1
|
Antonio-Andres G, Morales-Martinez M, Jimenez-Hernandez E, Huerta-Yepez S. The Role of PTEN in Chemoresistance Mediated by the HIF-1α/YY1 Axis in Pediatric Acute Lymphoblastic Leukemia. Int J Mol Sci 2024; 25:7767. [PMID: 39063014 PMCID: PMC11276810 DOI: 10.3390/ijms25147767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Current chemotherapy treatment regimens have improved survival rates to approximately 80%; however, resistance development remains the primary cause of treatment failure, affecting around 20% of cases. Some studies indicate that loss of the phosphatase and tensin homolog (PTEN) leads to deregulation of the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, increasing the expression of proteins involved in chemoresistance. PTEN loss results in deregulation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and induces hypoxia-inducible factor 1-alpha (HIF-1α) expression in various cancers. Additionally, it triggers upregulation of the Yin Yang 1 (YY1) transcription factor, leading to chemoresistance mediated by glycoprotein p-170 (Gp-170). The aim of this study was to investigate the role of the PTEN/NF-κB axis in YY1 regulation via HIF-1α and its involvement in ALL. A PTEN inhibitor was administered in RS4;11 cells, followed by the evaluation of PTEN, NF-κB, HIF-1α, YY1, and Gp-170 expression, along with chemoresistance assessment. PTEN, HIF-1α, and YY1 expression levels were assessed in the peripheral blood mononuclear cells (PBMC) from pediatric ALL patients. The results reveal that the inhibition of PTEN activity significantly increases the expression of pAkt and NF-κB, which is consistent with the increase in the expression of HIF-1α and YY1 in RS4;11 cells. In turn, this inhibition increases the expression of the glycoprotein Gp-170, affecting doxorubicin accumulation in the cells treated with the inhibitor. Samples from pediatric ALL patients exhibit PTEN expression and higher HIF-1α and YY1 expression compared to controls. PTEN/Akt/NF-κB axis plays a critical role in the regulation of YY1 through HIF-1α, and this mechanism contributes to Gp-170-mediated chemoresistance in pediatric ALL.
Collapse
Affiliation(s)
- Gabriela Antonio-Andres
- Oncology Disease Research Unit, Children’s Hospital of Mexico, Federico Gomez, Mexico City 06720, Mexico;
| | - Mario Morales-Martinez
- Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | | | - Sara Huerta-Yepez
- Oncology Disease Research Unit, Children’s Hospital of Mexico, Federico Gomez, Mexico City 06720, Mexico;
| |
Collapse
|
2
|
Downregulation of Stearoyl-CoA Desaturase 1 (SCD-1) Promotes Resistance to Imatinib in Chronic Myeloid Leukemia. Mediterr J Hematol Infect Dis 2023; 15:e2023008. [PMID: 36660357 PMCID: PMC9833301 DOI: 10.4084/mjhid.2023.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a malignant hematopoietic stem cell disease resulting in the fusion of BCR and ABL genes and characterized by the presence of the reciprocal translocation t(9;22)(q34;q11). BCR-ABL, a product of the BCR-ABL fusion gene, is a structurally active tyrosine kinase and plays an important role in CML disease pathogenesis. Imatinib mesylate (IMA) is a strong and selective BCR-ABL tyrosine kinase inhibitor. Although IMA therapy is an effective treatment, patients may develop resistance to IMA therapy over time. This study investigated the possible genetic resistance mechanisms in patients developing resistance to IMA. We did DNA sequencing in order to detect BCR-ABL mutations, which are responsible for IMA resistance. Moreover, we analyzed the mRNA expression levels of genes responsible for apoptosis, such as BCL-2, P53, and other genes (SCD-1, PTEN). In a group of CML patients resistant to IMA, when compared with IMA-sensitive CML patients, a decrease in SCD-1 gene expression levels and an increase in BCL-2 gene expression levels was observed. In this case, the SCD-1 gene was thought to act as a tumor suppressor. The present study aimed to investigate the mechanisms involved in IMA resistance in CML patients and determine new targets that can be beneficial in choosing the effective treatment. Finally, the study suggests that the SCD-1 and BCL-2 genes may be mechanisms responsible for resistance.
Collapse
|
3
|
Cancer stem cell phosphatases. Biochem J 2021; 478:2899-2920. [PMID: 34319405 DOI: 10.1042/bcj20210254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022]
Abstract
Cancer stem cells (CSCs) are involved in the initiation and progression of human malignancies by enabling cancer tissue self-renewal capacity and constituting the therapy-resistant population of tumor cells. However, despite the exhausting characterization of CSC genetics, epigenetics, and kinase signaling, eradication of CSCs remains an unattainable goal in most human malignancies. While phosphatases contribute equally with kinases to cellular phosphoregulation, our understanding of phosphatases in CSCs lags severely behind our knowledge about other CSC signaling mechanisms. Many cancer-relevant phosphatases have recently become druggable, indicating that further understanding of the CSC phosphatases might provide novel therapeutic opportunities. This review summarizes the current knowledge about fundamental, but yet poorly understood involvement of phosphatases in the regulation of major CSC signaling pathways. We also review the functional roles of phosphatases in CSC self-renewal, cancer progression, and therapy resistance; focusing particularly on hematological cancers and glioblastoma. We further discuss the small molecule targeting of CSC phosphatases and their therapeutic potential in cancer combination therapies.
Collapse
|
4
|
Luongo F, Colonna F, Calapà F, Vitale S, Fiori ME, De Maria R. PTEN Tumor-Suppressor: The Dam of Stemness in Cancer. Cancers (Basel) 2019; 11:E1076. [PMID: 31366089 PMCID: PMC6721423 DOI: 10.3390/cancers11081076] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/11/2022] Open
Abstract
PTEN is one of the most frequently inactivated tumor suppressor genes in cancer. Loss or variation in PTEN gene/protein levels is commonly observed in a broad spectrum of human cancers, while germline PTEN mutations cause inherited syndromes that lead to increased risk of tumors. PTEN restrains tumorigenesis through different mechanisms ranging from phosphatase-dependent and independent activities, subcellular localization and protein interaction, modulating a broad array of cellular functions including growth, proliferation, survival, DNA repair, and cell motility. The main target of PTEN phosphatase activity is one of the most significant cell growth and pro-survival signaling pathway in cancer: PI3K/AKT/mTOR. Several shreds of evidence shed light on the critical role of PTEN in normal and cancer stem cells (CSCs) homeostasis, with its loss fostering the CSC compartment in both solid and hematologic malignancies. CSCs are responsible for tumor propagation, metastatic spread, resistance to therapy, and relapse. Thus, understanding how alterations of PTEN levels affect CSC hallmarks could be crucial for the development of successful therapeutic approaches. Here, we discuss the most significant findings on PTEN-mediated control of CSC state. We aim to unravel the role of PTEN in the regulation of key mechanisms specific for CSCs, such as self-renewal, quiescence/cell cycle, Epithelial-to-Mesenchymal-Transition (EMT), with a particular focus on PTEN-based therapy resistance mechanisms and their exploitation for novel therapeutic approaches in cancer treatment.
Collapse
Affiliation(s)
- Francesca Luongo
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Francesca Colonna
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Federica Calapà
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Sara Vitale
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Micol E Fiori
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Ruggero De Maria
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy.
- Scientific Vice-Direction, Fondazione Policlinico Universitario "A. Gemelli"-I.R.C.C.S., Largo Francesco Vito 1-8, 00168 Rome, Italy.
| |
Collapse
|
5
|
Leukemia Stem Cells in Chronic Myeloid Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1143:191-215. [PMID: 31338821 DOI: 10.1007/978-981-13-7342-8_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder characterized by a chromosome translocation that generates the BCR-ABL oncogene encoding a constitutively activated tyrosine kinase. Although BCR-ABL tyrosine kinase inhibitors (TKIs) are highly effective in treating CML at chronic phase, a number of patients develop drug resistance due to the inability of TKIs to kill leukemia stem cells (LSCs). Similar to other types of hematopoietic malignancies, LSCs in CML are believed to be a rare cell population responsible for leukemia initiation, disease progression, and drug resistance. Therefore, a full understanding of the biology of LSCs will help to develop novel therapeutic strategies for effective treatment of CML to possibly reach a cure. In recent years, a significant progress has been made in studying the biology of LSCs in both animal models and human patients at cellular and molecular levels, providing a basis for designing and testing potential molecular targets for eradicating LSCs in CML.
Collapse
|
6
|
Liu D, Zhong L, Yuan Z, Yao J, Zhong P, Liu J, Yao S, Zhao Y, Liu L, Chen M, Li L, Liu B. miR-382-5p modulates the ATRA-induced differentiation of acute promyelocytic leukemia by targeting tumor suppressor PTEN. Cell Signal 2018; 54:1-9. [PMID: 30453015 DOI: 10.1016/j.cellsig.2018.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 01/03/2023]
Abstract
In acute promyelocytic leukemia (APL), all-trans retinoic acid (ATRA) treatment induces granulocytic differentiation and maturation. MicroRNAs play pivotal roles in formation of the leukemic phenotype. Previously, microRNA-382-5p (miR-382-5p) was upregulated in acute myeloid leukemia (AML) with t(15;17). In the present study, we found that miR-382-5p expression was elevated with ATRA-induced differentiation of APL. To investigate the potential functional role of miR-382-5p in APL differentiation, an APL cell line was transfected with miR-382-5p mimics, inhibitors, or negative control (NC). The results showed in APL cell line NB4 that miR-382-5p downregulation upon ATRA treatment was a key event in the drug response. Mechanistic investigations revealed that miR-382-5p targeted the ATRA-regulated tumor suppressor gene PTEN through direct binding to its 3' UTR. Enforced expression of miR-382-5p or specific PTEN inhibitors inhibited ATRA-induced granulocytic differentiation via regulation of the cell cycle regulator cyclinD1. Conversely, PTEN overexpression promoted differentiation and enhanced sensitivity of NB4 cell line to physiological levels of ATRA. Finally, we found that PTEN overexpression restored PML nuclear bodies (NBs). Taken together, these results demonstrated that up-regulated miR-382-5p in NB4 cell line inhibited granulocytic differentiation through the miR-382-5p/PTEN axis, uncovering PTEN as a critical element in the granulocytic differentiation program induced by ATRA in APL.
Collapse
Affiliation(s)
- Dongdong Liu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China; Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Liang Zhong
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Zhen Yuan
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Juanjuan Yao
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Pengqiang Zhong
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Junmei Liu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Shifei Yao
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Yi Zhao
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Lu Liu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Min Chen
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Lianwen Li
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Beizhong Liu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China; Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
7
|
Podshivalova K, Wang EA, Hart T, Salomon DR. Expression of the miR-150 tumor suppressor is restored by and synergizes with rapamycin in a human leukemia T-cell line. Leuk Res 2018; 74:1-9. [PMID: 30269036 PMCID: PMC6290994 DOI: 10.1016/j.leukres.2018.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/21/2018] [Accepted: 09/18/2018] [Indexed: 02/06/2023]
Abstract
miR-150 functions as a tumor suppressor in malignancies of the lymphocyte lineage and its expression is significantly reduced in these cells. However, the mechanism of miR-150 repression is unknown and so are pharmacological interventions that can reverse it. Here, we report that reduced expression of miR-150 in human Jurkat T-cell acute lymphoblastic leukemia (T-ALL) cells is mediated by constitutive mTOR signaling, a common characteristic of T-ALL cell lines and clinical isolates. Activating mTOR signaling in non-malignant T cells also resulted in a significant miR-150 down-regulation. Conversely, treatment with a pharmacological mTOR inhibitor, rapamycin, increased miR-150 expression in a dose-dependent manner in Jurkat cells, as well as in other leukemia cells. Interestingly, ectopic over-expression of miR-150 acted in a feed-forward loop and further sensitized Jurkat cells to a rapamycin-induced cell cycle arrest by targeting a large network of cell cycle genes. These findings suggest that miR-150 is normally expressed in quiescent T lymphocytes to reinforce an anti-proliferative state, and that mTOR signaling promotes cell proliferation in part by inhibiting miR-150 expression. Restoration of the miR-150-dependent anti-proliferative loop constitutes a novel mechanism underlying the efficacy of rapamycin in a T-ALL cell line. Further investigation of this mechanism in clinical isolates of T-ALL and other hematopoietic malignancies could help better guide development of targeted therapies.
Collapse
Affiliation(s)
- Katie Podshivalova
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, United States.
| | - Eileen A Wang
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Traver Hart
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Daniel R Salomon
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, United States
| |
Collapse
|
8
|
Zhang G, Gao X, Zeng H, Li Y, Guo X. Virosecurinine induces apoptosis in human leukemia THP-1 cells and other underlying molecular mechanisms. Oncol Lett 2018; 15:849-854. [PMID: 29399150 PMCID: PMC5772865 DOI: 10.3892/ol.2017.7437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 10/13/2017] [Indexed: 12/02/2022] Open
Abstract
Virosecurinine, a primary alkaloid from Securinega suffruticosa plant is known as a potent differentiation-inducing agent in acute leukemia cells. The present study aimed to investigate the effects and underlying mechanisms of virosecurinine on human leukemia THP-1 cells in vitro. The effects of virosecurinine on cell proliferation were assessed by CCK-8. The effects on apoptosis and cell cycle were assessed by staining with annexin V-fluorescein isothiocyanate and propidium iodide, respectively followed by flow cytometric analysis. The apoptotic cell bodies were observed using a transmission electron microscope, while the mRNA expression of phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), mechanistic target of rapamycin (mTOR) and phosphatase and tensin homolog (PTEN) in THP-1 was evaluated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Treatment with virosecurinine was able to decrease the viability of THP-1 cells in a dose- and time-dependent manner. The IC50 values of virosecurinine at 24, 48, and 72 h post-treatment were 68.128, 23.615, and 13.423 µmol/l, respectively. Cell cycle was arrested at the G1/S phase in virosecurinine-treated cells; however, not in untreated control cells. Numerous apoptotic bodies were observed in the THP-1 cells, which were treated with 12.5 µmol/l virosecurinine for 48 h. RT-qPCR indicated that treatment with virosecurinine resulted in upregulated PTEN expression and downregulated expression of PI3K, AKT and mTOR in THP-1 cells. The present study demonstrated that treatment with virosecurinine was able to inhibit proliferation and induce apoptosis in THP-1cells by exerting an inhibitory effect on the activation of PI3K/AKT/mTOR signaling pathways. Therefore, our data suggested that virosecurinine is a promising anti-tumor agent for the treatment of acute monocytic leukemia.
Collapse
Affiliation(s)
- Gang Zhang
- Department of Hematology, First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Xiaohui Gao
- Department of Pediatrics, First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Hui Zeng
- Department of Hematology, First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Yuan Li
- Department of Hematology, First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Xiaojun Guo
- Department of Hematology, First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| |
Collapse
|
9
|
Shi ZX, Li HY, Yang XD, Gao H, Li DG, Yang WH, Yao F, Yan LX. Yi-qi-yang-yin-tang increases the sensitivity of KG1a leukemia stem cells to daunorubicin by promoting cell cycle progression and regulating the expression of PTEN, TOPOII and mTOR. Oncol Lett 2017; 14:6441-6448. [PMID: 29163680 PMCID: PMC5686439 DOI: 10.3892/ol.2017.7067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 07/14/2017] [Indexed: 11/29/2022] Open
Abstract
The present study aimed to investigate the effects of serum containing a combination of yi-qi-yang-yin-tang (YQYYT) and daunorubicin (DNR) on multidrug resistance in KG1a leukemia stem cells (LSCs). The effects of YQYYT and DNR on proliferation, cell cycle progression and the expression of phosphatase and tensin homolog (PTEN), topoisomerase II (Topo II) and mechanistic target of rapamycin (mTOR) in KG1a cells were investigated in vitro using cell counting kit-8 assay, flow cytometry, reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. It was revealed that YQYYT-containing serum did not affect proliferation of KG1a cells compared with the blank group. Furthermore, there were no significant differences on the inhibition of proliferation among different groups at various concentrations of YQYYT. Treatment with YQYYT-containing serum (volume, 20 and 40 µl) and DNR was able to significantly inhibit the proliferation of KG1a cells compared with the blank group. The inhibition rate in the treatment group with YQYYT-containing serum (40 µl) and DNR for 48 h (72.5%) was higher compared with treatment for 24 h (60.4%, P<0.01). Treatment with YQYYT-containing serum was able to promote G0 phase of KG1a cells into cell cycle in a dose- and time-dependent manner, and significantly upregulated the mRNA expression of PTEN and Topo II, but did not affect mTOR expression compared with the blank group. Treatment with serum containing YQYYT alone did not directly affect the proliferation of KG1a cells, but when the cells were treated with a combination of YQYYT-containing serum and DNR, the proliferation of KG1a cells was significantly inhibited in a dose- and time-dependent manner. Furthermore, treatment with YQYYT-containing serum was able to promote cell cycle progression of KG1a cells in the G0 phase and upregulate the expression of the negative regulatory genes PTEN and Topo II. These results indicated the potential of YQYYT to reverse multidrug resistance in LSCs.
Collapse
Affiliation(s)
- Zhe-Xin Shi
- Department of Hematology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, P.R. China
| | - Hong-Yu Li
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Xiang-Dong Yang
- Department of Hematology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, P.R. China
| | - Hong Gao
- Department of Hematology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, P.R. China
| | - De-Guan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Academy of Medical Science and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Wen-Hua Yang
- Department of Hematology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, P.R. China
| | - Fang Yao
- Department of Hematology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, P.R. China
| | - Li-Xiang Yan
- Department of Hematology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, P.R. China
| |
Collapse
|
10
|
Zhou J, Nie D, Li J, Du X, Lu Y, Li Y, Liu C, Dai W, Wang Y, Jin Y, Pan J. PTEN Is Fundamental for Elimination of Leukemia Stem Cells Mediated by GSK126 Targeting EZH2 in Chronic Myelogenous Leukemia. Clin Cancer Res 2017; 24:145-157. [PMID: 29070525 DOI: 10.1158/1078-0432.ccr-17-1533] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/21/2017] [Accepted: 10/18/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Leukemia stem cells (LSCs) are an important source of tyrosine kinase inhibitor resistance and disease relapse in patients with chronic myelogenous leukemia (CML). Targeting LSCs may be an attractive strategy to override this thorny problem. Given that EZH2 was overexpressed in primary CML CD34+ cells, our purpose in this study was to evaluate the effects of targeting EZH2 on CML LSCs and clarify its underlying mechanism.Experimental Design: Human primary CML CD34+ cells and retrovirally BCR-ABL-driven CML mouse models were employed to evaluate the effects of suppression of EZH2 by GSK126- or EZH2-specific shRNA in vitro and in vivo Recruitment of EZH2 and H3K27me3 on the promoter of tumor-suppressor gene PTEN in CML cells was measured by chromatin immunoprecipitation assay.Results: Our results showed that pharmacologic inhibition of EZH2 by GSK126 not only elicited apoptosis and restricted cell growth in CML bulk leukemia cells, but also decreased LSCs in CML CD34+ cells while sparing those from normal bone marrow CD34+ cells. Suppression of EZH2 by GSK126 or specific shRNA prolonged survival of CML mice and reduced the number of LSCs in mice. EZH2 knockdown resulted in elevation of PTEN and led to impaired recruitment of EZH2 and H3K27me3 on the promoter of PTEN gene. The effect of EZH2 knockdown in the CML mice was at least partially reversed by PTEN knockdown.Conclusions: These findings improve the understanding of the epigenetic regulation of stemness in CML LSCs and warrant clinical trial of GSK126 in refractory patients with CML. Clin Cancer Res; 24(1); 145-57. ©2017 AACR.
Collapse
Affiliation(s)
- Jingfeng Zhou
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China
| | - Danian Nie
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Juan Li
- Department of Hematology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin Du
- Department of Hematology, Guangdong General Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuhong Lu
- Department of Hematology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yangqiu Li
- Department of Hematology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Chang Liu
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China
| | - Wei Dai
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China
| | - Yun Wang
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China
| | - Yanli Jin
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China.
| | - Jingxuan Pan
- Jinan University Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China. .,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Chen P, Jin Q, Fu Q, You P, Jiang X, Yuan Q, Huang H. Induction of Multidrug Resistance of Acute Myeloid Leukemia Cells by Cocultured Stromal Cells via Upregulation of the PI3K/Akt Signaling Pathway. Oncol Res 2017; 24:215-23. [PMID: 27656831 PMCID: PMC7838662 DOI: 10.3727/096504016x14634208143021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
This study aimed to investigate the role of the PI3K/Akt signaling pathway in multidrug resistance of acute myeloid leukemia (AML) cells induced by cocultured stromal cells. Human AML cell lines HL-60 and U937 were adhesion cocultured with human bone marrow stromal cell line HS-5 cells. Such coculturing induced HL-60 and U937 cells resistant to chemotherapeutic drugs including daunorubicin (DNR), homoharringtonine (HHT), and cytosine arabinoside (Ara-C). The coculturing-induced resistance of AML cells to DNR, HHT, and Ara-C can be partially reversed by inhibition of the PI3K/Akt signaling pathway. Clinically, AML patients with a low level of PTEN and a high level of CCND1 had high relapse rates within 1 year, and newly diagnosed AML patients with extramedullary infiltration had a low level of PTEN. This study confirms the involvement of the PI3K/Akt signaling pathway in multidrug resistance in AML cells induced by stroma and suggests that the expression of PTEN and CCND1 may be a prognostic indicator for AML.
Collapse
Affiliation(s)
- Ping Chen
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fujian, P.R. China
| | | | | | | | | | | | | |
Collapse
|
12
|
Serum level of miR-10-5p as a prognostic biomarker for acute myeloid leukemia. Int J Hematol 2015; 102:296-303. [PMID: 26134365 DOI: 10.1007/s12185-015-1829-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 06/11/2015] [Accepted: 06/18/2015] [Indexed: 10/23/2022]
Abstract
MicroRNAs (miRNAs) are a type of small non-coding RNA molecule that play important roles in tumor initiation, chemotherapy response, promotion, and progression by negatively interfering with gene expression. The aim of the present study was to investigate the serum expression status and explore the prognostic significance of miR-10a-5p in acute myeloid leukemia (AML). The serum expression level of miR-10a-5p in de novo AML was significantly higher, compared with that in controls. The area under the receiver operator characteristic (ROC) curve was of 0.831 in the diagnostic value of miR-10a-5p. In the complete remission (CR) group, the serum expression level of miR-10a-5p was similar to that of healthy subjects and demonstrated a significant downtrend when compared to that on the day of diagnosis. Nevertheless, miR-10a-5p expression was found to significantly increase in cases of relapsed AML when compared individually to the CR population. On analysis of the association of miR-10a-5p expression with the clinical characteristics at diagnosis in AML patients, lower CR rates occurred more frequently in the high-expression group. In addition, high miR-10a-5p expression was associated with poorer overall survival (OS). These data suggest that miR-10a-5p may serve as a biomarker useful to improving the management of AML patients.
Collapse
|
13
|
Moreno-Martínez D, Nomdedeu M, Lara-Castillo MC, Etxabe A, Pratcorona M, Tesi N, Díaz-Beyá M, Rozman M, Montserrat E, Urbano-Ispizua A, Esteve J, Risueño RM. XIAP inhibitors induce differentiation and impair clonogenic capacity of acute myeloid leukemia stem cells. Oncotarget 2015; 5:4337-46. [PMID: 24952669 PMCID: PMC4147327 DOI: 10.18632/oncotarget.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Acute myeloid leukemia (AML) is a neoplasia characterized by the rapid expansion of immature myeloid blasts in the bone marrow, and marked by poor prognosis and frequent relapse. As such, new therapeutic approaches are required for remission induction and prevention of relapse. Due to the higher chemotherapy sensitivity and limited life span of more differentiated AML blasts, differentiation-based therapies are a promising therapeutic approach. Based on public available gene expression profiles, a myeloid-specific differentiation-associated gene expression pattern was defined as the therapeutic target. A XIAP inhibitor (Dequalinium chloride, DQA) was identified in an in silico screening searching for small molecules that induce similar gene expression regulation. Treatment with DQA, similarly to Embelin (another XIAP inhibitor), induced cytotoxicity and differentiation in AML. XIAP inhibition differentially impaired cell viability of the most primitive AML blasts and reduced clonogenic capacity of AML cells, sparing healthy mature blood and hematopoietic stem cells. Taken together, these results suggest that XIAP constitutes a potential target for AML treatment and support the evaluation of XIAP inhibitors in clinical trials.
Collapse
|
14
|
Evangelisti C, Evangelisti C, Chiarini F, Lonetti A, Buontempo F, Bressanin D, Cappellini A, Orsini E, McCubrey JA, Martelli AM. Therapeutic potential of targeting mTOR in T-cell acute lymphoblastic leukemia (review). Int J Oncol 2014; 45:909-18. [PMID: 24968804 DOI: 10.3892/ijo.2014.2525] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/12/2014] [Indexed: 11/05/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous neoplastic disorder of immature hematopoietic precursors committed to the T-cell lineage. T-ALL comprises about 15% of pediatric and 25% of adult ALL cases. Even if the prognosis of T-ALL has improved especially in the childhood due to the use of new intensified treatment protocols, the outcome of relapsed patients who are resistant to conventional chemotherapeutic drugs or who relapse is still poor. For this reason, there is a need for novel and less toxic targeted therapies against signaling pathways aberrantly activated in T-ALL, such as the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR). Small molecules designed to target key components of this signaling axis have proven their efficacy both in vitro and in vivo in pre-clinical settings of T-ALL. In particular, different classes of mTOR inhibitors have been disclosed by pharmaceutical companies, and they are currently being tested in clinical trials for treating T-ALL patients. One of the most promising approaches for the treatment of T-ALL seems to be the combination of mTOR inhibitors with traditional chemotherapeutic agents. This could lead to a lower drug dosage that may circumvent the systemic side effects of chemotherapeutics. In this review, we focus on the different classes of mTOR inhibitors that will possibly have an impact on the therapeutic arsenal we have at our disposal against T-ALL.
Collapse
Affiliation(s)
- Camilla Evangelisti
- Institute of Molecular Genetics, National Research Council, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Cecilia Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Chiarini
- Institute of Molecular Genetics, National Research Council, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Annalisa Lonetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Buontempo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Daniela Bressanin
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandra Cappellini
- Department of Human Social and Health Sciences, University of Cassino, Cassino, Italy
| | - Ester Orsini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
15
|
Reikvam H, Nepstad I, Bruserud Ø, Hatfield KJ. Pharmacological targeting of the PI3K/mTOR pathway alters the release of angioregulatory mediators both from primary human acute myeloid leukemia cells and their neighboring stromal cells. Oncotarget 2014; 4:830-43. [PMID: 23919981 PMCID: PMC3757241 DOI: 10.18632/oncotarget.971] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous and aggressive malignancy with poor overall survival. Constitutive as well as cytokine-initiated activation of PI3K/Akt/mTOR signaling is a common feature of AML patients, and inhibition of this pathway is considered as a possible therapeutic strategy in AML. Human AML cells and different stromal cell populations were cultured under highly standardized in vitro conditions. We investigated the effects of mTOR inhibitors (rapamycin and temsirolimus) and PI3K inhibitors (GDC-0941 and 3-methyladenin (3-MA)) on cell proliferation and the constitutive release of angioregulatory mediators by AML and stromal cells. Primary human AML cells were heterogeneous, though most patients showed high CXCL8 levels and detectable release of CXCL10, Ang-1, HGF and MMP-9. Hierarchical clustering analysis showed that disruption of PI3K/Akt/mTOR pathways decreased AML cell release of CXCL8-11 for a large subset of patients, whereas the effects on other mediators were divergent. Various stromal cells (endothelial cells, fibroblasts, cells with osteoblastic phenotype) also showed constitutive release of angioregulatory mediators, and inhibitors of both the PI3K and mTOR pathway had anti-proliferative effects on stromal cells and resulted in decreased release of these angioregulatory mediators. PI3K and mTOR inhibitors can decrease constitutive cytokine release both by AML and stromal cells, suggesting potential direct and indirect antileukemic effects.
Collapse
Affiliation(s)
- Håkon Reikvam
- Section for Hematology, Department of Clinical Science, University of Bergen, Norway
| | | | | | | |
Collapse
|
16
|
Ferri C, Bianchini M, Bengió R, Larripa I. Expression of LYN and PTEN genes in chronic myeloid leukemia and their importance in therapeutic strategy. Blood Cells Mol Dis 2013; 52:121-5. [PMID: 24091144 DOI: 10.1016/j.bcmd.2013.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/17/2013] [Accepted: 07/20/2013] [Indexed: 10/25/2022]
Abstract
Tyrosine kinase inhibitors (TKIs), imatinib, nilotinib and dasatinib, are the current treatment of chronic myeloid leukemia (CML). BCR-ABL1 point mutations are the principal cause of resistance to treatment; however other mechanisms could be involved in failure to TKI therapy. LYN is a src kinase protein that regulates survival and responsiveness of tumor cells by a BCR-ABL1 independent mechanism. PTEN tumor suppressor gene is downregulated by BCR-ABL1 in CML stem cells and its deletion is associated with acceleration of disease. In this study we evaluated the expression of LYN, PTEN and the ratio of both genes in 40 healthy donors (HD) and in 139 CML patients; 88 of them resistant to TKI in different phases of disease and 51 in chronic phase classified as optimal responders (OR) to TKI [40 treated with imatinib or nilotinib (OR-IN) and 11 treated with dasatinib (OR-D) therapy]. When we analyzed the gene expression values of LYN, an increase was observed only in advanced stages of the disease, however, when we analyzed the ratio between LYN and PTEN genes, the group of resistant patients in chronic phase in imatinib or nilotinib treatment (CP-IN) also showed a significant increase. Resistant patients treated with dasatinib, a src kinase inhibitor, presented a similar ratio to the observed in HD. In addition, the LYN/PTEN ratio and the LYN expression showed a direct significant correlation with BCR-ABL1 transcript levels in unmutated resistant patients treated with non-src kinase inhibitors. We were able to identify 8/35 (23%) of cases in CP-IN and 4/12 (33%) in accelerated phase and blast phase (AP/BC-IN), in which resistance could be associated with an increase in the ratio of the LYN/PTEN. Our data suggest that the LYN/PTEN expression ratio may be a sensitive monitor of disease progression in unmutated CML patients under imatinib or nilotinib treatment. This ratio could detect cases when resistance is related to altered LYN expression, suggesting that the treatment change to a src kinase inhibitor would be most suitable to overcome resistance.
Collapse
Affiliation(s)
- Cristian Ferri
- Instituto de Medicina Experimental (IMEX), CONICET-Academia Nacional de Medicina, Argentina
| | - Michele Bianchini
- Instituto de Medicina Experimental (IMEX), CONICET-Academia Nacional de Medicina, Argentina
| | - Raquel Bengió
- Instituto de Investigaciones Hematológicas (IIHEMA), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Irene Larripa
- Instituto de Medicina Experimental (IMEX), CONICET-Academia Nacional de Medicina, Argentina; Instituto de Investigaciones Hematológicas (IIHEMA), Academia Nacional de Medicina, Buenos Aires, Argentina.
| |
Collapse
|
17
|
Evangelisti C, Evangelisti C, Bressanin D, Buontempo F, Chiarini F, Lonetti A, Soncin M, Spartà A, McCubrey JA, Martelli AM. Targeting phosphatidylinositol 3-kinase signaling in acute myelogenous leukemia. Expert Opin Ther Targets 2013; 17:921-36. [DOI: 10.1517/14728222.2013.808333] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Harnessing the PI3K/Akt/mTOR pathway in T-cell acute lymphoblastic leukemia: eliminating activity by targeting at different levels. Oncotarget 2013; 3:811-23. [PMID: 22885370 PMCID: PMC3478458 DOI: 10.18632/oncotarget.579] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignant hematological disorder arising in the thymus from T-cell progenitors. T-ALL mainly affects children and young adults, and remains fatal in 20% of adolescents and 50% of adults, despite progress in polychemotherapy protocols. Therefore, innovative targeted therapies are desperately needed for patients with a dismal prognosis. Aberrant activation of PI3K/Akt/mTOR signaling is a common event in T-ALL patients and portends a poor prognosis. Preclinical studies have highlighted that modulators of PI3K/Akt/mTOR signaling could have a therapeutic relevance in T-ALL. However, the best strategy for inhibiting this highly complex signal transduction pathway is still unclear, as the pharmaceutical companies have disclosed an impressive array of small molecules targeting this signaling network at different levels. Here, we demonstrate that a dual PI3K/PDK1 inhibitor, NVP-BAG956, displayed the most powerful cytotoxic effects against T-ALL cell lines and primary patients samples, when compared with a pan class I PI3K inhibitor (GDC-0941), an allosteric Akt inhibitor (MK-2206), an mTORC1 allosteric inhibitor (RAD-001), or an ATP-competitive mTORC1/mTORC2 inhibitor (KU-63794). Moreover, we also document that combinations of some of the aforementioned drugs strongly synergized against T-ALL cells at concentrations well below their respective IC50. This observation indicates that vertical inhibition at different levels of the PI3K/Akt/mTOR network could be considered as a future innovative strategy for treating T-ALL patients.
Collapse
|
19
|
Chappell WH, Abrams SL, Franklin RA, LaHair MM, Montalto G, Cervello M, Martelli AM, Nicoletti F, Candido S, Libra M, Polesel J, Talamini R, Milella M, Tafuri A, Steelman LS, McCubrey JA. Ectopic NGAL expression can alter sensitivity of breast cancer cells to EGFR, Bcl-2, CaM-K inhibitors and the plant natural product berberine. Cell Cycle 2012; 11:4447-61. [PMID: 23159854 PMCID: PMC3552927 DOI: 10.4161/cc.22786] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL, a.k.a Lnc2) is a member of the lipocalin family and has diverse roles. NGAL can stabilize matrix metalloproteinase-9 from autodegradation. NGAL is considered as a siderocalin that is important in the transport of iron. NGAL expression has also been associated with certain neoplasias and is implicated in the metastasis of breast cancer. In a previous study, we examined whether ectopic NGAL expression would alter the sensitivity of breast epithelial, breast and colorectal cancer cells to the effects of the chemotherapeutic drug doxorubicin. While abundant NGAL expression was detected in all the cells infected with a retrovirus encoding NGAL, this expression did not alter the sensitivity of these cells to doxorubicin as compared with empty vector-transduced cells. We were also interested in determining the effects of ectopic NGAL expression on the sensitivity to small-molecule inhibitors targeting key signaling molecules. Ectopic NGAL expression increased the sensitivity of MCF-7 breast cancer cells to EGFR, Bcl-2 and calmodulin kinase inhibitors as well as the natural plant product berberine. Furthermore, when suboptimal concentrations of certain inhibitors were combined with doxorubicin, a reduction in the doxorubicin IC 50 was frequently observed. An exception was observed when doxorubicin was combined with rapamycin, as doxorubicin suppressed the sensitivity of the NGAL-transduced MCF-7 cells to rapamycin when compared with the empty vector controls. In contrast, changes in the sensitivities of the NGAL-transduced HT-29 colorectal cancer cell line and the breast epithelial MCF-10A cell line were not detected compared with empty vector-transduced cells. Doxorubicin-resistant MCF-7/Dox (R) cells were examined in these experiments as a control drug-resistant line; it displayed increased sensitivity to EGFR and Bcl-2 inhibitors compared with empty vector transduced MCF-7 cells. These results indicate that NGAL expression can alter the sensitivity of certain cancer cells to small-molecule inhibitors, suggesting that patients whose tumors exhibit elevated NGAL expression or have become drug-resistant may display altered responses to certain small-molecule inhibitors.
Collapse
Affiliation(s)
- William H. Chappell
- Department of Microbiology & Immunology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| | - Stephen L. Abrams
- Department of Microbiology & Immunology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| | - Richard A. Franklin
- Department of Microbiology & Immunology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| | - Michelle M. LaHair
- Department of Microbiology & Immunology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| | - Giuseppe Montalto
- Department of Internal Medicine and Specialties; University of Palermo; Palermo, Italy
- Consiglio Nazionale delle Ricerche; Istituto di Biomedicina e Immunologia Molecolare “Alberto Monroy”; Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche; Istituto di Biomedicina e Immunologia Molecolare “Alberto Monroy”; Palermo, Italy
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor Sciences; Università di Bologna; Bologna, Italy
- Institute of Molecular Genetics; National Research Council-Rizzoli Orthopedic Institute; Bologna, Italy
| | | | - Saverio Candido
- Department of Bio-Medical Sciences; University of Catania; Catania, Italy
| | - Massimo Libra
- Department of Bio-Medical Sciences; University of Catania; Catania, Italy
| | - Jerry Polesel
- Unit of Epidemiology and Biostatistics; Centro di Riferimento Oncologico; IRCCS; Aviano, Italy
| | - Renato Talamini
- Unit of Epidemiology and Biostatistics; Centro di Riferimento Oncologico; IRCCS; Aviano, Italy
| | | | - Agostino Tafuri
- Department of Cellular Biotechnology and Hematology; University of Rome, Sapienza; Rome, Italy
| | - Linda S. Steelman
- Department of Microbiology & Immunology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| | - James A. McCubrey
- Department of Microbiology & Immunology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| |
Collapse
|
20
|
Martelli AM, Chiarini F, Evangelisti C, Cappellini A, Buontempo F, Bressanin D, Fini M, McCubrey JA. Two hits are better than one: targeting both phosphatidylinositol 3-kinase and mammalian target of rapamycin as a therapeutic strategy for acute leukemia treatment. Oncotarget 2012; 3:371-94. [PMID: 22564882 PMCID: PMC3380573 DOI: 10.18632/oncotarget.477] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) are two key components of the PI3K/Akt/mTOR signaling pathway. This signal transduction cascade regulates a wide range of physiological cell processes, that include differentiation, proliferation, apoptosis, autophagy, metabolism, motility, and exocytosis. However, constitutively active PI3K/Akt/mTOR signaling characterizes many types of tumors where it negatively influences response to therapeutic treatments. Hence, targeting PI3K/Akt/mTOR signaling with small molecule inhibitors may improve cancer patient outcome. The PI3K/Akt/mTOR signaling cascade is overactive in acute leukemias, where it correlates with enhanced drug-resistance and poor prognosis. The catalytic sites of PI3K and mTOR share a high degree of sequence homology. This feature has allowed the synthesis of ATP-competitive compounds targeting the catalytic site of both kinases. In preclinical models, dual PI3K/mTOR inhibitors displayed a much stronger cytotoxicity against acute leukemia cells than either PI3K inhibitors or allosteric mTOR inhibitors, such as rapamycin. At variance with rapamycin, dual PI3K/mTOR inhibitors targeted both mTOR complex 1 and mTOR complex 2, and inhibited the rapamycin-resistant phosphorylation of eukaryotic initiation factor 4E-binding protein 1, resulting in a marked inhibition of oncogenic protein translation. Therefore, they strongly reduced cell proliferation and induced an important apoptotic response. Here, we reviewed the evidence documenting that dual PI3K/mTOR inhibitors may represent a promising option for future targeted therapies of acute leukemia patients.
Collapse
Affiliation(s)
- Alberto M Martelli
- Department of Human Anatomy, University of Bologna, Cellular Signalling Laboratory, Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Esmailzadeh S, Jiang X. AHI-1: a novel signaling protein and potential therapeutic target in human leukemia and brain disorders. Oncotarget 2012; 2:918-34. [PMID: 22248740 PMCID: PMC3282096 DOI: 10.18632/oncotarget.405] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Progress in the understanding of the molecular and cellular mechanisms of human cancer, including human leukemia and lymphomas, has been spurred by cloning of fusion genes created by chromosomal translocations or by retroviral insertional mutagenesis; a number of oncogenes and tumor suppressors involved in development of a number of malignancies have been identified in this manner. The BCR-ABL fusion gene, originating in a multipotent hematopoietic stem cell, is the molecular signature of chronic myeloid leukemia (CML). Discovery of this fusion gene has led to the development of one of the first successful targeted molecular therapies for cancer (Imatinib). It illustrates the advances that can result from an understanding of the molecular basis of disease. However, there still remain many as yet unidentified mutations that may influence the initiation or progression of human diseases. Thus, identification and characterization of the mechanism of action of genes that contribute to human diseases is an important and opportune area of current research. One promising candidate as a potential therapeutic target is Abelson helper integration site-1(Ahi-1/AHI-1) that was identified by retroviral insertional mutagenesis in murine models of leukemia/lymphomas and is highly elevated in certain human lymphoma and leukemia stem/progenitor cells. It encodes a unique protein with a SH3 domain, multiple SH3 binding sites and a WD40-repeat domain, suggesting that the normal protein has novel signaling activities. A new AHI-1-BCR-ABL-JAK2 interaction complex has recently been identified and this complex regulates transforming activities and drug resistance in CML stem/progenitor cells. Importantly, AHI-1 has recently been identified as a susceptibility gene involved in a number of brain disorders, including Joubert syndrome. Therefore, understanding molecular functions of the AHI-1 gene could lead to important and novel insights into disease processes involved in specific types of diseases. Ultimately, this knowledge will set the stage for translation into new and more effective diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Sharmin Esmailzadeh
- Terry Fox Laboratory, British Columbia Cancer Agency and Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
22
|
Abstract
In recent years, numerous new targets have been identified and new experimental therapeutics have been developed. Importantly, existing non-cancer drugs found novel use in cancer therapy. And even more importantly, new original therapeutic strategies to increase potency, selectivity and decrease detrimental side effects have been evaluated. Here we review some recent advances in targeting cancer.
Collapse
Affiliation(s)
- Zoya N Demidenko
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | | |
Collapse
|
23
|
Yoshimi A, Kurokawa M. Evi1 forms a bridge between the epigenetic machinery and signaling pathways. Oncotarget 2012; 2:575-86. [PMID: 21795762 PMCID: PMC3248179 DOI: 10.18632/oncotarget.304] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recent studies have demonstrated the significance of the leukemia oncogene Evi1 as the regulator of hematopoietic stem cells and marker of poor clinical outcomes in myeloid malignancies. Evi1-mediated leukemogenic activities include a wide array of functions such as the induction of epigenetic modifications, transcriptional control, and regulation of signaling pathways. We have recently succeeded in comprehensively elucidating the oncogenic function of Evi1 in a model of the polycomb-Evi1-PTEN/AKT/mTOR axis. These results may provide us with novel therapeutic approaches to conquer the poor prognosis associated with Evi1-activated leukemia or other solid tumors with high Evi1 expression. Here, we review the current understanding of the role of Evi1 in controlling the development of leukemia and highlight potential modalities for targeting factors involved in Evi1-regulated signaling.
Collapse
Affiliation(s)
- Akihide Yoshimi
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
24
|
Modeling of molecular interaction between apoptin, BCR-Abl and CrkL--an alternative approach to conventional rational drug design. PLoS One 2012; 7:e28395. [PMID: 22253690 PMCID: PMC3254606 DOI: 10.1371/journal.pone.0028395] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 11/07/2011] [Indexed: 12/02/2022] Open
Abstract
In this study we have calculated a 3D structure of apoptin and through modeling and docking approaches, we show its interaction with Bcr-Abl oncoprotein and its downstream signaling components, following which we confirm some of the newly-found interactions by biochemical methods. Bcr-Abl oncoprotein is aberrantly expressed in chronic myelogenous leukaemia (CML). It has several distinct functional domains in addition to the Abl kinase domain. The SH3 and SH2 domains cooperatively play important roles in autoinhibiting its kinase activity. Adapter molecules such as Grb2 and CrkL interact with proline-rich region and activate multiple Bcr-Abl downstream signaling pathways that contribute to growth and survival. Therefore, the oncogenic effect of Bcr-Abl could be inhibited by the interaction of small molecules with these domains. Apoptin is a viral protein with well-documented cancer-selective cytotoxicity. Apoptin attributes such as SH2-like sequence similarity with CrkL SH2 domain, unique SH3 domain binding sequence, presence of proline-rich segments, and its nuclear affinity render the molecule capable of interaction with Bcr-Abl. Despite almost two decades of research, the mode of apoptin's action remains elusive because 3D structure of apoptin is unavailable. We performed in silico three-dimensional modeling of apoptin, molecular docking experiments between apoptin model and the known structure of Bcr-Abl, and the 3D structures of SH2 domains of CrkL and Bcr-Abl. We also biochemically validated some of the interactions that were first predicted in silico. This structure-property relationship of apoptin may help in unlocking its cancer-selective toxic properties. Moreover, such models will guide us in developing of a new class of potent apoptin-like molecules with greater selectivity and potency.
Collapse
|
25
|
Werner B, Lutz D, Brümmendorf TH, Traulsen A, Balabanov S. Dynamics of resistance development to imatinib under increasing selection pressure: a combination of mathematical models and in vitro data. PLoS One 2011; 6:e28955. [PMID: 22216147 PMCID: PMC3245228 DOI: 10.1371/journal.pone.0028955] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 11/17/2011] [Indexed: 12/20/2022] Open
Abstract
In the last decade, cancer research has been a highly active and rapidly evolving scientific area. The ultimate goal of all efforts is a better understanding of the mechanisms that discriminate malignant from normal cell biology in order to allow the design of molecular targeted treatment strategies. In individual cases of malignant model diseases addicted to a specific, ideally single oncogene, e.g. Chronic myeloid leukemia (CML), specific tyrosine kinase inhibitors (TKI) have indeed been able to convert the disease from a ultimately life-threatening into a chronic disease with individual patients staying in remission even without treatment suggestive of operational cure. These developments have been raising hopes to transfer this concept to other cancer types. Unfortunately, cancer cells tend to develop both primary and secondary resistance to targeted drugs in a substantially higher frequency often leading to a failure of treatment clinically. Therefore, a detailed understanding of how cells can bypass targeted inhibition of signaling cascades crucial for malignant growths is necessary. Here, we have performed an in vitro experiment that investigates kinetics and mechanisms underlying resistance development in former drug sensitive cancer cells over time in vitro. We show that the dynamics observed in these experiments can be described by a simple mathematical model. By comparing these experimental data with the mathematical model, important parameters such as mutation rates, cellular fitness and the impact of individual drugs on these processes can be assessed. Excitingly, the experiment and the model suggest two fundamentally different ways of resistance evolution, i.e. acquisition of mutations and phenotype switching, each subject to different parameters. Most importantly, this complementary approach allows to assess the risk of resistance development in the different phases of treatment and thus helps to identify the critical periods where resistance development is most likely to occur.
Collapse
Affiliation(s)
- Benjamin Werner
- Evolutionary Theory Group, Max-Planck-Institute for Evolutionary Biology, Plön, Germany.
| | | | | | | | | |
Collapse
|
26
|
Blagosklonny MV. Molecular damage in cancer: an argument for mTOR-driven aging. Aging (Albany NY) 2011; 3:1130-41. [PMID: 22246147 PMCID: PMC3273893 DOI: 10.18632/aging.100422] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 12/31/2011] [Indexed: 12/12/2022]
Abstract
Despite common belief, accumulation of molecular damage does not play a key role in aging. Still, cancer (an age-related disease) is initiated by molecular damage. Cancer and aging share a lot in common including the activation of the TOR pathway. But the role of molecular damage distinguishes cancer and aging. Furthermore, an analysis of the role of both damage and aging in cancer argues against "a decline, caused by accumulation of molecular damage" as a cause of aging. I also discuss how random molecular damage, via rounds of multiplication and selection, brings about non-random hallmarks of cancer.
Collapse
Affiliation(s)
- Mikhail V Blagosklonny
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| |
Collapse
|
27
|
Yi T, Elson P, Mitsuhashi M, Jacobs B, Hollovary E, Budd GT, Spiro T, Triozzi P, Borden EC. Phosphatase inhibitor, sodium stibogluconate, in combination with interferon (IFN) alpha 2b: phase I trials to identify pharmacodynamic and clinical effects. Oncotarget 2011; 2:1155-1164. [PMID: 22201704 PMCID: PMC3282074 DOI: 10.18632/oncotarget.563] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 12/21/2011] [Indexed: 12/27/2022] Open
Abstract
Since sodium stibogluconate (SSG) inhibited phosphatases including SHP-1 and augmented anti-tumor actions of IFN-α2b in vitro and in mice, two Phase I trials of SSG/IFN-α2b combination were undertaken to evaluate safety and target inhibition. Escalating doses of SSG (200-1200 mg/m2) and fixed doses of IFN-α2b (3x106 units/m2) with or without chemotherapy (dacarbazine, vinblastine, cisplatin) were evaluated for side effects and impact on SHP-1 phospho-substrates and IFNα-stimulated-genes (ISGs) in peripheral blood in 40 patients with metastatic melanoma, soft tissue sarcomas, gastrointestinal stromal tumors, and breast or colorectal carcinomas who did not have other established treatment options. Common adverse events were bone marrow suppression, fatigue, gastrointestinal upset, and asymptomatic lipase elevation (n=13); the latter was dose related and mostly after 10d of SSG/IFN-α2b in combination. Levels of SHP-1 substrates (pSTAT1, pSTAT3, pLck and pSlp76) were increased (up to 3x) in peripheral blood cells following SSG with no potentiation by combination with IFN-α2b. Representative ISGs in peripheral blood were induced after IFN-α2b at 4 and 24 hrs with selective modulations by combination. The median time on trials was 2.3 months (10-281d) with no objective regression of disease. Alive at 1y were 17/40 (43%) patients and after 2y were 8/40 (20%) following treatment initiation. These data demonstrate that SSG impacted signal molecules consistent with PTP inhibition and was tolerated in combination with IFN-α2b. Phase II investigations of SSG could safely utilize doses of up to 1200 mg/m2 of SSG for up to 10d alone or in combination with IFN-α2b with or without chemotherapy.
Collapse
Affiliation(s)
- Taolin Yi
- Taussig Cancer Institute, The Cleveland Clinic, Cleveland, OH, USA
- Department of Immunology of Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, USA
| | - Paul Elson
- Taussig Cancer Institute, The Cleveland Clinic, Cleveland, OH, USA
| | | | - Barbara Jacobs
- Taussig Cancer Institute, The Cleveland Clinic, Cleveland, OH, USA
| | - Emese Hollovary
- Taussig Cancer Institute, The Cleveland Clinic, Cleveland, OH, USA
| | - G. Thomas Budd
- Taussig Cancer Institute, The Cleveland Clinic, Cleveland, OH, USA
| | - Timothy Spiro
- Taussig Cancer Institute, The Cleveland Clinic, Cleveland, OH, USA
| | - Pierre Triozzi
- Taussig Cancer Institute, The Cleveland Clinic, Cleveland, OH, USA
| | - Ernest C. Borden
- Taussig Cancer Institute, The Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
28
|
Steelman LS, Navolanic P, Chappell WH, Abrams SL, Wong EWT, Martelli AM, Cocco L, Stivala F, Libra M, Nicoletti F, Drobot LB, Franklin RA, McCubrey JA. Involvement of Akt and mTOR in chemotherapeutic- and hormonal-based drug resistance and response to radiation in breast cancer cells. Cell Cycle 2011; 10:3003-15. [PMID: 21869603 DOI: 10.4161/cc.10.17.17119] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Elucidating the response of breast cancer cells to chemotherapeutic and hormonal based drugs and radiation is clearly important as these are common treatment approaches. Signaling cascades often involved in chemo-, hormonal- and radiation resistance are the Ras/PI3K/PTEN/Akt/mTOR, Ras/Raf/MEK/ERK and p53 pathways. In the following studies we have examined the effects of activation of the Ras/PI3K/PTEN/Akt/mTOR cascade in the response of MCF-7 breast cancer cells to chemotherapeutic- and hormonal-based drugs and radiation. Activation of Akt by introduction of conditionally-activated Akt-1 gene could result in resistance to chemotherapeutic and hormonal based drugs as well as radiation. We have determined that chemotherapeutic drugs such as doxorubicin or the hormone based drug tamoxifen, both used to treat breast cancer, resulted in the activation of the Raf/MEK/ERK pathway which is often associated with a pro-proliferative, anti-apoptotic response. In drug sensitive MCF-7 cells which have wild-type p53; ERK, p53 and downstream p21 (Cip-1 ) were induced upon exposure to doxorubicin. In contrast, in the drug resistant cells which expressed activated Akt-1, much lower levels of p53 and p21 (Cip1) were induced upon exposure to doxorubicin. These results indicate the involvement of the Ras/PI3K/PTEN/Akt/mTOR, Ras/Raf/MEK/ERK and p53 pathways in the response to chemotherapeutic and hormonal based drugs. Understanding how breast cancers respond to chemo- and hormonal-based therapies and radiation may enhance the ability to treat breast cancer more effectively.
Collapse
Affiliation(s)
- Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|