1
|
Sallbach J, Woods M, Rasenberger B, Christmann M, Tomicic MT. The cell cycle inhibitor p21 CIP1 is essential for irinotecan-induced senescence and plays a decisive role in re-sensitization of temozolomide-resistant glioblastoma cells to irinotecan. Biomed Pharmacother 2024; 181:117634. [PMID: 39489121 DOI: 10.1016/j.biopha.2024.117634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND AND PURPOSE Standard of care for glioblastomas includes radio-chemotherapy with the monoalkylating compound temozolomide. Temozolomide induces primarily senescence, inefficiently killing glioblastoma cells. Recurrences are inevitable. Although recurrences presumably arise from cells evading/escaping TMZ-induced senescence, becoming resistant, they are often again treated with TMZ. As an alternative treatment, irinotecan could be used. Our aim was to examine to what extent and conditions the topoisomerase I inhibitor irinotecan induces senescence and to analyze the underlying mechanism. RESULTS Multiple glioblastoma lines with different genetic signatures for p53, p21CIP1, p16INK4A, p14ARF, and PTEN were used. By means of LN229 glioblastoma clones which escaped from temozolomide-induced senescence, thus, being potentially recurrence-forming, we show that this escape is accompanied by increased p21CIP1 protein levels in temozolomide-unexposed senescence-evading clones and inability of temozolomide to induce p21CIP1. In contrast, irinotecan was still able to induce p21CIP1 and could elevate senescence and cell death. In combination with the senolytic drug BV6, irinotecan-induced senescence was significantly reduced. Differential response clusters were also observed in paired samples of newly diagnosed and recurrent patients' tumors. This can partially explain a significantly prolonged progression-free time until surgery for recurrence in patients additionally treated with irinotecan after temozolomide consolidation and upon the first onset of recurrence. CONCLUSIONS p21CIP1 is essentially involved in induction and maintenance of irinotecan-induced senescence. Neither p16INK4A, p14ARF, nor PTEN contribute to senescence, if p21CIP1 cannot be induced. Based on the positive results of the irinotecan/BV6 treatment, combatting recurrent glioblastomas by targeting senescence cell antiapoptotic pathways (SCAPs) should be considered.
Collapse
Affiliation(s)
- Jason Sallbach
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University, Obere Zahlbacher Str. 67, Mainz D-55131, Germany.
| | - Melanie Woods
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University, Obere Zahlbacher Str. 67, Mainz D-55131, Germany.
| | - Birgit Rasenberger
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University, Obere Zahlbacher Str. 67, Mainz D-55131, Germany.
| | - Markus Christmann
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University, Obere Zahlbacher Str. 67, Mainz D-55131, Germany.
| | - Maja T Tomicic
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University, Obere Zahlbacher Str. 67, Mainz D-55131, Germany.
| |
Collapse
|
2
|
Larriba E, de Juan Romero C, García-Martínez A, Quintanar T, Rodríguez-Lescure Á, Soto JL, Saceda M, Martín-Nieto J, Barberá VM. Identification of new targets for glioblastoma therapy based on a DNA expression microarray. Comput Biol Med 2024; 179:108833. [PMID: 38981212 DOI: 10.1016/j.compbiomed.2024.108833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/11/2024]
Abstract
This study provides a comprehensive perspective on the deregulated pathways and impaired biological functions prevalent in human glioblastoma (GBM). In order to characterize differences in gene expression between individuals diagnosed with GBM and healthy brain tissue, we have designed and manufactured a specific, custom DNA microarray. The results obtained from differential gene expression analysis were validated by RT-qPCR. The datasets obtained from the analysis of common differential expressed genes in our cohort of patients were used to generate protein-protein interaction networks of functionally enriched genes and their biological functions. This network analysis, let us to identify 16 genes that exhibited either up-regulation (CDK4, MYC, FOXM1, FN1, E2F7, HDAC1, TNC, LAMC1, EIF4EBP1 and ITGB3) or down-regulation (PRKACB, MEF2C, CAMK2B, MAPK3, MAP2K1 and PENK) in all GBM patients. Further investigation of these genes and enriched pathways uncovered in this investigation promises to serve as a foundational step in advancing our comprehension of the molecular mechanisms underpinning GBM pathogenesis. Consequently, the present work emphasizes the critical role that the unveiled molecular pathways likely play in shaping innovative therapeutic approaches for GBM management. We finally proposed in this study a list of compounds that target hub of GBM-related genes, some of which are already in clinical use, underscoring the potential of those genes as targets for GBM treatment.
Collapse
Affiliation(s)
- Eduardo Larriba
- Human and Mammalian Genetics Group, Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Camino de Juan Romero
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, 03203, Alicante, Spain; Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda, Universidad s/n, Ed. Torregaitán, Elche, Spain.
| | - Araceli García-Martínez
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, 03203, Alicante, Spain; Unidad de Genética Molecular, Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, 03203, Alicante, Spain
| | - Teresa Quintanar
- Servicio de Oncología Médica. Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, 03203, Alicante, Spain
| | - Álvaro Rodríguez-Lescure
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, 03203, Alicante, Spain; Servicio de Oncología Médica. Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, 03203, Alicante, Spain; School of Medicine. Universidad Miguel Hernández de Elche. Investigator, Spanish Breast Cancer Research Group (GEICAM), Spain
| | - José Luis Soto
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, 03203, Alicante, Spain; Unidad de Genética Molecular, Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, 03203, Alicante, Spain
| | - Miguel Saceda
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, 03203, Alicante, Spain; Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda, Universidad s/n, Ed. Torregaitán, Elche, Spain
| | - José Martín-Nieto
- Human and Mammalian Genetics Group, Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain.
| | - Víctor M Barberá
- Human and Mammalian Genetics Group, Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain; Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, 03203, Alicante, Spain; Unidad de Genética Molecular, Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, 03203, Alicante, Spain.
| |
Collapse
|
3
|
Rivera-Caraballo KA, Nair M, Lee TJ, Kaur B, Yoo JY. The complex relationship between integrins and oncolytic herpes Simplex Virus 1 in high-grade glioma therapeutics. Mol Ther Oncolytics 2022; 26:63-75. [PMID: 35795093 PMCID: PMC9233184 DOI: 10.1016/j.omto.2022.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
High-grade gliomas (HGGs) are lethal central nervous system tumors that spread quickly through the brain, making treatment challenging. Integrins are transmembrane receptors that mediate cell-extracellular matrix (ECM) interactions, cellular adhesion, migration, growth, and survival. Their upregulation and inverse correlation in HGG malignancy make targeting integrins a viable therapeutic option. Integrins also play a role in herpes simplex virus 1 (HSV-1) entry. Oncolytic HSV-1 (oHSV) is the most clinically advanced oncolytic virotherapy, showing a superior safety and efficacy profile over standard cancer treatment of solid cancers, including HGG. With the FDA-approval of oHSV for melanoma and the recent conditional approval of oHSV for malignant glioma in Japan, usage of oHSV for HGG has become of great interest. In this review, we provide a systematic overview of the role of integrins in relation to oHSV, with a special focus on its therapeutic potential against HGG. We discuss the pros and cons of targeting integrins during oHSV therapy: while integrins play a pro-therapeutic role by acting as a gateway for oHSV entry, they also mediate the innate antiviral immune responses that hinder oHSV therapeutic efficacy. We further discuss alternative strategies to regulate the dual functionality of integrins in the context of oHSV therapy.
Collapse
Affiliation(s)
- Kimberly Ann Rivera-Caraballo
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Mitra Nair
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Tae Jin Lee
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Balveen Kaur
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ji Young Yoo
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
4
|
Śledzińska P, Bebyn M, Furtak J, Koper A, Koper K. Current and promising treatment strategies in glioma. Rev Neurosci 2022:revneuro-2022-0060. [PMID: 36062548 DOI: 10.1515/revneuro-2022-0060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/30/2022] [Indexed: 12/14/2022]
Abstract
Gliomas are the most common primary central nervous system tumors; despite recent advances in diagnosis and treatment, glioma patients generally have a poor prognosis. Hence there is a clear need for improved therapeutic options. In recent years, significant effort has been made to investigate immunotherapy and precision oncology approaches. The review covers well-established strategies such as surgery, temozolomide, PCV, and mTOR inhibitors. Furthermore, it summarizes promising therapies: tumor treating fields, immune therapies, tyrosine kinases inhibitors, IDH(Isocitrate dehydrogenase)-targeted approaches, and others. While there are many promising treatment strategies, none fundamentally changed the management of glioma patients. However, we are still awaiting the outcome of ongoing trials, which have the potential to revolutionize the treatment of glioma.
Collapse
Affiliation(s)
- Paulina Śledzińska
- Molecular Oncology and Genetics Department, Innovative Medical Forum, The F. Lukaszczyk Oncology Center, 85-796 Bydgoszcz, Poland
| | - Marek Bebyn
- Molecular Oncology and Genetics Department, Innovative Medical Forum, The F. Lukaszczyk Oncology Center, 85-796 Bydgoszcz, Poland
| | - Jacek Furtak
- Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland.,Department of Neurooncology and Radiosurgery, The F. Lukaszczyk Oncology Center, 85-796 Bydgoszcz, Poland
| | - Agnieszka Koper
- Department of Oncology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum, 85-067 Bydgoszcz, Poland.,Department of Oncology, Franciszek Lukaszczyk Oncology Centre, 85-796 Bydgoszcz, Poland
| | - Krzysztof Koper
- Department of Oncology, Franciszek Lukaszczyk Oncology Centre, 85-796 Bydgoszcz, Poland.,Department of Clinical Oncology, and Nursing, Departament of Oncological Surgery, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum, 85-067 Bydgoszcz, Poland
| |
Collapse
|
5
|
Mechanical Properties of the Extracellular Environment of Human Brain Cells Drive the Effectiveness of Drugs in Fighting Central Nervous System Cancers. Brain Sci 2022; 12:brainsci12070927. [PMID: 35884733 PMCID: PMC9313046 DOI: 10.3390/brainsci12070927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 12/04/2022] Open
Abstract
The evaluation of nanomechanical properties of tissues in health and disease is of increasing interest to scientists. It has been confirmed that these properties, determined in part by the composition of the extracellular matrix, significantly affect tissue physiology and the biological behavior of cells, mainly in terms of their adhesion, mobility, or ability to mutate. Importantly, pathophysiological changes that determine disease development within the tissue usually result in significant changes in tissue mechanics that might potentially affect the drug efficacy, which is important from the perspective of development of new therapeutics, since most of the currently used in vitro experimental models for drug testing do not account for these properties. Here, we provide a summary of the current understanding of how the mechanical properties of brain tissue change in pathological conditions, and how the activity of the therapeutic agents is linked to this mechanical state.
Collapse
|
6
|
Maksoud S. The DNA Double-Strand Break Repair in Glioma: Molecular Players and Therapeutic Strategies. Mol Neurobiol 2022; 59:5326-5365. [PMID: 35696013 DOI: 10.1007/s12035-022-02915-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/05/2022] [Indexed: 12/12/2022]
Abstract
Gliomas are the most frequent type of tumor in the central nervous system, which exhibit properties that make their treatment difficult, such as cellular infiltration, heterogeneity, and the presence of stem-like cells responsible for tumor recurrence. The response of this type of tumor to chemoradiotherapy is poor, possibly due to a higher repair activity of the genetic material, among other causes. The DNA double-strand breaks are an important type of lesion to the genetic material, which have the potential to trigger processes of cell death or cause gene aberrations that could promote tumorigenesis. This review describes how the different cellular elements regulate the formation of DNA double-strand breaks and their repair in gliomas, discussing the therapeutic potential of the induction of this type of lesion and the suppression of its repair as a control mechanism of brain tumorigenesis.
Collapse
Affiliation(s)
- Semer Maksoud
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
7
|
Echavidre W, Picco V, Faraggi M, Montemagno C. Integrin-αvβ3 as a Therapeutic Target in Glioblastoma: Back to the Future? Pharmaceutics 2022; 14:pharmaceutics14051053. [PMID: 35631639 PMCID: PMC9144720 DOI: 10.3390/pharmaceutics14051053] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma (GBM), the most common primary malignant brain tumor, is associated with a dismal prognosis. Standard therapies including maximal surgical resection, radiotherapy, and temozolomide chemotherapy remain poorly efficient. Improving GBM treatment modalities is, therefore, a paramount challenge for researchers and clinicians. GBMs exhibit the hallmark feature of aggressive invasion into the surrounding tissue. Among cell surface receptors involved in this process, members of the integrin family are known to be key actors of GBM invasion. Upregulation of integrins was reported in both tumor and stromal cells, making them a suitable target for innovative therapies targeting integrins in GBM patients, as their impairment disrupts tumor cell proliferation and invasive capacities. Among them, integrin-αvβ3 expression correlates with high-grade GBM. Driven by a plethora of preclinical biological studies, antagonists of αvβ3 rapidly became attractive therapeutic candidates to impair GBM tumorigenesis. In this perspective, the advent of nuclear medicine is currently one of the greatest components of the theranostic concept in both preclinical and clinical research fields. In this review, we provided an overview of αvβ3 expression in GBM to emphasize the therapeutic agents developed. Advanced current and future developments in the theranostic field targeting αvβ3 are finally discussed.
Collapse
Affiliation(s)
- William Echavidre
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (C.M.)
| | - Vincent Picco
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (C.M.)
- Correspondence: ; Tel.: +377-97-77-44-15
| | - Marc Faraggi
- Nuclear Medicine Department, Centre Hospitalier Princesse Grace, 98000 Monaco, Monaco;
| | - Christopher Montemagno
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (C.M.)
- Institute for Research on Cancer and Aging of Nice, Centre Antoine Lacassagne, CNRS UMR 7284, INSERM U1081, Université Cote d’Azur, 06200 Nice, France
| |
Collapse
|
8
|
Vilar JB, Christmann M, Tomicic MT. Alterations in Molecular Profiles Affecting Glioblastoma Resistance to Radiochemotherapy: Where Does the Good Go? Cancers (Basel) 2022; 14:cancers14102416. [PMID: 35626024 PMCID: PMC9139489 DOI: 10.3390/cancers14102416] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Glioblastoma is a type of brain cancer that remains incurable. Despite multiple past and ongoing preclinical studies and clinical trials, involving adjuvants to the conventional therapy and based on molecular targeting, no relevant benefit for patients’ survival has been achieved so far. The current first-line treatment regimen is based on ionizing radiation and the monoalkylating compound, temozolomide, and has been administered for more than 15 years. Glioblastoma is extremely resistant to most agents due to a mutational background that elicits quick response to insults and adapts to microenvironmental and metabolic changes. Here, we present the most recent evidence concerning the molecular features and their alterations governing pathways involved in GBM response to the standard radio-chemotherapy and discuss how they collaborate with acquired GBM’s resistance. Abstract Glioblastoma multiforme (GBM) is a brain tumor characterized by high heterogeneity, diffuse infiltration, aggressiveness, and formation of recurrences. Patients with this kind of tumor suffer from cognitive, emotional, and behavioral problems, beyond exhibiting dismal survival rates. Current treatment comprises surgery, radiotherapy, and chemotherapy with the methylating agent, temozolomide (TMZ). GBMs harbor intrinsic mutations involving major pathways that elicit the cells to evade cell death, adapt to the genotoxic stress, and regrow. Ionizing radiation and TMZ induce, for the most part, DNA damage repair, autophagy, stemness, and senescence, whereas only a small fraction of GBM cells undergoes treatment-induced apoptosis. Particularly upon TMZ exposure, most of the GBM cells undergo cellular senescence. Increased DNA repair attenuates the agent-induced cytotoxicity; autophagy functions as a pro-survival mechanism, protecting the cells from damage and facilitating the cells to have energy to grow. Stemness grants the cells capacity to repopulate the tumor, and senescence triggers an inflammatory microenvironment favorable to transformation. Here, we highlight this mutational background and its interference with the response to the standard radiochemotherapy. We discuss the most relevant and recent evidence obtained from the studies revealing the molecular mechanisms that lead these cells to be resistant and indicate some future perspectives on combating this incurable tumor.
Collapse
|
9
|
Schwarzenbach C, Tatsch L, Brandstetter Vilar J, Rasenberger B, Beltzig L, Kaina B, Tomicic MT, Christmann M. Targeting c-IAP1, c-IAP2, and Bcl-2 Eliminates Senescent Glioblastoma Cells Following Temozolomide Treatment. Cancers (Basel) 2021; 13:cancers13143585. [PMID: 34298797 PMCID: PMC8306656 DOI: 10.3390/cancers13143585] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Despite extensive research, malignant glioma remains the most aggressive and fatal type of brain tumor. Following resection, therapy is based on radiation concomitant with the methylating agent temozolomide (TMZ), followed by adjuvant high-dose TMZ. In previous work, we showed that following TMZ exposure, most glioma cells evade apoptosis and enter a senescent state and are thereby protected against anticancer therapy. Senescent cells may escape from senescence, contributing to the formation of recurrences or can induce the senescence-associated secretory phenotype (SASP), which may impact therapy success. Therefore, direct targeting of senescent cells might be favorable to improve the effect of TMZ-based anticancer therapy. Here we show that during TMZ-induced senescence in glioblastoma cells, the antiapoptotic factors c-IAP2 and Bcl-2 are responsible for the prevention of cell death and that inhibition of these factors by BV6 and venetoclax effectively kills senescent glioblastoma cells. Abstract Therapy of malignant glioma depends on the induction of O6-methylguanine by the methylating agent temozolomide (TMZ). However, following TMZ exposure, most glioma cells evade apoptosis and become senescent and are thereby protected against further anticancer therapy. This protection is thought to be dependent on the senescent cell anti-apoptotic pathway (SCAP). Here we analyzed the factors involved in the SCAP upon exposure to TMZ in glioblastoma cell lines (LN-229, A172, U87MG) and examined whether inhibition of these factors could enhance TMZ-based toxicity by targeting senescent cells. We observed that following TMZ treatment, c-IAP2 and Bcl-2 were upregulated. Inhibition of these SCAP factors using non-toxic concentrations of the small molecule inhibitors, BV6 and venetoclax, significantly increased cell death, as measured 144 h after TMZ exposure. Most importantly, BV6 and venetoclax treatment of senescent cells strongly increased cell death after an additional 120 h. Moreover, Combenefit analyses revealed a significant synergy combining BV6 and venetoclax. In contrast to BV6 and venetoclax, AT406, embelin, and TMZ itself, teniposide and the PARP inhibitor pamiparib did not increase cell death in senescent cells. Based on these data, we suggest that BV6 and venetoclax act as senolytic agents in glioblastoma cells upon TMZ exposure.
Collapse
|
10
|
Localization matters: nuclear-trapped Survivin sensitizes glioblastoma cells to temozolomide by elevating cellular senescence and impairing homologous recombination. Cell Mol Life Sci 2021; 78:5587-5604. [PMID: 34100981 PMCID: PMC8257519 DOI: 10.1007/s00018-021-03864-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/11/2022]
Abstract
To clarify whether differential compartmentalization of Survivin impacts temozolomide (TMZ)-triggered end points, we established a well-defined glioblastoma cell model in vitro (LN229 and A172) and in vivo, distinguishing between its nuclear and cytoplasmic localization. Expression of nuclear export sequence (NES)-mutated Survivin (SurvNESmut-GFP) led to impaired colony formation upon TMZ. This was not due to enhanced cell death but rather due to increased senescence. Nuclear-trapped Survivin reduced homologous recombination (HR)-mediated double-strand break (DSB) repair, as evaluated by γH2AX foci formation and qPCR-based HR assay leading to pronounced induction of chromosome aberrations. Opposite, clones, expressing free-shuttling cytoplasmic but not nuclear-trapped Survivin, could repair TMZ-induced DSBs and evaded senescence. Mass spectrometry-based interactomics revealed, however, no direct interaction of Survivin with any of the repair factors. The improved TMZ-triggered HR activity in Surv-GFP was associated with enhanced mRNA and stabilized RAD51 protein expression, opposite to diminished RAD51 expression in SurvNESmut cells. Notably, cytoplasmic Survivin could significantly compensate for the viability under RAD51 knockdown. Differential Survivin localization also resulted in distinctive TMZ-triggered transcriptional pathways, associated with senescence and chromosome instability as shown by global transcriptome analysis. Orthotopic LN229 xenografts, expressing SurvNESmut exhibited diminished growth and increased DNA damage upon TMZ, as manifested by PCNA and γH2AX foci expression, respectively, in brain tissue sections. Consequently, those mice lived longer. Although tumors of high-grade glioma patients expressed majorly nuclear Survivin, they exhibited rarely NES mutations which did not correlate with survival. Based on our in vitro and xenograft data, Survivin nuclear trapping would facilitate glioma response to TMZ.
Collapse
|
11
|
Fox GC, Su X, Davis JL, Xu Y, Kwakwa KA, Ross MH, Fontana F, Xiang J, Esser AK, Cordell E, Pagliai K, Dang HX, Sivapackiam J, Stewart SA, Maher CA, Bakewell SJ, Fitzpatrick JAJ, Sharma V, Achilefu S, Veis DJ, Lanza GM, Weilbaecher KN. Targeted Therapy to β3 Integrin Reduces Chemoresistance in Breast Cancer Bone Metastases. Mol Cancer Ther 2021; 20:1183-1198. [PMID: 33785647 PMCID: PMC8442608 DOI: 10.1158/1535-7163.mct-20-0931] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/04/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022]
Abstract
Breast cancer bone metastases are common and incurable. Tumoral integrin β3 (β3) expression is induced through interaction with the bone microenvironment. Although β3 is known to promote bone colonization, its functional role during therapy of established bone metastases is not known. We found increased numbers of β3+ tumor cells in murine bone metastases after docetaxel chemotherapy. β3+ tumor cells were present in 97% of post-neoadjuvant chemotherapy triple-negative breast cancer patient samples (n = 38). High tumoral β3 expression was associated with worse outcomes in both pre- and postchemotherapy triple-negative breast cancer groups. Genetic deletion of tumoral β3 had minimal effect in vitro, but significantly enhanced in vivo docetaxel activity, particularly in the bone. Rescue experiments confirmed that this effect required intact β3 signaling. Ultrastructural, transcriptomic, and functional analyses revealed an alternative metabolic response to chemotherapy in β3-expressing cells characterized by enhanced oxygen consumption, reactive oxygen species generation, and protein production. We identified mTORC1 as a candidate for therapeutic targeting of this β3-mediated, chemotherapy-induced metabolic response. mTORC1 inhibition in combination with docetaxel synergistically attenuated murine bone metastases. Furthermore, micelle nanoparticle delivery of mTORC1 inhibitor to cells expressing activated αvβ3 integrins enhanced docetaxel efficacy in bone metastases. Taken together, we show that β3 integrin induction by the bone microenvironment promotes resistance to chemotherapy through an altered metabolic response that can be defused by combination with αvβ3-targeted mTORC1 inhibitor nanotherapy. Our work demonstrates the importance of the metastatic microenvironment when designing treatments and presents new, bone-specific strategies for enhancing chemotherapeutic efficacy.
Collapse
Affiliation(s)
- Gregory C Fox
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Xinming Su
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Jennifer L Davis
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Yalin Xu
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Kristin A Kwakwa
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Michael H Ross
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Francesca Fontana
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
- Department of Medicine, Division of Cardiology, Washington University School of Medicine, St. Louis, Missouri
| | - Jingyu Xiang
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Alison K Esser
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Elizabeth Cordell
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Kristen Pagliai
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Ha X Dang
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Jothilingam Sivapackiam
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
- ICCE Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Sheila A Stewart
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
- ICCE Institute, Washington University School of Medicine, St. Louis, Missouri
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Christopher A Maher
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri
| | - Suzanne J Bakewell
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - James A J Fitzpatrick
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri
| | - Vijay Sharma
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
- ICCE Institute, Washington University School of Medicine, St. Louis, Missouri
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri
- Deparment of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Samuel Achilefu
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Deborah J Veis
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
- Musculoskeletal Research Center, Histology and Morphometry Core, Washington University School of Medicine, St. Louis, Missouri
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Gregory M Lanza
- Department of Medicine, Division of Cardiology, Washington University School of Medicine, St. Louis, Missouri
| | - Katherine N Weilbaecher
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri.
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
12
|
Tomicic MT, Krämer F, Nguyen A, Schwarzenbach C, Christmann M. Oxaliplatin-Induced Senescence in Colorectal Cancer Cells Depends on p14 ARF-Mediated Sustained p53 Activation. Cancers (Basel) 2021; 13:cancers13092019. [PMID: 33922007 PMCID: PMC8122251 DOI: 10.3390/cancers13092019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
Senescence is an important consequence of cytostatic drug-based tumor therapy. Here we analyzed to which degree the anticancer drug oxaliplatin induces cell death, cell cycle arrest, and senescence in colorectal cancer (CRC) cells and elucidated the role of p53. Oxaliplatin treatment resulted in the G2-phase arrest in all CRC lines tested (HCT116p53+/+, HCT116p53-/-, LoVo, SW48 and SW480). Immunoblot analysis showed that within the p53-competent lines p53 and p21CIP1 are activated at early times upon oxaliplatin treatment. However, at later times, only LoVo cells showed sustained activation of the p53/p21CIP1 pathway, accompanied by a strong induction of senescence as measured by senescence-associated β-Gal staining and induction of senescence-associated secretory phenotype (SASP) factors. Opposite to LoVo, the p53/p21CIP1 response and senescence induction was much weaker in the p53-proficient SW48 and SW480 cells, which was due to deficiency for p14ARF. Thus, among lines studied only LoVo express p14ARF protein and siRNA-mediated knockdown of p14ARF significantly reduced sustained p53/p21CIP1 activation and senescence. Vice versa, ectopic p14ARF expression enhanced oxaliplatin-induced senescence in SW48 and SW480 cells. Our data show that oxaliplatin-induced senescence in CRC cells is dependent on p53 proficiency; however, a significant induction can only be observed upon p14ARF-mediated p53 stabilization.
Collapse
|
13
|
Allmann S, Mayer L, Olma J, Kaina B, Hofmann TG, Tomicic MT, Christmann M. Benzo[a]pyrene represses DNA repair through altered E2F1/E2F4 function marking an early event in DNA damage-induced cellular senescence. Nucleic Acids Res 2020; 48:12085-12101. [PMID: 33166399 PMCID: PMC7708059 DOI: 10.1093/nar/gkaa965] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/25/2020] [Accepted: 10/16/2020] [Indexed: 01/08/2023] Open
Abstract
Transcriptional regulation of DNA repair is of outmost importance for the restoration of DNA integrity upon genotoxic stress. Here we report that the potent environmental carcinogen benzo[a]pyrene (B[a]P) activates a cellular DNA damage response resulting in transcriptional repression of mismatch repair (MMR) genes (MSH2, MSH6, EXO1) and of RAD51, the central homologous recombination repair (HR) component, ultimately leading to downregulation of MMR and HR. B[a]P-induced gene repression is caused by abrogated E2F1 signalling. This occurs through proteasomal degradation of E2F1 in G2-arrested cells and downregulation of E2F1 mRNA expression in G1-arrested cells. Repression of E2F1-mediated transcription and silencing of repair genes is further mediated by the p21-dependent E2F4/DREAM complex. Notably, repression of DNA repair is also observed following exposure to the active B[a]P metabolite BPDE and upon ionizing radiation and occurs in response to a p53/p21-triggered, irreversible cell cycle arrest marking the onset of cellular senescence. Overall, our results suggest that repression of MMR and HR is an early event during genotoxic-stress induced senescence. We propose that persistent downregulation of DNA repair might play a role in the maintenance of the senescence phenotype, which is associated with an accumulation of unrepairable DNA lesions.
Collapse
Affiliation(s)
- Sebastian Allmann
- Institute of Toxicology, University Medical Center, Johannes Gutenberg University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | - Laura Mayer
- Institute of Toxicology, University Medical Center, Johannes Gutenberg University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | - Jessika Olma
- Institute of Toxicology, University Medical Center, Johannes Gutenberg University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Johannes Gutenberg University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | - Thomas G Hofmann
- Institute of Toxicology, University Medical Center, Johannes Gutenberg University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | - Maja T Tomicic
- Institute of Toxicology, University Medical Center, Johannes Gutenberg University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | - Markus Christmann
- Institute of Toxicology, University Medical Center, Johannes Gutenberg University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| |
Collapse
|
14
|
Combination therapy of cold atmospheric plasma (CAP) with temozolomide in the treatment of U87MG glioblastoma cells. Sci Rep 2020; 10:16495. [PMID: 33020527 PMCID: PMC7536419 DOI: 10.1038/s41598-020-73457-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023] Open
Abstract
Cold atmospheric plasma (CAP) technology, a relatively novel technique mainly investigated as a stand-alone cancer treatment method in vivo and in vitro, is being proposed for application in conjunction with chemotherapy. In this study, we explore whether CAP, an ionized gas produced in laboratory settings and that operates at near room temperature, can enhance Temozolomide (TMZ) cytotoxicity on a glioblastoma cell line (U87MG). Temozolomide is the first line of treatment for glioblastoma, one of the most aggressive brain tumors that remains incurable despite advancements with treatment modalities. The cellular response to a single CAP treatment followed by three treatments with TMZ was monitored with a cell viability assay. According to the cell viability results, CAP treatment successfully augmented the effect of a cytotoxic TMZ dose (50 μM) and further restored the effect of a non-cytotoxic TMZ dose (10 μM). Application of CAP in conjunction TMZ increased DNA damage measured by the phosphorylation of H2AX and induced G2/M cell cycle arrest. These findings were supported by additional data indicating reduced cell migration and increased αvβ3 and αvβ5 cell surface integrin expression as a result of combined CAP–TMZ treatment. The data presented in this study serve as evidence that CAP technology can be a suitable candidate for combination therapy with existing chemotherapeutic drugs. CAP can also be investigated in future studies for sensitizing glioblastoma cells to TMZ and other drugs available in the market.
Collapse
|
15
|
Deville SS, Delgadillo Silva LF, Vehlow A, Cordes N. c-Abl Tyrosine Kinase Is Regulated Downstream of the Cytoskeletal Protein Synemin in Head and Neck Squamous Cell Carcinoma Radioresistance and DNA Repair. Int J Mol Sci 2020; 21:ijms21197277. [PMID: 33019757 PMCID: PMC7583921 DOI: 10.3390/ijms21197277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 12/24/2022] Open
Abstract
The intermediate filament synemin has been previously identified as novel regulator of cancer cell therapy resistance and DNA double strand break (DSB) repair. c-Abl tyrosine kinase is involved in both of these processes. Using PamGene technology, we performed a broad-spectrum kinase activity profiling in three-dimensionally, extracellular matrix grown head and neck cancer cell cultures. Upon synemin silencing, we identified 86 deactivated tyrosine kinases, including c-Abl, in irradiated HNSCC cells. Upon irradiation and synemin inhibition, c-Abl hyperphosphorylation on tyrosine (Y) 412 and threonine (T) 735 was significantly reduced, prompting us to hypothesize that c-Abl tyrosine kinase is an important signaling component of the synemin-mediated radioresistance pathway. Simultaneous targeting of synemin and c-Abl resulted in similar radiosensitization and DSB repair compared with single synemin depletion, suggesting synemin as an upstream regulator of c-Abl. Immunoprecipitation assays revealed a protein complex formation between synemin and c-Abl pre- and post-irradiation. Upon pharmacological inhibition of ATM, synemin/c-Abl protein-protein interactions were disrupted implying synemin function to depend on ATM kinase activity. Moreover, deletion of the SH2 domain of c-Abl demonstrated a decrease in interaction, indicating the dependency of the protein-protein interaction on this domain. Mechanistically, radiosensitization upon synemin knockdown seems to be associated with an impairment of DNA repair via regulation of non-homologous end joining independent of c-Abl function. Our data generated in more physiological 3D cancer cell culture models suggest c-Abl as further key determinant of radioresistance downstream of synemin.
Collapse
Affiliation(s)
- Sara Sofia Deville
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (S.S.D.); (A.V.)
- Helmholtz-Zentrum Dresden—Rossendorf (HZDR), Institute of Radiooncology—OncoRay, 01328 Dresden, Germany
| | | | - Anne Vehlow
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (S.S.D.); (A.V.)
- National Center for Tumor Diseases, Partner Site Dresden, German Cancer Research Center, 69120 Heidelberg, Germany
- German Cancer Consortium, Partner Site Dresden, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Nils Cordes
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (S.S.D.); (A.V.)
- Helmholtz-Zentrum Dresden—Rossendorf (HZDR), Institute of Radiooncology—OncoRay, 01328 Dresden, Germany
- German Cancer Consortium, Partner Site Dresden, German Cancer Research Center, 69120 Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Correspondence: ; Tel.: +49-(0)351–458–7401; Fax: +49-(0)351–458–7311
| |
Collapse
|
16
|
Samaržija I, Dekanić A, Humphries JD, Paradžik M, Stojanović N, Humphries MJ, Ambriović-Ristov A. Integrin Crosstalk Contributes to the Complexity of Signalling and Unpredictable Cancer Cell Fates. Cancers (Basel) 2020; 12:E1910. [PMID: 32679769 PMCID: PMC7409212 DOI: 10.3390/cancers12071910] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 12/12/2022] Open
Abstract
Integrins are heterodimeric cell surface receptors composed of α and β subunits that control adhesion, proliferation and gene expression. The integrin heterodimer binding to ligand reorganises the cytoskeletal networks and triggers multiple signalling pathways that can cause changes in cell cycle, proliferation, differentiation, survival and motility. In addition, integrins have been identified as targets for many different diseases, including cancer. Integrin crosstalk is a mechanism by which a change in the expression of a certain integrin subunit or the activation of an integrin heterodimer may interfere with the expression and/or activation of other integrin subunit(s) in the very same cell. Here, we review the evidence for integrin crosstalk in a range of cellular systems, with a particular emphasis on cancer. We describe the molecular mechanisms of integrin crosstalk, the effects of cell fate determination, and the contribution of crosstalk to therapeutic outcomes. Our intention is to raise awareness of integrin crosstalk events such that the contribution of the phenomenon can be taken into account when researching the biological or pathophysiological roles of integrins.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.S.); (M.P.); (N.S.)
| | - Ana Dekanić
- Laboratory for Protein Dynamics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Jonathan D. Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK; (J.D.H.); (M.J.H.)
| | - Mladen Paradžik
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.S.); (M.P.); (N.S.)
| | - Nikolina Stojanović
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.S.); (M.P.); (N.S.)
| | - Martin J. Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK; (J.D.H.); (M.J.H.)
| | - Andreja Ambriović-Ristov
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.S.); (M.P.); (N.S.)
| |
Collapse
|
17
|
Role of Rad51 and DNA repair in cancer: A molecular perspective. Pharmacol Ther 2020; 208:107492. [PMID: 32001312 DOI: 10.1016/j.pharmthera.2020.107492] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/13/2020] [Accepted: 01/22/2020] [Indexed: 12/24/2022]
Abstract
The maintenance of genome integrity is essential for any organism survival and for the inheritance of traits to offspring. To the purpose, cells have developed a complex DNA repair system to defend the genetic information against both endogenous and exogenous sources of damage. Accordingly, multiple repair pathways can be aroused from the diverse forms of DNA lesions, which can be effective per se or via crosstalk with others to complete the whole DNA repair process. Deficiencies in DNA healing resulting in faulty repair and/or prolonged DNA damage can lead to genes mutations, chromosome rearrangements, genomic instability, and finally carcinogenesis and/or cancer progression. Although it might seem paradoxical, at the same time such defects in DNA repair pathways may have therapeutic implications for potential clinical practice. Here we provide an overview of the main DNA repair pathways, with special focus on the role played by homologous repair and the RAD51 recombinase protein in the cellular DNA damage response. We next discuss the recombinase structure and function per se and in combination with all its principal mediators and regulators. Finally, we conclude with an analysis of the manifold roles that RAD51 plays in carcinogenesis, cancer progression and anticancer drug resistance, and conclude this work with a survey of the most promising therapeutic strategies aimed at targeting RAD51 in experimental oncology.
Collapse
|
18
|
Zhu C, Kong Z, Wang B, Cheng W, Wu A, Meng X. ITGB3/CD61: a hub modulator and target in the tumor microenvironment. Am J Transl Res 2019; 11:7195-7208. [PMID: 31934272 PMCID: PMC6943458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
β3 integrin (ITGB3), also known as CD61 or GP3A, is one of the most widely studied components in the integrin family. As an adhesion receptor on the cell surface, ITGB3 participates in reprogramming tumor metabolism, shaping the stromal and immune microenvironment, facilitating epithelial to mesenchymal transition (EMT) and endothelial to mesenchymal transition (End-MT) and maintaining tumor stemness, etc. Recent studies proposed various intervention strategies against ITGB3 and have achieved promising outcomes in several types of tumor. Here, we review the adaption response and cellular crosstalk in the tumor microenvironment mediated by ITGB3, as well as its upstream and downstream signaling pathways. Lastly, we focus on the inhibitors of ITGB3, ultimately indicating that ITGB3 is a promising target in the tumor microenvironment.
Collapse
Affiliation(s)
- Chen Zhu
- Department of Neurosurgery, The First Hospital of China Medical UniversityShenyang, Liaoning, China
| | - Ziqing Kong
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical UniversityShenyang, Liaoning, China
| | - Biao Wang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical UniversityShenyang, Liaoning, China
| | - Wen Cheng
- Department of Neurosurgery, The First Hospital of China Medical UniversityShenyang, Liaoning, China
| | - Anhua Wu
- Department of Neurosurgery, The First Hospital of China Medical UniversityShenyang, Liaoning, China
| | - Xin Meng
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical UniversityShenyang, Liaoning, China
| |
Collapse
|
19
|
Deville SS, Cordes N. The Extracellular, Cellular, and Nuclear Stiffness, a Trinity in the Cancer Resistome-A Review. Front Oncol 2019; 9:1376. [PMID: 31867279 PMCID: PMC6908495 DOI: 10.3389/fonc.2019.01376] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
Alterations in mechano-physiological properties of a tissue instigate cancer burdens in parallel to common genetic and epigenetic alterations. The chronological and mechanistic interrelation between the various extra- and intracellular aspects remains largely elusive. Mechano-physiologically, integrins and other cell adhesion molecules present the main mediators for transferring and distributing forces between cells and the extracellular matrix (ECM). These cues are channeled via focal adhesion proteins, termed the focal adhesomes, to cytoskeleton and nucleus and vice versa thereby affecting the pathophysiology of multicellular cancer tissues. In combination with simultaneous activation of diverse downstream signaling pathways, the phenotypes of cancer cells are created and driven characterized by deregulated transcriptional and biochemical cues that elicit the hallmarks of cancer. It, however, remains unclear how elastostatic modifications, i.e., stiffness, in the extracellular, intracellular, and nuclear compartment contribute and control the resistance of cancer cells to therapy. In this review, we discuss how stiffness of unique tumor components dictates therapy response and what is known about the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Sara Sofia Deville
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Helmholtz-Zentrum Dresden - Rossendorf, Technische Universität Dresden, Dresden, Germany
- Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Nils Cordes
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Helmholtz-Zentrum Dresden - Rossendorf, Technische Universität Dresden, Dresden, Germany
- Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- Germany German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
20
|
The predictive capability of immunohistochemistry and DNA sequencing for determining TP53 functional mutation status: a comparative study of 41 glioblastoma patients. Oncotarget 2019; 10:6204-6218. [PMID: 31692772 PMCID: PMC6817445 DOI: 10.18632/oncotarget.27252] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 09/10/2019] [Indexed: 02/02/2023] Open
Abstract
Tumor protein 53 (p53) regulates fundamental pathways of cellular growth and differentiation. Aberrant p53 expression in glioblastoma multiforme, a terminal brain cancer, has been associated with worse patient outcomes and decreased chemosensitivity. Therefore, correctly identifying p53 status in glioblastoma is of great clinical significance. p53 immunohistochemistry is used to detect pathological presence of the TP53 gene product. Here, we examined the relationship between p53 immunoreactivity and TP53 mutation status by DNA Sanger sequencing in adult glioblastoma. Of 41 histologically confirmed samples, 27 (66%) were immunopositive for a p53 mutation via immunohistochemistry. Utilizing gene sequencing, we identified only eight samples (20%) with TP53 functional mutations and one sample with a silent mutation. Therefore, a ≥10% p53 immunohistochemistry threshold for predicting TP53 functional mutation status in glioma is insufficient. Implementing this ≥10% threshold, we demonstrated a remarkably low positive-predictive value (30%). Furthermore, the sensitivity and specificity with ≥10% p53 immunohistochemistry to predict TP53 functional mutation status were 100% and 42%, respectively. Our data suggests that unless reliable sequencing methodology is available for confirming TP53 status, raising the immunoreactivity threshold would increase positive and negative predictive values as well as the specificity without changing the sensitivity of the immunohistochemistry assay.
Collapse
|
21
|
Tomicic MT, Steigerwald C, Rasenberger B, Brozovic A, Christmann M. Functional mismatch repair and inactive p53 drive sensitization of colorectal cancer cells to irinotecan via the IAP antagonist BV6. Arch Toxicol 2019; 93:2265-2277. [PMID: 31289894 DOI: 10.1007/s00204-019-02513-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/04/2019] [Indexed: 11/26/2022]
Abstract
A common strategy to overcome acquired chemotherapy resistance is the combination of a specific anticancer drug (e.g., topoisomerase I inhibitor irinotecan) together with a putative sensitizer. The purpose of this study was to analyze the cytostatic/cytotoxic response of colorectal carcinoma (CRC) cells to irinotecan, depending on the mismatch repair (MMR) and p53 status and to examine the impact of BV6, a bivalent antagonist of inhibitors of apoptosis c-IAP1/c-IAP2, alone or combined with irinotecan. Therefore, several MSH2- or MSH6-deficient cell lines were complemented for MMR deficiency, or MSH6 was knocked out/down in MMR-proficient cells. Upon irinotecan, MMR-deficient/p53-mutated lines repaired DNA double-strand breaks by homologous recombination less efficiently than MMR-proficient/p53-mutated lines and underwent elevated caspase-9-dependent apoptosis. Opposite, BV6-mediated sensitization was achieved only in MMR-proficient/p53-mutated cells. In those cells, c-IAP1 and c-IAP2 were effectively degraded by BV6, caspase-8 was fully activated, and both canonical and non-canonical NF-κB signaling were triggered. The results were confirmed ex vivo in tumor organoids from CRC patients. Therefore, the particular MMR+/p53mt signature, often found in non-metastasizing (stage II) CRC might be used as a prognostic factor for an adjuvant therapy using low-dose irinotecan combined with a bivalent IAP antagonist.
Collapse
Affiliation(s)
- Maja T Tomicic
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, 55130, Mainz, Germany.
| | - Christian Steigerwald
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, 55130, Mainz, Germany
| | - Birgit Rasenberger
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, 55130, Mainz, Germany
| | - Anamaria Brozovic
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, 55130, Mainz, Germany
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Markus Christmann
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, 55130, Mainz, Germany
| |
Collapse
|
22
|
Stojanović N, Dekanić A, Paradžik M, Majhen D, Ferenčak K, Ruščić J, Bardak I, Supina C, Tomicic MT, Christmann M, Osmak M, Ambriović-Ristov A. Differential Effects of Integrin αv Knockdown and Cilengitide on Sensitization of Triple-Negative Breast Cancer and Melanoma Cells to Microtubule Poisons. Mol Pharmacol 2018; 94:1334-1351. [PMID: 30262596 DOI: 10.1124/mol.118.113027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/20/2018] [Indexed: 02/14/2025] Open
Abstract
Low survival rates of patients with metastatic triple-negative breast cancer (TNBC) and melanoma, in which current therapies are ineffective, emphasize the need for new therapeutic approaches. Integrin β1 appears to be a promising target when combined with chemotherapy, but recent data have shown that its inactivation increases metastatic potential owing to the compensatory upregulation of other integrin subunits. Consequently, we analyzed the potential of integrin subunits αv, α3, or α4 as targets for improved therapy in seven TNBC and melanoma cell lines. Experiments performed in an integrin αvβ1-negative melanoma cell line, MDA-MB-435S, showed that knockdown of integrin subunit αv increased sensitivity to microtubule poisons vincristine or paclitaxel and decreased migration and invasion. In the MDA-MB-435S cell line, we also identified a phenomenon in which change in the expression of one integrin subunit changes the expression of other integrins, leading to an unpredictable influence on sensitivity to anticancer drugs and cell migration, referred to as the integrin switching effect. In a panel of six TNBCs and melanoma cell lines, the contribution of integrins αv versus integrins αvβ3/β5 was assessed by the combined action of αv-specific small interfering RNA or αvβ3/β5 inhibitor cilengitide with paclitaxel. Our results suggest that, for TNBC, knockdown of integrin αv in combination with paclitaxel presents a better therapeutic option than a combination of cilengitide with paclitaxel; however, in melanoma, neither of these combinations is advisable because a decreased sensitivity to paclitaxel was observed.
Collapse
Affiliation(s)
- Nikolina Stojanović
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia (N.S., A.D., M.P., D.M., K.F., J.R., I.B., C.S., M.O., A.A.-R.) and Department of Toxicology, University Medical Center Mainz, Mainz, Germany (M.T.T., M.C.)
| | - Ana Dekanić
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia (N.S., A.D., M.P., D.M., K.F., J.R., I.B., C.S., M.O., A.A.-R.) and Department of Toxicology, University Medical Center Mainz, Mainz, Germany (M.T.T., M.C.)
| | - Mladen Paradžik
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia (N.S., A.D., M.P., D.M., K.F., J.R., I.B., C.S., M.O., A.A.-R.) and Department of Toxicology, University Medical Center Mainz, Mainz, Germany (M.T.T., M.C.)
| | - Dragomira Majhen
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia (N.S., A.D., M.P., D.M., K.F., J.R., I.B., C.S., M.O., A.A.-R.) and Department of Toxicology, University Medical Center Mainz, Mainz, Germany (M.T.T., M.C.)
| | - Krešimir Ferenčak
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia (N.S., A.D., M.P., D.M., K.F., J.R., I.B., C.S., M.O., A.A.-R.) and Department of Toxicology, University Medical Center Mainz, Mainz, Germany (M.T.T., M.C.)
| | - Jelena Ruščić
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia (N.S., A.D., M.P., D.M., K.F., J.R., I.B., C.S., M.O., A.A.-R.) and Department of Toxicology, University Medical Center Mainz, Mainz, Germany (M.T.T., M.C.)
| | - Irena Bardak
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia (N.S., A.D., M.P., D.M., K.F., J.R., I.B., C.S., M.O., A.A.-R.) and Department of Toxicology, University Medical Center Mainz, Mainz, Germany (M.T.T., M.C.)
| | - Christine Supina
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia (N.S., A.D., M.P., D.M., K.F., J.R., I.B., C.S., M.O., A.A.-R.) and Department of Toxicology, University Medical Center Mainz, Mainz, Germany (M.T.T., M.C.)
| | - Maja T Tomicic
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia (N.S., A.D., M.P., D.M., K.F., J.R., I.B., C.S., M.O., A.A.-R.) and Department of Toxicology, University Medical Center Mainz, Mainz, Germany (M.T.T., M.C.)
| | - Markus Christmann
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia (N.S., A.D., M.P., D.M., K.F., J.R., I.B., C.S., M.O., A.A.-R.) and Department of Toxicology, University Medical Center Mainz, Mainz, Germany (M.T.T., M.C.)
| | - Maja Osmak
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia (N.S., A.D., M.P., D.M., K.F., J.R., I.B., C.S., M.O., A.A.-R.) and Department of Toxicology, University Medical Center Mainz, Mainz, Germany (M.T.T., M.C.)
| | - Andreja Ambriović-Ristov
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia (N.S., A.D., M.P., D.M., K.F., J.R., I.B., C.S., M.O., A.A.-R.) and Department of Toxicology, University Medical Center Mainz, Mainz, Germany (M.T.T., M.C.)
| |
Collapse
|
23
|
Aasland D, Götzinger L, Hauck L, Berte N, Meyer J, Effenberger M, Schneider S, Reuber EE, Roos WP, Tomicic MT, Kaina B, Christmann M. Temozolomide Induces Senescence and Repression of DNA Repair Pathways in Glioblastoma Cells via Activation of ATR-CHK1, p21, and NF-κB. Cancer Res 2018; 79:99-113. [PMID: 30361254 DOI: 10.1158/0008-5472.can-18-1733] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/07/2018] [Accepted: 10/22/2018] [Indexed: 11/16/2022]
Abstract
The DNA-methylating drug temozolomide, which induces cell death through apoptosis, is used for the treatment of malignant glioma. Here, we investigate the mechanisms underlying the ability of temozolomide to induce senescence in glioblastoma cells. Temozolomide-induced senescence was triggered by the specific DNA lesion O6-methylguanine (O6MeG) and characterized by arrest of cells in the G2-M phase. Inhibitor experiments revealed that temozolomide-induced senescence was initiated by damage recognition through the MRN complex, activation of the ATR/CHK1 axis of the DNA damage response pathway, and mediated by degradation of CDC25c. Temozolomide-induced senescence required functional p53 and was dependent on sustained p21 induction. p53-deficient cells, not expressing p21, failed to induce senescence, but were still able to induce a G2-M arrest. p14 and p16, targets of p53, were silenced in our cell system and did not seem to play a role in temozolomide-induced senescence. In addition to p21, the NF-κB pathway was required for senescence, which was accompanied by induction of the senescence-associated secretory phenotype. Upon temozolomide exposure, we found a strong repression of the mismatch repair proteins MSH2, MSH6, and EXO1 as well as the homologous recombination protein RAD51, which was downregulated by disruption of the E2F1/DP1 complex. Repression of these repair factors was not observed in G2-M arrested p53-deficient cells and, therefore, it seems to represent a specific trait of temozolomide-induced senescence. SIGNIFICANCE: These findings reveal a mechanism by which the anticancer drug temozolomide induces senescence and downregulation of DNA repair pathways in glioma cells.
Collapse
Affiliation(s)
- Dorthe Aasland
- Department of Toxicology, University Medical Center Mainz, Mainz, Germany
| | - Laura Götzinger
- Department of Toxicology, University Medical Center Mainz, Mainz, Germany
| | - Laura Hauck
- Department of Toxicology, University Medical Center Mainz, Mainz, Germany
| | - Nancy Berte
- Department of Toxicology, University Medical Center Mainz, Mainz, Germany
| | - Jessica Meyer
- Department of Toxicology, University Medical Center Mainz, Mainz, Germany
| | | | - Simon Schneider
- Department of Toxicology, University Medical Center Mainz, Mainz, Germany
| | - Emelie E Reuber
- Department of Toxicology, University Medical Center Mainz, Mainz, Germany
| | - Wynand P Roos
- Department of Toxicology, University Medical Center Mainz, Mainz, Germany
| | - Maja T Tomicic
- Department of Toxicology, University Medical Center Mainz, Mainz, Germany.
| | - Bernd Kaina
- Department of Toxicology, University Medical Center Mainz, Mainz, Germany.
| | - Markus Christmann
- Department of Toxicology, University Medical Center Mainz, Mainz, Germany.
| |
Collapse
|
24
|
Paolillo M, Galiazzo MC, Daga A, Ciusani E, Serra M, Colombo L, Schinelli S. An RGD small-molecule integrin antagonist induces detachment-mediated anoikis in glioma cancer stem cells. Int J Oncol 2018; 53:2683-2694. [PMID: 30280197 DOI: 10.3892/ijo.2018.4583] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/20/2018] [Indexed: 11/05/2022] Open
Abstract
The malignancy of glioblastoma (GB) is primarily due to the ability of glioma cancer stem cells (GSC) to disseminate into surrounding brain tissues, despite surgery and chemotherapy, and to form new tumoral masses. Members of the RGD-binding integrin family, which recognize the arginine-glycine-aspartic acid (RGD) sequence present in components of the extracellular matrix, and which serve a crucial function in the dissemination of GCS, are overexpressed in GB. Small-molecule integrin antagonists (SMIAs) designed to recognize RGD-integrins may therefore be an effective tool for decreasing GB infiltration and recurrence. In the present study, in vitro pro-apoptotic and infiltrative effects elicited by the SMIA 1a‑RGD in human GSC were investigated. Reverse transcription-quantitative polymerase chain reaction analysis revealed that, compared with normal human astrocytes, GSC grown on laminin-coated dishes overexpressed stemness markers as well as αvβ3 and αvβ5 integrins. In addition, dissociated GSC were identified to exhibit tumorigenic capacity when injected into immunodeficient mice. Using annexin/fluorescence-activated cell sorting analysis and ELISA nucleosome assays, it was identified that treatment of GSC with 25 µM 1a‑RGD for 48 h elicited detachment‑dependent anoikis not accompanied by necrosis-dependent cell death. A colorimetric proliferation assay indicated that 1a‑RGD did not affect cell viability, but that, instead, it markedly inhibited GSC migration as assessed using a Transwell assay. Western blot experiments revealed a decrease in focal adhesion kinase and protein kinase B phosphorylation with a concomitant increase in caspase-9 and -3/7 activity following 1a‑RGD treatment, suggesting that the pro-anoikis effects of 1a‑RGD may be mediated by these molecular mechanisms. Western blot analysis revealed no changes in specific markers of autophagy, suggesting further that 1a‑RGD-induced cell death is primarily sustained by anoikis-associated mechanisms. In conclusion, the results of the present study indicate that SMIA have potential as a therapeutic tool for decreasing GSC dissemination.
Collapse
Affiliation(s)
- Mayra Paolillo
- Department of Drug Sciences, University of Pavia, I-27100 Pavia, Italy
| | - Marisa C Galiazzo
- Department of Drug Sciences, University of Pavia, I-27100 Pavia, Italy
| | - Antonio Daga
- Institute for Research, Hospitalization and Care-University Hospital (IRCCS-AOU) San Martino-Cancer Research Institute (IST), I-16132 Genoa, Italy
| | - Emilio Ciusani
- Fondazione IRCCS Neurological Institute C. Besta, I-20133 Milan, Italy
| | - Massimo Serra
- Department of Drug Sciences, University of Pavia, I-27100 Pavia, Italy
| | - Lino Colombo
- Department of Drug Sciences, University of Pavia, I-27100 Pavia, Italy
| | - Sergio Schinelli
- Department of Drug Sciences, University of Pavia, I-27100 Pavia, Italy
| |
Collapse
|
25
|
Schnell O, Albrecht V, Pfirrmann D, Eigenbrod S, Krebs B, Romagna A, Siller S, Giese A, Tonn JC, Schichor C. MGMT promoter methylation is not correlated with integrin expression in malignant gliomas: clarifying recent clinical trial results. Med Oncol 2018; 35:103. [PMID: 29882028 DOI: 10.1007/s12032-018-1162-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 11/28/2022]
Abstract
Integrin alpha-v-beta-3 (αvβ3) is important for invasive tumor growth and angiogenesis in glioblastomas (GBM). However, recent clinical trials on inhibition of this integrin led to ambiguous results whether patients with methylated or unmethylated 6O-methylguanine methyltransferase (MGMT) promoter might profit from this kind of therapy. Therefore, we addressed the still unanswered question about a possible correlation between integrin αvβ3 expression and MGMT promoter methylation in GBM. For this purpose, tumor samples from newly diagnosed and untreated GBM patients with methylated (n = 22) or unmethylated (n = 17) MGMT promoter were simultaneously analyzed for integrin αvβ3 expression by an automated immunohistochemical staining platform. Interestingly, subsequent semi-quantitative analysis by a special imaging software did not show any difference in integrin expression between patients with methylated or unmethylated MGMT promoter status. Moreover, further analysis of the integrin subunits via ELISA from histologic sections revealed that there is no difference in integrin subunit expression between these patients. Hence, our results are important for designing future clinical trials with respect to treatment stratification, while it still has to be identified which other molecular factors determine differential responses to targeted anti-integrin αvβ3 treatment.
Collapse
Affiliation(s)
- Oliver Schnell
- Department of Neurosurgery, Universitaetsklinikum Freiburg, Breisacher Strasse 64, 79106, Freiburg, Germany. .,Department of Neurosurgery, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Valerie Albrecht
- Department of Neurosurgery, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| | - David Pfirrmann
- Department of Neurosurgery, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sabina Eigenbrod
- Center for Neuropathology and Prion Research (ZNP), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bjarne Krebs
- Center for Neuropathology and Prion Research (ZNP), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Alexander Romagna
- Department of Neurosurgery, Medical Center University of Salzburg, Salzburg, Austria
| | - Sebastian Siller
- Department of Neurosurgery, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| | - Armin Giese
- Center for Neuropathology and Prion Research (ZNP), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jörg-Christian Tonn
- Department of Neurosurgery, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Schichor
- Department of Neurosurgery, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
26
|
Alterations in Cell Motility, Proliferation, and Metabolism in Novel Models of Acquired Temozolomide Resistant Glioblastoma. Sci Rep 2018; 8:7222. [PMID: 29740146 PMCID: PMC5940876 DOI: 10.1038/s41598-018-25588-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/23/2018] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma (GBM) is an aggressive and incurable tumor of the brain with limited treatment options. Current first-line standard of care is the DNA alkylating agent temozolomide (TMZ), but this treatment strategy adds only ~4 months to median survival due to the rapid development of resistance. While some mechanisms of TMZ resistance have been identified, they are not fully understood. There are few effective strategies to manage therapy resistant GBM, and we lack diverse preclinical models of acquired TMZ resistance in which to test therapeutic strategies on TMZ resistant GBM. In this study, we create and characterize two new GBM cell lines resistant to TMZ in vitro, based on the 8MGBA and 42MGBA cell lines. Analysis of the TMZ resistant (TMZres) variants in conjunction with their parental, sensitive cell lines shows that acquisition of TMZ resistance is accompanied by broad phenotypic changes, including increased proliferation, migration, chromosomal aberrations, and secretion of cytosolic lipids. Importantly, each TMZ resistant model captures a different facet of the “go” (8MGBA-TMZres) or “grow” (42MGBA-TMZres) hypothesis of GBM behavior. These in vitro model systems will be important additions to the available tools for investigators seeking to define molecular mechanisms of acquired TMZ resistance.
Collapse
|
27
|
Enferadi M, Fu SY, Hong JH, Tung CJ, Chao TC, Wey SP, Chiu CH, Wang CC, Sadeghi M. Radiosensitization of ultrasmall GNP-PEG-cRGDfK in ALTS1C1 exposed to therapeutic protons and kilovoltage and megavoltage photons. Int J Radiat Biol 2018; 94:124-136. [PMID: 29172866 DOI: 10.1080/09553002.2018.1407462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE One of the promising radiosensitizers is the ultrasmall gold nanoparticle (GNP) with a hydrodynamic diameter <3 nm. We studied functionalized ultrasmall GNPs (1.8 nm diameter) coated by polyethylene glycol (PEG) and conjugated with cyclic RGDfK (2.6 nm hydrodynamic diameter) for targeting of alpha(v) beta(3) integrin (αvβ3) in the murine ALTS1C1 glioma cell line. MATERIALS AND METHODS We investigated the uptake, toxicity and radiosensitivity of GNP-PEG-cRGDfKs in ALTS1C1 cells exposed to protons, kilovoltage photons and megavoltage photons. The in vitro uptake and toxicity of GNPs in the hepatocytes and Kupffer cells were assessed for murine AML12 hepatocyte and RAW 264.7 macrophage cell lines. The in vivo biodistribution of GNPs in the ALTS1C1 tumor model was tested using the inductively coupled plasma mass spectrometry. RESULTS Results indicated GNPs accumulated in the cytoplasm with negligible toxicity for a moderate concentration of GNPs. Observed sensitizer enhancement ratios and dose enhancement factors are 1.21-1.66 and 1.14-1.33, respectively, for all radiations. CONCLUSION Ultrasmall GNP-PEG-cRGD can be considered as a radiosensitizer. For radiotherapy applications, the delivery method should be developed to increase the GNP uptake in the tumor and decrease the uptakes in undesirable organs.
Collapse
Affiliation(s)
- Milad Enferadi
- a Department of Medical Imaging and Radiological Sciences, College of Medicine , Chang Gung University , Tao-yuan , Taiwan
| | - Sheng-Yung Fu
- b Department of Biomedical Engineering and Environmental Sciences , National Tsing Hua University , Hsinchu , Taiwan.,c Department of Radiation Oncology , Chang Gung Memorial Hospital , Tao-Yuan , Taiwan
| | - Ji-Hong Hong
- c Department of Radiation Oncology , Chang Gung Memorial Hospital , Tao-Yuan , Taiwan.,d Radiation Biology Research Center, Institute for Radiological Research , Chang Gung University/Chang Gung Memorial Hospital , Tao-Yuan , Taiwan
| | - Chuan-Jong Tung
- a Department of Medical Imaging and Radiological Sciences, College of Medicine , Chang Gung University , Tao-yuan , Taiwan.,e Medical Physics Research Center, Institute for Radiological Research , Chang Gung University/Chang Gung Memorial Hospital , Tao-Yuan , Taiwan
| | - Tsi-Chian Chao
- a Department of Medical Imaging and Radiological Sciences, College of Medicine , Chang Gung University , Tao-yuan , Taiwan.,e Medical Physics Research Center, Institute for Radiological Research , Chang Gung University/Chang Gung Memorial Hospital , Tao-Yuan , Taiwan
| | - Shiaw-Pyng Wey
- a Department of Medical Imaging and Radiological Sciences, College of Medicine , Chang Gung University , Tao-yuan , Taiwan
| | - Chun-Hui Chiu
- f Graduate Institute of Health-Industry Technology, Research Center for Food and Cosmetic Safety, College of Human Ecology , Chang Gung University of Science and Technology , Tao-Yuan , Taiwan
| | - Chun-Chieh Wang
- c Department of Radiation Oncology , Chang Gung Memorial Hospital , Tao-Yuan , Taiwan
| | - Mahdi Sadeghi
- g Medical Physics Department, School of Medicine , Iran University of Medical Science , Tehran , Iran
| |
Collapse
|
28
|
Aasland D, Reich TR, Tomicic MT, Switzeny OJ, Kaina B, Christmann M. Repair gene O 6 -methylguanine-DNA methyltransferase is controlled by SP1 and up-regulated by glucocorticoids, but not by temozolomide and radiation. J Neurochem 2018; 144:139-151. [PMID: 29164620 DOI: 10.1111/jnc.14262] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/05/2017] [Accepted: 11/14/2017] [Indexed: 12/27/2022]
Abstract
Therapy of malignant glioma relies on treatment with the O6 -methylating agent temozolomide (TMZ) concomitant with ionizing radiation followed by adjuvant TMZ. For the treatment of recurrences, DNA chloroethylating drugs are also used. The main killing lesion induced by these drugs is O6 -alkylguanine. Since this damage is repaired by O6 -methylguanine-DNA methyltransferase (MGMT), the repair enzyme represents a most important factor of drug resistance, limiting the therapy of malignant high-grade gliomas. Although MGMT has been shown to be transcriptionally up-regulated in rodents following genotoxic stress, it is still unclear whether human MGMT is subject to up-regulation. Here, we addressed the question whether MGMT in glioma cells is enhanced following alkylating drugs or ionizing radiation, using promoter assays. We also checked the response of glioma cell lines to dexamethasone. In a series of experiments, we found no evidence that the human MGMT promoter is significantly up-regulated following treatment with TMZ, the chloroethylating agent nimustine or radiation. It was activated, however, by dexamethasone. Using deletion constructs, we further show that the basal level of MGMT is mainly determined by the transcription factor SP1. The high amount of SP1 sites in the MGMT promoter likely prevents transcriptional up-regulation following genotoxic stress by neutralizing inducible signals. The regulation of MGMT by miRNAs plays only a minor role, as shown by DICER knockdown experiments. Since high dose dexamethasone concomitant with temozolomide is frequently used in glioblastoma therapy, induction of the MGMT gene through glucocorticoids in MGMT promoter unmethylated cases might cause further elevation of drug resistance, while radiation and alkylating drugs seem not to induce MGMT at transcriptional level.
Collapse
Affiliation(s)
- Dorthe Aasland
- Department of Toxicology, University Medical Center Mainz, Mainz, Germany
| | - Thomas R Reich
- Department of Toxicology, University Medical Center Mainz, Mainz, Germany
| | - Maja T Tomicic
- Department of Toxicology, University Medical Center Mainz, Mainz, Germany
| | - Olivier J Switzeny
- Department of Toxicology, University Medical Center Mainz, Mainz, Germany
| | - Bernd Kaina
- Department of Toxicology, University Medical Center Mainz, Mainz, Germany
| | - Markus Christmann
- Department of Toxicology, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
29
|
Montenegro CF, Casali BC, Lino RLB, Pachane BC, Santos PK, Horwitz AR, Selistre-de-Araujo HS, Lamers ML. Inhibition of αvβ3 integrin induces loss of cell directionality of oral squamous carcinoma cells (OSCC). PLoS One 2017; 12:e0176226. [PMID: 28437464 PMCID: PMC5402964 DOI: 10.1371/journal.pone.0176226] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 04/08/2017] [Indexed: 11/23/2022] Open
Abstract
The connective tissue formed by extracellular matrix (ECM) rich in fibronectin and collagen consists a barrier that cancer cells have to overpass to reach blood vessels and then a metastatic site. Cell adhesion to fibronectin is mediated by αvβ3 and α5β1 integrins through an RGD motif present in this ECM protein, thus making these receptors key targets for cell migration studies. Here we investigated the effect of an RGD disintegrin, DisBa-01, on the migration of human fibroblasts (BJ) and oral squamous cancer cells (OSCC, SCC25) on a fibronectin-rich environment. Time-lapse images were acquired on fibronectin-coated glass-bottomed dishes. Migration speed and directionality analysis indicated that OSCC cells, but not fibroblasts, showed significant decrease in both parameters in the presence of DisBa-01 (1μM and 2μM). Integrin expression levels of the α5, αv and β3 subunits were similar in both cell lines, while β1 subunit is present in lower levels on the cancer cells. Next, we examined whether the effects of DisBa-01 were related to changes in adhesion properties by using paxillin immunostaining and total internal reflection fluorescence TIRF microscopy. OSCCs in the presence of DisBa-01 showed increased adhesion sizes and number of maturing adhesion. The same parameters were analyzed usingβ3-GFP overexpressing cells and showed that β3 overexpression restored cell migration velocity and the number of maturing adhesion that were altered by DisBa-01. Surface plasmon resonance analysis showed that DisBa-01 has 100x higher affinity for αvβ3 integrin than forα5β1 integrin. In conclusion, our results suggest that the αvβ3 integrin is the main receptor involved in cell directionality and its blockage may be an interesting alternative against metastasis.
Collapse
Affiliation(s)
- Cyntia F. Montenegro
- Department of Physiological Sciences, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, São Carlos, São Paulo, Brazil, CEP
| | - Bruna C. Casali
- Department of Physiological Sciences, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, São Carlos, São Paulo, Brazil, CEP
| | - Rafael L. B. Lino
- Department of Physiological Sciences, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, São Carlos, São Paulo, Brazil, CEP
| | - Bianca C. Pachane
- Department of Physiological Sciences, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, São Carlos, São Paulo, Brazil, CEP
| | - Patty K. Santos
- Department of Physiological Sciences, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, São Carlos, São Paulo, Brazil, CEP
| | - Alan R. Horwitz
- Department of Cell Biology, University of Virginia, School of Medicine, Charlottesville, Virginia, United States of America
| | - Heloisa S. Selistre-de-Araujo
- Department of Physiological Sciences, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, São Carlos, São Paulo, Brazil, CEP
- * E-mail:
| | - Marcelo L. Lamers
- Department of Morphological Sciences, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, Porto Alegre, RS, Brazil, CEP
| |
Collapse
|