAge (Ln transformed) was less than - 1.35, followed by a plateau between - 1.35 and - 0.67 and then a further decline when DNAmAge (Ln transformed) was greater than - 0.67. CONCLUSIONS In this prospective birth cohort study, variation in metabolic hormones of children at 3 years old was associated with TL, mtDNAcn, and DNAmAge at birth. These findings suggested that TL, mtDNAcn, and DNAmAge might play a role in the biological programming of metabolic health from birth.
Collapse
Affiliation(s)
- Zhenxian Jia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Feng Qiu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Yujie He
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Huan Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Chenhui Yang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Tongzhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, 02912, USA
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China.
- School of Environmental Science and Engineering, Hainan University, Haikou, Hainan, 570228, China.
| | - Shiqiong Wang
- Institute of Maternal and Children Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, 430016, China.
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
19
|
Grönniger E, Max H, Lyko F. Skin Rejuvenation by Modulation of DNA Methylation. Exp Dermatol 2024; 33:e70005. [PMID: 39440959 DOI: 10.1111/exd.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Skin aging is driven by a complex set of cellular pathways. Among these, epigenetic mechanisms have garnered particular attention, because of their sensitivity to environmental and lifestyle factors. DNA methylation represents the longest known and best understood epigenetic mechanism. We explain how DNA methylation might function as an interface between the environment and the genome of human skin. Exposures to different environmental factors and lifestyles are known to modulate age-related methylation patterns, as illustrated by their effect on DNA methylation clocks. Human skin provides a particularly well-suited tissue for understanding age-related methylation changes and it has been shown recently that modulation of DNA methylation can induce skin rejuvenation. We explain how the use of mildly demethylating agents can be safeguarded to ensure the specific removal of age-related DNA methylation changes. We also identify important areas of future research, leading to a deeper understanding of the mechanisms that drive epigenetic aging and to the development of further refined intervention strategies.
Collapse
Affiliation(s)
| | - Heiner Max
- Research & Development, Beiersdorf AG, Hamburg, Germany
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
20
|
Holmes HE, Valentin RE, Jernerén F, de Jager Loots CA, Refsum H, Smith AD, Guarente L, Dellinger RW, Sampson D. Elevated homocysteine is associated with increased rates of epigenetic aging in a population with mild cognitive impairment. Aging Cell 2024; 23:e14255. [PMID: 38937999 PMCID: PMC11464110 DOI: 10.1111/acel.14255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
Elevated plasma total homocysteine (tHcy) is associated with the development of Alzheimer's disease and other forms of dementia. In this study, we report the relationship between tHcy and epigenetic age in older adults with mild cognitive impairment from the VITACOG study. Epigenetic age and rate of aging (ROA) were assessed using various epigenetic clocks, including those developed by Horvath and Hannum, DNAmPhenoAge, and with a focus on Index, a new principal component-based epigenetic clock that, like DNAmPhenoAge, is trained to predict an individual's "PhenoAge." We identified significant associations between tHcy levels and ROA, suggesting that hyperhomocysteinemic individuals were aging at a faster rate. Moreover, Index revealed a normalization of accelerated epigenetic aging in these individuals following treatment with tHcy-lowering B-vitamins. Our results indicate that elevated tHcy is a risk factor for accelerated epigenetic aging, and this can be ameliorated with B-vitamins. These findings have broad relevance for the sizable proportion of the worldwide population with elevated tHcy.
Collapse
Affiliation(s)
| | | | - Fredrik Jernerén
- From the Oxford Project to Investigate Memory and Ageing (OPTIMA), Department of PharmacologyUniversity of OxfordOxfordUK
- Department of Pharmaceutical BiosciencesUppsala UniversityUppsalaSweden
| | - Celeste A. de Jager Loots
- From the Oxford Project to Investigate Memory and Ageing (OPTIMA), Department of PharmacologyUniversity of OxfordOxfordUK
- Ageing Epidemiology Research Unit, School of Public HealthImperial College LondonLondonUK
| | - Helga Refsum
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - A. David Smith
- From the Oxford Project to Investigate Memory and Ageing (OPTIMA), Department of PharmacologyUniversity of OxfordOxfordUK
| | - Leonard Guarente
- Elysium HealthNew YorkNew YorkUSA
- Department of BiologyMITCambridgeMassachusettsUSA
| | | | | | | |
Collapse
|
21
|
McGee KC, Sullivan J, Hazeldine J, Schmunk LJ, Martin-Herranz DE, Jackson T, Lord JM. A combination nutritional supplement reduces DNA methylation age only in older adults with a raised epigenetic age. GeroScience 2024; 46:4333-4347. [PMID: 38528176 PMCID: PMC11336001 DOI: 10.1007/s11357-024-01138-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/13/2024] [Indexed: 03/27/2024] Open
Abstract
An increase in systemic inflammation (inflammaging) is one of the hallmarks of aging. Epigenetic (DNA methylation) clocks can quantify the degree of biological aging and this can be reversed by lifestyle and pharmacological intervention. We aimed to investigate whether a multi-component nutritional supplement could reduce systemic inflammation and epigenetic age in healthy older adults.We recruited 80 healthy older participants (mean age ± SD: 71.85 ± 6.23; males = 31, females = 49). Blood and saliva were obtained pre and post a 12-week course of a multi-component supplement, containing: Vitamin B3, Vitamin C, Vitamin D, Omega 3 fish oils, Resveratrol, Olive fruit phenols and Astaxanthin. Plasma GDF-15 and C-reactive protein (CRP) concentrations were quantified as markers of biological aging and inflammation respectively. DNA methylation was assessed in whole blood and saliva and used to derive epigenetic age using various clock algorithms.No difference between the epigenetic and chronological ages of participants was observed pre- and post-treatment by the blood-based Horvath or Hannum clocks, or the saliva-based InflammAge clock. However, in those with epigenetic age acceleration of ≥ 2 years at baseline, a significant reduction in epigenetic age (p = 0.015) and epigenetic age acceleration (p = 0.0058) was observed post-treatment using the saliva-based InflammAge clock. No differences were observed pre- and post-treatment in plasma GDF-15 and CRP, though participants with CRP indicative of an elevated cardiovascular disease risk (hsCRP ≥ 3µg/ml), had a reduction in CRP post-supplementation (p = 0.0195).Our data suggest a possible benefit of combined nutritional supplementation in individuals with an accelerated epigenetic age and inflammaging.
Collapse
Affiliation(s)
- Kirsty C McGee
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Jack Sullivan
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Jon Hazeldine
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | | | | | - Thomas Jackson
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedcial Research Centre, University Hopsital Birmingham and University of Birmingham, Birmingham, UK
| | - Janet M Lord
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
- NIHR Birmingham Biomedcial Research Centre, University Hopsital Birmingham and University of Birmingham, Birmingham, UK.
| |
Collapse
|
22
|
Mirceta M, Schmidt MM, Shum N, Prasolava T, Meikle B, Lanni S, Mohiuddin M, McKeever P, Zhang M, Liang M, van der Werf I, Scheers S, Dion P, Wang P, Wilson M, Abell T, Philips E, Sznajder Ł, Swanson M, Mehkary M, Khan M, Yokoi K, Jung C, de Jong P, Freudenreich C, McGoldrick P, Yuen RC, Abrahão A, Keith J, Zinman L, Robertson J, Rogaeva E, Rouleau G, Kooy R, Pearson C. C9orf72 repeat expansion creates the unstable folate-sensitive fragile site FRA9A. NAR MOLECULAR MEDICINE 2024; 1:ugae019. [PMID: 39669124 PMCID: PMC11632612 DOI: 10.1093/narmme/ugae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024]
Abstract
The hyper-unstable Chr9p21 locus, harbouring the interferon gene cluster, oncogenes and C9orf72, is linked to multiple diseases. C9orf72 (GGGGCC)n expansions (C9orf72Exp) are associated with incompletely penetrant amyotrophic lateral sclerosis, frontotemporal dementia and autoimmune disorders. C9orf72Exp patients display hyperactive cGAS-STING-linked interferon immune and DNA damage responses, but the source of immunostimulatory or damaged DNA is unknown. Here, we show C9orf72Exp in pre-symptomatic and amyotrophic lateral sclerosis-frontotemporal dementia patient cells and brains cause the folate-sensitive chromosomal fragile site, FRA9A. FRA9A centers on >33 kb of C9orf72 as highly compacted chromatin embedded in an 8.2 Mb fragility zone spanning 9p21, encompassing 46 genes, making FRA9A one of the largest fragile sites. C9orf72Exp cells show chromosomal instability, heightened global- and Chr9p-enriched sister-chromatid exchanges, truncated-Chr9s, acentric-Chr9s and Chr9-containing micronuclei, providing endogenous sources of damaged and immunostimulatory DNA. Cells from one C9orf72Exp patient contained a highly rearranged FRA9A-expressing Chr9 with Chr9-wide dysregulated gene expression. Somatic C9orf72Exp repeat instability and chromosomal fragility are sensitive to folate deficiency. Age-dependent repeat instability, chromosomal fragility and chromosomal instability can be transferred to CNS and peripheral tissues of transgenic C9orf72Exp mice, implicating C9orf72Exp as the source. Our results highlight unappreciated effects of C9orf72 expansions that trigger vitamin-sensitive chromosome fragility, adding structural variations to the disease-enriched 9p21 locus, and likely elsewhere.
Collapse
Affiliation(s)
- Mila Mirceta
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Monika H M Schmidt
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Natalie Shum
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Tanya K Prasolava
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Bryanna Meikle
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Stella Lanni
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Mohiuddin Mohiuddin
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Paul M McKeever
- Tanz Centre for Research of Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, M5T 2S8, Canada
| | - Ming Zhang
- Tanz Centre for Research of Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, M5T 2S8, Canada
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, Shanghai, 200090, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Advanced Study, Tongji University, Shanghai, 200092, China
| | - Minggao Liang
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | | | - Stefaan Scheers
- Department of Medical Genetics, University of Antwerp, Belgium
| | - Patrick A Dion
- Montreal Neurological Institute-Hospital, McGill University, 3801 University Avenue, Montreal, Quebec, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, 3801 University Avenue, Montreal, Quebec, H3A 2B4, Canada
| | - Peixiang Wang
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Michael D Wilson
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Theresa Abell
- Department of Biology, Tufts University, 200 Boston Avenue, Medford, MA 02155, USA
| | - Elliot A Philips
- Department of Biology, Tufts University, 200 Boston Avenue, Medford, MA 02155, USA
| | - Łukasz J Sznajder
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, College of Medicine, University of Florida, 2033 Mowry Road, Gainesville, FL 32610-3610, USA
- Department of Chemistry and Biochemistry, University of Nevada, 4003-4505 South Maryland Parkway, Las Vegas, NV 89154, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, College of Medicine, University of Florida, 2033 Mowry Road, Gainesville, FL 32610-3610, USA
| | - Mustafa Mehkary
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Mahreen Khan
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Katsuyuki Yokoi
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Christine Jung
- BACPAC Resource Center, Children’s Hospital Oakland Research Institute, 25129 NE 42nd Pl, Redmond, WA 98053, USA
| | - Pieter J de Jong
- BACPAC Resource Center, Children’s Hospital Oakland Research Institute, 25129 NE 42nd Pl, Redmond, WA 98053, USA
| | | | - Philip McGoldrick
- Tanz Centre for Research of Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, M5T 2S8, Canada
| | - Ryan K C Yuen
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Agessandro Abrahão
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, North York, Toronto, ON, M4N 3M5, Canada
| | - Julia Keith
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, North York, Toronto, ON, M4N 3M5, Canada
| | - Lorne Zinman
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, North York, Toronto, ON, M4N 3M5, Canada
| | - Janice Robertson
- Tanz Centre for Research of Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, M5T 2S8, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research of Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, M5T 2S8, Canada
| | - Guy A Rouleau
- Montreal Neurological Institute-Hospital, McGill University, 3801 University Avenue, Montreal, Quebec, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, 3801 University Avenue, Montreal, Quebec, H3A 2B4, Canada
- Department of Human Genetics, McGill University, 3801 University Avenue, Montreal, Quebec, H3A 2B4, Canada
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Belgium
| | - Christopher E Pearson
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| |
Collapse
|
23
|
Cribb L, Hodge AM, Southey MC, Giles GG, Milne RL, Dugué PA. Dietary factors and DNA methylation-based markers of ageing in 5310 middle-aged and older Australian adults. GeroScience 2024:10.1007/s11357-024-01341-7. [PMID: 39298107 DOI: 10.1007/s11357-024-01341-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024] Open
Abstract
The role of nutrition in healthy ageing is acknowledged but details of optimal dietary composition are still uncertain. We aimed to investigate the cross-sectional associations between dietary exposures, including macronutrient composition, food groups, specific foods, and overall diet quality, with methylation-based markers of ageing. Blood DNA methylation data from 5310 participants (mean age 59 years) in the Melbourne Collaborative Cohort Study were used to calculate five methylation-based measures of ageing: PCGrimAge, PCPhenoAge, DunedinPACE, ZhangAge, TelomereAge. For a range of dietary exposures, we estimated (i) the 'equal-mass substitution effect', which quantifies the effect of adding the component of interest to the diet while keeping overall food mass constant, and (ii) the 'total effect', which quantifies the effect of adding the component of interest to the current diet. For 'equal-mass substitution effects', the strongest association for macronutrients was for fibre intake (e.g. DunedinPACE, per 12 g/day - 0.10 [standard deviations]; 95%CI - 0.15, - 0.05, p < 0.001). Associations were positive for protein (e.g. PCGrimAge, per 33 g/day 0.04; 95%CI 0.01-0.08, p = 0.005). For food groups, the evidence tended to be weak, though sugar-sweetened drinks showed positive associations, as did artificially-sweetened drinks (e.g. DunedinPACE, per 91 g/day 0.06, 95%CI 0.03-0.08, p < 0.001). 'Total effect' estimates were generally very similar. Scores reflecting overall diet quality suggested that healthier diets were associated with lower levels of ageing markers. High intakes of fibre and low intakes of protein and sweetened drinks, as well as overall healthy diets, showed the most consistent associations with lower methylation-based ageing in our study.
Collapse
Affiliation(s)
- Lachlan Cribb
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Level 3, MIMR, 27-31, Wright St, Clayton, VIC, 3168, Australia
| | - Allison M Hodge
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Level 3, MIMR, 27-31, Wright St, Clayton, VIC, 3168, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Graham G Giles
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Level 3, MIMR, 27-31, Wright St, Clayton, VIC, 3168, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
| | - Roger L Milne
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Level 3, MIMR, 27-31, Wright St, Clayton, VIC, 3168, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
| | - Pierre-Antoine Dugué
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Level 3, MIMR, 27-31, Wright St, Clayton, VIC, 3168, Australia.
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia.
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
24
|
Lee DW, Lim YH, Choi YJ, Kim S, Shin CH, Lee YA, Kim BN, Kim JI, Hong YC. Prenatal and early-life air pollutant exposure and epigenetic aging acceleration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116823. [PMID: 39096687 DOI: 10.1016/j.ecoenv.2024.116823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND This study investigated the association of prenatal and early childhood exposure to air pollution with epigenetic age acceleration (EAA) at six years of age using the Environment and Development of Children Cohort (EDC Cohort) MATERIALS & METHODS: Air pollution, including particulate matter [< 2.5 µm (PM2.5) and < 10 µm (PM10) in an aerodynamic diameter], nitrogen dioxide (NO2), ozone (O3), carbon monoxide (CO), and sulfur dioxide (SO2) were estimated based on the residential address for two periods: 1) during the whole pregnancy, and 2) for one year before the follow-up in children at six years of age. The methylation levels in whole blood at six years of age were measured, and the methylation clocks, including Horvath's clock, Horvath's skin and blood clock, PedBE, and Wu's clock, were estimated. Multivariate linear regression models were constructed to analyze the association between EAA and air pollutants. RESULTS A total of 76 children in EDC cohort were enrolled in this study. During the whole pregnancy, interquartile range (IQR) increases in exposure to PM2.5 (4.56 μg/m3) and CO (0.156 ppm) were associated with 0.406 years and 0.799 years of EAA (Horvath's clock), respectively. An IQR increase in PM2.5 (4.76 μg/m3) for one year before the child was six years of age was associated with 0.509 years of EAA (Horvath's clock) and 0.289 years of EAA (Wu's clock). PM10 (4.30 μg/m3) and O3 (0.003 ppm) exposure in the period were also associated with EAA in Horvath's clock (0.280 years) and EAA in Horvath's skin and blood clock (0.163 years), respectively. CONCLUSION We found that prenatal and childhood exposure to ambient air pollutants is associated with EAA among children. The results suggest that air pollution could induce excess biological aging even in prenatal and early life.
Collapse
Affiliation(s)
- Dong-Wook Lee
- Department of Occupational and Environmental Medicine, Inha University Hospital, Inha University, Incheon, the Republic of Korea
| | - Youn-Hee Lim
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Yoon-Jung Choi
- National Cancer Center Graduate School of Cancer Science and Policy, Goyang, the Republic of Korea
| | - Soontae Kim
- Department of Environmental and Safety Engineering, Ajou University, Suwon, the Republic of Korea
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, the Republic of Korea
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, the Republic of Korea
| | - Bung-Nyun Kim
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University Hospital, Seoul, the Republic of Korea
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University College of Medicine, Seoul, the Republic of Korea
| | - Yun-Chul Hong
- Department of Humans Systems Medicine, Seoul National University College of Medicine, Seoul, the Republic of Korea.
| |
Collapse
|
25
|
Ke TM, Lophatananon A, Muir KR. Exploring the Relationships between Lifestyle Patterns and Epigenetic Biological Age Measures in Men. Biomedicines 2024; 12:1985. [PMID: 39335499 PMCID: PMC11428654 DOI: 10.3390/biomedicines12091985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
DNA methylation, validated as a surrogate for biological age, is a potential tool for predicting future morbidity and mortality outcomes. This study aims to explore how lifestyle patterns are associated with epigenetic changes in British men. Five biological age clocks were utilised to investigate the relationship between these epigenetic markers and lifestyle-related factors in a prospective study involving 221 participants. Spearman's correlation test, Pearson's correlation test, and univariate linear regression were employed for analysis. The results indicate that higher consumption of saturated fat and total daily calories, and a higher body mass index (BMI) are associated with accelerated biological aging. Conversely, higher vitamin D intake and a higher healthy lifestyle index (HLI) are linked to decelerated biological aging. These findings highlight the potential impact of specific lifestyle-related factors on biological aging and can serve as a reference for applying healthy lifestyle improvements in future disease prevention studies.
Collapse
Affiliation(s)
- Te-Min Ke
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Artitaya Lophatananon
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Kenneth R Muir
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
26
|
Santos DF, Simão S, Nóbrega C, Bragança J, Castelo-Branco P, Araújo IM. Oxidative stress and aging: synergies for age related diseases. FEBS Lett 2024; 598:2074-2091. [PMID: 39112436 DOI: 10.1002/1873-3468.14995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 10/04/2024]
Abstract
Aging is characterized by a progressive decline in physiological function and underlies several disabilities, including the increased sensitivity of cells and tissues to undergo pathological oxidative stress. In recent years, efforts have been made to better understand the relationship between age and oxidative stress and further develop therapeutic strategies to minimize the impact of both events on age-related diseases. In this work, we review the impact of the oxidant and antioxidant systems during aging and disease development and discuss the crosstalk of oxidative stress and other aging processes, with a focus on studies conducted in elderly populations.
Collapse
Affiliation(s)
- Daniela F Santos
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, Portugal
| | - Sónia Simão
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), Loulé, Portugal
| | - José Bragança
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), Loulé, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Pedro Castelo-Branco
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), Loulé, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Inês M Araújo
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), Loulé, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
27
|
Zhao Y, Yang H, Jiao R, Wang Y, Xiao M, Song M, Yu H, Liao C, Pang Y, Gao W, Huang T, Yu C, Lv J, Li S, Qi L, Li L, Sun D. Phenotypic age mediates effects of Life's Essential 8 on reduced mortality risk in US adults. PRECISION CLINICAL MEDICINE 2024; 7:pbae019. [PMID: 39309670 PMCID: PMC11413533 DOI: 10.1093/pcmedi/pbae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Objective This study aimed to find out whether phenotypic age could mediate the protective effects of a healthy lifestyle on mortality. Methods We included adult participants with available data for individual phenotypic age (PhenoAge) and Life's Essential 8 (LE8) scores from the National Health and Nutrition Examination Survey 2005-2010 (three cycles) and linked mortality records until 31 December 2019. Adjusted hazard ratios (HR) were estimated to evaluate the associations of PhenoAge and LE8 scores with all-cause and cardiovascular mortality risk. Mediation analyses were performed to estimate the proportional contribution of PhenoAge to the effect of LE8 on mortality risks. Results A 1-year increment in PhenoAge was associated with a higher risk of all-cause (HR = 1.04 [95% confidence interval, 1.04-1.05]) and cardiovascular (HR = 1.04 [95% confidence interval, 1.04-1.05]) mortality, independent of chronological age, demographic characteristics, and disease history. High level of LE8 (score: 80-100) was associated with a 3.30-year younger PhenoAge. PhenoAge was estimated to mediate 36 and 22% of the effect of LE8 on all-cause and cardiovascular mortality, respectively (all P < 0.001). As for single-metric scores of LE8, PhenoAge mediated 30%, 11%, 9%, and 7% of the effects of the healthy diet, smoking status, blood pressure, and physical activity on all-cause mortality risk, respectively (all P < 0.05). Conclusion Adherence to LE8 recommendations slows phenotypic aging. PhenoAge could mediate the effect of LE8 on mortality risk.
Collapse
Affiliation(s)
- Yuxuan Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, China
| | - Haiming Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, China
| | - Rong Jiao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, China
| | - Yueqing Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, China
| | - Meng Xiao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, China
| | - Mingyu Song
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, China
| | - Huan Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, China
| | - Chunxiao Liao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, China
| | - Yuanjie Pang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, China
| | - Wenjing Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, China
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, China
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing 100191, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, China
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing 100191, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, China
| | - Shengxu Li
- Children's Minnesota Research Institute, Children's Minnesota, Minneapolis, MN 55404, USA
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing 100191, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, China
| | - Dianjianyi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing 100191, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, China
| |
Collapse
|
28
|
Chen J, Lu L, Nie X, Li J, Chen T, Li S. Associations of exposure to perchlorate, thiocyanate, and nitrate with metabolic dysfunction–associated steatotic liver disease: Evidence from a population-based cross-sectional study in the United States. JOURNAL OF CLEANER PRODUCTION 2024; 469:143156. [DOI: 10.1016/j.jclepro.2024.143156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
29
|
Ryan CP, Corcoran DL, Banskota N, Eckstein IC, Floratos A, Friedman R, Kobor MS, Kraus VB, Kraus WE, MacIsaac JL, Orenduff MC, Pieper CF, White JP, Ferrucci L, Horvath S, Huffman KM, Belsky DW. The CALERIE ™ Genomic Data Resource. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594714. [PMID: 39229162 PMCID: PMC11370476 DOI: 10.1101/2024.05.17.594714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Caloric restriction (CR) slows biological aging and prolongs healthy lifespan in model organisms. Findings from CALERIE-2™ - the first ever randomized, controlled trial of long-term CR in healthy, non-obese humans - broadly supports a similar pattern of effects in humans. To expand our understanding of the molecular pathways and biological processes underpinning CR effects in humans, we generated a series of genomic datasets from stored biospecimens collected from n=218 participants during the trial. These data constitute the first publicly-accessible genomic data resource for a randomized controlled trial of an intervention targeting the biology of aging. Datasets include whole-genome SNP genotypes, and three-timepoint-longitudinal DNA methylation, mRNA, and small RNA datasets generated from blood, skeletal muscle, and adipose tissue samples (total sample n=2327). The CALERIE Genomic Data Resource described in this article is available from the Aging Research Biobank. This mult-itissue, multi-omic, longitudinal data resource has great potential to advance translational geroscience.
Collapse
Affiliation(s)
- C P Ryan
- Robert N. Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - D L Corcoran
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - N Banskota
- Intramural Research Program of the National Institute on Aging, NIH - Baltimore, MD-USA
| | - Indik C Eckstein
- Robert N. Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - A Floratos
- Department of Systems Biology, Columbia University Irving Medical Center
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center
- Department of Biomedical Informatics, Columbia University Irving Medical Center
| | - R Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center
- Department of Biomedical Informatics, Columbia University Irving Medical Center
| | - M S Kobor
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 2A1, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V5Z 4H4, Canada
- Child and Brain Development Program, Canadian Institute for Advanced Research, Toronto ON M5G 1M1, Canada
- Edwin S. H. Leong Centre for Healthy Aging, University of British Columbia, Vancouver, BC
| | - V B Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27701, USA
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC 27701, USA
| | - W E Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27701, USA
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC 27701, USA
| | - J L MacIsaac
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V5Z 4H4, Canada
| | - M C Orenduff
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27701, USA
| | - C F Pieper
- Dept of Biostatistics and BioInformatics, Duke University School of Medicine, Durham, NC, USA
| | - J P White
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27701, USA
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC 27701, USA
| | - L Ferrucci
- Intramural Research Program of the National Institute on Aging, NIH - Baltimore, MD-USA
| | - S Horvath
- Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, USA
| | - K M Huffman
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27701, USA
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC 27701, USA
| | - D W Belsky
- Robert N. Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
30
|
Liebich A, Zheng S, Schachner T, Mair J, Jovanova M, Müller-Riemenschneider F, Kowatsch T. Non-pharmaceutical interventions and epigenetic aging in adults: Protocol for a scoping review. PLoS One 2024; 19:e0301763. [PMID: 39159141 PMCID: PMC11332928 DOI: 10.1371/journal.pone.0301763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/20/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Aging is the strongest risk factor for most chronic diseases. The rising burden of an aging population and non-communicable diseases (NCDs), contributes to escalating costs for society. Several non-pharmaceutical interventions can lower the risk of NCDs, including common mental disorders (CMDs), and may slow down biological aging, as evidenced by outcome markers such as epigenetic clocks. However, a comprehensive overview of whether and which non-pharmaceutical interventions may impact human epigenetic aging is missing. Synthesizing evidence of interventions on epigenetic aging that can be adopted by a wider population is key to guide healthy aging initiatives and to reduce the burden of NCDs and CMDs. This scoping review will identify and assess non-pharmaceutical interventions aimed to slow down epigenetic aging, including their intervention components, and the mode used for intervention delivery. METHODS AND ANALYSIS This protocol will include single- and multicomponent intervention studies that target individuals ≥ 18 years of age and use epigenetic clocks as primary or secondary outcomes. Five electronic databases will be searched for studies between July 2011 until December 2023. The final search will include the search terms adults, non-pharmaceutical interventions, epigenetic aging and their respective synonyms. We will include randomized controlled trials, non-randomized controlled studies, cohort studies, and case-control studies. Additionally, the reference list of other reviews will be screened for relevant articles. Study selection is carried out based on the defined eligibility criteria by two authors. Quality and risk of bias for the included studies will be assessed using the Critical Appraisal Skills Programme (CASP) checklist. Data extraction will include generic key information such as the research question and results, the intervention components, and specific epigenetic outcome measures used. Further data regarding the delivery mode of the treatment protocol will be collected. ETHICS AND DISSEMINATION This scoping review will summarize the characteristics of non-pharmaceutical intervention studies on epigenetic aging. This review will be the first step to formally identify key intervention components and delivery modes to guide future research on healthy aging interventions. The results will be disseminated through a peer-reviewed publication and presented at relevant conferences. This review will synthesize information from available publications and does not require further ethical approval. REGISTRATION DETAILS Open Science Framework https://doi.org/10.17605/OSF.IO/FEHNB.
Collapse
Affiliation(s)
- Alina Liebich
- School of Medicine, University of St. Gallen, St.Gallen, Switzerland
| | - Shenglin Zheng
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Future Health Technologies, Singapore–ETH Centre, Campus for Research Excellence And Technological Enterprise (CREATE), Singapore, Singapore
| | - Theresa Schachner
- Department of Management, Technology, and Economics, ETH Zurich, Zurich, Switzerland
| | - Jacqueline Mair
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Future Health Technologies, Singapore–ETH Centre, Campus for Research Excellence And Technological Enterprise (CREATE), Singapore, Singapore
| | - Mia Jovanova
- School of Medicine, University of St. Gallen, St.Gallen, Switzerland
| | - Falk Müller-Riemenschneider
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Digital Health Center, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Kowatsch
- School of Medicine, University of St. Gallen, St.Gallen, Switzerland
- Department of Management, Technology, and Economics, ETH Zurich, Zurich, Switzerland
- Institute for Implementation Science in Health Care, University of Zurich, Zurich, Switzerland
| |
Collapse
|
31
|
Bogaards FA, Gehrmann T, Beekman M, Lakenberg N, Suchiman HED, de Groot CPGM, Reinders MJT, Slagboom PE. Secondary integrated analysis of multi-tissue transcriptomic responses to a combined lifestyle intervention in older adults from the GOTO nonrandomized trial. Nat Commun 2024; 15:7013. [PMID: 39147741 PMCID: PMC11327278 DOI: 10.1038/s41467-024-50693-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
Molecular effects of lifestyle interventions are typically studied in a single tissue. Here, we perform a secondary analysis on the sex-specific effects of the Growing Old TOgether trial (GOTO, trial registration number GOT NL3301 ( https://onderzoekmetmensen.nl/nl/trial/27183 ), NL-OMON27183 , primary outcomes have been previously reported in ref. 1), a moderate 13-week combined lifestyle intervention on the transcriptomes of postprandial blood, subcutaneous adipose tissue (SAT) and muscle tissue in healthy older adults, the overlap in effect between tissues and their relation to whole-body parameters of metabolic health. The GOTO intervention has virtually no effect on the postprandial blood transcriptome, while the SAT and muscle transcriptomes respond significantly. In SAT, pathways involved in HDL remodeling, O2/CO2 exchange and signaling are overrepresented, while in muscle, collagen and extracellular matrix pathways are significantly overexpressed. Additionally, we find that the effects of the SAT transcriptome closest associates with gains in metabolic health. Lastly, in males, we identify a shared variation between the transcriptomes of the three tissues. We conclude that the GOTO intervention has a significant effect on metabolic and muscle fibre pathways in the SAT and muscle transcriptome, respectively. Aligning the response in the three tissues revealed a blood transcriptome component which may act as an integrated health marker for metabolic intervention effects across tissues.
Collapse
Affiliation(s)
- F A Bogaards
- Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.
- Leiden Computational Biology Center, Leiden, The Netherlands.
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands.
| | - T Gehrmann
- Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Computational Biology Center, Leiden, The Netherlands
- Department of Bioscience Engineering, Lab of Applied Microbiology and Biotechnology, University of Antwerp, Antwerp, Belgium
| | - M Beekman
- Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - N Lakenberg
- Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - H E D Suchiman
- Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - C P G M de Groot
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - M J T Reinders
- Leiden Computational Biology Center, Leiden, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - P E Slagboom
- Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
- Max Planck Institute for Biology of Aging, Cologne, Germany
| |
Collapse
|
32
|
Thornburg KL, Valent AM. Maternal Malnutrition and Elevated Disease Risk in Offspring. Nutrients 2024; 16:2614. [PMID: 39203750 PMCID: PMC11357549 DOI: 10.3390/nu16162614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/31/2024] [Accepted: 08/03/2024] [Indexed: 09/03/2024] Open
Abstract
US populations have seen dramatic increases in the prevalence of chronic disease over the past three generations. Rapid increases in type 2 diabetes and obesity have occurred in all the states but have been particularly striking in the Deep South. These increases have contributed to decreases in life expectancy and to painful elevations in health care costs. The causes of worsening population health are complex and incompletely understood. However, there is strong evidence that vulnerability to chronic conditions is determined in early life. Most chronic diseases are developmentally driven. There are specific stressors experienced in early life that influence epigenetic and structural changes during development. These include malnutrition, severe levels of social stress, toxic chemicals, and low oxygen levels. Most US populations have experienced a decrease in the quality of the food they consume as industrial foods have replaced garden-grown foods. Thus, the consumption of too few nutrients before and during pregnancy and during lactation influences the growth of the placenta and fetal organs and their level of resilience when faced with stresses in postnatal life and particularly as adults. Animal studies have shown that the effects of poor nutrition can be passed on to future generations. The most powerful way that the current epidemics of obesity and insulin resistance can be reversed is by providing key nutrients to prospective mothers and those already pregnant.
Collapse
Affiliation(s)
- Kent L. Thornburg
- OHSU Bob and Charlee Moore Institute for Nutrition and Wellness, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA;
- Center for Developmental Health, Knight Cardiovascular Institute, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Medicine, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Amy M. Valent
- OHSU Bob and Charlee Moore Institute for Nutrition and Wellness, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA;
- Department of Obstetrics & Gynecology, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
33
|
Müller L, Hoffmann A, Bernhart SH, Ghosh A, Zhong J, Hagemann T, Sun W, Dong H, Noé F, Wolfrum C, Dietrich A, Stumvoll M, Massier L, Blüher M, Kovacs P, Chakaroun R, Keller M. Blood methylation pattern reflects epigenetic remodelling in adipose tissue after bariatric surgery. EBioMedicine 2024; 106:105242. [PMID: 39002385 PMCID: PMC11284569 DOI: 10.1016/j.ebiom.2024.105242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/15/2024] Open
Abstract
BACKGROUND Studies on DNA methylation following bariatric surgery have primarily focused on blood cells, while it is unclear to which extend it may reflect DNA methylation profiles in specific metabolically relevant organs such as adipose tissue. Here, we investigated whether adipose tissue depots specific methylation changes after bariatric surgery are mirrored in blood. METHODS Using Illumina 850K EPIC technology, we analysed genome-wide DNA methylation in paired blood, subcutaneous and omental visceral AT (SAT/OVAT) samples from nine individuals (N = 6 female) with severe obesity pre- and post-surgery. FINDINGS The numbers and effect sizes of differentially methylated regions (DMRs) post-bariatric surgery were more pronounced in AT (SAT: 12,865 DMRs from -11.5 to 10.8%; OVAT: 14,632 DMRs from -13.7 to 12.8%) than in blood (9267 DMRs from -8.8 to 7.7%). Cross-tissue DMRs implicated immune-related genes. Among them, 49 regions could be validated with similar methylation changes in blood from independent individuals. Fourteen DMRs correlated with differentially expressed genes in AT post bariatric surgery, including downregulation of PIK3AP1 in both SAT and OVAT. DNA methylation age acceleration was significantly higher in AT compared to blood, but remained unaffected after surgery. INTERPRETATION Concurrent methylation pattern changes in blood and AT, particularly in immune-related genes, suggest blood DNA methylation mirrors AT's inflammatory state post-bariatric surgery. FUNDING The funding sources are listed in the Acknowledgments section.
Collapse
Affiliation(s)
- Luise Müller
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, 04103, Germany
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, 04103, Germany
| | - Stephan H Bernhart
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107, Leipzig, Germany; Bioinformatics Group, Department of Computer, University of Leipzig, 04107, Leipzig, Germany; Transcriptome Bioinformatics, LIFE Research Center for Civilization Diseases, University of Leipzig, 04107, Leipzig, Germany
| | - Adhideb Ghosh
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Jiawei Zhong
- Department of Medicine Huddinge (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, 141 83, Huddinge, Sweden
| | - Tobias Hagemann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, 04103, Germany
| | - Wenfei Sun
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Hua Dong
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Falko Noé
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Arne Dietrich
- Leipzig University Hospital, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Section of Bariatric Surgery, 04103, Leipzig, Germany
| | - Michael Stumvoll
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, 04103, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, 04103, Germany; Deutsches Zentrum für Diabetesforschung e.V., 85764, Neuherberg, Germany
| | - Lucas Massier
- Department of Medicine Huddinge (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, 141 83, Huddinge, Sweden
| | - Matthias Blüher
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, 04103, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, 04103, Germany; Deutsches Zentrum für Diabetesforschung e.V., 85764, Neuherberg, Germany
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, 04103, Germany; Deutsches Zentrum für Diabetesforschung e.V., 85764, Neuherberg, Germany
| | - Rima Chakaroun
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, 04103, Germany; The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Maria Keller
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, 04103, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, 04103, Germany.
| |
Collapse
|
34
|
Kuiper LM, Smit AP, Bizzarri D, van den Akker EB, Reinders MJT, Ghanbari M, van Rooij JGJ, Voortman T, Rivadeneira F, Dollé MET, Herber GCM, Rietman ML, Picavet HSJ, van Meurs JBJ, Verschuren WMM. Lifestyle factors and metabolomic aging biomarkers: Meta-analysis of cross-sectional and longitudinal associations in three prospective cohorts. Mech Ageing Dev 2024; 220:111958. [PMID: 38950629 DOI: 10.1016/j.mad.2024.111958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Biological age uses biophysiological information to capture a person's age-related risk of adverse outcomes. MetaboAge and MetaboHealth are metabolomics-based biomarkers of biological age trained on chronological age and mortality risk, respectively. Lifestyle factors contribute to the extent chronological and biological age differ. The association of lifestyle factors with MetaboAge and MetaboHealth, potential sex differences in these associations, and MetaboAge's and MetaboHealth's sensitivity to lifestyle changes have not been studied yet. Linear regression analyses and mixed-effect models were used to examine the cross-sectional and longitudinal associations of scaled lifestyle factors with scaled MetaboAge and MetaboHealth in 24,332 middle-aged participants from the Doetinchem Cohort Study, Rotterdam Study, and UK Biobank. Random-effect meta-analyses were performed across cohorts. Repeated metabolomics measurements had a ten-year interval in the Doetinchem Cohort Study and a five-year interval in the UK Biobank. In the first study incorporating longitudinal information on MetaboAge and MetaboHealth, we demonstrate associations between current smoking, sleeping ≥8 hours/day, higher BMI, and larger waist circumference were associated with higher MetaboHealth, the latter two also with higher MetaboAge. Furthermore, adhering to the dietary and physical activity guidelines were inversely associated with MetaboHealth. Lastly, we observed sex differences in the associations between alcohol use and MetaboHealth.
Collapse
Affiliation(s)
- L M Kuiper
- Center for Prevention, Lifestyle and Health, National Institute for Public Health and Environment (RIVM), Bilthoven, the Netherlands; Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - A P Smit
- Center for Prevention, Lifestyle and Health, National Institute for Public Health and Environment (RIVM), Bilthoven, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - D Bizzarri
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands; Leiden Computational Biology Center, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands; Delft Bioinformatics Lab, TU Delft, Delft, the Netherlands
| | - E B van den Akker
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands; Leiden Computational Biology Center, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands; Delft Bioinformatics Lab, TU Delft, Delft, the Netherlands
| | - M J T Reinders
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands; Leiden Computational Biology Center, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands; Delft Bioinformatics Lab, TU Delft, Delft, the Netherlands
| | - M Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - J G J van Rooij
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - T Voortman
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands; Meta-Research Innovation Center at Stanford (METRICS), Stanford University, California, USA
| | - F Rivadeneira
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - M E T Dollé
- Center for Health Protection, National Institute for Public Health and Environment (RIVM), Bilthoven, the Netherlands
| | - G C M Herber
- Center for Prevention, Lifestyle and Health, National Institute for Public Health and Environment (RIVM), Bilthoven, the Netherlands
| | - M L Rietman
- Center for Prevention, Lifestyle and Health, National Institute for Public Health and Environment (RIVM), Bilthoven, the Netherlands
| | - H S J Picavet
- Center for Prevention, Lifestyle and Health, National Institute for Public Health and Environment (RIVM), Bilthoven, the Netherlands
| | - J B J van Meurs
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Orthopaedics & Sports, Erasmus Medical Center, Rotterdam, the Netherlands
| | - W M M Verschuren
- Center for Prevention, Lifestyle and Health, National Institute for Public Health and Environment (RIVM), Bilthoven, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
35
|
Tamargo JA, Strath LJ, Cruz-Almeida Y. High-Impact Pain Is Associated With Epigenetic Aging Among Middle-Aged and Older Adults: Findings From the Health and Retirement Study. J Gerontol A Biol Sci Med Sci 2024; 79:glae149. [PMID: 38855906 PMCID: PMC11226994 DOI: 10.1093/gerona/glae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Chronic pain has been associated with accelerated biological aging, which may be related to epigenetic alterations. We evaluated the association of high-impact pain (ie, pain that limits activities and function) with epigenetic aging, a measure of biological aging, in a nationally representative sample of middle-aged and older adults in the United States. METHODS Cross-sectional analysis of adults 50 years of age and older from the 2016 Health and Retirement Study. Epigenetic aging was derived from 13 epigenetic clocks based on DNA methylation patterns that predict aging correlates of morbidity and mortality. Ordinary least squares regressions were performed to test for differences in the epigenetic clocks, adjusting for the complex survey design, as well as biological, social, and behavioral factors. RESULTS The analysis consisted of 3 855 adults with mean age of 68.5 years, including 59.8% with no pain and 25.8% with high-impact pain. Consistent with its operational definition, high-impact pain was associated with greater functional and activity limitations. High-impact pain was associated with accelerated epigenetic aging compared to no pain, as measured via second (Zhang, PhenoAge, GrimAge) and third (DunedinPoAm) generation epigenetic clocks. Additionally, GrimAge was accelerated in high-impact pain as compared to low-impact pain. CONCLUSIONS High-impact pain is associated with accelerated epigenetic aging among middle-aged and older adults in the United States. These findings highlight aging-associated epigenetic alterations in high-impact chronic pain and suggest a potential for epigenetic therapeutic approaches for pain management and the preservation of physical function in older adults.
Collapse
Affiliation(s)
- Javier A Tamargo
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, Florida, USA
- Institute on Aging, University of Florida, Gainesville, Florida, USA
| | - Larissa J Strath
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, Florida, USA
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Yenisel Cruz-Almeida
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, Florida, USA
- Institute on Aging, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
36
|
Félix J, Martínez de Toda I, Díaz-Del Cerro E, González-Sánchez M, De la Fuente M. Frailty and biological age. Which best describes our aging and longevity? Mol Aspects Med 2024; 98:101291. [PMID: 38954948 DOI: 10.1016/j.mam.2024.101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/01/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Frailty and Biological Age are two closely related concepts; however, frailty is a multisystem geriatric syndrome that applies to elderly subjects, whereas biological age is a gerontologic way to describe the rate of aging of each individual, which can be used from the beginning of the aging process, in adulthood. If frailty reaches less consensus on the definition, it is a term much more widely used than this of biological age, which shows a clearer definition but is scarcely employed in social and medical fields. In this review, we suggest that this Biological Age is the best to describe how we are aging and determine our longevity, and several examples support our proposal.
Collapse
Affiliation(s)
- Judith Félix
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
| | - Irene Martínez de Toda
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
| | - Estefanía Díaz-Del Cerro
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
| | - Mónica González-Sánchez
- Department of Genetics, Physiology, and Microbiology (Unit of Genetics), Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
| | - Mónica De la Fuente
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
| |
Collapse
|
37
|
Wan Z, Chibnik LB, Valeri L, Hughes TM, Blacker D, Ma Y. DNA Methylation Mediates the Association Between Cardiometabolic Risk Factors and Cognition: Findings From the Health and Retirement Study. J Gerontol A Biol Sci Med Sci 2024; 79:glae167. [PMID: 38943310 DOI: 10.1093/gerona/glae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Indexed: 07/01/2024] Open
Abstract
The association between cardiometabolic risk factors and cognitive function has been well documented, but the underlying mechanisms are not fully understood. This longitudinal study aimed to investigate the potential mediating role of DNA methylation in this association. We conducted the analyses in 3 708 participants (mean [standard deviation {SD}] age: 67.3 [9.5], women: 57.9%) from the Health and Retirement Study who were assessed in the 2014-2020 waves, had Infinium Methylation EPIC BeadChip methylation assays from the 2016 Venous Blood Study, and had cognitive assessment between 2016 and 2020. Causal mediation analyses were used to test the mediation role of DNA methylation in the associations between cardiometabolic risk factors and cognition, adjusting for demographic, socioeconomic, and lifestyle factors. Hypertension (-0.061 in composite cognitive z-score; 95% confidence interval [CI: -0.119, -0.004]) and diabetes (-0.134; 95% CI: [-0.198, -0.071]) were significantly associated with worse cognitive function while abnormal body weight and hypercholesterolemia were not. An increased number of cardiometabolic risk factors was associated with worse cognitive function (p = .002). DNA methylation significantly mediated the association of hypertension (mediated effect on composite cognitive z-score: -0.023; 95% CI: -0.033, -0.014), diabetes (-0.022; 95% CI: -0.032, -0.014), and obesity (-0.021; 95% CI: -0.033, -0.011) with cognitive function, whereas the mediation effect was not observed for having hypercholesterolemia. The estimated proportions mediated were 37.4% for hypertension and 16.7% for diabetes. DNA methylation may be an important mediator linking cardiometabolic risk factors to worse cognition and might even provide a potential target for dementia prevention.
Collapse
Affiliation(s)
- Zengyi Wan
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Weill Cornell Medical College, New York, New York, USA
| | - Lori B Chibnik
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Linda Valeri
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Timothy M Hughes
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Alzheimer's Disease Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Deborah Blacker
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Yuan Ma
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
38
|
Marttila S, Rajić S, Ciantar J, Mak JKL, Junttila IS, Kummola L, Hägg S, Raitoharju E, Kananen L. Biological aging of different blood cell types. GeroScience 2024:10.1007/s11357-024-01287-w. [PMID: 39060678 DOI: 10.1007/s11357-024-01287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Biological age (BA) captures detrimental age-related changes. The best-known and most-used BA indicators include DNA methylation-based epigenetic clocks and telomere length (TL). The most common biological sample material for epidemiological aging studies, whole blood, is composed of different cell types. We aimed to compare differences in BAs between blood cell types and assessed the BA indicators' cell type-specific associations with chronological age (CA). An analysis of DNA methylation-based BA indicators, including TL, methylation level at cg16867657 in ELOVL2, as well as the Hannum, Horvath, DNAmPhenoAge, and DunedinPACE epigenetic clocks, was performed on 428 biological samples of 12 blood cell types. BA values were different in the majority of the pairwise comparisons between cell types, as well as in comparison to whole blood (p < 0.05). DNAmPhenoAge showed the largest cell type differences, up to 44.5 years and DNA methylation-based TL showed the lowest differences. T cells generally had the "youngest" BA values, with differences across subsets, whereas monocytes had the "oldest" values. All BA indicators, except DunedinPACE, strongly correlated with CA within a cell type. Some differences such as DNAmPhenoAge-difference between naïve CD4 + T cells and monocytes were constant regardless of the blood donor's CA (range 20-80 years), while for DunedinPACE they were not. In conclusion, DNA methylation-based indicators of BA exhibit cell type-specific characteristics. Our results have implications for understanding the molecular mechanisms underlying epigenetic clocks and underscore the importance of considering cell composition when utilizing them as indicators for the success of aging interventions.
Collapse
Affiliation(s)
- Saara Marttila
- Molecular Epidemiology (MOLE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Gerontology Research Center, Tampere University, Tampere, Finland.
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland.
| | - Sonja Rajić
- Molecular Epidemiology (MOLE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Joanna Ciantar
- Molecular Epidemiology (MOLE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jonathan K L Mak
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ilkka S Junttila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
- Northern Finland Laboratory Centre (NordLab), Oulu, Finland
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Laura Kummola
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Emma Raitoharju
- Molecular Epidemiology (MOLE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
| | - Laura Kananen
- Gerontology Research Center, Tampere University, Tampere, Finland.
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden.
- Faculty of Social Sciences (Health Sciences), Tampere University, Tampere, Finland.
- Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
39
|
Maltseva K. Stress exposure, perceived stress, protective psychosocial factors, and health status in Ukraine after the full-scale invasion. J Health Psychol 2024:13591053241259728. [PMID: 39054620 DOI: 10.1177/13591053241259728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
The concept of stress as a cause of ill health has received much attention in social sciences. The distinction between stress exposure and perceived stress emphasizes the importance of cognitive dimension of stress. This quantitative study (N = 213) conducted in Ukraine in November 2022 collected self-reported cognitive data on stress exposure, perceived stress, and self-rated heath. The goals of the study included (1) testing if stress exposure and perceived stress differ in terms of breadth and depth of their impact; (2) isolating psychosocial factors that reduce stress; and (3) testing if individuals who have relocated within Ukraine or abroad to escape the war had worse health outcomes than those who remained at their domiciles. The results suggest that while perceived stress was a stronger predictor of negative health outcomes, optimism and social support served as protective psychosocial factors. Having moved abroad predicted higher stress levels and more adverse health symptoms.
Collapse
|
40
|
Stanojević D, Li Z, Bakić S, Foo R, Šikić M. Rockfish: A transformer-based model for accurate 5-methylcytosine prediction from nanopore sequencing. Nat Commun 2024; 15:5580. [PMID: 38961062 PMCID: PMC11222435 DOI: 10.1038/s41467-024-49847-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 06/19/2024] [Indexed: 07/05/2024] Open
Abstract
DNA methylation plays an important role in various biological processes, including cell differentiation, ageing, and cancer development. The most important methylation in mammals is 5-methylcytosine mostly occurring in the context of CpG dinucleotides. Sequencing methods such as whole-genome bisulfite sequencing successfully detect 5-methylcytosine DNA modifications. However, they suffer from the serious drawbacks of short read lengths and might introduce an amplification bias. Here we present Rockfish, a deep learning algorithm that significantly improves read-level 5-methylcytosine detection by using Nanopore sequencing. Rockfish is compared with other methods based on Nanopore sequencing on R9.4.1 and R10.4.1 datasets. There is an increase in the single-base accuracy and the F1 measure of up to 5 percentage points on R.9.4.1 datasets, and up to 0.82 percentage points on R10.4.1 datasets. Moreover, Rockfish shows a high correlation with whole-genome bisulfite sequencing, requires lower read depth, and achieves higher confidence in biologically important regions such as CpG-rich promoters while being computationally efficient. Its superior performance in human and mouse samples highlights its versatility for studying 5-methylcytosine methylation across varied organisms and diseases. Finally, its adaptable architecture ensures compatibility with new versions of pores and chemistry as well as modification types.
Collapse
Affiliation(s)
- Dominik Stanojević
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
| | - Zhe Li
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Sara Bakić
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- School of Computing, National University of Singapore, Singapore, Singapore
| | - Roger Foo
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mile Šikić
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
41
|
Alcaráz N, Salcedo-Tello P, González-Barrios R, Torres-Arciga K, Guzmán-Ramos K. Underlying Mechanisms of the Protective Effects of Lifestyle Factors On Age-Related Diseases. Arch Med Res 2024; 55:103014. [PMID: 38861840 DOI: 10.1016/j.arcmed.2024.103014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024]
Abstract
The rise in life expectancy has significantly increased the occurrence of age-related chronic diseases, leading to escalating expenses for both society and individuals. Among the main factors influencing health and lifespan, lifestyle takes a forefront position. Specifically, nutrition, mental activity, and physical exercise influence the molecular and functional mechanisms that contribute to the prevention of major age-related diseases. Gaining deeper insights into the mechanisms that drive the positive effects of healthy lifestyles is valuable for creating interventions to prevent or postpone the development of chronic degenerative diseases. This review summarizes the main mechanisms that underlie the positive effect of lifestyle factors in counteracting the major age-related diseases involving brain health, musculoskeletal function, cancer, frailty, and cardiovascular diseases, among others. This knowledge will help to identify high-risk populations for targeted intervention trials and discover new biomarkers associated with healthy aging.
Collapse
Affiliation(s)
- Nicolás Alcaráz
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pamela Salcedo-Tello
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rodrigo González-Barrios
- Instituto Nacional de Cancerología, Laboratorio de regulación de la cromatina y genómica, Mexico City, México
| | - Karla Torres-Arciga
- Instituto Nacional de Cancerología, Laboratorio de regulación de la cromatina y genómica, Mexico City, México; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Kioko Guzmán-Ramos
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Mexico State, Mexico.
| |
Collapse
|
42
|
Brennan J, Phelps K, McGrady A, Schultz P. Introducing lifestyle medicine into family medicine: Theory and applications. Int J Psychiatry Med 2024; 59:415-423. [PMID: 37975426 DOI: 10.1177/00912174231215917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
"Lifestyle medicine (LM) is an evidence-based therapeutic intervention delivered by clinicians trained and certified in this specialty to prevent, treat, and often reverse chronic disease". Eighty percent of the conditions primary care physicians routinely encounter in their offices, e.g., diabetes mellitus, hypertension, COPD, cardiovascular disease, have root causes in poor lifestyle choices such as smoking, insufficient sleep, being sedentary, or eating highly processed foods. Lifestyle is the foundation of most chronic disease management guidelines aimed at reducing morbidity and mortality. Studies have shown that changes in lifestyle can be achieved and link almost directly to reduction in risk for chronic illness. Primary care physicians are ideally positioned to incorporate LM into their practices. It is important to recognize and find solutions to the many barriers to implementing LM at the patient, physician, and system level. There is an urgent need to increase opportunities for practicing physicians to increase their knowledge and skills related to LM and include this in medical school and residency curricula. Many resources exist that can provide the necessary training for seasoned physicians and students/residents to become competent in practicing LM and address barriers to implementing LM. LM has the potential to revolutionize clinical practice by placing a greater emphasis on disease prevention and the role of healthy lifestyle behaviors in disease management.
Collapse
Affiliation(s)
- Julie Brennan
- Department of Family Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Kevin Phelps
- Department of Family Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Angele McGrady
- Department of Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Paul Schultz
- Department of Family Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| |
Collapse
|
43
|
Du K, Wang L, Jun JH, Dutta RK, Maeso-Díaz R, Oh SH, Ko DC, Diehl AM. Aging promotes metabolic dysfunction-associated steatotic liver disease by inducing ferroptotic stress. NATURE AGING 2024; 4:949-968. [PMID: 38918603 DOI: 10.1038/s43587-024-00652-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/17/2024] [Indexed: 06/27/2024]
Abstract
Susceptibility to the biological consequences of aging varies among organs and individuals. We analyzed hepatocyte transcriptomes of healthy young and aged male mice to generate an aging hepatocyte gene signature, used it to deconvolute transcriptomic data from humans and mice with metabolic dysfunction-associated liver disease, validated findings with functional studies in mice and applied the signature to transcriptomic data from other organs to determine whether aging-sensitive degenerative mechanisms are conserved. We discovered that the signature enriches in diseased livers in parallel with degeneration. It is also enriched in failing human hearts, diseased kidneys and pancreatic islets from individuals with diabetes. The signature includes genes that control ferroptosis. Aged mice develop more hepatocyte ferroptosis and liver degeneration than young mice when fed diets that induce metabolic stress. Inhibiting ferroptosis shifts the liver transcriptome of old mice toward that of young mice and reverses aging-exacerbated liver damage, identifying ferroptosis as a tractable, conserved mechanism for aging-related tissue degeneration.
Collapse
Affiliation(s)
- Kuo Du
- Department of Medicine, Duke University, Durham, NC, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Ji Hye Jun
- Department of Medicine, Duke University, Durham, NC, USA
| | - Rajesh K Dutta
- Department of Medicine, Duke University, Durham, NC, USA
| | | | - Seh Hoon Oh
- Department of Medicine, Duke University, Durham, NC, USA
| | - Dennis C Ko
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Anna Mae Diehl
- Department of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
44
|
Martínez-Magaña JJ, Hurtado-Soriano J, Rivero-Segura NA, Montalvo-Ortiz JL, Garcia-delaTorre P, Becerril-Rojas K, Gomez-Verjan JC. Towards a Novel Frontier in the Use of Epigenetic Clocks in Epidemiology. Arch Med Res 2024; 55:103033. [PMID: 38955096 DOI: 10.1016/j.arcmed.2024.103033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Health problems associated with aging are a major public health concern for the future. Aging is a complex process with wide intervariability among individuals. Therefore, there is a need for innovative public health strategies that target factors associated with aging and the development of tools to assess the effectiveness of these strategies accurately. Novel approaches to measure biological age, such as epigenetic clocks, have become relevant. These clocks use non-sequential variable information from the genome and employ mathematical algorithms to estimate biological age based on DNA methylation levels. Therefore, in the present study, we comprehensively review the current status of the epigenetic clocks and their associations across the human phenome. We emphasize the potential utility of these tools in an epidemiological context, particularly in evaluating the impact of public health interventions focused on promoting healthy aging. Our review describes associations between epigenetic clocks and multiple traits across the life and health span. Additionally, we highlighted the evolution of studies beyond mere associations to establish causal mechanisms between epigenetic age and disease. We explored the application of epigenetic clocks to measure the efficacy of interventions focusing on rejuvenation.
Collapse
Affiliation(s)
- José Jaime Martínez-Magaña
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; U.S. Department of Veterans Affairs National Center for Post-Traumatic Stress Disorder, Clinical Neuroscience Division, West Haven, CT, USA; VA Connecticut Healthcare System, West Haven, CT, USA
| | | | | | - Janitza L Montalvo-Ortiz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; U.S. Department of Veterans Affairs National Center for Post-Traumatic Stress Disorder, Clinical Neuroscience Division, West Haven, CT, USA; VA Connecticut Healthcare System, West Haven, CT, USA
| | - Paola Garcia-delaTorre
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Área de Envejecimiento, Centro Médico Nacional, Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | | |
Collapse
|
45
|
Ramoni D, Montecucco F, Carbone F. CAR T therapy from haematological malignancies to aging-related diseases: An ever-expanding universe. Eur J Clin Invest 2024; 54:e14203. [PMID: 38551245 DOI: 10.1111/eci.14203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Short but impactful, the two-decade story of gene editing allowed a significant breakthrough in the treatment of haematological malignancies. However, despite different generations of chimeric antigen receptor T (CAR T), such a successful therapy has not yet been replicated in solid tumours and non-oncological diseases. METHODS This narrative review discusses how CAR T therapy still faces challenges in overcoming the complexity of the solid tumour microenvironment and the concerns that its long-term activity raises about potential unknown and unpredictable consequences in non-oncological diseases. RESULTS In the most recent studies, the senolytic potential of CAR T is becoming an exciting field of research. Still, experimental but promising results indeed indicate the clearance of senescent cells as an effective strategy to improve exercise capacity and metabolic dysfunction in physiological ageing, with long-term therapeutic and preventive effects. However, an effective expansion of a CAR T population requires a lympho-depleting chemotherapy prior to infusion. While this procedure sounds reasonable for rescue therapy of oncological diseases, it poses genotoxic risks that may not be justified for non-malignant diseases. Those represent the leading gaps for applying CAR T therapy in non-oncological diseases. CONCLUSION More is expected from current studies on the other classes of CAR cells now under investigation. Engineering NK cells and macrophages are candidates to improve cytotoxic and immunomodulating properties, potentially able to broaden application in solid tumours and non-oncological diseases. Finally, engineering autologous T cells in old individuals may generate biologically deteriorated CAR T clones with impaired function and unpredictable effects on cytokine release.
Collapse
Affiliation(s)
- Davide Ramoni
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa, Italian Cardiovascular Network, Genoa, Italy
| | - Federico Carbone
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa, Italian Cardiovascular Network, Genoa, Italy
| |
Collapse
|
46
|
Lemaitre JM. Looking for the philosopher's stone: Emerging approaches to target the hallmarks of aging in the skin. J Eur Acad Dermatol Venereol 2024; 38 Suppl 4:5-14. [PMID: 38881451 DOI: 10.1111/jdv.19820] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/18/2024] [Indexed: 06/18/2024]
Abstract
Senescence and epigenetic alterations are two important hallmarks of cellular aging. During aging, cells subjected to stress undergo many cycles of damage and repair before finally entering either apoptosis or senescence, a permanent state of cell cycle arrest. The first biomarkers of senescence to be identified were increased ß-galactosidase activity and induction of p16INK4a. Another feature of senescent cells is the senescence-associated secretory phenotype (SASP), a complex secretome containing more than 80 pro-inflammatory factors including metalloproteinases, growth factors, chemokines and cytokines. The secretome is regulated through a dynamic process involving a self-amplifying autocrine feedback loop and activation of the immune system. Senescent cells play positive and negative roles depending on the composition of their SASP and may participate in various processes including wound healing and tumour suppression, as well as cell regeneration, embryogenesis, tumorigenesis, inflammation and finally aging. The SASP is also a biomarker of age, biological aging and age-related diseases. Recent advances in anti-age research have shown that senescence can be now prevented or delayed by clearing the senescent cells or mitigating the effects of SASP factors, which can be achieved by a healthy lifestyle (exercise and diet), and senolytics and senomorphics, respectively. An alternative is tissue rejuvenation, which can be achieved by stimulating aged stem cells and reprogramming deprogrammed aged cells. These non-clinical findings will open up new avenues of clinical research into the development of treatments capable of preventing or treating age-related pathologies in humans.
Collapse
Affiliation(s)
- Jean-Marc Lemaitre
- Institute for Regenerative Medicine & Biotherapy - Hopital Saint Eloi, Montpellier, France
| |
Collapse
|
47
|
Kawakami S, Ninomiya R, Maeda Y. Improvement in Epigenetic Aging Clock Induced by BioBran Containing Rice Kefiran in Relation to Various Biomarkers: A Pilot Study. Int J Mol Sci 2024; 25:6332. [PMID: 38928040 PMCID: PMC11203851 DOI: 10.3390/ijms25126332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Many lifestyle-related diseases such as cancer, dementia, myocardial infarction, and stroke are known to be caused by aging, and the WHO's ICD-11 (International Classification of Diseases, 11th edition) created the code "aging-related" in 2022. In other words, aging is irreversible but aging-related diseases are reversible, so taking measures to treat them is important for health longevity and preventing other diseases. Therefore, in this study, we used BioBran containing rice kefiran as an approach to improve aging. Rice kefiran has been reported to improve the intestinal microflora, regulate the intestines, and have anti-aging effects. BioBran has also been reported to have antioxidant effects and improve liver function, and human studies have shown that it affects the diversity of the intestinal microbiota. Quantitative measures of aging that correlate with disease risk are now available through the epigenetic clock test, which examines the entire gene sequence and determines biological age based on the methylation level. Horvath's Clock is the best known of many epigenetic clock tests and was published by Steve Horvath in 2013. In this study, we examine the effect of using Horvath's Clock to improve aging and report on the results, which show a certain effect.
Collapse
Affiliation(s)
- Satoshi Kawakami
- Department of Nutrition, Faculty of Health Care, Kiryu University, Midori 379-2392, Japan
| | - Ryo Ninomiya
- Research and Development Department, Daiwa Pharmaceutical Co., Ltd., Tokyo 154-0024, Japan;
| | | |
Collapse
|
48
|
Lu WH. Effect of Modifiable Lifestyle Factors on Biological Aging. JAR LIFE 2024; 13:88-92. [PMID: 38855439 PMCID: PMC11161669 DOI: 10.14283/jarlife.2024.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Biological age is a concept that uses bio-physiological parameters to account for individual heterogeneity in the biological processes driving aging and aims to enhance the prediction of age-related clinical conditions compared to chronological age. Although engaging in healthy lifestyle behaviors has been linked to a lower mortality risk and a reduced incidence of chronic diseases, it remains unclear to what extent these health benefits result from slowing the pace of the biological aging process. This short review summarized how modifiable lifestyle factors - including diet, physical activity, smoking, alcohol consumption, and the aggregate of multiple healthy behaviors - were associated with established estimates of biological age based on clinical or cellular/molecular markers, including Klemera-Doubal Method biological age, homeostatic dysregulation, phenotypic age, DNA methylation age, and telomere length. In brief, the available studies tend to show a consistent association of lifestyle factors with physiological measures of biological age, while findings regarding molecular-based metrics vary. The limited evidence highlights the need for further research in this field, particularly with a life-course approach.
Collapse
Affiliation(s)
- W-H Lu
- IHU HealthAge, Toulouse, France
- Institute on Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France
| |
Collapse
|
49
|
Tamargo JA, Cruz-Almeida Y. Food insecurity and epigenetic aging in middle-aged and older adults. Soc Sci Med 2024; 350:116949. [PMID: 38723585 DOI: 10.1016/j.socscimed.2024.116949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Food insecurity is recognized as a key social determinant of health for older adults. While food insecurity has been associated with morbidity and mortality, few studies have examined how it may contribute to accelerated biological aging. A potential mechanism by which food insecurity may contribute to aging is via epigenetic alterations. We examined the relationship between food insecurity and epigenetic aging, a novel measure of biological aging, in a nationally representative sample of middle-aged and older adults in the United States. METHODS Cross-sectional analysis of adults 50 years of age and older from the 2016 Health and Retirement Study (HRS). Financial food insecurity was self-reported via two questions that ascertained having enough money for food or eating less than they felt they should. Epigenetic aging was measured via epigenetic clocks based on DNA methylation patterns that predict aging correlates of morbidity and mortality. Linear regressions were performed to test for differences in the epigenetic clocks, adjusting for biological, socioeconomic, and behavioral factors. RESULTS The analysis consisted of 3875 adults with mean age of 68.5 years. A total of 8.1% reported food insecurity. Food insecurity was associated with several characteristics, including younger age, race/ethnic minority, lower income, total wealth, and educational attainment, higher BMI, and less physical activity. Food insecurity was associated with accelerated epigenetic aging compared to food security, as measured via second (Zhang, PhenoAge, GrimAge) and third (DunedinPoAm) generation epigenetic clocks. In particular, food insecurity remained significantly associated with accelerated Zhang (B = 0.09, SE = 0.03, p = 0.011) and GrimAge (B = 0.57, SE = 0.24, p = 0.022) in the fully adjusted models. CONCLUSIONS Food insecurity is associated with accelerated epigenetic aging among middle-aged and older adults in the United States. Food insecurity may contribute to DNA methylation alterations across the genome and biological age acceleration. These findings add to a growing understanding of the influence of socioeconomic status on the epigenome and health in aging.
Collapse
Affiliation(s)
- Javier A Tamargo
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL, USA; Institute on Aging, University of Florida, Gainesville, FL, USA; Department of Community Dentistry and Behavioral Science, College of Dentistry, University of Florida, Gainesville, FL, USA.
| | - Yenisel Cruz-Almeida
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL, USA; Institute on Aging, University of Florida, Gainesville, FL, USA; Department of Community Dentistry and Behavioral Science, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
50
|
Huang Q, Li B, Wang Y, Zi H, Zhang Y, Li F, Fang C, Tang S, Jin Y, Huang J, Zeng X. Clinical biomarker-based biological aging and risk of benign prostatic hyperplasia: A large prospective cohort study. Aging Med (Milton) 2024; 7:393-405. [PMID: 38975310 PMCID: PMC11222739 DOI: 10.1002/agm2.12331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/14/2024] [Accepted: 05/30/2024] [Indexed: 07/09/2024] Open
Abstract
Objective Chronological age (CAge), biological age (BAge), and accelerated age (AAge) are all important for aging-related diseases. CAge is a known risk factor for benign prostatic hyperplasia (BPH); However, the evidence of association of BAge and AAge with BPH is limited. This study aimed to evaluate the association of CAge, Bage, and AAge with BPH in a large prospective cohort. Method A total of 135,933 males without BPH at enrolment were extracted from the UK biobank. We calculated three BAge measures (Klemera-Doubal method, KDM; PhenoAge; homeostatic dysregulation, HD) based on 16 biomarkers. Additionally, we calculated KDM-BAge and PhenoAge-BAge measures based on the Levine method. The KDM-AAge and PhenoAge-AAge were assessed by the difference between CAge and BAge and were standardized (mean = 0 and standard deviation [SD] = 1). Cox proportional hazard models were applied to assess the associations of CAge, Bage, and AAge with incident BPH risk. Results During a median follow-up of 13.150 years, 11,811 (8.690%) incident BPH were identified. Advanced CAge and BAge measures were associated with an increased risk of BPH, showing threshold effects at a later age (all P for nonlinearity <0.001). Nonlinear relationships between AAge measures and risk of BPH were also found for KDM-AAge (P = 0.041) and PhenoAge-AAge (P = 0.020). Compared to the balance comparison group (-1 SD < AAge < 1 SD), the accelerated aging group (AAge > 2 SD) had a significantly elevated BPH risk with hazard ratio (HR) of 1.115 (95% CI, 1.000-1.223) for KDM-AAge and 1.180 (95% CI, 1.068-1.303) for PhenoAge-AAge, respectively. For PhenoAge-AAge, subgroup analysis of the accelerated aging group showed an increased HR of 1.904 (95% CI, 1.374-2.639) in males with CAge <50 years and 1.233 (95% CI, 1.088-1.397) in those having testosterone levels <12 nmol/L. Moreover, AAge-associated risk of BPH was independent of and additive to genetic risk. Conclusions Biological aging is an independent and modifiable risk factor for BPH. We suggest performing active health interventions to slow biological aging, which will help mitigate the progression of prostate aging and further reduce the burden of BPH.
Collapse
Affiliation(s)
- Qiao Huang
- Center for Evidence‐Based and Translational MedicineZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of Evidence‐Based Medicine and Clinical Epidemiology, Second School of Clinical MedicineWuhan UniversityWuhanChina
| | - Bing‐Hui Li
- Center for Evidence‐Based and Translational MedicineZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of Evidence‐Based Medicine and Clinical Epidemiology, Second School of Clinical MedicineWuhan UniversityWuhanChina
| | - Yong‐Bo Wang
- Center for Evidence‐Based and Translational MedicineZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of Evidence‐Based Medicine and Clinical Epidemiology, Second School of Clinical MedicineWuhan UniversityWuhanChina
| | - Hao Zi
- Center for Evidence‐Based and Translational MedicineZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of UrologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Yuan‐Yuan Zhang
- Center for Evidence‐Based and Translational MedicineZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of Evidence‐Based Medicine and Clinical Epidemiology, Second School of Clinical MedicineWuhan UniversityWuhanChina
| | - Fei Li
- Center for Evidence‐Based and Translational MedicineZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of UrologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Cheng Fang
- Center for Evidence‐Based and Translational MedicineZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of Evidence‐Based Medicine and Clinical Epidemiology, Second School of Clinical MedicineWuhan UniversityWuhanChina
| | - Shi‐Di Tang
- Center for Evidence‐Based and Translational MedicineZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of Evidence‐Based Medicine and Clinical Epidemiology, Second School of Clinical MedicineWuhan UniversityWuhanChina
| | - Ying‐Hui Jin
- Center for Evidence‐Based and Translational MedicineZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of Evidence‐Based Medicine and Clinical Epidemiology, Second School of Clinical MedicineWuhan UniversityWuhanChina
- Department of GeriatricsZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jiao Huang
- Center for Evidence‐Based and Translational MedicineZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of Evidence‐Based Medicine and Clinical Epidemiology, Second School of Clinical MedicineWuhan UniversityWuhanChina
| | - Xian‐Tao Zeng
- Center for Evidence‐Based and Translational MedicineZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of Evidence‐Based Medicine and Clinical Epidemiology, Second School of Clinical MedicineWuhan UniversityWuhanChina
- Department of UrologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of Epidemiology and Biostatistics, School of Health SciencesWuhan UniversityWuhanChina
| |
Collapse
|