1
|
Chen Z, Xie H, Liu J, Zhao J, Huang R, Xiang Y, Wu H, Tian D, Bian E, Xiong Z. Roles of TRPM channels in glioma. Cancer Biol Ther 2024; 25:2338955. [PMID: 38680092 PMCID: PMC11062369 DOI: 10.1080/15384047.2024.2338955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/01/2024] [Indexed: 05/01/2024] Open
Abstract
Gliomas are the most common type of primary brain tumor. Despite advances in treatment, it remains one of the most aggressive and deadly tumor of the central nervous system (CNS). Gliomas are characterized by high malignancy, heterogeneity, invasiveness, and high resistance to radiotherapy and chemotherapy. It is urgent to find potential new molecular targets for glioma. The TRPM channels consist of TRPM1-TPRM8 and play a role in many cellular functions, including proliferation, migration, invasion, angiogenesis, etc. More and more studies have shown that TRPM channels can be used as new therapeutic targets for glioma. In this review, we first introduce the structure, activation patterns, and physiological functions of TRPM channels. Additionally, the pathological mechanism of glioma mediated by TRPM2, 3, 7, and 8 and the related signaling pathways are described. Finally, we discuss the therapeutic potential of targeting TRPM for glioma.
Collapse
Affiliation(s)
- Zhigang Chen
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders, The First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu, P. R. China
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Han Xie
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - JiaJia Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Ruixiang Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Yufei Xiang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Haoyuan Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Dasheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Erbao Bian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhang Xiong
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders, The First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu, P. R. China
| |
Collapse
|
2
|
Cheng J, Zeng M, Peng B, Li P, Zhao S. Transient receptor potential vanilloid-1 (TRPV1) channels act as suppressors of the growth of glioma. Brain Res Bull 2024; 211:110950. [PMID: 38631651 DOI: 10.1016/j.brainresbull.2024.110950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 04/03/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
The aim of this study was to investigate the expression and function of the transient receptor potential vanilloid 1 (TRPV1) in glioma. We found that the expression of TRPV1 mRNA and protein were upregulated in glioma compared with normal brain by qPCR and western blot analysis. In order to investigate the function of TRPV1 in glioma, short hairpin RNA (shRNA) and the inhibitor of TRPV1 were used. In vitro, the activation of TRPV1 induced cell apoptosis with decreased migration capability and inhibited proliferation, which was abolished upon TRPV1 pharmacological inhibition and silencing. Mechanistically, TRPV1 modulated glioma proliferation through the protein kinase B (Akt) signaling pathway. More importantly, in immunodeficient (NOD-SCID) mouse xenograft models, tumor size was significantly increased when TRPV1 expression was disrupted by a shRNA knockdown approach in vivo. Altogether, our findings indicate that TRPV1 negatively controls glioma cell proliferation in an Akt-dependent manner, which suggests that targeting TRPV1 may be a potential therapeutic strategy for glioma.
Collapse
Affiliation(s)
- Jingjing Cheng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Mengliu Zeng
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Biwen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Ping Li
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| | - Shiyu Zhao
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
De Fazio E, Pittarello M, Gans A, Ghosh B, Slika H, Alimonti P, Tyler B. Intrinsic and Microenvironmental Drivers of Glioblastoma Invasion. Int J Mol Sci 2024; 25:2563. [PMID: 38473812 PMCID: PMC10932253 DOI: 10.3390/ijms25052563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Gliomas are diffusely infiltrating brain tumors whose prognosis is strongly influenced by their extent of invasion into the surrounding brain tissue. While lower-grade gliomas present more circumscribed borders, high-grade gliomas are aggressive tumors with widespread brain infiltration and dissemination. Glioblastoma (GBM) is known for its high invasiveness and association with poor prognosis. Its low survival rate is due to the certainty of its recurrence, caused by microscopic brain infiltration which makes surgical eradication unattainable. New insights into GBM biology at the single-cell level have enabled the identification of mechanisms exploited by glioma cells for brain invasion. In this review, we explore the current understanding of several molecular pathways and mechanisms used by tumor cells to invade normal brain tissue. We address the intrinsic biological drivers of tumor cell invasion, by tackling how tumor cells interact with each other and with the tumor microenvironment (TME). We focus on the recently discovered neuronal niche in the TME, including local as well as distant neurons, contributing to glioma growth and invasion. We then address the mechanisms of invasion promoted by astrocytes and immune cells. Finally, we review the current literature on the therapeutic targeting of the molecular mechanisms of invasion.
Collapse
Affiliation(s)
- Emerson De Fazio
- Department of Medicine, Vita-Salute San Raffaele University School of Medicine, 20132 Milan, Italy; (E.D.F.); (P.A.)
| | - Matilde Pittarello
- Department of Medicine, Humanitas University School of Medicine, 20089 Rozzano, Italy;
| | - Alessandro Gans
- Department of Neurology, University of Milan, 20122 Milan, Italy;
| | - Bikona Ghosh
- School of Medicine and Surgery, Dhaka Medical College, Dhaka 1000, Bangladesh;
| | - Hasan Slika
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| | - Paolo Alimonti
- Department of Medicine, Vita-Salute San Raffaele University School of Medicine, 20132 Milan, Italy; (E.D.F.); (P.A.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Betty Tyler
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| |
Collapse
|
4
|
Köles L, Ribiczey P, Szebeni A, Kádár K, Zelles T, Zsembery Á. The Role of TRPM7 in Oncogenesis. Int J Mol Sci 2024; 25:719. [PMID: 38255793 PMCID: PMC10815510 DOI: 10.3390/ijms25020719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
This review summarizes the current understanding of the role of transient receptor potential melastatin-subfamily member 7 (TRPM7) channels in the pathophysiology of neoplastic diseases. The TRPM family represents the largest and most diverse group in the TRP superfamily. Its subtypes are expressed in virtually all human organs playing a central role in (patho)physiological events. The TRPM7 protein (along with TRPM2 and TRPM6) is unique in that it has kinase activity in addition to the channel function. Numerous studies demonstrate the role of TRPM7 chanzyme in tumorigenesis and in other tumor hallmarks such as proliferation, migration, invasion and metastasis. Here we provide an up-to-date overview about the possible role of TRMP7 in a broad range of malignancies such as tumors of the nervous system, head and neck cancers, malignant neoplasms of the upper gastrointestinal tract, colorectal carcinoma, lung cancer, neoplasms of the urinary system, breast cancer, malignant tumors of the female reproductive organs, prostate cancer and other neoplastic pathologies. Experimental data show that the increased expression and/or function of TRPM7 are observed in most malignant tumor types. Thus, TRPM7 chanzyme may be a promising target in tumor therapy.
Collapse
Affiliation(s)
- László Köles
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Polett Ribiczey
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Andrea Szebeni
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
| | - Kristóf Kádár
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
| | - Tibor Zelles
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, H-1083, Budapest, Hungary
| | - Ákos Zsembery
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (L.K.); (A.S.); (K.K.); (T.Z.)
| |
Collapse
|
5
|
Ciaglia T, Vestuto V, Bertamino A, González-Muñiz R, Gómez-Monterrey I. On the modulation of TRPM channels: Current perspectives and anticancer therapeutic implications. Front Oncol 2023; 12:1065935. [PMID: 36844925 PMCID: PMC9948629 DOI: 10.3389/fonc.2022.1065935] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/15/2022] [Indexed: 02/11/2023] Open
Abstract
The transient melastatin receptor potential (TRPM) ion channel subfamily functions as cellular sensors and transducers of critical biological signal pathways by regulating ion homeostasis. Some members of TRPM have been cloned from cancerous tissues, and their abnormal expressions in various solid malignancies have been correlated with cancer cell growth, survival, or death. Recent evidence also highlights the mechanisms underlying the role of TRPMs in tumor epithelial-mesenchymal transition (EMT), autophagy, and cancer metabolic reprogramming. These implications support TRPM channels as potential molecular targets and their modulation as an innovative therapeutic approach against cancer. Here, we discuss the general characteristics of the different TRPMs, focusing on current knowledge about the connection between TRPM channels and critical features of cancer. We also cover TRPM modulators used as pharmaceutical tools in biological trials and an indication of the only clinical trial with a TRPM modulator about cancer. To conclude, the authors describe the prospects for TRPM channels in oncology.
Collapse
Affiliation(s)
- Tania Ciaglia
- Dipartimento di Farmacia (DIFARMA), Università degli Studi di Salerno, Fisciano, Italy
| | - Vincenzo Vestuto
- Dipartimento di Farmacia (DIFARMA), Università degli Studi di Salerno, Fisciano, Italy
| | - Alessia Bertamino
- Dipartimento di Farmacia (DIFARMA), Università degli Studi di Salerno, Fisciano, Italy
| | | | | |
Collapse
|
6
|
Turlova E, Ji D, Deurloo M, Wong R, Fleig A, Horgen FD, Sun HS, Feng ZP. Hypoxia-Induced Neurite Outgrowth Involves Regulation Through TRPM7. Mol Neurobiol 2023; 60:836-850. [PMID: 36378470 DOI: 10.1007/s12035-022-03114-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 10/26/2022] [Indexed: 11/16/2022]
Abstract
Transient receptor potential melastatin 7 (TRPM7) is a ubiquitously expressed divalent cation channel that plays a key role in cell functions such as ion homeostasis, cell proliferation, survival, and cytoskeletal dynamics and mediates cells death in hypoxic and ischemic conditions. Previously, TRPM7 was found to play a role in the neurite outgrowth and maturation of primary hippocampal neurons. Either knockdown of TRPM7 with target-specific shRNA or blocking channel conductance by a specific blocker waixenicin A enhanced axonal outgrowth in the primary neuronal culture. In this study, we investigated whether and how TPRM7 is involved in hypoxia-altered neurite outgrowth patterns in E16 hippocampal neuron cultures. We demonstrate that short-term hypoxia activated the MEK/ERK and PI3K/Akt pathways, reduced TRPM7 activity, and enhanced axonal outgrowth of neuronal cultures. On the other hand, long-term hypoxia caused a progressive retraction of axons and dendrites that could be attenuated by the TRPM7-specific inhibitor waixenicin A. Further, we demonstrate that in the presence of astrocytes, axonal retraction in long-term hypoxic conditions was enhanced, and TRPM7 block by waixenicin A prevented this retraction. Our data demonstrate the effect of hypoxia on TRPM7 activity and axonal outgrowth/retraction in cultures with or without astrocytes present.
Collapse
Affiliation(s)
- Ekaterina Turlova
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Ontario, M5S 1A8, Toronto, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Delphine Ji
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Ontario, M5S 1A8, Toronto, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Marielle Deurloo
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Raymond Wong
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Ontario, M5S 1A8, Toronto, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Andrea Fleig
- Center for Biomedical Research at The Queen's Medical Center and John A. Burns School of Medicine and Cancer Center at the, University of Hawaii, Honolulu, HI, 96720, USA
| | - F David Horgen
- Department of Natural Sciences, Hawaii Pacific University, Kaneohe, HI, 96744, USA
| | - Hong-Shuo Sun
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Ontario, M5S 1A8, Toronto, Canada.
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
- Department of Pharmacology, Temerty Faculty of Medicine, University of Toronto, King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
- Leslie Dan Faculty of Pharmacy, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| | - Zhong-Ping Feng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
7
|
Liu H, Dilger JP, Lin J. A pan-cancer-bioinformatic-based literature review of TRPM7 in cancers. Pharmacol Ther 2022; 240:108302. [PMID: 36332746 DOI: 10.1016/j.pharmthera.2022.108302] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Abstract
TRPM7, a divalent cation-selective channel with kinase domains, has been widely reported to potentially affect cancers. In this study, we conducted multiple bioinformatic analyses based on open databases and reviewed articles that provided evidence for the effects of TRPM7 on cancers. The purposes of this paper are 1) to provide a pan-cancer overview of TRPM7 in cancers; 2) to summarize evidence of TRPM7 effects on cancers; 3) to identify potential future studies of TRPM7 in cancer. Bioinformatics analysis revealed that no cancer-related TRPM7 mutation was found. TRPM7 is aberrantly expressed in most cancer types but the cancer-noncancer expression pattern varies across cancer types. TRPM7 was not associated with survival, TMB, or cancer stemness in most cancer types. TRPM7 affected drug sensitivity and tumor immunity in some cancer types. The in vitro evidence, preclinical in vivo evidence, and clinical evidence for TRPM7 effects on cancers as well as TRPM7 kinase substrate and TRPM7-targeting drugs associated with cancers were summarized to facilitate comparison. We matched the bioinformatics evidence to literature evidence, thereby unveiling potential avenues for future investigation of TRPM7 in cancers. We believe that this paper will help orient research toward important and relevant aspects of the role of TRPM7 in cancers.
Collapse
Affiliation(s)
- Hengrui Liu
- Department of Anesthesiology, Health Science Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - James P Dilger
- Department of Anesthesiology, Health Science Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jun Lin
- Department of Anesthesiology, Health Science Center, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
8
|
Dewdney B, Ursich L, Fletcher EV, Johns TG. Anoctamins and Calcium Signalling: An Obstacle to EGFR Targeted Therapy in Glioblastoma? Cancers (Basel) 2022; 14:cancers14235932. [PMID: 36497413 PMCID: PMC9740065 DOI: 10.3390/cancers14235932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Glioblastoma is the most common form of high-grade glioma in adults and has a poor survival rate with very limited treatment options. There have been no significant advancements in glioblastoma treatment in over 30 years. Epidermal growth factor receptor is upregulated in most glioblastoma tumours and, therefore, has been a drug target in recent targeted therapy clinical trials. However, while many inhibitors and antibodies for epidermal growth factor receptor have demonstrated promising anti-tumour effects in preclinical models, they have failed to improve outcomes for glioblastoma patients in clinical trials. This is likely due to the highly plastic nature of glioblastoma tumours, which results in therapeutic resistance. Ion channels are instrumental in the development of many cancers and may regulate cellular plasticity in glioblastoma. This review will explore the potential involvement of a class of calcium-activated chloride channels called anoctamins in brain cancer. We will also discuss the integrated role of calcium channels and anoctamins in regulating calcium-mediated signalling pathways, such as epidermal growth factor signalling, to promote brain cancer cell growth and migration.
Collapse
Affiliation(s)
- Brittany Dewdney
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia
- Correspondence: ; Tel.: +61-8-6319-1023
| | - Lauren Ursich
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Emily V. Fletcher
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia
| | - Terrance G. Johns
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
9
|
Wang H, Lai Q, Wang D, Pei J, Tian B, Gao Y, Gao Z, Xu X. Hedgehog signaling regulates the development and treatment of glioblastoma. Oncol Lett 2022; 24:294. [PMID: 35949611 PMCID: PMC9353242 DOI: 10.3892/ol.2022.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/14/2022] [Indexed: 11/12/2022] Open
Abstract
Glioblastoma (GBM) is the most common and fatal malignant tumor type of the central nervous system. GBM affects public health and it is important to identify biomarkers to improve diagnosis, reduce drug resistance and improve prognosis (e.g., personalized targeted therapies). Hedgehog (HH) signaling has an important role in embryonic development, tissue regeneration and stem cell renewal. A large amount of evidence indicates that both normative and non-normative HH signals have an important role in GBM. The present study reviewed the role of the HH signaling pathway in the occurrence and progression of GBM. Furthermore, the effectiveness of drugs that target different components of the HH pathway was also examined. The HH pathway has an important role in reversing drug resistance after GBM conventional treatment. The present review highlighted the relevance of HH signaling in GBM and outlined that this pathway has a key role in the occurrence, development and treatment of GBM.
Collapse
Affiliation(s)
- Hongping Wang
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Qun Lai
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Dayong Wang
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Jian Pei
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Baogang Tian
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Yunhe Gao
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Zhaoguo Gao
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Xiang Xu
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
10
|
Cheng XY, Li SF, Chen Y, Zhao YJ, Hu W, Lu C, Zhou RP. Transient receptor potential melastatin 7 and their modulators. Eur J Pharmacol 2022; 931:175180. [DOI: 10.1016/j.ejphar.2022.175180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 11/03/2022]
|
11
|
Ji D, Luo ZW, Ovcjak A, Alanazi R, Bao MH, Feng ZP, Sun HS. Role of TRPM2 in brain tumours and potential as a drug target. Acta Pharmacol Sin 2022; 43:759-770. [PMID: 34108651 PMCID: PMC8975829 DOI: 10.1038/s41401-021-00679-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Ion channels are ubiquitously expressed in almost all living cells, and are the third-largest category of drug targets, following enzymes and receptors. The transient receptor potential melastatin (TRPM) subfamily of ion channels are important to cell function and survival. Studies have shown upregulation of the TRPM family of ion channels in various brain tumours. Gliomas are the most prevalent form of primary malignant brain tumours with no effective treatment; thus, drug development is eagerly needed. TRPM2 is an essential ion channel for cell function and has important roles in oxidative stress and inflammation. In response to oxidative stress, ADP-ribose (ADPR) is produced, and in turn activates TRPM2 by binding to the NUDT9-H domain on the C-terminal. TRPM2 has been implicated in various cancers and is significantly upregulated in brain tumours. This article reviews the current understanding of TRPM2 in the context of brain tumours and overviews the effects of potential drug therapies targeting TRPM2 including hydrogen peroxide (H2O2), curcumin, docetaxel and selenium, paclitaxel and resveratrol, and botulinum toxin. It is long withstanding knowledge that gliomas are difficult to treat effectively, therefore investigating TRPM2 as a potential therapeutic target for brain tumours may be of considerable interest in the fields of ion channels and pharmacology.
Collapse
Affiliation(s)
- Delphine Ji
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zheng-Wei Luo
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Andrea Ovcjak
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Rahmah Alanazi
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mei-Hua Bao
- Science Research Center, Changsha Medical University, Changsha, 410219, China
| | - Zhong-Ping Feng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Hong-Shuo Sun
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
12
|
Alanazi R, Nakatogawa H, Wang H, Ji D, Luo Z, Golbourn B, Feng Z, Rutka JT, Sun H. Inhibition of TRPM7 with carvacrol suppresses glioblastoma functions
in vivo. Eur J Neurosci 2022; 55:1483-1491. [DOI: 10.1111/ejn.15647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Haitao Wang
- Departments of Surgery
- Departments of Surgery Physiology
| | | | - Zhengwei Luo
- Departments of Surgery
- Departments of Surgery Physiology
| | - Brian Golbourn
- Departments of Cell Biology SickKids Research Institute, The Hospital for Sick Children Toronto Canada
| | | | | | - Hong‐Shuo Sun
- Departments of Surgery
- Departments of Surgery Physiology
- Pharmacology, Temerty Faculty of Medicine
- Leslie Dan Faculty of Pharmacy University of Toronto Toronto Canada
| |
Collapse
|
13
|
Ji D, Fleig A, Horgen FD, Feng ZP, Sun HS. Modulators of TRPM7 and its potential as a drug target for brain tumours. Cell Calcium 2021; 101:102521. [PMID: 34953296 DOI: 10.1016/j.ceca.2021.102521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022]
Abstract
TRPM7 is a non-selective divalent cation channel with an alpha-kinase domain. Corresponding with its broad expression, TRPM7 has a role in a wide range of cell functions, including proliferation, migration, and survival. Growing evidence shows that TRPM7 is also aberrantly expressed in various cancers, including brain cancers. Because ion channels have widespread tissue distribution and result in extensive physiological consequences when dysfunctional, these proteins can be compelling drug targets. In fact, ion channels comprise the third-largest drug target type, following enzymes and receptors. Literature has shown that suppression of TRPM7 results in inhibition of migration, invasion, and proliferation in several human brain tumours. Therefore, TRPM7 presents a potential target for therapeutic brain tumour interventions. This article reviews current literature on TRPM7 as a potential drug target in the context of brain tumours and provides an overview of various selective and non-selective modulators of the channel relevant to pharmacology, oncology, and ion channel function.
Collapse
Affiliation(s)
- Delphine Ji
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Andrea Fleig
- Center for Biomedical Research at The Queen's Medical Center and John A. Burns School of Medicine and Cancer Center at the University of Hawaii, Honolulu, Hawaii 96813, USA
| | - F David Horgen
- Department of Natural Sciences, Hawaii Pacific University, Kaneohe, Hawaii 96744, USA
| | - Zhong-Ping Feng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8.
| | - Hong-Shuo Sun
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8; Department of Pharmacology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8; Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, Canada M5S 3M2.
| |
Collapse
|
14
|
Gong H, Bandura J, Wang GL, Feng ZP, Sun HS. Xyloketal B: A marine compound with medicinal potential. Pharmacol Ther 2021; 230:107963. [PMID: 34375691 DOI: 10.1016/j.pharmthera.2021.107963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/01/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022]
Abstract
In recent decades, technological advantages have allowed scientists to isolate medicinal compounds from marine organisms that exhibit unique structure and bioactivity. The mangrove fungus Xylaria sp. from the South China Sea is rich in metabolites and produces a potent therapeutic compound, xyloketal B. Since its isolation in 2001, xyloketal B has been extensively studied in a wide variety of cell types and in vitro and in vivo disease models. Xyloketal B and its derivatives exhibit cytoprotective effects in cardiovascular and neurodegenerative diseases by reducing oxidative stress, regulating the apoptosis pathway, maintaining ionic balance, mitigating inflammatory responses, and preventing protein aggregation. Xyloketal B has also shown to alleviate lipid accumulation in a non-alcoholic fatty liver disease model. Moreover, xyloketal B treatment induces glioblastoma cell death. This review summarizes our current understanding of xyloketal B in various disease models.
Collapse
Affiliation(s)
- Haifan Gong
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Julia Bandura
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Guan-Lei Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Functional Molecules from Oceanic Microorganisms (Sun Yat-Sen University), Department of Education of Guangdong Province, 510080, China.
| | - Zhong-Ping Feng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Hong-Shuo Sun
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada.
| |
Collapse
|
15
|
Che X, Zhan J, Zhao F, Zhong Z, Chen M, Han R, Wang Y. Oridonin Promotes Apoptosis and Restrains the Viability and Migration of Bladder Cancer by Impeding TRPM7 Expression via the ERK and AKT Signaling Pathways. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4340950. [PMID: 34285910 PMCID: PMC8275389 DOI: 10.1155/2021/4340950] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 04/01/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Oridonin is a powerful anticancer compound found in Rabdosia rubescens. However, its potential impact on bladder cancer remains uninvestigated. In this work, we aimed to detect the anticancer effect of oridonin on bladder cancer and explore the molecular mechanisms involved. METHODS The anticancer activity of oridonin was assessed in vitro with a CCK8 assay, an annexin V-FITC apoptosis analysis, and colony formation and Transwell migration assays which were performed with the human bladder cancer cell line T24. Levels of apoptosis-related proteins, melastatin transient receptor potential channel 7 (TRPM7), and signaling molecules were examined in oridonin-treated T24 cells by western blotting or RT-PCR. Oridonin anticancer efficacy was further validated in vivo with a T24 xenograft mouse model. RESULTS Oridonin repressed the proliferative, colony-forming, and migratory capacities of T24 cells, triggered extensive apoptosis in vitro, and retarded tumor growth in vivo. Moreover, oridonin treatment significantly increased expression levels of p53 and cleaved caspase-3 and reduced expression of TRPM7, p-AKT, and p-ERK. CONCLUSION Oridonin exhibited outstanding antiproliferative and antimigratory effects on bladder cancer, and these effects were at least partially associated with targeting of TRPM7 through inactivation of the ERK and AKT signaling pathways. These findings provide insight for the clinical application of oridonin in bladder cancer prevention.
Collapse
Affiliation(s)
- Xianping Che
- Department of Urology, The Second Affiliated Hospital of Hainan Medical University, 570311 Hainan, China
| | - Jiangtao Zhan
- Department of Urology, The Second Affiliated Hospital of Hainan Medical University, 570311 Hainan, China
| | - Fan Zhao
- Department of Urology, The Second Affiliated Hospital of Hainan Medical University, 570311 Hainan, China
| | - Zunhe Zhong
- Department of Urology, The Second Affiliated Hospital of Hainan Medical University, 570311 Hainan, China
| | - Mianchuan Chen
- Department of Urology, The Second Affiliated Hospital of Hainan Medical University, 570311 Hainan, China
| | - Ruifa Han
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, 300211 Tianjin, China
| | - Yi Wang
- Department of Urology, The Second Affiliated Hospital of Hainan Medical University, 570311 Hainan, China
| |
Collapse
|
16
|
Maggi F, Morelli MB, Nabissi M, Marinelli O, Zeppa L, Aguzzi C, Santoni G, Amantini C. Transient Receptor Potential (TRP) Channels in Haematological Malignancies: An Update. Biomolecules 2021; 11:biom11050765. [PMID: 34065398 PMCID: PMC8160608 DOI: 10.3390/biom11050765] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Transient receptor potential (TRP) channels are improving their importance in different cancers, becoming suitable as promising candidates for precision medicine. Their important contribution in calcium trafficking inside and outside cells is coming to light from many papers published so far. Encouraging results on the correlation between TRP and overall survival (OS) and progression-free survival (PFS) in cancer patients are available, and there are as many promising data from in vitro studies. For what concerns haematological malignancy, the role of TRPs is still not elucidated, and data regarding TRP channel expression have demonstrated great variability throughout blood cancer so far. Thus, the aim of this review is to highlight the most recent findings on TRP channels in leukaemia and lymphoma, demonstrating their important contribution in the perspective of personalised therapies.
Collapse
Affiliation(s)
- Federica Maggi
- Department of Molecular Medicine, Sapienza University, 00185 Rome, Italy;
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (M.B.M.); (M.N.); (O.M.); (L.Z.); (C.A.); (G.S.)
| | - Maria Beatrice Morelli
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (M.B.M.); (M.N.); (O.M.); (L.Z.); (C.A.); (G.S.)
| | - Massimo Nabissi
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (M.B.M.); (M.N.); (O.M.); (L.Z.); (C.A.); (G.S.)
| | - Oliviero Marinelli
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (M.B.M.); (M.N.); (O.M.); (L.Z.); (C.A.); (G.S.)
| | - Laura Zeppa
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (M.B.M.); (M.N.); (O.M.); (L.Z.); (C.A.); (G.S.)
| | - Cristina Aguzzi
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (M.B.M.); (M.N.); (O.M.); (L.Z.); (C.A.); (G.S.)
| | - Giorgio Santoni
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (M.B.M.); (M.N.); (O.M.); (L.Z.); (C.A.); (G.S.)
| | - Consuelo Amantini
- Immunopathology Laboratory, School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
- Correspondence: ; Tel.: +30-0737403312
| |
Collapse
|
17
|
Wong R, Gong H, Alanazi R, Bondoc A, Luck A, Sabha N, Horgen FD, Fleig A, Rutka JT, Feng ZP, Sun HS. Inhibition of TRPM7 with waixenicin A reduces glioblastoma cellular functions. Cell Calcium 2020; 92:102307. [PMID: 33080445 DOI: 10.1016/j.ceca.2020.102307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/27/2020] [Accepted: 10/04/2020] [Indexed: 12/28/2022]
Abstract
Glioblastoma (GBM) is the most common malignant primary brain tumour originating in the CNS. Median patient survival is <15 months with standard treatment which consists of surgery alongside radiation therapy and temozolomide chemotherapy. However, because of the aggressive nature of GBM, and the significant toxicity of these adjuvant therapies, long-term therapeutic effects are unsatisfactory. Thus, there is urgency to identify new drug targets for GBM. Recent evidence shows that the transient receptor potential melastatin 7 (TRPM7) cation channel is aberrantly upregulated in GBM and its inhibition leads to reduction of GBM cellular functions. This suggests that TRPM7 may be a potential drug target for GBM treatment. In this study, we assessed the effects of the specific TRPM7 antagonist waixenicin A on human GBM cell lines U87 or U251 both in vitro and in vivo. First, we demonstrated in vitro that application of waixenicin A reduced TRPM7 protein expression and inhibited the TRPM7-like currents in GBM cells. We also observed reduction of GBM cell viability, migration, and invasion. Using an intracranial xenograft GBM mouse model, we showed that with treatment of waixenicin A, there was increased cleaved caspase 3 activity, alongside reduction in Ki-67, cofilin, and Akt activity in vivo. Together, these data demonstrate higher GBM cell apoptosis, and lower proliferation, migration, invasion and survivability following treatment with waixenicin A.
Collapse
Affiliation(s)
- Raymond Wong
- Departments of Surgery, Faculty of Medicine, University of Toronto, Toronto, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Haifan Gong
- Departments of Surgery, Faculty of Medicine, University of Toronto, Toronto, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Rahmah Alanazi
- Departments of Surgery, Faculty of Medicine, University of Toronto, Toronto, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Andrew Bondoc
- Departments of Cell Biology SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Amanda Luck
- Departments of Cell Biology SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Nesrin Sabha
- Departments of Genetics and Genome Biology, SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - F David Horgen
- Department of Natural Sciences, Hawaii Pacific University, Kaneohe, Hawaii, 96744, USA
| | - Andrea Fleig
- Center for Biomedical Research at The Queen's Medical Center and John A. Burns School of Medicine at the University of Hawaii, Honolulu, Hawaii, 96720, USA
| | - James T Rutka
- Departments of Surgery, Faculty of Medicine, University of Toronto, Toronto, Canada.
| | - Zhong-Ping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada.
| | - Hong-Shuo Sun
- Departments of Surgery, Faculty of Medicine, University of Toronto, Toronto, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada; Department of Pharmacology, Faculty of Medicine, University of Toronto, Toronto, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada.
| |
Collapse
|
18
|
Takayasu T, Kurisu K, Esquenazi Y, Ballester LY. Ion Channels and Their Role in the Pathophysiology of Gliomas. Mol Cancer Ther 2020; 19:1959-1969. [PMID: 33008831 PMCID: PMC7577395 DOI: 10.1158/1535-7163.mct-19-0929] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/24/2020] [Accepted: 08/06/2020] [Indexed: 01/10/2023]
Abstract
Malignant gliomas are the most common primary central nervous system tumors and their prognosis is very poor. In recent years, ion channels have been demonstrated to play important roles in tumor pathophysiology such as regulation of gene expression, cell migration, and cell proliferation. In this review, we summarize the current knowledge on the role of ion channels on the development and progression of gliomas. Cell volume changes through the regulation of ion flux, accompanied by water flux, are essential for migration and invasion. Signaling pathways affected by ion channel activity play roles in cell survival and cell proliferation. Moreover, ion channels are involved in glioma-related seizures, sensitivity to chemotherapy, and tumor metabolism. Ion channels are potential targets for the treatment of these lethal tumors. Despite our increased understanding of the contributions of ion channels to glioma biology, this field remains poorly studied. This review summarizes the current literature on this important topic.
Collapse
Affiliation(s)
- Takeshi Takayasu
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, Houston, Texas
- Department of Neurosurgery, Institute of Biomedical and Health Sciences, Hiroshima University, Higashihiroshima, Hiroshima, Japan
| | - Kaoru Kurisu
- Department of Neurosurgery, Institute of Biomedical and Health Sciences, Hiroshima University, Higashihiroshima, Hiroshima, Japan
| | - Yoshua Esquenazi
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Medical School, Houston, Texas.
- Memorial Hermann Hospital-TMC, Houston, Texas
| | - Leomar Y Ballester
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, Houston, Texas.
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Medical School, Houston, Texas
- Memorial Hermann Hospital-TMC, Houston, Texas
| |
Collapse
|
19
|
Inoue H, Inazu M, Konishi M, Yokoyama U. Functional expression of TRPM7 as a Ca 2+ influx pathway in adipocytes. Physiol Rep 2020; 7:e14272. [PMID: 31650715 PMCID: PMC6813326 DOI: 10.14814/phy2.14272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/20/2019] [Accepted: 10/04/2019] [Indexed: 02/01/2023] Open
Abstract
In adipocytes, intracellular Ca2+ and Mg2+ modulates physiological functions, such as insulin action and the secretion of adipokines. TRPM7 is a Ca2+/Mg2+‐permeable non‐selective cation channel. TRPM7 mRNA is highly expressed in adipose tissue, however, its functional expression in adipocytes remains to be elucidated. In this study, we demonstrated for the first time that TRPM7 was functionally expressed in both freshly isolated white adipocytes and in 3T3‐L1 adipocytes differentiated from a 3T3‐L1 pre‐adipocyte cell line by whole‐cell patch‐clamp recordings. Consistent with known properties of TRPM7 current, the current in adipocytes was activated by the elimination of extracellular divalent cations and the reduction of intracellular free Mg2+ concentrations, and was inhibited by the TRPM7 inhibitors, 2‐aminoethyl diphenylborinate (2‐APB), hydrogen peroxide (H2O2), N‐methyl maleimide (NMM), NS8593, and 2‐amino‐2‐[2‐(4‐octylphenyl)ethyl]‐1,3‐propanediol (FTY720). Treatment with small‐interfering (si) RNA targeting TRPM7 resulted in a reduction in the current to 23 ± 7% of nontargeting siRNA‐treated adipocytes. Moreover a TRPM7 activator, naltriben, increased the TRPM7‐like current and [Ca2+]i in 3T3‐L1 adipocytes but not in TRPM7‐knockdown adipocytes. These findings indicate that TRPM7 is functionally expressed, and plays a role as a Ca2+ influx pathway in adipocytes.
Collapse
Affiliation(s)
- Hana Inoue
- Department of Physiology, Tokyo Medical University, Tokyo, Japan
| | - Masato Inazu
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Masato Konishi
- Department of Physiology, Tokyo Medical University, Tokyo, Japan
| | - Utako Yokoyama
- Department of Physiology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
20
|
Bruce JIE, James AD. Targeting the Calcium Signalling Machinery in Cancer. Cancers (Basel) 2020; 12:cancers12092351. [PMID: 32825277 PMCID: PMC7565467 DOI: 10.3390/cancers12092351] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/30/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer is caused by excessive cell proliferation and a propensity to avoid cell death, while the spread of cancer is facilitated by enhanced cellular migration, invasion, and vascularization. Cytosolic Ca2+ is central to each of these important processes, yet to date, there are no cancer drugs currently being used clinically, and very few undergoing clinical trials, that target the Ca2+ signalling machinery. The aim of this review is to highlight some of the emerging evidence that targeting key components of the Ca2+ signalling machinery represents a novel and relatively untapped therapeutic strategy for the treatment of cancer.
Collapse
Affiliation(s)
- Jason I. E. Bruce
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Correspondence: ; Tel.: +44-(0)-161-275-5484
| | - Andrew D. James
- Department of Biology, University of York, Heslington, York YO10 5DD, UK;
| |
Collapse
|
21
|
Abstract
Ca2+ is a ubiquitous and dynamic second messenger molecule that is induced by many factors including receptor activation, environmental factors, and voltage, leading to pleiotropic effects on cell function including changes in migration, metabolism and transcription. As such, it is not surprising that aberrant regulation of Ca2+ signals can lead to pathological phenotypes, including cancer progression. However, given the highly context-specific nature of Ca2+-dependent changes in cell function, delineation of its role in cancer has been a challenge. Herein, we discuss the distinct roles of Ca2+ signaling within and between each type of cancer, including consideration of the potential of therapeutic strategies targeting these signaling pathways.
Collapse
Affiliation(s)
- Scott Gross
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Pranava Mallu
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hinal Joshi
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Bryant Schultz
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Christina Go
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jonathan Soboloff
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States; Department of Medical Genetics & Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.
| |
Collapse
|
22
|
Hong F, Wu S, Zhang C, Li L, Chen J, Fu Y, Wang J. TRPM7 Upregulate the Activity of SMAD1 through PLC Signaling Way to Promote Osteogenesis of hBMSCs. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9458983. [PMID: 32596398 PMCID: PMC7294393 DOI: 10.1155/2020/9458983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/18/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
Abstract
TRPM7 is a member of the transient receptor potential cation channel (TRP channel) subfamily M and possesses both an ion channel domain and a functional serine/threonine α-kinase domain. It has been proven to play an essential role in the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs). However, the signaling pathway and molecular mechanism for TRPM7 in regulating osteogenic differentiation remain largely unknown. In this study, the potential role and mechanism of TRPM7 in the osteogenic differentiation of hBMSCs were investigated. The results showed that the expression of TRPM7 mRNA and protein increased, as did the osteogenic induction time. Upregulation or inhibition of TRPM7 could promote or inhibit the osteogenic differentiation of hBMSCs for 14 days. It was also found that the upregulation or inhibition of TRPM7 promoted or inhibited the activity of PLC and SMAD1, respectively, during osteogenic differentiation. PLC could promote osteogenic differentiation by upregulating the activity of SMAD1. However, inhibition of PLC alone could reduce the activity of SMAD1 but not inhibit completely the activation of SMAD1. Therefore, we inferred that it is an important signaling pathway for TRPM7 to upregulate the activity of SMAD1 through PLC and thereby promote the osteogenic differentiation of hBMSCs, but it is not a singular pathway. TRPM7 may also regulate the activation of SMAD1 through other ways, except for PLC, during osteogenic differentiation of hBMSCs.
Collapse
Affiliation(s)
- Fanfan Hong
- Institute of Cell and Development Biology, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shali Wu
- Institute of Cell and Development Biology, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Cui Zhang
- Institute of Cell and Development Biology, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Liang Li
- Institute of Cell and Development Biology, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jianling Chen
- Institute of Cell and Development Biology, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yong Fu
- Department of ENT, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jinfu Wang
- Institute of Cell and Development Biology, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of ENT, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Zhang Y, Wang L, Sun B, Li X, Hou Q, Wang W, Li B. Synthesis and Antiproliferative Activities of Novel Substituted 5-Anilino-α-Glucofuranose Derivatives. Chem Biodivers 2020; 17:e1900739. [PMID: 32141216 DOI: 10.1002/cbdv.201900739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/03/2020] [Indexed: 12/12/2022]
Abstract
In order to find novel antitumor candidate agents with high efficiency and low toxicity, 14 novel substituted 5-anilino-α-glucofuranose derivatives have been designed, synthesized and evaluated for antiproliferative activities in vitro. Their structures were characterized by NMR (1 H and 13 C) and HR-MS, and configuration (R/S) at C(5) was identified by two-dimensional 1 H,1 H-NOESY-NMR spectrum. Their antiproliferative activities against human tumor cells were investigated by MTT assay. The results demonstrated that most of the synthesized compounds had antiproliferative effects comparable to the reference drugs gefitinib and lapatinib. In particular, (5R)-5-O-(3-chloro-4-{[5-(4-fluorophenyl)thiophen-2-yl]methyl}anilino)-5-deoxy-1,2-O-(1-methylethylidene)-α-glucofuranose (9da) showed the most potent antiproliferative effects against SW480, A431 and A549 cells, with IC50 values of 8.57, 5.15 and 15.24 μm, respectively. This work suggested 5-anilino-α-glucofuranose as an antitumor core structure that may open a new way to develop more potent anti-cancer agents.
Collapse
Affiliation(s)
- Yaling Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Lili Wang
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Baoli Sun
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Xiabing Li
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Qiaoli Hou
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Wei Wang
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Baolin Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, P. R. China.,School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| |
Collapse
|
24
|
Yool AJ, Ramesh S. Molecular Targets for Combined Therapeutic Strategies to Limit Glioblastoma Cell Migration and Invasion. Front Pharmacol 2020; 11:358. [PMID: 32292341 PMCID: PMC7118801 DOI: 10.3389/fphar.2020.00358] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/10/2020] [Indexed: 12/21/2022] Open
Abstract
The highly invasive nature of glioblastoma imposes poor prospects for patient survival. Molecular evidence indicates glioblastoma cells undergo an intriguing expansion of phenotypic properties to include neuron-like signaling using excitable membrane ion channels and synaptic proteins, augmenting survival and motility. Neurotransmitter receptors, membrane signaling, excitatory receptors, and Ca2+ responses are important candidates for the design of customized treatments for cancers within the heterogeneous central nervous system. Relatively few published studies of glioblastoma multiforme (GBM) have evaluated pharmacological agents targeted to signaling pathways in limiting cancer cell motility. Transcriptomic analyses here identified classes of ion channels, ionotropic receptors, and synaptic proteins that are enriched in human glioblastoma biopsy samples. The pattern of GBM-enriched gene expression points to a major role for glutamate signaling. However, the predominant role of AMPA receptors in fast excitatory signaling throughout the central nervous system raises a challenge on how to target inhibitors selectively to cancer cells while maintaining tolerability. This review critically evaluates a panel of ligand- and voltage-gated ion channels and synaptic proteins upregulated in GBM, and the evidence for their potential roles in the pathological disease progress. Evidence suggests combinations of therapies could be more effective than single agents alone. Natural plant products used in traditional medicines for the treatment of glioblastoma contain flavonoids, terpenoids, polyphenols, epigallocatechin gallate, quinones, and saponins, which might serendipitously include agents that modulate some classes of signaling compounds highlighted in this review. New therapeutic strategies are likely to exploit evidence-based combinations of selected agents, each at a low dose, to create new cancer cell-specific therapeutics.
Collapse
Affiliation(s)
- Andrea J. Yool
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Sunita Ramesh
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
25
|
Rios FJ, Zou ZG, Harvey AP, Harvey KY, Nosalski R, Anyfanti P, Camargo LL, Lacchini S, Ryazanov AG, Ryazanova L, McGrath S, Guzik TJ, Goodyear CS, Montezano AC, Touyz RM. Chanzyme TRPM7 protects against cardiovascular inflammation and fibrosis. Cardiovasc Res 2020; 116:721-735. [PMID: 31250885 PMCID: PMC7252442 DOI: 10.1093/cvr/cvz164] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 05/07/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
AIMS Transient Receptor Potential Melastatin 7 (TRPM7) cation channel is a chanzyme (channel + kinase) that influences cellular Mg2+ homeostasis and vascular signalling. However, the pathophysiological significance of TRPM7 in the cardiovascular system is unclear. The aim of this study was to investigate the role of this chanzyme in the cardiovascular system focusing on inflammation and fibrosis. METHODS AND RESULTS TRPM7-deficient mice with deletion of the kinase domain (TRPM7+/Δkinase) were studied and molecular mechanisms investigated in TRPM7+/Δkinase bone marrow-derived macrophages (BMDM) and co-culture systems with cardiac fibroblasts. TRPM7-deficient mice had significant cardiac hypertrophy, fibrosis, and inflammation. Cardiac collagen and fibronectin content, expression of pro-inflammatory mediators (SMAD3, TGFβ) and cytokines [interleukin (IL)-6, IL-10, IL-12, tumour necrosis factor-α] and phosphorylation of the pro-inflammatory signalling molecule Stat1, were increased in TRPM7+/Δkinase mice. These processes were associated with infiltration of inflammatory cells (F4/80+CD206+ cardiac macrophages) and increased galectin-3 expression. Cardiac [Mg2+]i, but not [Ca2+]i, was reduced in TRPM7+/Δkinase mice. Calpain, a downstream TRPM7 target, was upregulated (increased expression and activation) in TRPM7+/Δkinase hearts. Vascular functional and inflammatory responses, assessed in vivo by intra-vital microscopy, demonstrated impaired neutrophil rolling, increased neutrophil: endothelial attachment and transmigration of leucocytes in TRPM7+/Δkinase mice. TRPM7+/Δkinase BMDMs had increased levels of galectin-3, IL-10, and IL-6. In co-culture systems, TRPM7+/Δkinase macrophages increased expression of fibronectin, proliferating cell nuclear antigen, and TGFβ in cardiac fibroblasts from wild-type mice, effects ameliorated by MgCl2 treatment. CONCLUSIONS We identify a novel anti-inflammatory and anti-fibrotic role for TRPM7 and suggest that its protective effects are mediated, in part, through Mg2+-sensitive processes.
Collapse
Affiliation(s)
- Francisco J Rios
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Zhi-Guo Zou
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Adam P Harvey
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Katie Y Harvey
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Ryszard Nosalski
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Panagiota Anyfanti
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Livia L Camargo
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Silvia Lacchini
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Alexey G Ryazanov
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Lillia Ryazanova
- Lewis Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Sarah McGrath
- Centre of Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Carl S Goodyear
- Centre of Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
26
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
27
|
Bao MH, Lv QL, Szeto V, Wong R, Zhu SZ, Zhang YY, Feng ZP, Sun HS. TRPM2-AS inhibits the growth, migration, and invasion of gliomas through JNK, c-Jun, and RGS4. J Cell Physiol 2019; 235:4594-4604. [PMID: 31637708 DOI: 10.1002/jcp.29336] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/30/2019] [Indexed: 01/05/2023]
Abstract
Gliomas are a group of brain cancers with high mortality and morbidity. Understanding the molecular mechanisms is important for the prevention or treatment of gliomas. The present study was to investigate the effects and mechanisms of long noncoding RNA TRPM2-AS in gliomas proliferation, migration, and invasion. We first compared the levels of TRPM2-AS in 111 patients with glioma to that of the normal control group by a quantitative polymerase chain reaction. The results indicated a significant increase of TRPM2-AS in patients with glioma (2.43 folds of control, p = .0135). MTT methods, wound healing assays, transwell analysis, and clone formation analysis indicated the overexpression of TRPM2-AS promoted the proliferation, migration, and invasion of U251 and U87 cells, while downregulation of TRPM2-AS inhibited the cell proliferation, migration, and invasion significantly (p < .05). To further uncover the mechanisms, bioinformatics analysis was conducted on the expression profiles, GSE40687 and GSE4290, from the Gene Expression Omnibus database. One hundred fifty-six genes were differentially expressed in both datasets (FC > 2.0; p = .05). Among these differentially expressed genes, the level of RGS4 messenger RNA was drastically regulated by TRPM2-AS. Further western-blot analysis indicated the increase of RGS4 protein expression and decrease of p-JNK/JNK and p-c-Jun/c-Jun ratio after TRPM2-AS overexpression. On the other hand, inhibition of TRPM2-AS by small interfering RNA suppressed the expression of RGS4 and promoted the ratios of p-JNK/JNK and p-c-Jun/c-Jun. The present work indicated the mechanisms of the participation of TRPM2-AS in the progression of gliomas might, at least partly, be related to JNK, c-Jun, and RGS4. Our work provided new insights into the underlying mechanisms of glioma cellular functions.
Collapse
Affiliation(s)
- Mei-Hua Bao
- Department of Physiology, Pathophysiology, and Pharmacology, Science Research Center, Changsha Medical University, Changsha, China.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Qiao-Li Lv
- Jiangxi Key Laboratory of Translational Cancer Research, Department of Head and Neck Surgery, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Vivian Szeto
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Raymond Wong
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Su-Zhen Zhu
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ying-Ying Zhang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhong-Ping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hong-Shuo Sun
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Wong KK, Banham AH, Yaacob NS, Nur Husna SM. The oncogenic roles of TRPM ion channels in cancer. J Cell Physiol 2019; 234:14556-14573. [PMID: 30710353 DOI: 10.1002/jcp.28168] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Transient receptor potential (TRP) proteins are a diverse family of ion channels present in multiple types of tissues. They function as gatekeepers for responses to sensory stimuli including temperature, vision, taste, and pain through their activities in conducting ion fluxes. The TRPM (melastatin) subfamily consists of eight members (i.e., TRPM1-8), which collectively regulate fluxes of various types of cations such as K+ , Na+ , Ca2+ , and Mg2+ . Growing evidence in the past two decades indicates that TRPM ion channels, their isoforms, or long noncoding RNAs encoded within the locus may be oncogenes involved in the regulation of cancer cell growth, proliferation, autophagy, invasion, and epithelial-mesenchymal transition, and their significant association with poor clinical outcomes of cancer patients. In this review, we describe and discuss recent findings implicating TRPM channels in different malignancies, their functions, mechanisms, and signaling pathways involved in cancers, as well as summarizing their normal physiological functions and the availability of ion channel pharmacological inhibitors.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Alison H Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Nik Soriani Yaacob
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Siti Muhamad Nur Husna
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
29
|
Saberbaghi T, Wong R, Rutka JT, Wang GL, Feng ZP, Sun HS. Role of Cl− channels in primary brain tumour. Cell Calcium 2019; 81:1-11. [DOI: 10.1016/j.ceca.2019.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/28/2019] [Accepted: 05/13/2019] [Indexed: 12/20/2022]
|
30
|
Zou ZG, Rios FJ, Montezano AC, Touyz RM. TRPM7, Magnesium, and Signaling. Int J Mol Sci 2019; 20:E1877. [PMID: 30995736 PMCID: PMC6515203 DOI: 10.3390/ijms20081877] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 12/17/2022] Open
Abstract
The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitously expressed chanzyme that possesses an ion channel permeable to the divalent cations Mg2+, Ca2+, and Zn2+, and an α-kinase that phosphorylates downstream substrates. TRPM7 and its homologue TRPM6 have been implicated in a variety of cellular functions and is critically associated with intracellular signaling, including receptor tyrosine kinase (RTK)-mediated pathways. Emerging evidence indicates that growth factors, such as EGF and VEGF, signal through their RTKs, which regulate activity of TRPM6 and TRPM7. TRPM6 is primarily an epithelial-associated channel, while TRPM7 is more ubiquitous. In this review we focus on TRPM7 and its association with growth factors, RTKs, and downstream kinase signaling. We also highlight how interplay between TRPM7, Mg2+ and signaling kinases influences cell function in physiological and pathological conditions, such as cancer and preeclampsia.
Collapse
Affiliation(s)
- Zhi-Guo Zou
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Centre, University of Glasgow, Glasgow G12 8TA, UK.
| | - Francisco J Rios
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Centre, University of Glasgow, Glasgow G12 8TA, UK.
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Centre, University of Glasgow, Glasgow G12 8TA, UK.
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Centre, University of Glasgow, Glasgow G12 8TA, UK.
| |
Collapse
|
31
|
Zhang X, Cui X, Li X, Yan H, Li H, Guan X, Wang Y, Liu S, Qin X, Cheng M. Inhibition of Kir2.1 channel-induced depolarization promotes cell biological activity and differentiation by modulating autophagy in late endothelial progenitor cells. J Mol Cell Cardiol 2019; 127:57-66. [DOI: 10.1016/j.yjmcc.2018.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 11/05/2018] [Accepted: 11/13/2018] [Indexed: 12/27/2022]
|
32
|
Thuringer D, Chanteloup G, Winckler P, Garrido C. The vesicular transfer of CLIC1 from glioblastoma to microvascular endothelial cells requires TRPM7. Oncotarget 2018; 9:33302-33311. [PMID: 30279961 PMCID: PMC6161795 DOI: 10.18632/oncotarget.26048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/16/2018] [Indexed: 01/01/2023] Open
Abstract
Chloride intracellular channel 1 (CLIC1) is highly expressed and secreted by human glioblastoma cells and cell lines such as U87, initiating cell migration and tumor growth. Here, we examined whether CLIC1 could be transferred to human primary microvascular endothelial cells (HMEC). We previously reported that the oncogenic microRNA, miR-5096, increased the release of extracellular vesicles (EVs) by which it increased its own transfer from U87 to surrounding cells. Thus, we also examined its effect on the CLIC1 transfer. In homotypic cultures, miR-5096 did not increase the expression of CLIC1 in U87 nor in HMEC. However, the endothelial CLIC1 level increased after exposure to EVs released by U87, and even more by miR-5096-loaded U87. The EVs-transferred CLIC1 was active in HMEC, promoting endothelial sprouting in matrigel. Cell exposure to EVs induced cytosolic Ca2+ spikes which were dependent on the transient receptor potential melastatin member 7 (TRPM7). TRPM7 silencing prevented Ca2+ spikes and the subsequent CLIC1 delivery into HMEC. Our data suggest that the vesicular transfer of CLIC1 between cells requires TRMP7 expression in recipient endothelial cells. How the vesicular transfer of CLIC1 is modulated in cancer therapy is a future challenge.
Collapse
Affiliation(s)
- Dominique Thuringer
- INSERM U1231, Laboratory of Excellence Ligue Nationale contre le Cancer, 21000 Dijon, France.,Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Gaetan Chanteloup
- INSERM U1231, Laboratory of Excellence Ligue Nationale contre le Cancer, 21000 Dijon, France.,Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Pascale Winckler
- AgroSup Dijon, PAM UMR, DImaCell Imaging Facility, Université de Bourgogne Franche Comté, 21000 Dijon, France
| | - Carmen Garrido
- INSERM U1231, Laboratory of Excellence Ligue Nationale contre le Cancer, 21000 Dijon, France.,Université de Bourgogne Franche Comté, 21000 Dijon, France.,Centre Georges François Leclerc (CGFL), 21000 Dijon, France
| |
Collapse
|
33
|
Zhang Y, Chen L, Xu H, Li X, Zhao L, Wang W, Li B, Zhang X. 6,7-Dimorpholinoalkoxy quinazoline derivatives as potent EGFR inhibitors with enhanced antiproliferative activities against tumor cells. Eur J Med Chem 2018; 147:77-89. [PMID: 29421573 DOI: 10.1016/j.ejmech.2018.01.090] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/23/2018] [Accepted: 01/27/2018] [Indexed: 01/03/2023]
Abstract
A series of novel 6,7-dimorpholinoalkoxy quinazoline derivatives was designed, synthesized and evaluated as potent EGFR inhibitors. Most of synthesized derivatives exhibited moderate to excellent antiproliferative activities against five human tumor cell lines. Compound 8d displayed the most remarkable inhibitory activities against tumor cells expressing wild type (A431, A549 and SW480 cells) or mutant (HCC827 and NCI-H1975 cells) epidermal growth factor receptor (EGFR) (with IC50 values in the range of 0.37-4.87 μM), as well as more potent inhibitory effects against recombinant EGFR tyrosine kinase (EGFR-TK, wt or T790M) (with the IC50 values of 7.0 and 9.3 nM, respectively). Molecular docking showed that 8d can form four hydrogen bonds with EGFR, and two of them were located in the Asp855-Phe856-Gly857 (DFG) motif of EGFR. Meanwhile, 8d can significantly block EGF-induced EGFR activation and the phosphorylation of its downstream proteins such as Akt and Erk1/2 in human NSCLC cells. Also, 8d mediated cell apoptosis and the prolongation of cell cycle progression in G0/G1-phase in A549 cells. The work would have remarkable implications for further design and development of more potent EGFR tyrosine kinase inhibitors (TKIs).
Collapse
Affiliation(s)
- Yaling Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Li Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Hongjiang Xu
- Chia Tai Tianqing Pharmaceutical Co., Ltd., Nanjing, 210042, PR China
| | - Xiabing Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China.
| | - Lijun Zhao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Wei Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China
| | - Baolin Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China.
| | - Xiquan Zhang
- Chia Tai Tianqing Pharmaceutical Co., Ltd., Nanjing, 210042, PR China
| |
Collapse
|
34
|
Wong R, Chen W, Zhong X, Rutka JT, Feng ZP, Sun HS. Swelling-induced chloride current in glioblastoma proliferation, migration, and invasion. J Cell Physiol 2018; 233:363-370. [PMID: 28262948 DOI: 10.1002/jcp.25891] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/02/2017] [Indexed: 12/20/2022]
Abstract
Glioblastoma (GBM) remains as the most common and aggressive brain tumor. The survival of GBM has been linked to the aberrant activation of swelling-induced chloride current ICl,swell . In this study, we investigated the effects of ICl,swell on cell viability, proliferation, and migration in the human GBM cell lines, U251 and U87, using a combination of patch clamp electrophysiology, MTT, colony formation, wound healing assays and Western immunoblotting. First, we showed that the specific inhibitor of ICl,swell , DCPIB, potently reduced the ICl,swell in U87 cells. Next, in both U87 and U251 cells, we found that DCPIB reduced GBM viability, proliferation, colony formation, migration, and invasion. In addition, our Western immunoblot assay showed that DCPIB-treated U251 cells had a reduction in JAK2, STAT3, and Akt phosphorylation, thus, suggesting that DCPIB potentially suppresses GBM functions through inhibition of the JAK2/STAT3 and PI3K/Akt signaling pathways. Therefore, the ICl,swell may be a potential drug target for GBM.
Collapse
Affiliation(s)
- Raymond Wong
- Departments of Surgery, Faculty of Medicine, University of Toronto, Toronto, Canada
- Departments of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Wenliang Chen
- Departments of Surgery, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Xiao Zhong
- Departments of Surgery, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - James T Rutka
- Departments of Surgery, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Zhong-Ping Feng
- Departments of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Hong-Shuo Sun
- Departments of Surgery, Faculty of Medicine, University of Toronto, Toronto, Canada
- Departments of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
- Departments of Pharmacology, Faculty of Medicine, University of Toronto, Toronto, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
35
|
Tang X, Qian LL, Wang RX, Yao Y, Dang SP, Wu Y, Wang W, Ji Y, Sun MQ, Xia DY, Liu XY, Zhang DM, Chai Q, Lu T. Regulation of Coronary Arterial Large Conductance Ca2+-Activated K+ Channel Protein Expression and Function by n-3 Polyunsaturated Fatty Acids in Diabetic Rats. J Vasc Res 2017; 54:329-343. [PMID: 29040972 DOI: 10.1159/000479870] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/28/2017] [Indexed: 12/22/2022] Open
Abstract
AIM The objective of this study was to examine the effects of n-3 polyunsaturated fatty acids (n-3 PUFAs) on coronary arterial large conductance Ca2+-activated K+ (BK) channel function in coronary smooth muscle cells (SMCs) of streptozotocin-induced diabetic rats. METHODS The effects of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on coronary BK channel open probabilities were determined using the patch clamp technique. The mRNA and protein expressions of BK channel subunits were measured using qRT-PCR and Western blots. The coronary artery tension and coronary SMC Ca2+ concentrations were measured using a myograph system and fluorescence Ca2+ indicator. RESULTS Compared to nondiabetic control rats, the BK channel function was impaired with a reduced response to EPA and DHA in freshly isolated SMCs of diabetic rats. Oral administration of n-3 PUFAs had no effects on protein expressions of BK channel subunits in nondiabetic rats, but significantly enhanced those of BK-β1 in diabetic rats without altering BK-α protein levels. Moreover, coronary ring tension induced by iberiotoxin (a specific BK channel blocker) was increased and cytosolic Ca2+ concentrations in coronary SMCs were decreased in diabetic rats, but no changes were found in nondiabetic rats. CONCLUSIONS n-3 PUFAs protect the coronary BK channel function and coronary vasoreactivity in diabetic rats as a result of not only increasing BK-β1 protein expressions, but also decreasing coronary artery tension and coronary smooth muscle cytosolic Ca2+ concentrations.
Collapse
Affiliation(s)
- Xu Tang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Maeda T, Suzuki A, Koga K, Miyamoto C, Maehata Y, Ozawa S, Hata RI, Nagashima Y, Nabeshima K, Miyazaki K, Kato Y. TRPM5 mediates acidic extracellular pH signaling and TRPM5 inhibition reduces spontaneous metastasis in mouse B16-BL6 melanoma cells. Oncotarget 2017; 8:78312-78326. [PMID: 29108231 PMCID: PMC5667964 DOI: 10.18632/oncotarget.20826] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/27/2017] [Indexed: 01/13/2023] Open
Abstract
Extracellular acidity is a hallmark of solid tumors and is associated with metastasis in the tumor microenvironment. Acidic extracellular pH (pH e ) has been found to increase intracellular Ca2+ and matrix metalloproteinase-9 (MMP-9) expression by activating NF-κB in the mouse B16 melanoma model. The present study assessed whether TRPM5, an intracellular Ca2+-dependent monovalent cation channel, is associated with acidic pH e signaling and induction of MMP-9 expression in this mouse melanoma model. Treatment of B16 cells with Trpm5 siRNA reduced acidic pH e -induced MMP-9 expression. Enforced expression of Trpm5 increased the rate of acidic pH e -induced MMP-9 expression, as well as increasing experimental lung metastasis. This genetic manipulation did not alter the pH e critical for MMP-9 induction but simply amplified the percentage of inducible MMP-9 at each pH e . Treatment of tumor bearing mice with triphenylphosphine oxide (TPPO), an inhibitor of TRPM5, significantly reduced spontaneous lung metastasis. In silico analysis of clinical samples showed that high TRPM5 mRNA expression correlated with poor overall survival rate in patients with melanoma and gastric cancer but not in patients with cancers of the ovary, lung, breast, and rectum. These results showed that TRPM5 amplifies acidic pH e signaling and may be a promising target for preventing metastasis of some types of tumor.
Collapse
Affiliation(s)
- Toyonobu Maeda
- Department of Oral Function and Molecular Biology, Ohu University School of Dentistry, Koriyama 963-8611, Japan
| | - Atsuko Suzuki
- Department of Oral Function and Molecular Biology, Ohu University School of Dentistry, Koriyama 963-8611, Japan
| | - Kaori Koga
- Department of Pathology, Fukuoka University School of Medicine and Hospital, Fukuoka 814-0180, Japan
| | - Chihiro Miyamoto
- Department of Oral Science, Kanagawa Dental University Graduate School of Dentistry, Yokosuka 238-8580, Japan
| | - Yojiro Maehata
- Department of Oral Science, Kanagawa Dental University Graduate School of Dentistry, Yokosuka 238-8580, Japan
| | - Shigeyuki Ozawa
- Department of Dentomaxillofacial Diagnosis and Treatment, Kanagawa Dental University Graduate School of Dentistry, Yokosuka 238-8580, Japan
| | - Ryu-Ichiro Hata
- Department of Dentomaxillofacial Diagnosis and Treatment, Kanagawa Dental University Graduate School of Dentistry, Yokosuka 238-8580, Japan
- Oral Health Science Research Center, Kanagawa Dental University Graduate School of Dentistry, Yokosuka 238-8580, Japan
| | - Yoji Nagashima
- Department of Surgical Pathology, Tokyo Women’s Medical University Hospital, Tokyo 162-8666, Japan
| | - Kazuki Nabeshima
- Department of Pathology, Fukuoka University School of Medicine and Hospital, Fukuoka 814-0180, Japan
| | - Kaoru Miyazaki
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan
| | - Yasumasa Kato
- Department of Oral Function and Molecular Biology, Ohu University School of Dentistry, Koriyama 963-8611, Japan
| |
Collapse
|
37
|
Jiang K, Wang YP, Wang XD, Hui XB, Ding LS, Liu J, Liu D. Fms related tyrosine kinase 1 (Flt1) functions as an oncogene and regulates glioblastoma cell metastasis by regulating sonic hedgehog signaling. Am J Cancer Res 2017; 7:1164-1176. [PMID: 28560064 PMCID: PMC5446481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 06/07/2023] Open
Abstract
Studies have shown that the abnormal expression of Fms related tyrosine kinase 1 (Flt1) is associated with multiple malignancies, yet its role in glioblastoma pathology remains to be elucidated. In this study, we investigated the role of Flt1 in regulating proliferation, migration and invasion of glioblastoma cells by establishing glioblastoma cell strains with constitutively silenced or elevated Flt1 expression. We demonstrate that ectopic expression of Flt1 promotes glioblastoma cells migration, invasion through cell scratching and Transwell assays. Further study has indicated that Flt1 knockdown prevents the spread of glioblastoma cells in vivo. Conversely, we also show that suppression of Flt1 expression inhibits migration and invasion of glioblastoma cells. Finally, our findings demonstrate that Flt1 promotes invasion and migration of glioblastoma cells through sonic hedgehog (SHH) signaling pathway. Our study suggests that galectin-1 represents a crucial regulator of glioblastoma cells metastasis. Thus, the detection and targeted treatment of Flt1-expressing cancer serves as a new therapeutic target for glioblastoma.
Collapse
Affiliation(s)
- Kun Jiang
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical UniversityHuai'an 223300, China
| | - Yan-Ping Wang
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical UniversityHuai'an 223300, China
| | - Xiao-Dong Wang
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical UniversityHuai'an 223300, China
| | - Xiao-Bo Hui
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical UniversityHuai'an 223300, China
| | - Lian-Shu Ding
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical UniversityHuai'an 223300, China
| | - Ji Liu
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical UniversityHuai'an 223300, China
| | - Dai Liu
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical UniversityHuai'an 223300, China
| |
Collapse
|
38
|
Fan S, Liao Y, Liu C, Huang Q, Liang H, Ai B, Fu S, Zhou S. Estrogen promotes tumor metastasis via estrogen receptor beta-mediated regulation of matrix-metalloproteinase-2 in non-small cell lung cancer. Oncotarget 2017; 8:56443-56459. [PMID: 28915603 PMCID: PMC5593574 DOI: 10.18632/oncotarget.16992] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 02/13/2017] [Indexed: 12/24/2022] Open
Abstract
In non–small cell lung cancer (NSCLC), estrogen significantly promotes NSCLC cell growth via estrogen receptor beta (ERβ). However, the effects by which ERβ contributes to metastasis in NSCLC have not been previously reported. This study aims at defining whether the stimulation of ERβ promotes NSCLC metastasis in vitro and in vivo. Here, Our results showed that estrogen and ERβ agonist enhanced aggressiveness of two lung cancer cell lines (A549 and H1793) and promoted murine lung metastasis formation. ER-inhibitor Fulvestrant treatment or ERβ-knockdown significantly suppressed the migration, invasion and nodule formation of NSCLC cells. The expression level of ERβ protein was analyzed in matched samples of metastatic lymph node and primary tumor tissues from the same individuals, and we found significantly higher levels of ERβ were expressed in lymph node compared to primary tumor tissues. Moreover, Studies on both surgical biopsies and on lung cancer cells revealed that the expression level of ERβ and matrix-metalloproteinase-2 (MMP-2) were associated. Furthermore, inhibition of ERβ resulted in down-regulation of MMP-2 expression. Taken together, our results demonstrate that activation of ERβ in lung cancer cells promotes tumor metastasis through increasing expression of invasiveness-associated MMP-2. These results also highlight the therapeutic potential of inhibition of ERβin the treatment of advanced NSCLC.
Collapse
Affiliation(s)
- Sheng Fan
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yongde Liao
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Changyu Liu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Quanfu Huang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Bo Ai
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Shegnling Fu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Sheng Zhou
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|