1
|
Gu Q, Wang L, King TZ, Chen H, Zhang L, Ni J, Mao H. Seeing through "brain fog": neuroimaging assessment and imaging biomarkers for cancer-related cognitive impairments. Cancer Imaging 2024; 24:158. [PMID: 39558401 PMCID: PMC11572057 DOI: 10.1186/s40644-024-00797-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024] Open
Abstract
Advances in cancer diagnosis and treatment have substantially improved patient outcomes and survival in recent years. However, up to 75% of cancer patients and survivors, including those with non-central nervous system (non-CNS) cancers, suffer from "brain fog" or impairments in cognitive functions such as attention, memory, learning, and decision-making. While we recognize the impact of cancer-related cognitive impairment (CRCI), we have not fully investigated and understood the causes, mechanisms and interplays of various involving factors. Consequently, there are unmet needs in clinical oncology in assessing the risk of CRCI and managing patients and survivors with this condition in order to make informed treatment decisions and ensure the quality of life for cancer survivors. The state-of-the-art neuroimaging technologies, particularly clinical imaging modalities like magnetic resonance imaging (MRI) and positron emission tomography (PET), have been widely used to study neuroscience questions, including CRCI. However, in-depth applications of these functional and molecular imaging methods in CRCI and their clinical implementation for CRCI management are largely limited. This scoping review provides the current understanding of contributing neurological factors to CRCI and applications of the state-of-the-art multi-modal neuroimaging methods in investigating the functional and structural alterations related to CRCI. Findings from these studies and potential imaging-biomarkers of CRCI that can be used to improve the assessment and characterization of CRCI as well as to predict the risk of CRCI are also highlighted. Emerging issues and perspectives on future development and applications of neuroimaging tools to better understand CRCI and incorporate neuroimaging-based approaches to treatment decisions and patient management are discussed.
Collapse
Affiliation(s)
- Quanquan Gu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1750 Haygood Drive NE, Atlanta, Georgia, 30322, USA
| | - Liya Wang
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1750 Haygood Drive NE, Atlanta, Georgia, 30322, USA
- Department of Radiology, Shenzhen Hyzen Hospital, Shenzhen, 518109, Guangdong, People's Republic of China
| | - Tricia Z King
- School of Nursing, Emory University, Atlanta, Georgia, 30322, USA
| | - Hongbo Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, People's Republic of China
| | - Longjiang Zhang
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, Jiangsu, People's Republic of China
| | - Jianming Ni
- Wuxi Second Hospital Affiliated to Nanjing Medical University, Wuxi, 214042, People's Republic of China
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1750 Haygood Drive NE, Atlanta, Georgia, 30322, USA.
| |
Collapse
|
2
|
Elyan N, Schwenkenbecher P, Grote-Levi L, Becker JN, Merten R, Christiansen H, Skripuletz T, Steinmann D, Möhn N. Radiotherapy in patients with brain metastases with and without concomitant immunotherapy: comparison of patient outcome and neurotoxicity. Discov Oncol 2024; 15:656. [PMID: 39546075 PMCID: PMC11568079 DOI: 10.1007/s12672-024-01560-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND/AIM Recently, immune checkpoint inhibitors (ICI) have been added to the treatment of brain metastases. While combining radiotherapy and ICI can enhance therapeutic effects, it might also increase the risk of severe autoimmune adverse events. This retrospective study aims to compare treatment responses and neurotoxicity in patients treated with radiotherapy alone versus those receiving a combination of radiotherapy and ICI. PATIENTS AND METHODS All patients with brain metastases who received radiotherapy at Hannover Medical School from 2017 to 2019 were included. The medical reports of all study participants were evaluated. Patients who received radiotherapy alone and those who received a combination of radiation and ICI were compared. RESULTS A total of 248 patients were analyzed, with the most common tumor types being non-small cell lung cancer (NSCLC) and malignant melanoma. Half of the patients received whole-brain radiotherapy (WBRT) and the other half stereotactic radiotherapy (SRT). Of these, 29 patients received concurrent immunotherapy and radiotherapy, 30 completed immunotherapy before radiotherapy, and 29 started ICI after completing radiotherapy. Two cases lacked information on the duration of immunotherapy. Overall survival post-initial tumor diagnosis within the total cohort was 52 months, with significantly worse survival for patients with multiple brain metastases (p = 0.020). No significant differences in survival or incidence of neurological adverse events were observed between patients with or without ICI. CONCLUSION Combining radiotherapy and ICI did not significantly increase neurotoxicity or improve survival in this cohort, though the heterogeneity of the subgroups limits the generalizability of these findings.
Collapse
Affiliation(s)
- Natalie Elyan
- Department of Radiotherapy, Hannover Medical School, Hannover, Germany
| | - Philipp Schwenkenbecher
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Lea Grote-Levi
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jan-Niklas Becker
- Department of Radiotherapy, Hannover Medical School, Hannover, Germany
| | - Roland Merten
- Department of Radiotherapy, Hannover Medical School, Hannover, Germany
| | - Hans Christiansen
- Department of Radiotherapy, Hannover Medical School, Hannover, Germany
| | - Thomas Skripuletz
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Diana Steinmann
- Department of Radiotherapy, Hannover Medical School, Hannover, Germany
| | - Nora Möhn
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
3
|
Welsch D, Iturralde P. Emotions and cognition; a promising crossroad for brain tumor diagnosis and prevention. Int J Neurosci 2024:1-6. [PMID: 38709678 DOI: 10.1080/00207454.2024.2352783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Cognitive and behavioral neuroscience is essential for understanding brain tumors and their effects. Researchers have realized that an important step is to start looking for cognitive impairment at the time of diagnosis to see what deficits the brain tumor has left the patient with. Then cognitive assessment should be made after the tumor has been removed to see how it changes. The aim of this study was to assess the current research on tumor diagnosis and prevention through a filter of emotion and cognition; and then look at what future steps need to be taken. This review reports what research has already been done and what research still needs to be accomplished, including addressing the need for more data on cognitive impairment while the brain tumor is active, in the literature.
Collapse
Affiliation(s)
- Devon Welsch
- Earl L. Vandermeulen High School, Port Jefferson, New York, USA
| | | |
Collapse
|
4
|
Myers JS, Parks AC, Mahnken JD, Young KJ, Pathak HB, Puri RV, Unrein A, Switzer P, Abdulateef Y, Sullivan S, Walker JF, Streeter D, Burns JM. First-Line Immunotherapy with Check-Point Inhibitors: Prospective Assessment of Cognitive Function. Cancers (Basel) 2023; 15:1615. [PMID: 36900405 PMCID: PMC10000599 DOI: 10.3390/cancers15051615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/25/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
Approximately 40% of patients with cancer are eligible for check-point inhibitor (CPI) therapy. Little research has examined the potential cognitive impact of CPIs. First-line CPI therapy offers a unique research opportunity without chemotherapy-related confounders. The purpose of this prospective, observational pilot was to (1) demonstrate the feasibility of prospective recruitment, retention, and neurocognitive assessment for older adults receiving first-line CPI(s) and (2) provide preliminary evidence of changes in cognitive function associated with CPI(s). Patients receiving first-line CPI(s) (CPI Group) were assessed at baseline (n = 20) and 6 months (n = 13) for self-report of cognitive function and neurocognitive test performance. Results were compared to age-matched controls without cognitive impairment assessed annually by the Alzheimer's Disease Research Center (ADRC). Plasma biomarkers were measured at baseline and 6 months for the CPI Group. Estimated differences for CPI Group scores prior to initiating CPIs (baseline) trended to lower performance on the Montreal Cognitive Assessment-Blind (MOCA-Blind) test compared to the ADRC controls (p = 0.066). Controlling for age, the CPI Group's 6-months MOCA-Blind performance was lower than the ADRC control group's 12-months performance (p = 0.011). No significant differences in biomarkers were detected between baseline and 6 months, although significant correlations were noted for biomarker change and cognitive performance at 6 months. IFNγ, IL-1β, IL-2, FGF2, and VEGF were inversely associated with Craft Story Recall performance (p < 0.05), e.g., higher levels correlated with poorer memory performance. Higher IGF-1 and VEGF correlated with better letter-number sequencing and digit-span backwards performance, respectively. Unexpected inverse correlation was noted between IL-1α and Oral Trail-Making Test B completion time. CPI(s) may have a negative impact on some neurocognitive domains and warrant further investigation. A multi-site study design may be crucial to fully powering prospective investigation of the cognitive impact of CPIs. Establishment of a multi-site observational registry from collaborating cancer centers and ADRCs is recommended.
Collapse
Affiliation(s)
- Jamie S. Myers
- School of Nursing, University of Kansas, Kansas City, KS 66160, USA
| | - Adam C. Parks
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jonathan D. Mahnken
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Kate J. Young
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Harsh B. Pathak
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Rajni V. Puri
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Amber Unrein
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS 66111, USA
| | - Phyllis Switzer
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS 66111, USA
| | - Yazan Abdulateef
- Department of Quality Assurance, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Samantha Sullivan
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS 66111, USA
| | - John F. Walker
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS 66111, USA
| | - David Streeter
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jeffrey M. Burns
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS 66111, USA
| |
Collapse
|
5
|
Demos-Davies K, Lawrence J, Rogich A, Lind E, Seelig D. Cancer treatment induces neuroinflammation and behavioral deficits in mice. Front Behav Neurosci 2023; 16:1067298. [PMID: 36699654 PMCID: PMC9868853 DOI: 10.3389/fnbeh.2022.1067298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction: Cancer survivors are increasingly diagnosed with a syndrome of neurocognitive dysfunction termed cancer-related cognitive impairment (CRCI). Chemotherapy and radiation therapy have been implicated in CRCI; however, its underlying pathogenesis remains unclear, hindering effective prevention or treatment. Methods: We used the hairless strain SKH1 (11-12-week-old) and treated the mice with radiation to the right hindlimb, doxorubicin (a chemotherapy agent), concurrent radiation, and doxorubicin, or no treatment (control). Neurocognition was evaluated via standardized behavioral testing following treatment. Mice were subsequently humanely euthanized, and plasma and brains were collected to identify inflammatory changes. Results: Mice treated with radiation, doxorubicin, or both radiation and doxorubicin demonstrated equivalent hippocampal dependent memory deficits and significant increases in activated microglia and astrocytes compared to control mice. Doxorubicin-treated mice had significantly increased plasma IL-6 and failed to gain weight compared to control mice over the study period. Discussion: This study demonstrates that non-brain directed radiation induces both gliosis and neurocognitive deficits. Moreover, this work presents the first characterization of SKH1 mice as a relevant and facile animal model of CRCI. This study provides a platform from which to build further studies to identify potential key targets that contribute to CRCI such that strategies can be developed to mitigate unintended neuropathologic consequences associated with anticancer treatment.
Collapse
Affiliation(s)
- Kimberly Demos-Davies
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN, United States
| | - Jessica Lawrence
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Allison Rogich
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN, United States
| | - Erin Lind
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Davis Seelig
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
6
|
Lange M, Clarisse B, Leconte A, Dembélé KP, Lequesne J, Nicola C, Dubois M, Derues L, Gidron Y, Castel H, Joly F. Cognitive assessment in patients treated by immunotherapy: the prospective Cog-Immuno trial. BMC Cancer 2022; 22:1308. [PMID: 36513991 PMCID: PMC9749352 DOI: 10.1186/s12885-022-10384-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The discovery of the importance of the immune system and its role in oncogenesis led to the development of immunotherapy, a treatment that represents a major advance in oncology management. Due to the recent nature of immunotherapy, little is known about its side effects and their impact on quality of life. To date, there is no published study that accurately assesses the impact of immunotherapy on cognition, mood and/or fatigue in patients treated for cancer, despite potential neurological toxicities. The purpose of this study is to prospectively assess the incidence of cognitive impairment and cognitive complaints among cancer patients naïve for immunotherapy without concomitant anti-cancer treatment. METHODS The Cog-Immuno trial is a multicentre longitudinal study addressing patients with cancer candidate to receive immunotherapy alone (n = 100). Immunotherapy treatment will include either anti-PD1/PDL1 or anti-CTLA4 monotherapy or combination therapy. Cognitive and quality of life assessment, electrocardiogram (ECG) and biological tests will be performed at baseline, thereafter 3, and 6 months after immunotherapy initiation. The primary endpoint is the proportion of patients treated by immunotherapy who will experience a decline in cognitive performances or in Montreal Cognitive Assessment (MoCA) score within 3 months after inclusion. Secondary endpoints concern: anxiety, depression, fatigue, clinical characteristics, biological data and neurophysiological measures (heart rate variability and hemispheric lateralization). A pre-clinical study will be conducted in cancer bearing mice receiving checkpoint inhibitors (ICI) with the evaluation of cognitive functions and emotional reactivity, collection of blood samples and investigation of neurobiological mechanisms from brain slices. DISCUSSION Assessing and understanding the incidence and the severity of cognitive impairment and its impact on quality of life in cancer patients treated by immunotherapy is a major issue. The results of this study will provide information on the impact of these treatments on cognitive functions in order to help the physicians in the choice of the treatment. TRIAL REGISTRATION NCT03599830, registered July 26, 2018. PROTOCOL VERSION Version 5.1 dated from 2020/10/02.
Collapse
Affiliation(s)
- Marie Lange
- grid.418189.d0000 0001 2175 1768Clinical Research Department, Centre François Baclesse, 14000 Caen, France ,grid.7429.80000000121866389Normandie Univ, UNICAEN, INSERM, ANTICIPE, 14000 Caen, France ,Cancer & Cognition Platform, Ligue Contre le Cancer, 14000 Caen, France
| | - Bénédicte Clarisse
- grid.418189.d0000 0001 2175 1768Clinical Research Department, Centre François Baclesse, 14000 Caen, France
| | - Alexandra Leconte
- grid.418189.d0000 0001 2175 1768Clinical Research Department, Centre François Baclesse, 14000 Caen, France
| | - Kléouforo-Paul Dembélé
- Cancer & Cognition Platform, Ligue Contre le Cancer, 14000 Caen, France ,grid.7429.80000000121866389Normandie University, UNIROUEN, INSERM, U1245, Cancer and Brain Genomics, 76000 Rouen, France ,grid.503198.6Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France
| | - Justine Lequesne
- grid.418189.d0000 0001 2175 1768Clinical Research Department, Centre François Baclesse, 14000 Caen, France ,grid.7429.80000000121866389Normandie Univ, UNICAEN, INSERM, ANTICIPE, 14000 Caen, France ,Cancer & Cognition Platform, Ligue Contre le Cancer, 14000 Caen, France
| | - Celeste Nicola
- Cancer & Cognition Platform, Ligue Contre le Cancer, 14000 Caen, France ,grid.7429.80000000121866389Normandie University, UNIROUEN, INSERM, U1245, Cancer and Brain Genomics, 76000 Rouen, France ,grid.503198.6Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France
| | - Martine Dubois
- Cancer & Cognition Platform, Ligue Contre le Cancer, 14000 Caen, France ,grid.7429.80000000121866389Normandie University, UNIROUEN, INSERM, U1245, Cancer and Brain Genomics, 76000 Rouen, France ,grid.503198.6Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France
| | - Laurence Derues
- Cancer & Cognition Platform, Ligue Contre le Cancer, 14000 Caen, France ,grid.7429.80000000121866389Normandie University, UNIROUEN, INSERM, U1245, Cancer and Brain Genomics, 76000 Rouen, France ,grid.503198.6Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France
| | - Yori Gidron
- grid.18098.380000 0004 1937 0562Dept. of Nursing, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| | - Hélène Castel
- Cancer & Cognition Platform, Ligue Contre le Cancer, 14000 Caen, France ,grid.7429.80000000121866389Normandie University, UNIROUEN, INSERM, U1245, Cancer and Brain Genomics, 76000 Rouen, France ,grid.503198.6Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France
| | - Florence Joly
- grid.418189.d0000 0001 2175 1768Clinical Research Department, Centre François Baclesse, 14000 Caen, France ,grid.7429.80000000121866389Normandie Univ, UNICAEN, INSERM, ANTICIPE, 14000 Caen, France ,Cancer & Cognition Platform, Ligue Contre le Cancer, 14000 Caen, France ,grid.418189.d0000 0001 2175 1768Medical oncology department, Centre François Baclesse, 14000 Caen, France
| |
Collapse
|
7
|
Alberti P, Salvalaggio A, Argyriou AA, Bruna J, Visentin A, Cavaletti G, Briani C. Neurological Complications of Conventional and Novel Anticancer Treatments. Cancers (Basel) 2022; 14:cancers14246088. [PMID: 36551575 PMCID: PMC9776739 DOI: 10.3390/cancers14246088] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Various neurological complications, affecting both the central and peripheral nervous system, can frequently be experienced by cancer survivors after exposure to conventional chemotherapy, but also to modern immunotherapy. In this review, we provide an overview of the most well-known adverse events related to chemotherapy, with a focus on chemotherapy induced peripheral neurotoxicity, but we also address some emerging novel clinical entities related to cancer treatment, including chemotherapy-related cognitive impairment and immune-mediated adverse events. Unfortunately, efficacious curative or preventive treatment for all these neurological complications is still lacking. We provide a description of the possible mechanisms involved to drive future drug discovery in this field, both for symptomatic treatment and neuroprotection.
Collapse
Affiliation(s)
- Paola Alberti
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | | | - Andreas A. Argyriou
- Neurology Department, Agios Andreas State General Hospital of Patras, 26335 Patras, Greece
| | - Jordi Bruna
- Neuro-Oncology Unit, Hospital Universitari de Bellvitge-ICO Hospitalet, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 Barcelona, Spain
| | - Andrea Visentin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padova, 35131 Padova, Italy
| | - Guido Cavaletti
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Chiara Briani
- Neurology Unit, Department of Neurosciences, University of Padova, 35131 Padova, Italy
- Correspondence:
| |
Collapse
|
8
|
Mengoni M, Tüting T, Gaffal E. [Immunological mechanisms of cognitive dysfunction under systemic therapy in metastatic melanoma]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2022; 73:937-942. [PMID: 36350371 DOI: 10.1007/s00105-022-05070-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Neurocognitive impairments of memory, speech, and attention can occur in cancer patients as a direct result of the cancer but also in the context of therapy. With the development of modern immunotherapies and their use in combination with surgery and radiation therapy, the number of long-term survivors has significantly increased. As a result, detrimental effects on brain function and structure in cancer patients not only during treatment but also after completion of therapy have become a key issue in clinical oncology. Early diagnosis and treatment of neurocognitive disorders is of great importance for quality of life, therapy adherence, and overall survival of the affected patients. In this review, we discuss the underlying mechanisms with a special focus on metastatic melanoma. Furthermore, practice-relevant diagnostics, prophylaxis, and intervention options are discussed.
Collapse
Affiliation(s)
- Miriam Mengoni
- Universitätshautklinik, Universitätsklinikum Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Deutschland
| | - Thomas Tüting
- Universitätshautklinik, Universitätsklinikum Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Deutschland
| | - Evelyn Gaffal
- Universitätshautklinik, Universitätsklinikum Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Deutschland.
| |
Collapse
|
9
|
McGinnis GJ, Holden S, Yu B, Ransom C, Guidarelli C, De B, Diao K, Boyce D, Thomas CR, Winters-Stone K, Raber J. Association of fall rate and functional status by APOE genotype in cancer survivors after exercise intervention. Oncotarget 2022; 13:1259-1270. [PMID: 36441715 PMCID: PMC11623406 DOI: 10.18632/oncotarget.28310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
PURPOSE/OBJECTIVES Cancer treatment survivors often report impaired functioning and increased falls. Not all survivors experience the same symptom burden, suggesting individual susceptibilities. APOE genotype is a potential genetic risk factor for cancer treatment related side effects. Lifestyle factors such as physical activity can mitigate the effect of APOE genotype on measures of clinical interest in individuals without a history of cancer. We tested the hypothesis that APOE genotype influences cancer treatment related side effects and symptoms as well as response to exercise intervention. MATERIALS AND METHODS Data from a subsample of a study of fall prevention exercise in post-treatment female cancer survivors aged 50-75 years old (https://clinicaltrials.gov NCT01635413) were used to conduct a secondary data analysis. ApoE genotype was determined by serum sampling. Physical functioning, frequency of falls, and symptom burden were assessed using survey instruments. RESULTS Data from 126 female cancer survivors a median of 49 months out from cancer diagnosis were analyzed. ApoE4 carriers trended toward a higher fall rate at baseline (p = 0.059), but after exercise intervention had a fall rate lower than E4 non-carriers both immediately after structured intervention (p = 0.013) and after 6 months of follow up (p = 0.002). E2 carriers did not show improved measures of depressive symptoms and self-report disability after exercise intervention. E3 homozygotes showed increased self report physical activity after the 6 month exercise intervention, but E4 and E2 carriers did not. CONCLUSIONS APOE genotype may modulate cancer treatment related side effects and symptoms and response to exercise intervention.
Collapse
Affiliation(s)
- Gwendolyn J. McGinnis
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sarah Holden
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Betty Yu
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Charlton Ransom
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Carolyn Guidarelli
- School of Nursing, Oregon Health and Science University, Portland, OR 97239, USA
| | - Brian De
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kevin Diao
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Boyce
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Charles R. Thomas
- Department of Radiation Medicine, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Radiation Oncology, Dartmouth-Hitchcock’s Dartmouth Cancer Center, Lebanon, NH 03756, USA
| | - Kerri Winters-Stone
- School of Nursing, Oregon Health and Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
- Joint last authors
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Radiation Medicine, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Neurology and Division of Neuroscience, ONPRC, Oregon Health and Science University, Portland, OR 97239, USA
- Joint last authors
| |
Collapse
|
10
|
Invitto S, Leucci M, Accogli G, Schito A, Nestola C, Ciccarese V, Rinaldi R, Boscolo Rizzo P, Spinato G, Leo S. Chemobrain, Olfactory and Lifestyle Assessment in Onco-Geriatrics: Sex-Mediated Differences between Chemotherapy and Immunotherapy. Brain Sci 2022; 12:1390. [PMID: 36291323 PMCID: PMC9599735 DOI: 10.3390/brainsci12101390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
A possible link between chemotherapy and cognitive impairment has been identified. In the literature, this condition is usually called chemobrain and can mostly affect some memory domain but can lead also to other cognitive impairments. Olfaction, which is known to be linked with cognitive domain and the nociception system, can also be affected by chemotherapy. The aim of this study was to investigate the main cognitive and olfactory abilities and the functional and nutritional state of a cohort of chemotherapy and immunotherapy onco-geriatric patients and control geriatrics subjects. Cognitive, olfactory, geriatric and nutritional assessments were performed through the Mini Mental State Examination (MMSE), Sniffin' Sticks Screening 12, G8 test and a questionnaire on the adherence of the Mediterranean diet, respectively. Our findings show a gender effect on the MMSE. Overall results indicate more pronounced impairments both at the cognitive and frailty level regardless of the type of therapy. On the other hand, the Sniffin' Sticks performances highlight a significant decrease in olfactory perception ability of subjects following immunotherapy. Significant correlations between olfactory performance and MMSE and G8 scores were also found, as well as between MMSE and G8 measures.
Collapse
Affiliation(s)
- Sara Invitto
- INSPIRE LAB-Laboratory of Cognitive and Psychophysiological Olfactory Processes, DiSTeBA, University of Salento, 73100 Lecce, Italy
| | - Mariangela Leucci
- INSPIRE LAB-Laboratory of Cognitive and Psychophysiological Olfactory Processes, DiSTeBA, University of Salento, 73100 Lecce, Italy
| | - Giuseppe Accogli
- INSPIRE LAB-Laboratory of Cognitive and Psychophysiological Olfactory Processes, DiSTeBA, University of Salento, 73100 Lecce, Italy
| | - Andrea Schito
- INSPIRE LAB-Laboratory of Cognitive and Psychophysiological Olfactory Processes, DiSTeBA, University of Salento, 73100 Lecce, Italy
| | - Claudia Nestola
- Department of Medical Oncology, Vito Fazzi Hospital, 73100 Lecce, Italy
| | | | - Ross Rinaldi
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Paolo Boscolo Rizzo
- Department of Medical, Surgical and Health Sciences, Section of Otolaryngology, University of Trieste, 34129 Trieste, Italy
| | - Giacomo Spinato
- Section of Otolaryngology, Regional Centre for Head and Neck Cancer, Department of Neurosciences, University of Padova, 31100 Treviso, Italy
| | - Silvana Leo
- Department of Medical Oncology, Vito Fazzi Hospital, 73100 Lecce, Italy
| |
Collapse
|
11
|
Cognitive adverse effects of chemotherapy and immunotherapy: are interventions within reach? Nat Rev Neurol 2022; 18:173-185. [PMID: 35140379 DOI: 10.1038/s41582-021-00617-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2021] [Indexed: 02/06/2023]
Abstract
One in three people will be diagnosed with cancer during their lifetime. The community of cancer patients is growing, and several common cancers are becoming increasingly chronic; thus, cancer survivorship is an important part of health care. A large body of research indicates that cancer and cancer therapies are associated with cognitive impairment. This research has mainly concentrated on chemotherapy-associated cognitive impairment but, with the arrival of immunotherapies, the focus is expected to widen and the number of studies investigating the potential cognitive effects of these new therapies is rising. Meanwhile, patients with cognitive impairment and their healthcare providers are eagerly awaiting effective approaches to intervene against the cognitive effects of cancer treatment. In this Review, we take stock of the progress that has been made and discuss the steps that need to be taken to accelerate research into the biology underlying cognitive decline following chemotherapy and immunotherapy and to develop restorative and preventive interventions. We also provide recommendations to clinicians on how to best help patients who are currently experiencing cognitive impairment.
Collapse
|
12
|
Long-term effects of pharmacological inhibition of Anaplastic lymphoma kinase in Neurofibromatosis 1 mutant mice. Behav Brain Res 2022; 423:113767. [DOI: 10.1016/j.bbr.2022.113767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/13/2021] [Accepted: 01/18/2022] [Indexed: 11/21/2022]
|
13
|
Országhová Z, Mego M, Chovanec M. Long-Term Cognitive Dysfunction in Cancer Survivors. Front Mol Biosci 2022; 8:770413. [PMID: 34970595 PMCID: PMC8713760 DOI: 10.3389/fmolb.2021.770413] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer-related cognitive impairment (CRCI) is a frequent side effect experienced by an increasing number of cancer survivors with a significant impact on their quality of life. Different definitions and means of evaluation have been used in available literature; hence the exact incidence of CRCI remains unknown. CRCI can be described as cognitive symptoms reported by cancer patients in self-reported questionnaires or as cognitive changes evaluated by formal neuropsychological tests. Nevertheless, association between cognitive symptoms and objectively assessed cognitive changes is relatively weak or absent. Studies have focused especially on breast cancer patients, but CRCI has been reported in multiple types of cancer, including colorectal, lung, ovarian, prostate, testicular cancer and hematological malignancies. While CRCI has been associated with various treatment modalities, including radiotherapy, chemotherapy, hormone therapy and novel systemic therapies, it has been also detected prior to cancer treatment. Therefore, the effects of cancer itself with or without the psychological distress may be involved in the pathogenesis of CRCI as a result of altered coping mechanisms after cancer diagnosis. The development of CRCI is probably multifactorial and the exact mechanisms are currently not completely understood. Possible risk factors include administered treatment, genetic predisposition, age and psychological factors such as anxiety, depression or fatigue. Multiple mechanisms are suggested to be responsible for CRCI, including direct neurotoxic injury of systemic treatment and radiation while other indirect contributing mechanisms are hypothesized. Chronic neuroinflammation mediated by active innate immune system, DNA-damage or endothelial dysfunction is hypothesized to be a central mechanism of CRCI pathogenesis. There is increasing evidence of potential plasma (e.g., damage associated molecular patterns, inflammatory components, circulating microRNAs, exosomes, short-chain fatty acids, and others), cerebrospinal fluid and radiological biomarkers of cognitive dysfunction in cancer patients. Discovery of biomarkers of cognitive impairment is crucial for early identification of cancer patients at increased risk for the development of CRCI or development of treatment strategies to lower the burden of CRCI on long-term quality of life. This review summarizes current literature on CRCI with a focus on long-term effects of different cancer treatments, possible risk factors, mechanisms and promising biomarkers.
Collapse
Affiliation(s)
- Zuzana Országhová
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Michal Chovanec
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| |
Collapse
|
14
|
Parsons MW, Peters KB, Floyd SR, Brown P, Wefel JS. Preservation of neurocognitive function in the treatment of brain metastases. Neurooncol Adv 2021; 3:v96-v107. [PMID: 34859237 PMCID: PMC8633744 DOI: 10.1093/noajnl/vdab122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurocognitive function (NCF) deficits are common in patients with brain metastases, occurring in up to 90% of cases. NCF deficits may be caused by tumor-related factors and/or treatment for the metastasis, including surgery, radiation therapy, chemotherapy, and immunotherapy. In recent years, strategies to prevent negative impact of treatments and ameliorate cognitive deficits for patients with brain tumors have gained momentum. In this review, we report on research that has established the efficacy of preventative and rehabilitative therapies for NCF deficits in patients with brain metastases. Surgical strategies include the use of laser interstitial thermal therapy and intraoperative mapping. Radiotherapy approaches include focal treatments such as stereotactic radiosurgery and tailored approaches such as hippocampal avoidant whole-brain radiotherapy (WBRT). Pharmacologic options include use of the neuroprotectant memantine to reduce cognitive decline induced by WBRT and incorporation of medications traditionally used for attention and memory problems. Integration of neuropsychology into the care of patients with brain metastases helps characterize cognitive patterns, educate patients and families regarding their management, and guide rehabilitative therapies. These and other strategies will become even more important for long-term survivors of brain metastases as treatment options improve.
Collapse
Affiliation(s)
- Michael W Parsons
- Pappas Center for Neuro-Oncology, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Katherine B Peters
- Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Scott R Floyd
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Paul Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jeffrey S Wefel
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
15
|
Abstract
Modeling of metastatic disease in animal models is a critical resource to study the complexity of this multi-step process in a relevant system. Available models of metastatic disease to the brain are still far from ideal but they allow to address specific aspects of the biology or mimic clinically relevant scenarios. We not only review experimental models and their potential improvements but also discuss specific answers that could be obtained from them on unsolved aspects of clinical management.
Collapse
Affiliation(s)
- Lauritz Miarka
- Brain Metastasis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Manuel Valiente
- Brain Metastasis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
16
|
Boutros SW, Raber J, Unni VK. Effects of Alpha-Synuclein Targeted Antisense Oligonucleotides on Lewy Body-Like Pathology and Behavioral Disturbances Induced by Injections of Pre-Formed Fibrils in the Mouse Motor Cortex. JOURNAL OF PARKINSONS DISEASE 2021; 11:1091-1115. [PMID: 34057097 PMCID: PMC8461707 DOI: 10.3233/jpd-212566] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background: Alpha-synuclein (αsyn) characterizes neurodegenerative diseases known as synucleinopathies. The phosphorylated form (psyn) is the primary component of protein aggregates known as Lewy bodies (LBs), which are the hallmark of diseases such as Parkinson’s disease (PD). Synucleinopathies might spread in a prion-like fashion, leading to a progressive emergence of symptoms over time. αsyn pre-formed fibrils (PFFs) induce LB-like pathology in wild-type (WT) mice, but questions remain about their progressive spread and their associated effects on behavioral performance. Objective: To characterize the behavioral, cognitive, and pathological long-term effects of LB-like pathology induced after bilateral motor cortex PFF injection in WT mice and to assess the ability of mouse αsyn-targeted antisense oligonucleotides (ASOs) to ameliorate those effects. Methods: We induced LB-like pathology in the motor cortex and connected brain regions of male WT mice using PFFs. Three months post-PFF injection (mpi), we assessed behavioral and cognitive performance. We then delivered a targeted ASO via the ventricle and assessed behavioral and cognitive performance 5 weeks later, followed by pathological analysis. Results: At 3 and 6 mpi, PFF-injected mice showed mild, progressive behavioral deficits. The ASO reduced total αsyn and psyn protein levels, and LB-like pathology, but was also associated with some deleterious off-target effects not involving lowering of αsyn, such as a decline in body weight and impairments in motor function. Conclusions: These results increase understanding of the progressive nature of the PFF model and support the therapeutic potential of ASOs, though more investigation into effects of ASO-mediated reduction in αsyn on brain function is needed.
Collapse
Affiliation(s)
- Sydney Weber Boutros
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA.,Department of Neurology, Oregon Health & Science University, Portland, OR, USA.,Departments of Psychiatry and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, USA
| | - Vivek K Unni
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA.,Jungers Center for Neurosciences Research and OHSU Parkinson Center, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
17
|
Nicola C, Dubois M, Campart C, Al Sagheer T, Desrues L, Schapman D, Galas L, Lange M, Joly F, Castel H. The Prostate Cancer Therapy Enzalutamide Compared with Abiraterone Acetate/Prednisone Impacts Motivation for Exploration, Spatial Learning and Alters Dopaminergic Transmission in Aged Castrated Mice. Cancers (Basel) 2021; 13:cancers13143518. [PMID: 34298734 PMCID: PMC8304001 DOI: 10.3390/cancers13143518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 01/08/2023] Open
Abstract
Simple Summary Cognitive side effects and fatigue after cancer treatment now constitute a major challenge in oncology. Abiraterone acetate plus prednisone (AAP) and enzalutamide (ENZ) are next-generation therapies improving metastatic castration-resistant prostate cancer (mCRPC) patient survival, but also associated with neurological disturbances. We developed a behavioral 17 months-aged and castrated mouse model receiving AAP or ENZ for 5 days per week for six weeks. We establish that ENZ impacts locomotor and explorative behaviors, and strength capacity likely by preventing binding of central synthetized androgens to androgen receptors expressed by dopamine neurons of the Substantia Nigra and the Ventral Tegmentum. ENZ also reduces the cognitive score, associated with less neuronal activity in dorsal hippocampal areas. This demonstrates ENZ-specific consequences on motivation to exploration and cognition, being of particular importance for future management of elderly prostate cancer patients and their quality of life. Abstract Cognitive side effects after cancer treatment threatening quality of life (QoL) constitute a major challenge in oncology. Abiraterone acetate plus prednisone (AAP) and enzalutamide (ENZ) are examples of next-generation therapy (NGT) administered to metastatic castration-resistant prostate cancer (mCRPC) patients. NGT significantly improved mCRPC overall survival but neurological side effects such as fatigue and cognitive impairment were reported. We developed a behavioral 17 months-aged and castrated mouse model receiving per os AAP or ENZ for 5 days per week for six consecutive weeks. ENZ exposure reduced spontaneous activity and exploratory behavior associated with a decreased tyrosine hydroxylase (TH)-dopaminergic activity in the substantia nigra pars compacta and the ventral tegmental area. A decrease in TH+-DA afferent fibers and Phospho-DARPP32-related dopaminergic neuronal activities in the striatum and the ventral hippocampus highlighted ENZ-induced dopaminergic regulation within the nigrostriatal and mesolimbocortical pathways. ENZ and AAP treatments did not substantially modify spatial learning and memory performances, but ENZ led to a thygmotaxis behavior impacting the cognitive score, and reduced c-fos-related activity of NeuN+-neurons in the dorsal hippocampus. The consequences of the mCRPC treatment ENZ on aged castrated mouse motivation to exploration and cognition should make reconsider management strategy of elderly prostate cancer patients.
Collapse
Affiliation(s)
- Celeste Nicola
- Normandie University, UNIROUEN, INSERM, U1239 DC2N, 76000 Rouen, France; (C.N.); (M.D.); (C.C.); (T.A.S.); (L.D.)
- Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France; (D.S.); (L.G.)
- Cancer and Cognition Platform, Ligue Nationale contre le Cancer, 14000 Caen, France; (M.L.); (F.J.)
| | - Martine Dubois
- Normandie University, UNIROUEN, INSERM, U1239 DC2N, 76000 Rouen, France; (C.N.); (M.D.); (C.C.); (T.A.S.); (L.D.)
- Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France; (D.S.); (L.G.)
- Cancer and Cognition Platform, Ligue Nationale contre le Cancer, 14000 Caen, France; (M.L.); (F.J.)
| | - Cynthia Campart
- Normandie University, UNIROUEN, INSERM, U1239 DC2N, 76000 Rouen, France; (C.N.); (M.D.); (C.C.); (T.A.S.); (L.D.)
- Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France; (D.S.); (L.G.)
- Cancer and Cognition Platform, Ligue Nationale contre le Cancer, 14000 Caen, France; (M.L.); (F.J.)
| | - Tareq Al Sagheer
- Normandie University, UNIROUEN, INSERM, U1239 DC2N, 76000 Rouen, France; (C.N.); (M.D.); (C.C.); (T.A.S.); (L.D.)
- Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France; (D.S.); (L.G.)
| | - Laurence Desrues
- Normandie University, UNIROUEN, INSERM, U1239 DC2N, 76000 Rouen, France; (C.N.); (M.D.); (C.C.); (T.A.S.); (L.D.)
- Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France; (D.S.); (L.G.)
- Cancer and Cognition Platform, Ligue Nationale contre le Cancer, 14000 Caen, France; (M.L.); (F.J.)
| | - Damien Schapman
- Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France; (D.S.); (L.G.)
- Normandie University, UNIROUEN, INSERM, PRIMACEN, 76000 Rouen, France
| | - Ludovic Galas
- Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France; (D.S.); (L.G.)
- Normandie University, UNIROUEN, INSERM, PRIMACEN, 76000 Rouen, France
| | - Marie Lange
- Cancer and Cognition Platform, Ligue Nationale contre le Cancer, 14000 Caen, France; (M.L.); (F.J.)
- Centre François Baclesse, Clinical Research Department, 14000 Caen, France
- Normandie University, UNICAEN, INSERM, U1086 ANTICIPE, 14000 Caen, France
| | - Florence Joly
- Cancer and Cognition Platform, Ligue Nationale contre le Cancer, 14000 Caen, France; (M.L.); (F.J.)
- Centre François Baclesse, Clinical Research Department, 14000 Caen, France
- Normandie University, UNICAEN, INSERM, U1086 ANTICIPE, 14000 Caen, France
- University Hospital of Caen, 14000 Caen, France
| | - Hélène Castel
- Normandie University, UNIROUEN, INSERM, U1239 DC2N, 76000 Rouen, France; (C.N.); (M.D.); (C.C.); (T.A.S.); (L.D.)
- Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France; (D.S.); (L.G.)
- Cancer and Cognition Platform, Ligue Nationale contre le Cancer, 14000 Caen, France; (M.L.); (F.J.)
- Normandie University, UNIROUEN, INSERM, DC2N, Team Astrocyte and Vascular Niche, Place Emile Blondel, CEDEX, 76821 Mont-Saint-Aignan, France
- Correspondence: ; Tel.: +33-2-35-14-66-23
| |
Collapse
|
18
|
Gibson EM, Monje M. Microglia in Cancer Therapy-Related Cognitive Impairment. Trends Neurosci 2021; 44:441-451. [PMID: 33674135 PMCID: PMC8593823 DOI: 10.1016/j.tins.2021.02.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/20/2021] [Accepted: 02/08/2021] [Indexed: 12/15/2022]
Abstract
Millions of cancer survivors experience a persistent neurological syndrome that includes deficits in memory, attention, information processing, and mental health. Cancer therapy-related cognitive impairment can cause mild to severe disruptions to quality of life for these cancer survivors. Understanding the cellular and molecular underpinnings of this disorder will facilitate new therapeutic strategies aimed at ameliorating these long-lasting impairments. Accumulating evidence suggests that a range of cancer therapies induce persistent activation of the brain's resident immune cells, microglia. Cancer therapy-induced microglial activation disrupts numerous mechanisms of neuroplasticity, and emerging findings suggest that this impairment in plasticity is central to cancer therapy-related cognitive impairment. This review explores reactive microglial dysregulation of neural circuit structure and function following cancer therapy.
Collapse
Affiliation(s)
- Erin M Gibson
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA 94305, USA.
| | - Michelle Monje
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA 94305, USA; Department of Pathology, Stanford University, Palo Alto, CA 94305, USA; Stanford California Department of Pediatrics, Stanford University, Palo Alto, CA 94305, USA.
| |
Collapse
|
19
|
van der Willik KD, Jóźwiak K, Hauptmann M, van de Velde EED, Compter A, Ruiter R, Stricker BH, Ikram MA, Schagen SB. Change in cognition before and after non-central nervous system cancer diagnosis: A population-based cohort study. Psychooncology 2021; 30:1699-1710. [PMID: 34004035 DOI: 10.1002/pon.5734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Clinical studies showing that non-central nervous system cancer patients can develop cognitive impairment have primarily focused on patients with specific cancer types and intensive treatments. To better understand the course of cognitive function in the general population of cancer patients, we assessed cognitive trajectories of patients before and after cancer diagnosis in a population-based setting. METHODS Between 1989 and 2014, 2211 participants from the population-based Rotterdam study had been diagnosed with cancer of whom 718 (32.5%) had undergone ≥1 cognitive assessment before and after diagnosis. Cognition was measured every 3 to 6 years using a neuropsychological battery. Linear mixed models were used to compare cognitive trajectories of patients before and after diagnosis with those of age-matched cancer-free controls (1:3). RESULTS Median age at cancer diagnosis was 70.3 years and 47.1% were women. Most patients (68.1%) had received local treatment only. Cognitive trajectories of patients before and after cancer diagnosis were largely similar to those of controls. After diagnosis, the largest difference was found on a memory test (patients declined with 0.14 units per year on the Word Learning Test: delayed recall [95% CI = -0.35; 0.07] and controls with 0.09 units [95% CI = -0.18;-0.00], p for difference = .59). CONCLUSIONS In this longitudinal cohort, cancer did not appear to alter the trajectory of change in cognitive test results over time from that seen in similar individuals without cancer, although most cancer patients did not receive systemic therapies. Future studies should focus on identifying subgroups of patients who are at high risk for developing cognitive impairment.
Collapse
Affiliation(s)
- Kimberly D van der Willik
- Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Katarzyna Jóźwiak
- Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Institute of Biostatistics and Registry Research, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
| | - Michael Hauptmann
- Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Institute of Biostatistics and Registry Research, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
| | - Edolie E D van de Velde
- Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Annette Compter
- Department of Neuro-oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Rikje Ruiter
- Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Bruno H Stricker
- Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Sanne B Schagen
- Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Psychology, Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Raber J, Perez R, Torres ERS, Krenik D, Boutros S, Patel E, Chlebowski AC, Torres ER, Perveen Z, Penn A, Paulsen DB, Bartlett MG, Jia E, Holden S, Hall R, Morré J, Wong C, Ho E, Choi J, Stevens JF, Noël A, Bobe G, Kisby G. Effects of Chronic Secondhand Smoke (SHS) Exposure on Cognitive Performance and Metabolic Pathways in the Hippocampus of Wild-Type and Human Tau Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:57009. [PMID: 34009016 PMCID: PMC8132614 DOI: 10.1289/ehp8428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
BACKGROUND Exposure to secondhand smoke (SHS) is a risk factor for developing sporadic forms of sporadic dementia. A human tau (htau) mouse model is available that exhibits age-dependent tau dysregulation, neurofibrillary tangles, neuronal loss, neuroinflammation, and oxidative stress starting at an early age (3-4 months) and in which tau dysregulation and neuronal loss correlate with synaptic dysfunction and cognitive decline. OBJECTIVE The goal of this study was to assess the effects of chronic SHS exposure (10 months' exposure to ∼30 mg/m3) on behavioral and cognitive function, metabolism, and neuropathology in mice. METHODS Wild-type (WT) and htau female and male mice were exposed to SHS (90% side stream, 10% main stream) using the SCIREQ® inExpose™ system or air control for 168 min per day, for 312 d, 7 d per week. The exposures continued during the days of behavioral and cognitive testing. In addition to behavioral and cognitive performance and neuropathology, the lungs of mice were examined for pathology and alterations in gene expression. RESULTS Mice exposed to chronic SHS exposure showed the following genotype-dependent responses: a) lower body weights in WT, but not htau, mice; b) less spontaneous alternation in WT, but not htau, mice in the Y maze; c) faster swim speeds of WT, but not htau, mice in the water maze; d) lower activity levels of WT and htau mice in the open field; e) lower expression of brain PHF1, TTCM1, IGF1β, and HSP90 protein levels in WT male, but not female, mice; and f) more profound effects on hippocampal metabolic pathways in WT male than female mice and more profound effects in WT than htau mice. DISCUSSION The brain of WT mice, in particular WT male mice, might be especially susceptible to the effects of chronic SHS exposure. In WT males, independent pathways involving ascorbate, flavin adenine dinucleotide, or palmitoleic acid might contribute to the hippocampal injury following chronic SHS exposure. https://doi.org/10.1289/EHP8428.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
- Departments of Neurology, Psychiatry, and Radiation Medicine, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, Oregon, USA
- College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Ruby Perez
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Eileen Ruth S. Torres
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Destine Krenik
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Sydney Boutros
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Esha Patel
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Anna C. Chlebowski
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine of the Pacific Northwest, Lebanon, Oregon, USA
| | - Estefania Ramos Torres
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine of the Pacific Northwest, Lebanon, Oregon, USA
| | - Zakia Perveen
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Arthur Penn
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Daniel B. Paulsen
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | | | - Enze Jia
- University of Georgia, College of Pharmacy, Athens, Georgia, USA
| | - Sarah Holden
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Reed Hall
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Jeffrey Morré
- Mass Spectrometry Core, Oregon State University, Corvallis, Oregon, USA
| | - Carmen Wong
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
- Department of Animal Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Emily Ho
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
- College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
| | - Jan Frederik Stevens
- College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Gerd Bobe
- Mass Spectrometry Core, Oregon State University, Corvallis, Oregon, USA
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA
| | - Glen Kisby
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine of the Pacific Northwest, Lebanon, Oregon, USA
| |
Collapse
|
21
|
Duwa R, Jeong JH, Yook S. Development of immunotherapy and nanoparticles-based strategies for the treatment of Parkinson’s disease. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00521-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Neuroinflammatory changes of the normal brain tissue in cured mice following combined radiation and anti-PD-1 blockade therapy for glioma. Sci Rep 2021; 11:5057. [PMID: 33658642 PMCID: PMC7930115 DOI: 10.1038/s41598-021-84600-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/11/2021] [Indexed: 12/16/2022] Open
Abstract
The efficacy of combining radiation therapy with immune checkpoint inhibitor blockade to treat brain tumors is currently the subject of multiple investigations and holds significant therapeutic promise. However, the long-term effects of this combination therapy on the normal brain tissue are unknown. Here, we examined mice that were intracranially implanted with murine glioma cell line and became long-term survivors after treatment with a combination of 10 Gy cranial irradiation (RT) and anti-PD-1 checkpoint blockade (aPD-1). Post-mortem analysis of the cerebral hemisphere contralateral to tumor implantation showed complete abolishment of hippocampal neurogenesis, but neural stem cells were well preserved in subventricular zone. In addition, we observed a drastic reduction in the number of mature oligodendrocytes in the subcortical white matter. Importantly, this observation was evident specifically in the combined (RT + aPD-1) treatment group but not in the single treatment arm of either RT alone or aPD-1 alone. Elimination of microglia with a small molecule inhibitor of colony stimulated factor-1 receptor (PLX5622) prevented the loss of mature oligodendrocytes. These results identify for the first time a unique pattern of normal tissue changes in the brain secondary to combination treatment with radiotherapy and immunotherapy. The results also suggest a role for microglia as key mediators of the adverse treatment effect.
Collapse
|
23
|
Ciernikova S, Mego M, Chovanec M. Exploring the Potential Role of the Gut Microbiome in Chemotherapy-Induced Neurocognitive Disorders and Cardiovascular Toxicity. Cancers (Basel) 2021; 13:782. [PMID: 33668518 PMCID: PMC7918783 DOI: 10.3390/cancers13040782] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Chemotherapy, targeting not only malignant but also healthy cells, causes many undesirable side effects in cancer patients. Due to this fact, long-term cancer survivors often suffer from late effects, including cognitive impairment and cardiovascular toxicity. Chemotherapy damages the intestinal mucosa and heavily disrupts the gut ecosystem, leading to gastrointestinal toxicity. Animal models and clinical studies have revealed the associations between intestinal dysbiosis and depression, anxiety, pain, impaired cognitive functions, and cardiovascular diseases. Recently, a possible link between chemotherapy-induced gut microbiota disruption and late effects in cancer survivors has been proposed. In this review, we summarize the current understanding of preclinical and clinical findings regarding the emerging role of the microbiome and the microbiota-gut-brain axis in chemotherapy-related late effects affecting the central nervous system (CNS) and heart functions. Importantly, we provide an overview of clinical trials evaluating the relationship between the gut microbiome and cancer survivorship. Moreover, the beneficial effects of probiotics in experimental models and non-cancer patients with neurocognitive disorders and cardiovascular diseases as well as several studies on microbiota modulations via probiotics or fecal microbiota transplantation in cancer patients are discussed.
Collapse
Affiliation(s)
- Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, 833 10 Bratislava, Slovakia; (M.M.); (M.C.)
| | - Michal Chovanec
- 2nd Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, 833 10 Bratislava, Slovakia; (M.M.); (M.C.)
| |
Collapse
|
24
|
Komleva YK, Lopatina OL, Gorina IV, Shuvaev AN, Chernykh A, Potapenko IV, Salmina AB. NLRP3 deficiency-induced hippocampal dysfunction and anxiety-like behavior in mice. Brain Res 2021; 1752:147220. [PMID: 33358726 DOI: 10.1016/j.brainres.2020.147220] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 01/09/2023]
Abstract
Neuroinflammation has been classified as a trigger of behavioral alterations and cognitive impairments in many neurological conditions, including Alzheimer's disease, major depression, anxiety and others. Regardless of the cause of neuroinflammation, key molecules, which sense neuropathological conditions, are intracellular multiprotein signaling inflammasomes. Increasing evidence shows that the inflammatory response, mediated by activated nucleotide-binding oligomerization domain-, leucine-rich repeat- and pyrin domain-containing 3 (NLRP3) inflammasomes, is associated with the onset and progression of a wide range of diseases of the CNS. However, whether the NLRP3 inflammasome in the CNS is involved in the learning, development of anxiety and adult neurogenesis remains elusive. Therefore, the present study was designed to assess NLRP3 inflammasome contribution in anxiety and reveal its potential involvement in the experimental acquisition of fear responses and hippocampal neurogenesis. Behavioral, immunohistochemical and electrophysiological alterations were measured to evaluate role of neuroinflammation in the limbic system of mice. In this study, we describe interrelated neurophysiological mechanisms, which culminate in absence of NLRP3 inflammasome in young 4 months mice. These include the following: anxious behavior and deterioration in learning and memory of fear conditioning; impairment of adult neurogenesis; reduction and altered morphology of astrocytes in the brain; hyperexcitability in basolateral amygdala (BLA); impaired activation in axons of pyramidal cells of CA1 hippocampal zone in NLRP3 KO mice particularly via the Schaffer collateral pathway; and impaired synaptic transduction in pyramidal cells mediated by an embarrassment of neurotransmitter release from presynaptic site in CA3 hippocampal zone. The present study has demonstrated the novel findings that basal level of NLRP3 inflammasome in the brain of young mice is required for conditioning-induced plasticity in the ventral hippocampus and the basolateral amygdala. The deletion of NLRP3 impair synaptic transduction and caused anxiety-like behavior and labored fear learning, suggesting that low grade inflammation, mediated by NLRP3 expression, play a key role in memory consolidation.
Collapse
Affiliation(s)
- Yulia K Komleva
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia; Research Institute of Molecular Medicine and Pathobiochemistry, Russia.
| | - Olga L Lopatina
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia; Research Institute of Molecular Medicine and Pathobiochemistry, Russia
| | - Iana V Gorina
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Anton N Shuvaev
- Research Institute of Molecular Medicine and Pathobiochemistry, Russia
| | - Anatoly Chernykh
- Research Institute of Molecular Medicine and Pathobiochemistry, Russia
| | - Ilia V Potapenko
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Alla B Salmina
- Depatment of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia; Research Institute of Molecular Medicine and Pathobiochemistry, Russia
| |
Collapse
|
25
|
Boekhout AH, Rogiers A, Jozwiak K, Boers-Sonderen MJ, van den Eertwegh AJ, Hospers GA, de Groot JWB, Aarts MJB, Kapiteijn E, ten Tije AJ, Piersma D, Vreugdenhil G, van der Veldt AA, Suijkerbuijk KPM, Rozeman EA, Neyns B, Janssen KJ, van de Poll-Franse LV, Blank CU. Health-related quality of life of long-term advanced melanoma survivors treated with anti-CTLA-4 immune checkpoint inhibition compared to matched controls. Acta Oncol 2021; 60:69-77. [PMID: 32924708 DOI: 10.1080/0284186x.2020.1818823] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Checkpoint inhibitors have changed overall survival for patients with advanced melanoma. However, there is a lack of data on health-related quality of life (HRQoL) of long-term advanced melanoma survivors, years after treatment. Therefore, we evaluated HRQoL in long-term advanced melanoma survivors and compared the study outcomes with matched controls without cancer. MATERIAL AND METHODS Ipilimumab-treated advanced melanoma survivors without evidence of disease and without subsequent systemic therapy for a minimum of two years following last administration of ipilimumab were eligible for this study. The European Organization for Research and Treatment of Cancer quality of life questionnaire Core 30 (EORTC QLQ-C30), the Multidimensional Fatigue Inventory (MFI), the Hospital Anxiety and Depression Scale (HADS), and the Functional Assessment of Cancer Therapy-Melanoma questionnaire (FACT-M) were administered. Controls were individually matched for age, gender, and educational status. Outcomes of survivors and controls were compared using generalized estimating equations, and differences were interpreted as clinically relevant according to published guidelines. RESULTS A total of 89 survivors and 265 controls were analyzed in this study. After a median follow-up of 39 (range, 17-121) months, survivors scored significantly lower on physical (83.7 vs. 89.8, difference (diff) = -5.80, p=.005), role (83.5 vs. 90, diff = -5.97, p=.02), cognitive (83.7 vs. 91.9, diff = -8.05, p=.001), and social functioning (86.5 vs. 95.1, diff = -8.49, p= <.001) and had a higher symptom burden of fatigue (23.0 vs. 15.5, diff = 7.48, p=.004), dyspnea (13.3 vs. 6.7, diff = 6.47 p=.02), diarrhea (7.9 vs. 4.0, diff = 3.78, p=.04), and financial impact (10.5 vs. 2.5, diff = 8.07, p=.001) than matched controls. Group differences were indicated as clinically relevant. DISCUSSION Compared to matched controls, long-term advanced melanoma survivors had overall worse functioning scores, more physical symptoms, and financial difficulties. These data may contribute to the development of appropriate survivorship care.
Collapse
Affiliation(s)
- A. H. Boekhout
- Department of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - A. Rogiers
- Centre Hospitalier Universitaire Brugmann, Brussels, Belgium
| | - K. Jozwiak
- Department of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Institute of Biostatistics and Registry Research, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
| | - M. J. Boers-Sonderen
- Department of Medical Oncology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | - G. A. Hospers
- Department of Medical Oncology, University Medical Centre Groningen, Groningen, The Netherlands
| | | | - M. J. B. Aarts
- Department of Medical Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - E. Kapiteijn
- Leiden University Medical Centre, Leiden,The Netherlands
| | - A. J. ten Tije
- Department of Internal Medicine, Amphia Hospital, Breda, The Netherlands
| | - D. Piersma
- Medical Spectrum Twente, Enschede,The Netherlands
| | - G. Vreugdenhil
- Department of Internal Medicine, Maxima Medical Centre, Eindhoven,The Netherlands
| | | | - K. P. M. Suijkerbuijk
- Department of Medical Oncology, University Medical Cancer Center, Utrecht, The Netherlands
| | - E. A. Rozeman
- Department of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - B. Neyns
- Universitair Ziekenhuis Brussel, Brussel, Belgium
| | | | - L. V. van de Poll-Franse
- Department of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - C. U. Blank
- Department of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Bai L, Yu E. A narrative review of risk factors and interventions for cancer-related cognitive impairment. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:72. [PMID: 33553365 PMCID: PMC7859819 DOI: 10.21037/atm-20-6443] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cancer-related cognitive impairment (CRCI) refers to a series of cognitive impairment symptoms associated with alternations in brain structure and function, caused by a non-central nervous system malignant tumor and its related treatment. CRCI may present as memory loss, impaired concentration, difficulty in multitasking and word retrieval, and reduced comprehension speed. CRCI has become one of the prevalent factors that compromise the quality of life for cancer survivors. Different treatments, including surgery, chemotherapy, radiotherapy, endocrine therapy, and targeted drugs, may contribute to CRCI. Meanwhile, patients’ factors, including emotional challenges and genetic makeup, also contribute to the development of CRCI. The condition can be treated with using stimulants methylphenidate and modafinil, metabolites of nicotine: cotinine, antidepressants of fluoxetine and fluvoxamine, dementia drug of donepezil, and antioxidants ZnSO4, n-acetyl cysteine, propofol, and Chinese herbal of silver leaf medicine. Psychotherapies, including meditation and relaxation, cognitive rehabilitation training, along with physical therapies, including aerobic exercise, resistance training, balance training, yoga, qigong, tai chi electroencephalogram biofeedback, and acupuncture, are also beneficial in alleviating cancer-related cognitive impairment symptoms. In recent years, researchers have focused on factors related to the condition and on the available interventions. However, most research was conducted independently, and no review has yet summarized the latest findings. This review details and discusses the status of related factors and potential treatments for CRCI. We also supply specific recommendations to facilitate future research and integration in this field.
Collapse
Affiliation(s)
- Lu Bai
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Beijing, China
| | - Enyan Yu
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Vichaya EG, Ford BG, Quave CB, Rishi MR, Grossberg AJ, Dantzer R. Toll-like receptor 4 mediates the development of fatigue in the murine Lewis Lung Carcinoma model independently of activation of macrophages and microglia. Psychoneuroendocrinology 2020; 122:104874. [PMID: 32979744 PMCID: PMC7686070 DOI: 10.1016/j.psyneuen.2020.104874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/23/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022]
Abstract
Cancer-related fatigue at the time of tumor diagnosis is commonly attributed to inflammation associated with the disease process. However, we have previously demonstrated that running wheel deficits occur well before increased expression of proinflammatory cytokines in the liver and brain in a murine model of human papilloma virus-related head and neck cancer (mEER). Further, we have demonstrated that genetic deletion of type I interleukin-1 receptor and MyD88 has no effect. In the current investigation we sought to test the generality of this finding by assessing whether there is a role for toll-like receptor (TLR) 4-dependent inflammation in the fatigue-like behavior observed in mice with Lewis Lung Carcinoma (LLC) or mEER tumors. Genetic deletion of TLR4 attenuated tumor-induced elevations in liver pro-inflammatory cytokine expression in both models. However, it only abrogated wheel running deficits in LLC tumor bearing mice. To determine whether TLR4 signaling in the LLC model involves innate immune cells, mice were treated with the colony stimulating factor (CSF)-1 receptor antagonist PLX-5622 before and throughout tumor development to deplete microglia and peripheral macrophages. Administration of PLX-5622 had no protective effect on wheel running deficits in either mEER or LLC tumor models despite effective depletion of microglia and a down regulation of peripheral proinflammatory cytokine expression. These results indicate that the TLR4 signaling that mediates fatigue-like behavior in LLC mice is not dependent upon microglial or peripheral macrophage activation. Based on the literature and our data demonstrating attenuation of ubiquitin proteasome pathway activation in the gastrocnemius muscle of Tlr4-/- mice implanted with LLC cells, we interpret our current findings as indication that skeletal muscle TLR4 signaling may be involved. These results are important in that they add to the evidence that tumor-induced fatigue develops independently from classical neuroinflammation.
Collapse
Affiliation(s)
- Elisabeth G. Vichaya
- Department of Psychology & Neuroscience, Baylor University, Waco, TX 76798,Department of Symptom Research, Laboratory of Neuroimmunology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Bianca G. Ford
- Department of Symptom Research, Laboratory of Neuroimmunology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Cana B. Quave
- Department of Symptom Research, Laboratory of Neuroimmunology, University of Texas MD Anderson Cancer Center, Houston, TX 77030,University of Texas Health Science Center at Houston, Graduate School of Biomedical Sciences, Houston, TX 77030
| | - M. Raafay Rishi
- Department of Symptom Research, Laboratory of Neuroimmunology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Aaron J. Grossberg
- Department of Radiation Medicine, Brenden-Colson Center for Pancreatic Care, Cancer Early Detection Advanced Research Center, Oregon Health & Sciences University, Portland, OR, US
| | - Robert Dantzer
- Department of Symptom Research, Laboratory of Neuroimmunology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| |
Collapse
|
28
|
Mayo SJ, Lustberg M, M Dhillon H, Nakamura ZM, Allen DH, Von Ah D, C Janelsins M, Chan A, Olson K, Tan CJ, Toh YL, Oh J, Grech L, Cheung YT, Subbiah IM, Petranovic D, D'Olimpio J, Gobbo M, Koeppen S, Loprinzi CL, Pang L, Shinde S, Ntukidem O, Peters KB. Cancer-related cognitive impairment in patients with non-central nervous system malignancies: an overview for oncology providers from the MASCC Neurological Complications Study Group. Support Care Cancer 2020; 29:2821-2840. [PMID: 33231809 DOI: 10.1007/s00520-020-05860-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
Cancer-related cognitive impairment (CRCI) is commonly experienced by individuals with non-central nervous system cancers throughout the disease and treatment trajectory. CRCI can have a substantial impact on the functional ability and quality of life of patients and their families. To mitigate the impact, oncology providers must know how to identify, assess, and educate patients and caregivers. The objective of this review is to provide oncology clinicians with an overview of CRCI in the context of adults with non-central nervous system cancers, with a particular focus on current approaches in its identification, assessment, and management.
Collapse
Affiliation(s)
- Samantha J Mayo
- Lawrence S. Bloomberg Faculty of Nursing, University of Toronto, Toronto, Canada. .,Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.
| | - Maryam Lustberg
- The Ohio State Comprehensive Cancer Center, Columbus, OH, USA
| | | | - Zev M Nakamura
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Diane Von Ah
- Indiana University School of Nursing, Indianapolis, IN, USA
| | - Michelle C Janelsins
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA.,Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA.,Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Karin Olson
- Faculty of Nursing, University of Alberta, Edmonton, Alberta, Canada
| | - Chia Jie Tan
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yi Long Toh
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeong Oh
- Peter MacCallum Cancer Centre, Parkville, Australia
| | - Lisa Grech
- National University of Singapore, Singapore, Singapore.,Swinburne University, Hawthorn, Australia.,University of Melbourne, Parkville, Australia.,Monash University, Clayton, Australia
| | - Yin Ting Cheung
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | | | - Duska Petranovic
- Clinical Hospital Center Rijeka, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - James D'Olimpio
- Monter Cancer Center, Northwell Cancer Institute, Lake Success, NY, USA
| | - Margherita Gobbo
- Division of Oral Medicine and Pathology, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy.,Unit of Oral and Maxillofacial Surgery, Ca Foncello Hospital, Treviso, Italy
| | - Susanne Koeppen
- LVR-Klinikum Essen, University of Duisburg-Essen, Essen, Germany
| | | | | | | | | | - Katherine B Peters
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA
| |
Collapse
|
29
|
Castel H, Joly F. [Immunotherapies of cancer: Is there any impact on patient cognitive functions?]. Med Sci (Paris) 2020; 36:695-699. [PMID: 32821042 DOI: 10.1051/medsci/2020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hélène Castel
- Normandie Univ, UniRouen, Inserm U1239, DC2N, Institut de recherche et d'innovation en biomédecine (IRIB), 25 rue Tesnière, 76000 Rouen, France - Plate-forme Cancer et cognition, Ligue nationale contre le cancer, 14000 Caen, France
| | - Florence Joly
- Plate-forme Cancer et cognition, Ligue nationale contre le cancer, 14000 Caen, France - Département d'oncologie médicale, Centre François Baclesse, 14000 Caen, France - Normandie Univ, UniCaen, Inserm U1086, Anticipe, 14000 Caen, France - CHU de Caen, 14000 Caen, France
| |
Collapse
|
30
|
Joly F, Castel H, Tron L, Lange M, Vardy J. Potential Effect of Immunotherapy Agents on Cognitive Function in Cancer Patients. J Natl Cancer Inst 2020; 112:123-127. [PMID: 31504664 DOI: 10.1093/jnci/djz168] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/02/2019] [Accepted: 08/14/2019] [Indexed: 12/17/2022] Open
Abstract
A paradigm shift is occurring in cancer therapy, where instead of targeting tumor cells, immunotherapy agents (IA) target the immune system to overcome cancer tolerance and to stimulate an antitumor immune response. IA using immune checkpoint inhibitors (CPI) or chimeric antigen receptor T-cells have emerged as the most encouraging approaches to treat cancer patients. CPI are reported to induce moderate-to-severe neurologic immune-related adverse events in less than 1% of patients, whereas chimeric antigen receptor T-cell therapy is associated with frequent neurological toxicities that can be severe or even fatal. Cognitive difficulties have been described following chemotherapy and targeted therapy, but not specifically explored in patients receiving IA. The aim of this review is to establish a picture of the first published studies suggesting some biological and physiopathological effects of IA on cognitive functions among cancer patients. The first results originate from a preclinical study evaluating the role of CPI associated with peripheral radiation on cognitive dysfunction and the recent discovery of the central nervous lymphatic system allowing leukocytes to penetrate the central nervous system. Evaluating possible side effects of IA on cognitive function will be an important challenge for future clinical trials and for better understanding the underlying mechanisms through preclinical animal models.
Collapse
Affiliation(s)
- Florence Joly
- Clinical Research Department, Centre François Baclesse, Caen, France.,Normandie University, UNICAEN, INSERM, ANTICIPE, Caen, France.,Cancer and Cognition Platform, Ligue Nationale contre le Cancer, Caen, France.,University Hospital of Caen, Caen, France
| | - Hélène Castel
- Cancer and Cognition Platform, Ligue Nationale contre le Cancer, Caen, France.,Normandie Univ, UNIROUEN, INSERM U1239, DC2N, Rouen, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Laure Tron
- Normandie University, UNICAEN, INSERM, ANTICIPE, Caen, France.,Cancer and Cognition Platform, Ligue Nationale contre le Cancer, Caen, France.,University Hospital of Caen, Caen, France
| | - Marie Lange
- Clinical Research Department, Centre François Baclesse, Caen, France.,Normandie University, UNICAEN, INSERM, ANTICIPE, Caen, France.,Cancer and Cognition Platform, Ligue Nationale contre le Cancer, Caen, France
| | - Janette Vardy
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Concord Cancer Centre, Concord Hospital, Concord, New South Wales, Australia
| |
Collapse
|
31
|
Subramaniam CB, Bowen JM, Gladman MA, Lustberg MB, Mayo SJ, Wardill HR. The microbiota-gut-brain axis: An emerging therapeutic target in chemotherapy-induced cognitive impairment. Neurosci Biobehav Rev 2020; 116:470-479. [PMID: 32681936 DOI: 10.1016/j.neubiorev.2020.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/05/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022]
Abstract
Chemotherapy-induced cognitive impairment (CICI) is an ill-defined complication of chemotherapy treatment that places a significant psychosocial burden on survivors of cancer and has a considerable impact on the activities of daily living. CICI pathophysiology has not been clearly defined, with candidate mechanisms relating to both the direct cytotoxicity of chemotherapy drugs on the central nervous system (CNS) and more global, indirect mechanisms such as neuroinflammation and blood brain barrier (BBB) damage. A growing body of research demonstrates that changes to the composition of the gastrointestinal microbiota is an initiating factor in numerous neurocognitive conditions, profoundly influencing both CNS immunity and BBB integrity. Importantly, chemotherapy causes significant disruption to the gastrointestinal microbiota. While microbial disruption is a well-established factor in the development of chemotherapy-induced gastrointestinal toxicities (largely diarrhoea), its role in CICI remains unknown, limiting microbial-based therapeutics or risk prediction strategies. Therefore, this review aims to synthesise and critically evaluate the evidence addressing the microbiota-gut-brain axis as a critical factor influencing the development of CICI.
Collapse
Affiliation(s)
- Courtney B Subramaniam
- Discipline of Physiology, Adelaide Medical School, University of Adelaide, SA, Australia.
| | - Joanne M Bowen
- Discipline of Physiology, Adelaide Medical School, University of Adelaide, SA, Australia
| | - Marc A Gladman
- Discipline of Anatomy & Pathology, Adelaide Medical School, University of Adelaide, SA Australia
| | - Maryam B Lustberg
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Medical Center, Columbus, OH, USA
| | - Samantha J Mayo
- Lawrence S. Bloomberg Faculty of Nursing, University of Toronto, Toronto, ON, Canada
| | - Hannah R Wardill
- Discipline of Physiology, Adelaide Medical School, University of Adelaide, SA, Australia; Department of Pediatric Oncology/Hematology, University of Groningen, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
32
|
Tan EK, Chao YX, West A, Chan LL, Poewe W, Jankovic J. Parkinson disease and the immune system - associations, mechanisms and therapeutics. Nat Rev Neurol 2020; 16:303-318. [PMID: 32332985 DOI: 10.1038/s41582-020-0344-4] [Citation(s) in RCA: 262] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2020] [Indexed: 12/13/2022]
Abstract
Multiple lines of evidence indicate that immune system dysfunction has a role in Parkinson disease (PD); this evidence includes clinical and genetic associations between autoimmune disease and PD, impaired cellular and humoral immune responses in PD, imaging evidence of inflammatory cell activation and evidence of immune dysregulation in experimental models of PD. However, the mechanisms that link the immune system with PD remain unclear, and the temporal relationships of innate and adaptive immune responses with neurodegeneration are unknown. Despite these challenges, our current knowledge provides opportunities to develop immune-targeted therapeutic strategies for testing in PD, and clinical studies of some approaches are under way. In this Review, we provide an overview of the clinical observations, preclinical experiments and clinical studies that provide evidence for involvement of the immune system in PD and that help to define the nature of this association. We consider autoimmune mechanisms, central and peripheral inflammatory mechanisms and immunogenetic factors. We also discuss the use of this knowledge to develop immune-based therapeutic approaches, including immunotherapy that targets α-synuclein and the targeting of immune mediators such as inflammasomes. We also consider future research and clinical trials necessary to maximize the potential of targeting the immune system.
Collapse
Affiliation(s)
- Eng-King Tan
- Department of Neurology, Singapore General Hospital, Singapore, Singapore.
- National Neuroscience Institute, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
| | - Yin-Xia Chao
- Department of Neurology, Singapore General Hospital, Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Andrew West
- Duke Center for Neurodegeneration and Neurotherapeutics, Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Ling-Ling Chan
- Duke-NUS Medical School, Singapore, Singapore
- Department of Radiology, Singapore General Hospital, Singapore, Singapore
| | - Werner Poewe
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
33
|
Wu T, Wang X, Zhang R, Jiao Y, Yu W, Su D, Zhao Y, Tian J. Mice with pre-existing tumors are vulnerable to postoperative cognitive dysfunction. Brain Res 2020; 1732:146650. [DOI: 10.1016/j.brainres.2020.146650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 01/01/2020] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
|
34
|
Choi J, Lee SY. Clinical Characteristics and Treatment of Immune-Related Adverse Events of Immune Checkpoint Inhibitors. Immune Netw 2020; 20:e9. [PMID: 32158597 PMCID: PMC7049586 DOI: 10.4110/in.2020.20.e9] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/19/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have been changing the paradigm of cancer treatment. However, immune-related adverse effects (irAEs) have also increased with the exponential increase in the use of ICIs. ICIs can break up the immunologic homeostasis and reduce T-cell tolerance. Therefore, inhibition of immune checkpoint can lead to the activation of autoreactive T-cells, resulting in various irAEs similar to autoimmune diseases. Gastrointestinal toxicity, endocrine toxicity, and dermatologic toxicity are common side effects. Neurotoxicity, cardiotoxicity, and pulmonary toxicity are relatively rare but can be fatal. ICI-related gastrointestinal toxicity, dermatologic toxicity, and hypophysitis are more common with anti- CTLA-4 agents. ICI-related pulmonary toxicity, thyroid dysfunction, and myasthenia gravis are more common with PD-1/PD-L1 inhibitors. Treatment with systemic steroids is the principal strategy against irAEs. The use of immune-modulatory agents should be considered in case of no response to the steroid therapy. Treatment under the supervision of multidisciplinary specialists is also essential, because the symptoms and treatments of irAEs could involve many organs. Thus, this review focuses on the mechanism, clinical presentation, incidence, and treatment of various irAEs.
Collapse
Affiliation(s)
- Juwhan Choi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Korea
| | - Sung Yong Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Korea
| |
Collapse
|
35
|
Choi J, Lee SY. Clinical Characteristics and Treatment of Immune-Related Adverse Events of Immune Checkpoint Inhibitors. Immune Netw 2020. [PMID: 32158597 DOI: 10.4110/in.2020.20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have been changing the paradigm of cancer treatment. However, immune-related adverse effects (irAEs) have also increased with the exponential increase in the use of ICIs. ICIs can break up the immunologic homeostasis and reduce T-cell tolerance. Therefore, inhibition of immune checkpoint can lead to the activation of autoreactive T-cells, resulting in various irAEs similar to autoimmune diseases. Gastrointestinal toxicity, endocrine toxicity, and dermatologic toxicity are common side effects. Neurotoxicity, cardiotoxicity, and pulmonary toxicity are relatively rare but can be fatal. ICI-related gastrointestinal toxicity, dermatologic toxicity, and hypophysitis are more common with anti- CTLA-4 agents. ICI-related pulmonary toxicity, thyroid dysfunction, and myasthenia gravis are more common with PD-1/PD-L1 inhibitors. Treatment with systemic steroids is the principal strategy against irAEs. The use of immune-modulatory agents should be considered in case of no response to the steroid therapy. Treatment under the supervision of multidisciplinary specialists is also essential, because the symptoms and treatments of irAEs could involve many organs. Thus, this review focuses on the mechanism, clinical presentation, incidence, and treatment of various irAEs.
Collapse
Affiliation(s)
- Juwhan Choi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Korea
| | - Sung Yong Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Korea
| |
Collapse
|
36
|
Lange M, Joly F, Vardy J, Ahles T, Dubois M, Tron L, Winocur G, De Ruiter M, Castel H. Cancer-related cognitive impairment: an update on state of the art, detection, and management strategies in cancer survivors. Ann Oncol 2019; 30:1925-1940. [PMID: 31617564 PMCID: PMC8109411 DOI: 10.1093/annonc/mdz410] [Citation(s) in RCA: 319] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Advances in diagnostic and therapeutic strategies in oncology have significantly increased the chance of survival of cancer patients, even those with metastatic disease. However, cancer-related cognitive impairment (CRCI) is frequently reported in patients treated for non-central nervous system cancers, particularly during and after chemotherapy. DESIGN This review provides an update of the state of the art based on PubMed searches between 2012 and March 2019 on 'cognition', 'cancer', 'antineoplastic agents' or 'chemotherapy'. It includes the most recent clinical, imaging and pre-clinical data and reports management strategies of CRCI. RESULTS Evidence obtained primarily from studies on breast cancer patients highlight memory, processing speed, attention and executive functions as the most cognitive domains impaired post-chemotherapy. Recent investigations established that other cancer treatments, such as hormone therapies and targeted therapies, can also induce cognitive deficits. Knowledge regarding predisposing factors, biological markers or brain functions associated with CRCI has improved. Factors such as age and genetic polymorphisms of apolipoprotein E, catechol-O-methyltransferase and BDNF may predispose individuals to a higher risk of cognitive impairment. Poor performance on neuropsychological tests were associated with volume reduction in grey matter, less connectivity and activation after chemotherapy. In animals, hippocampus-based memory and executive functions, mediated by the frontal lobes, were shown to be particularly susceptible to the effects of chemotherapy. It involves altered neurogenesis, mitochondrial dysfunction or brain cytokine response. An important next step is to identify strategies for managing cognitive difficulties, with primary studies to assess cognitive training and physical exercise regimens. CONCLUSIONS CRCI is not limited to chemotherapy. A multidisciplinary approach has improved our knowledge of the complex mechanisms involved. Nowadays, studies evaluating cognitive rehabilitation programmes are encouraged to help patients cope with cognitive difficulties and improve quality of life during and after cancer.
Collapse
Affiliation(s)
- M. Lange
- INSERM, U1086, ANTICIPE, 14000 Caen,Clinical Research Department, Centre François Baclesse, 14000 Caen,Cancer and Cognition Platform, Ligue Nationale Contre le Cancer, 14000 Caen
| | - F. Joly
- INSERM, U1086, ANTICIPE, 14000 Caen,Clinical Research Department, Centre François Baclesse, 14000 Caen,Cancer and Cognition Platform, Ligue Nationale Contre le Cancer, 14000 Caen,Medical Oncology Department, CHU de Caen, 14000 Caen, France,Correspondence to: Prof. Florence Joly, Medical Oncology Department, Inserm U1086 Anticipe, Centre François Baclesse, 3 avenue Général Harris, Caen 14000, France. Tel: +33-2-3145-5002;
| | - J Vardy
- Concord Cancer Centre, Concord Repatriation General Hospital, Sydney, New South Wales,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - T. Ahles
- Neurocognitive Research Lab, Memorial Sloan Kettering Cancer Center, New York, USA
| | - M. Dubois
- Cancer and Cognition Platform, Ligue Nationale Contre le Cancer, 14000 Caen,Normandie University, UNIROUEN, INSERM, DC2N, 76000 Rouen,Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen
| | - L. Tron
- INSERM, U1086, ANTICIPE, 14000 Caen,Cancer and Cognition Platform, Ligue Nationale Contre le Cancer, 14000 Caen,CHU de Caen, 14000 Caen, France
| | - G. Winocur
- Baycrest Centre, Rotman Research Institute, Toronto,Department of Psychology, Trent University, Peterborough,Department of Psychology and Psychiatry, University of Toronto, Toronto, Canada
| | - M.B. De Ruiter
- Division of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - H. Castel
- Cancer and Cognition Platform, Ligue Nationale Contre le Cancer, 14000 Caen,Normandie University, UNIROUEN, INSERM, DC2N, 76000 Rouen,Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen
| |
Collapse
|
37
|
Barrientos RM, Brunton PJ, Lenz KM, Pyter L, Spencer SJ. Neuroimmunology of the female brain across the lifespan: Plasticity to psychopathology. Brain Behav Immun 2019; 79:39-55. [PMID: 30872093 PMCID: PMC6591071 DOI: 10.1016/j.bbi.2019.03.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/25/2019] [Accepted: 03/09/2019] [Indexed: 02/06/2023] Open
Abstract
The female brain is highly dynamic and can fundamentally remodel throughout the normal ovarian cycle as well as in critical life stages including perinatal development, pregnancy and old-age. As such, females are particularly vulnerable to infections, psychological disorders, certain cancers, and cognitive impairments. We will present the latest evidence on the female brain; how it develops through the neonatal period; how it changes through the ovarian cycle in normal individuals; how it adapts to pregnancy and postpartum; how it responds to illness and disease, particularly cancer; and, finally, how it is shaped by old age. Throughout, we will highlight female vulnerability to and resilience against disease and dysfunction in the face of environmental challenges.
Collapse
Affiliation(s)
- R M Barrientos
- Institute for Behavioral Medicine Research, Wexner Medical Centre, The Ohio State University, Columbus, OH 43210, United States; Department of Psychiatry and Behavioral Health, Wexner Medical Centre, The Ohio State University, Columbus, OH 43210, United States; Chronic Brain Injury Program, Discovery Themes Initiative, The Ohio State University, Columbus, OH 43210, United States
| | - P J Brunton
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, Scotland, UK; Zhejiang University-University of Edinburgh Joint Institute, Zhejiang University School of Medicine, International Campus, Haining, Zhejiang 314400, PR China
| | - K M Lenz
- Institute for Behavioral Medicine Research, Wexner Medical Centre, The Ohio State University, Columbus, OH 43210, United States; Department of Psychology, Department of Neuroscience, The Ohio State University, Columbus, OH 43210, United States
| | - L Pyter
- Institute for Behavioral Medicine Research, Wexner Medical Centre, The Ohio State University, Columbus, OH 43210, United States; Department of Psychiatry and Behavioral Health, Wexner Medical Centre, The Ohio State University, Columbus, OH 43210, United States
| | - S J Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic. 3083, Australia.
| |
Collapse
|
38
|
Liu Y, Aguzzi A. Immunotherapy for neurodegeneration? SCIENCE (NEW YORK, N.Y.) 2019; 364:130-131. [PMID: 30975878 DOI: 10.1126/science.aaw0685] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Yingjun Liu
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland.
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland.
| |
Collapse
|
39
|
Raber J, Yamazaki J, Torres ERS, Kirchoff N, Stagaman K, Sharpton T, Turker MS, Kronenberg A. Combined Effects of Three High-Energy Charged Particle Beams Important for Space Flight on Brain, Behavioral and Cognitive Endpoints in B6D2F1 Female and Male Mice. Front Physiol 2019; 10:179. [PMID: 30914962 PMCID: PMC6422905 DOI: 10.3389/fphys.2019.00179] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/13/2019] [Indexed: 12/30/2022] Open
Abstract
The radiation environment in deep space includes the galactic cosmic radiation with different proportions of all naturally occurring ions from protons to uranium. Most experimental animal studies for assessing the biological effects of charged particles have involved acute dose delivery for single ions and/or fractionated exposure protocols. Here, we assessed the behavioral and cognitive performance of female and male C57BL/6J × DBA2/J F1 (B6D2F1) mice 2 months following rapidly delivered, sequential irradiation with protons (1 GeV, 60%), 16O (250 MeV/n, 20%), and 28Si (263 MeV/n, 20%) at 0, 25, 50, or 200 cGy at 4-6 months of age. Cortical BDNF, CD68, and MAP-2 levels were analyzed 3 months after irradiation or sham irradiation. During the dark period, male mice irradiated with 50 cGy showed higher activity levels in the home cage than sham-irradiated mice. Mice irradiated with 50 cGy also showed increased depressive behavior in the forced swim test. When cognitive performance was assessed, sham-irradiated mice of both sexes and mice irradiated with 25 cGy showed normal responses to object recognition and novel object exploration. However, object recognition was impaired in female and male mice irradiated with 50 or 200 cGy. For cortical levels of the neurotrophic factor BDNF and the marker of microglial activation CD68, there were sex × radiation interactions. In females, but not males, there were increased CD68 levels following irradiation. In males, but not females, there were reduced BDNF levels following irradiation. A significant positive correlation between BDNF and CD68 levels was observed, suggesting a role for activated microglia in the alterations in BDNF levels. Finally, sequential beam irradiation impacted the diversity and composition of the gut microbiome. These included dose-dependent impacts and alterations to the relative abundance of several gut genera, such as Butyricicoccus and Lachnospiraceae. Thus, exposure to rapidly delivered sequential proton, 16O ion, and 28Si ion irradiation significantly affects behavioral and cognitive performance, cortical levels of CD68 and BDNF in a sex-dependent fashion, and the gut microbiome.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Department of Neurology, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, OR, United States.,Department of Radiation Medicine, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, OR, United States
| | - Joy Yamazaki
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Eileen Ruth S Torres
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Nicole Kirchoff
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Keaton Stagaman
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Thomas Sharpton
- Department of Microbiology, Oregon State University, Corvallis, OR, United States.,Department of Statistics, Oregon State University, Corvallis, OR, United States
| | - Mitchell S Turker
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, United States.,Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States
| | - Amy Kronenberg
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
40
|
Torres ERS, Akinyeke T, Stagaman K, Duvoisin RM, Meshul CK, Sharpton TJ, Raber J. Effects of Sub-Chronic MPTP Exposure on Behavioral and Cognitive Performance and the Microbiome of Wild-Type and mGlu8 Knockout Female and Male Mice. Front Behav Neurosci 2018; 12:140. [PMID: 30072879 PMCID: PMC6058038 DOI: 10.3389/fnbeh.2018.00140] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/18/2018] [Indexed: 01/23/2023] Open
Abstract
Motor dysfunction is a hallmark of Parkinson's disease (PD); however, non-motor symptoms such as gastrointestinal dysfunction often arise prior to motor symptoms. Alterations in the gut microbiome have been proposed as the earliest event in PD pathogenesis. PD symptoms often demonstrate sex differences. Glutamatergic neurotransmission has long been linked to PD pathology. Metabotropic glutamate receptors (mGlu), a family of G protein-coupled receptors, are divided into three groups, with group III mGlu receptors mainly localized presynaptically where they can inhibit glutamate release in the CNS as well as in the gut. Additionally, the gut microbiome can communicate with the CNS via the gut-brain axis. Here, we assessed whether deficiency of metabotropic glutamate receptor 8 (mGlu8), group III mGlu, modulates the effects of the neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), on behavioral and cognitive performance in female and male mice. We studied whether these effects are associated with changes in striatal tyrosine hydroxylase (TH) levels and the gut microbiome. Two-week sub-chronic MPTP increased activity of female and male wild-type (WT) and mGlu8 knockout (KO) mice in the open field. MPTP also showed genotype- and sex-dependent effects. MPTP increased the time WT, but not KO, females and males spent exploring objects. In WT mice, MPTP improved sensorimotor function in males but impaired it in females. Further, MPTP impaired cued fear memory in WT, but not KO, male mice. MPTP reduced striatal TH levels in WT and KO mice but these effects were only pronounced in males. MPTP treatment and genotype affected the diversity of the gut microbiome. In addition, there were significant associations between microbiome α-diversity and sensorimotor performance, as well as microbiome composition and fear learning. These results indicate that specific taxa may directly affect motor and fear learning or that the same physiological effects that enhance both forms of learning also alter diversity of the gut microbiome. MPTP's effect on motor and cognitive performance may then be, at least in part, be mediated by the gut microbiome. These data also support mGlu8 as a novel therapeutic target for PD and highlight the importance of including both sexes in preclinical studies.
Collapse
Affiliation(s)
- Eileen Ruth S Torres
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Tunde Akinyeke
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Keaton Stagaman
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Robert M Duvoisin
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, United States
| | - Charles K Meshul
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Portland VA Medical Center, Portland, OR, United States
| | - Thomas J Sharpton
- Department of Microbiology, Oregon State University, Corvallis, OR, United States.,Department of Statistics, Oregon State University, Corvallis, OR, United States
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Departments of Neurology and Radiation Medicine and Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
41
|
Santos JC, Pyter LM. Neuroimmunology of Behavioral Comorbidities Associated With Cancer and Cancer Treatments. Front Immunol 2018; 9:1195. [PMID: 29930550 PMCID: PMC6001368 DOI: 10.3389/fimmu.2018.01195] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/14/2018] [Indexed: 12/27/2022] Open
Abstract
Behavioral comorbidities (depression, anxiety, fatigue, cognitive disturbances, and neuropathic pain) are prevalent in cancer patients and survivors. These mental and neurological health issues reduce quality-of-life, which is a significant societal concern given the increasing rates of long-term survival after various cancers. Hypothesized causes of behavioral comorbidities with cancer include tumor biology, stress associated with the cancer experience, and cancer treatments. A relatively recent leading mechanism by which these causes contribute to changes in neurobiology that underlie behavior is inflammation. Indeed, both basic and clinical research indicates that peripheral inflammation leads to central inflammation and behavioral changes in other illness contexts. Given the limitations of assessing neuroimmunology in clinical populations, this review primarily synthesizes evidence of neuroimmune and neuroinflammatory changes due to two components of cancer (tumor biology and cancer treatments) that are associated with altered affective-like or cognitive behaviors in rodents. Specifically, alterations in microglia, neuroinflammation, and immune trafficking to the brain are compiled in models of tumors, chemotherapy, and/or radiation. Evidence-based neuronal mechanisms by which these neuroimmune changes may lead to changes in behavior are proposed. Finally, converging evidence in clinical cancer populations is discussed.
Collapse
Affiliation(s)
- Jessica C Santos
- Department of Basic and Applied Immunology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - Leah M Pyter
- Departments of Psychiatry and Behavioral Health and Neuroscience, The Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
42
|
Detrimental Effects of Helium Ion Irradiation on Cognitive Performance and Cortical Levels of MAP-2 in B6D2F1 Mice. Int J Mol Sci 2018; 19:ijms19041247. [PMID: 29677125 PMCID: PMC5979430 DOI: 10.3390/ijms19041247] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 11/17/2022] Open
Abstract
The space radiation environment includes helium (⁴He) ions that may impact brain function. As little is known about the effects of exposures to ⁴He ions on the brain, we assessed the behavioral and cognitive performance of C57BL/6J × DBA2/J F1 (B6D2F1) mice three months following irradiation with ⁴He ions (250 MeV/n; linear energy transfer (LET) = 1.6 keV/μm; 0, 21, 42 or 168 cGy). Sham-irradiated mice and mice irradiated with 21 or 168 cGy showed novel object recognition, but mice irradiated with 42 cGy did not. In the passive avoidance test, mice received a slight foot shock in a dark compartment, and latency to re-enter that compartment was assessed 24 h later. Sham-irradiated mice and mice irradiated with 21 or 42 cGy showed a higher latency on Day 2 than Day 1, but the latency to enter the dark compartment in mice irradiated with 168 cGy was comparable on both days. ⁴He ion irradiation, at 42 and 168 cGy, reduced the levels of the dendritic marker microtubule-associated protein-2 (MAP-2) in the cortex. There was an effect of radiation on apolipoprotein E (apoE) levels in the hippocampus and cortex, with higher apoE levels in mice irradiated at 42 cGy than 168 cGy and a trend towards higher apoE levels in mice irradiated at 21 than 168 cGy. In addition, in the hippocampus, there was a trend towards a negative correlation between MAP-2 and apoE levels. While reduced levels of MAP-2 in the cortex might have contributed to the altered performance in the passive avoidance test, it does not seem sufficient to do so. The higher hippocampal and cortical apoE levels in mice irradiated at 42 than 168 cGy might have served as a compensatory protective response preserving their passive avoidance memory. Thus, there were no alterations in behavioral performance in the open filed or depressive-like behavior in the forced swim test, while cognitive impairments were seen in the object recognition and passive avoidance tests, but not in the contextual or cued fear conditioning tests. Taken together, the results indicate that some aspects of cognitive performance are altered in male mice exposed to ⁴He ions, but that the response is task-dependent. Furthermore, the sensitive doses can vary within each task in a non-linear fashion. This highlights the importance of assessing the cognitive and behavioral effects of charged particle exposure with a variety of assays and at multiple doses, given the possibility that lower doses may be more damaging due to the absence of induced compensatory mechanisms at higher doses.
Collapse
|
43
|
Cuzzubbo S, Belin C, Chouahnia K, Baroudjian B, Duchemann B, Barlog C, Coarelli G, Ursu R, Poirier E, Lebbe C, Carpentier AF. Assessing cognitive function in patients treated with immune checkpoint inhibitors: A feasibility study. Psychooncology 2018; 27:1861-1864. [PMID: 29624771 DOI: 10.1002/pon.4725] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Stefania Cuzzubbo
- Service de Neurologie, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Catherine Belin
- Service de Neurologie, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Kader Chouahnia
- Service d'Oncologie Médicale, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris (AP-HP), Bobigny, France
| | - Barouyr Baroudjian
- APHP Dermatology and CIC Departments, INSERM U976, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Saint Louis, Paris, France
| | - Boris Duchemann
- Service d'Oncologie Médicale, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris (AP-HP), Bobigny, France
| | - Ciprian Barlog
- Service de Neurologie, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris (AP-HP), Bobigny, France
| | - Giulia Coarelli
- Service de Neurologie, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris (AP-HP), Bobigny, France
| | - Renata Ursu
- Service de Neurologie, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Elodie Poirier
- Service de Dermatologie, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris (AP-HP), Bobigny, France
| | - Celeste Lebbe
- APHP Dermatology and CIC Departments, INSERM U976, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Saint Louis, Paris, France
| | - Antoine F Carpentier
- Service de Neurologie, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
44
|
Walle T, Martinez Monge R, Cerwenka A, Ajona D, Melero I, Lecanda F. Radiation effects on antitumor immune responses: current perspectives and challenges. Ther Adv Med Oncol 2018; 10:1758834017742575. [PMID: 29383033 PMCID: PMC5784573 DOI: 10.1177/1758834017742575] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy (RT) is currently used in more than 50% of cancer patients during the course of their disease in the curative, adjuvant or palliative setting. RT achieves good local control of tumor growth, conferring DNA damage and impacting tumor vasculature and the immune system. Formerly regarded as a merely immunosuppressive treatment, pre- and clinical observations indicate that the therapeutic effect of RT is partially immune mediated. In some instances, RT synergizes with immunotherapy (IT), through different mechanisms promoting an effective antitumor immune response. Cell death induced by RT is thought to be immunogenic and results in modulation of lymphocyte effector function in the tumor microenvironment promoting local control. Moreover, a systemic immune response can be elicited or modulated to exert effects outside the irradiation field (so called abscopal effects). In this review, we discuss the body of evidence related to RT and its immunogenic potential for the future design of novel combination therapies.
Collapse
Affiliation(s)
- Thomas Walle
- Innate Immunity Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Adelheid Cerwenka
- German Cancer Research Center (DKFZ), Research Group Innate Immunity, Heidelberg, Germany
| | - Daniel Ajona
- Division of Oncology, Centre for Applied Biomedical Research (CIMA), Pamplona, SpainIdiSNA, Navarra Institute for Health Research, Pamplona, SpainDepartment of Biochemistry and Genetics, University of Navarra, Pamplona, Spain Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)
| | - Ignacio Melero
- Programme in Immunotherapy, Centre for Applied Biomedical Research (CIMA), Pamplona, SpainDepartment of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)
| | - Fernando Lecanda
- Programme in Solid Tumours and Biomarkers, Division of Oncology, Centre for Applied Biomedical Research (CIMA), IdiSNA, Navarra Institute for Health Research, Department of Histology and Pathology, University of Navarra, School of Medicine, Pamplona, Spain. Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)
| |
Collapse
|
45
|
McGinnis GJ, Raber J. CNS side effects of immune checkpoint inhibitors: preclinical models, genetics and multimodality therapy. Immunotherapy 2017; 9:929-941. [PMID: 29338610 PMCID: PMC6161123 DOI: 10.2217/imt-2017-0056] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/09/2017] [Indexed: 02/06/2023] Open
Abstract
Following cancer treatment, patients often report behavioral and cognitive changes. Novel cancer immunotherapeutics have the potential to produce sustained cancer survivorship, meaning patients will live longer with the side effects of treatment. Given the role of inflammatory pathways in mediating behavioral and cognitive impairments seen in cancer, we aim in this review to discuss emerging evidence for the contribution of immune checkpoint blockade to exacerbate these CNS effects. We discuss ongoing studies regarding the ability of immune checkpoint inhibitors to reach the brain and how treatment responses to checkpoint inhibitors may be modulated by genetic factors. We further consider the use of preclinical tumor-models to study the role of tumor status in CNS effects of immune checkpoint inhibitors and multimodality therapy.
Collapse
Affiliation(s)
- Gwendolyn J McGinnis
- Department of Radiation Medicine, Oregon Health & Science University, OR, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, OR, USA
| | - Jacob Raber
- Department of Radiation Medicine, Oregon Health & Science University, OR, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, OR, USA
- Department of Neurology, Oregon Health & Science University, OR, USA
- Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Ave, Beaverton, OR 97006, USA
| |
Collapse
|
46
|
Abscopal Activation of Microglia in Embryonic Fish Brain Following Targeted Irradiation with Heavy-Ion Microbeam. Int J Mol Sci 2017; 18:ijms18071428. [PMID: 28677658 PMCID: PMC5535919 DOI: 10.3390/ijms18071428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 12/17/2022] Open
Abstract
Microglia remove apoptotic cells by phagocytosis when the central nervous system is injured in vertebrates. Ionizing irradiation (IR) induces apoptosis and microglial activation in embryonic midbrain of medaka (Oryzias latipes), where apolipoprotein E (ApoE) is upregulated in the later phase of activation of microglia In this study, we found that another microglial marker, l-plastin (lymphocyte cytosolic protein 1), was upregulated at the initial phase of the IR-induced phagocytosis when activated microglia changed their morphology and increased motility to migrate. We further conducted targeted irradiation to the embryonic midbrain using a collimated microbeam of carbon ions (250 μm diameter) and found that the l-plastin upregulation was induced only in the microglia located in the irradiated area. Then, the activated microglia might migrate outside of the irradiated area and spread through over the embryonic brain, expressing ApoE and with activated morphology, for longer than 3 days after the irradiation. These findings suggest that l-plastin and ApoE can be the biomarkers of the activated microglia in the initial and later phase, respectively, in the medaka embryonic brain and that the abscopal and persisted activation of microglia by IR irradiation could be a cause of the abscopal and/or adverse effects following irradiation.
Collapse
|