1
|
Chen N, Diao CY, Huang X, Tan WX, Chen YB, Qian XY, Gao J, Zhao DB. RhoA Promotes Synovial Proliferation and Bone Erosion in Rheumatoid Arthritis through Wnt/PCP Pathway. Mediators Inflamm 2023; 2023:5057009. [PMID: 38022686 PMCID: PMC10667059 DOI: 10.1155/2023/5057009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 10/07/2023] [Accepted: 10/07/2023] [Indexed: 12/01/2023] Open
Abstract
Ras homolog gene family member A (RhoA) plays a major role in the Wnt/planar cell polarity (PCP) pathway, which is significantly activated in patients with rheumatoid arthritis (RA). The function of RhoA in RA synovitis and bone erosion is still elusive. Here, we not only explored the impact of RhoA on the proliferation and invasion of RA fibroblast-like synoviocytes (FLSs) but also elucidated its effect on mouse osteoclast and a mouse model of collagen-induced arthritis (CIA). Results showed that RhoA was overexpressed in RA and CIA synovial tissues. Lentivirus-mediated silencing of RhoA increased apoptosis, attenuated invasion, and dramatically upregulated osteoprotegerin/receptor activator of nuclear factor-κB ligand (OPG/RANKL) ratio in RA-FLSs. Additionally, the silencing of RhoA inhibited mouse osteoclast differentiation in vitro and alleviated synovial hyperplasia and bone erosion in the CIA mouse model. These effects in RA-FLSs and osteoclasts were all regulated by RhoA/Rho-associated protein kinase 2 (ROCK2) and might interact with Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways.
Collapse
Affiliation(s)
- Ning Chen
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Rheumatology and Immunology, The First People's Hospital of Yancheng, The Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Chao-Yue Diao
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xin Huang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei-Xing Tan
- Air Force Health Care Center for Special Services, Hangzhou, China
| | - Ya-Bing Chen
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xin-Yu Qian
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jie Gao
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Dong-Bao Zhao
- Department of Rheumatology and Immunology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
2
|
Tan W, Chen N, Qiu Y, Feng X, Li S, Zhang Y, Li H, Gao J, Zhao D. Exosomal Dvl3 promoted the aggressive phenotypic transformation of RA-FLS via wnt pathway. Autoimmunity 2022; 55:285-293. [PMID: 35499309 DOI: 10.1080/08916934.2022.2067984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
OBJECTIVE This study was performed to explore the function and mechanism of Dvl3 in RA-FLS by exosome intervention. METHODS The expression pattern of Dvl3 was examined by IHC, WB, and qPCR. Modified exosomes obtained from culturing supernatant of RA-FLS infected with Dvl3 over expression (OE) lentivirus were administrated to the target RA-FLS. The ability of survival, migration, and the production of inflammatory factor influenced by exosomal Dvl3 were detected by CKK8 kits, Tunel, migration test, qPCR, and enzyme-linked immunosorbent assay (ELISA) respectively; Flow cytometry analysis was conducted to explorer the inflammatory moderate role of exosomes on CD4+ T cells. The possible downstream pathways of Dvl3 were screened by qPCR and WB and verified by double luciferase reporter experiment. RESULTS The expression level of Dvl3 was significantly increased in RA and CIA. Exosomes from the OE group could significantly promote cell proliferation activity, migration/invasion ability. The augment of TNF-α, IL-1β, IL-17, and IL-21 was observed in exosomal Dvl3-OE group. Th1 and Th17 cells polarisation and cytokines related were both enhanced by Exosomal Dvl3. Over expression of Dvl3 was accompanied by the significant increase of β-catenin and RhoA activities. CONCLUSION This study discovered the high expression of Dvl3 of exosomes derived from RA patients which may possessed the ability to promote phenotypic transformation of RA-FLS through Wnt pathway.
Collapse
Affiliation(s)
- Weixing Tan
- Department of Rheumatology and Immunology, Changhai Hospital, The Second Military Medical University, Shanghai, China.,Air Force Health Care Center for Special Services, Hangzhou, China
| | - Ning Chen
- Department of Rheumatology and Immunology, Changhai Hospital, The Second Military Medical University, Shanghai, China.,Department of Rheumatology and Immunology, The First People's Hospital of Yancheng City, Yancheng, China
| | - Yang Qiu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaomei Feng
- Air Force Health Care Center for Special Services, Hangzhou, China
| | - Shuwen Li
- Air Force Health Care Center for Special Services, Hangzhou, China
| | - Yongjin Zhang
- Department of Orthopedics, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Haoran Li
- Department of Rheumatology and Immunology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Jie Gao
- Department of Rheumatology and Immunology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Dongbao Zhao
- Department of Rheumatology and Immunology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| |
Collapse
|
3
|
Lv Z, Ye S, Wang Z, Xin P, Chen Y, Tan Z, Zhuang Y. Long non-coding RNA TSPEAR Antisense RNA 2 is downregulated in rheumatoid arthritis and inhibits the apoptosis of fibroblast-like synoviocytes by downregulating microRNA-212-3p (miR-212-3p). Bioengineered 2022; 13:4166-4172. [PMID: 35112979 PMCID: PMC8973929 DOI: 10.1080/21655979.2021.2021347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Long non-coding RNA (lncRNA) TSPEAR-AS2 (TSPEAR Antisense RNA 2) participates in many human diseases, while its roles in rheumatoid arthritis (RA) are unknown. Plasma expression levels of TSPEAR-AS2 and microRNA (miR)-212-3p in both RA patients and healthy controls were measured by RT-qPCR. Diagnostic potentials of plasma TSPEAR-AS2 and miR-212-3p were assessed by ROC curve analysis. Normalized expression levels of TSPEAR-AS2 and miR-212-3p were subjected to Pearson’s correlation coefficient to evaluate their corrections. TSPEAR-AS2 was significantly downregulated in RA patients, while plasma expression levels of miR-212-3p were significantly increased in RA patients. The expression of TSPEAR-AS2 and miR-212-3p showed promising diagnostic value for RA. Plasma expression levels of TSPEAR-AS2 and miR-212-3p were significantly and inversely correlated in RA patients but not in healthy controls. Besides, overexpression of TSPEAR-AS2 decreased the apoptosis of RA HFLSs, while miR-212-3p increased cell apoptosis. In addition, miR-212-3p attenuated the effects of overexpression of TSPEAR-AS2. Overexpression of TSPEAR-AS2 decreased the expression levels of miR-212-3p in HFLS, while overexpression of miR-212-3p did not affect the expression of TSPEAR-AS2. In conclusion, TSPEAR-AS2 is downregulated in RA and its overexpression can decrease the apoptosis of RA HFLSs by downregulating miR-212-3p.
Collapse
Affiliation(s)
- Zhifen Lv
- Department of Rhumatology and Immunology, Huizhou Municipal Central Hospital, Huizhou, PR. China
| | - Shibao Ye
- Department of Rhumatology and Immunology, Huizhou Municipal Central Hospital, Huizhou, PR. China
| | - Zhiwen Wang
- Department of Rhumatology and Immunology, Huizhou Municipal Central Hospital, Huizhou, PR. China
| | - Panpan Xin
- Department of Rhumatology and Immunology, Huizhou Municipal Central Hospital, Huizhou, PR. China
| | - Yuhang Chen
- Department of Rhumatology and Immunology, Huizhou Municipal Central Hospital, Huizhou, PR. China
| | - Zhiming Tan
- Department of Rhumatology and Immunology, Huizhou Municipal Central Hospital, Huizhou, PR. China
| | - Yu Zhuang
- Department of Rhumatology and Immunology, Huizhou Municipal Central Hospital, Huizhou, PR. China
| |
Collapse
|
4
|
Shen P, Jiao Y, Miao L, Chen J, Momtazi‐Borojeni AA. Immunomodulatory effects of berberine on the inflamed joint reveal new therapeutic targets for rheumatoid arthritis management. J Cell Mol Med 2020; 24:12234-12245. [PMID: 32969153 PMCID: PMC7687014 DOI: 10.1111/jcmm.15803] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory syndrome designated by synovial joint inflammation leading to cartilage degradation and bone damage as well as progressive disability. Synovial inflammation is promoted through the infiltration of mononuclear immune cells, dominated by CD4+ T cells, macrophages and dendritic cells (DCs), together with fibroblast-like synoviocytes (FLS), into the synovial compartment. Berberine is a bioactive isoquinoline alkaloid compound showing various pharmacological properties that are mainly attributed to immunomodulatory and anti-inflammatory effects. Several lines of experimental study have recently investigated the therapeutic potential of berberine and its underlying mechanisms in treating RA condition. The present review aimed to clarify determinant cellular and molecular targets of berberine in RA and found that berberine through modulating several signalling pathways involved in the joint inflammation, including PI3K/Akt, Wnt1/β-catenin, AMPK/lipogenesis and LPA/LPA1 /ERK/p38 MAPK can inhibit inflammatory proliferation of FLS cells, suppress DC activation and modulate Th17/Treg balance and thus prevent cartilage and bone destruction. Importantly, these molecular targets may explore new therapeutic targets for RA treatment.
Collapse
Affiliation(s)
- Peng Shen
- Department of StomatologyClinical Department of Aerospace CityNorthern Beijing Medical DistrictChinese PLA General HospitalBeijingChina
| | - Yang Jiao
- Department of StomatologyThe 7th Medical CenterChinese PLA General HospitalBeijingChina
- Outpatient Department of PLA Macao GarrisonMacaoChina
| | - Li Miao
- Department of StomatologyThe 7th Medical CenterChinese PLA General HospitalBeijingChina
| | - Ji‐hua Chen
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology & Shaanxi Key Laboratory of Oral DiseasesDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | | |
Collapse
|
5
|
Xie C, Jiang J, Liu J, Yuan G, Zhao Z. Ginkgolide B attenuates collagen-induced rheumatoid arthritis and regulates fibroblast-like synoviocytes-mediated apoptosis and inflammation. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1497. [PMID: 33313242 PMCID: PMC7729381 DOI: 10.21037/atm-20-6420] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Rheumatoid arthritis (RA) is a systemic disease characterized by chronic synovial infiltration and proliferation, cartilage destruction, and joint injury. Ginkgolide B (GB) is an extract of the leaves of Ginkgo biloba, and pharmacological studies have shown that it has anti-inflammatory and anti-apoptotic activities. The purpose of this study was to investigate the anti-RA properties of GB. Methods In vivo, we established a collagen II-induced arthritis (CIA) mouse model. Mice were divided into five groups (n=10): sham, CIA, GB (10 µM), GB (20 µM), and GB (40 µM). We measured arthritis score, synovial histopathological change, and peripheral blood cytokine levels. In vitro, we used lipopolysaccharide (LPS)-induced-fibroblast-like synoviocytes (RA-FLSs) as the study subject. Cell viability, apoptosis, and inflammatory cytokines levels were detected by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay, flow cytometry, and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), respectively. Finally, the protein expression of wingless-type family member 5A (Wnt5a), c-Jun N-terminal kinase (JNK), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 were detected by Western blot. Results Arthritis scores, synovial hyperplasia, and cartilage and bone destruction were significantly ameliorated by GB. Additionally, GB decreased the serum levels of interleukin (IL)-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor alpha (TNF-α), matrix metalloproteinase (MMP)-3 and MMP-13, and increased IL-10. In vitro, we found that GB remarkably inhibited RA-FLSs viability at 24 or 48 h in a concentration-dependent manner. The apoptotic ratio was reduced by GB, and it increased the expression of cleaved-Caspase-3 and Bax while decreasing Bcl-2 expression in RA-FLSs. Furthermore, GB attenuated the progression of inflammation by mediating inflammatory cytokine release and MMPs gene expression. Meanwhile, GB inactivated the expression levels of Wnt5a, phosphorylated (p)-JNK, and p-P65 in the synovial tissues and RA-FLSs. Conclusions This study was the first to demonstrate that the anti-RA effect of GB is related to reducing articular cartilage and bone destruction, inducing RA-FLSs apoptosis, and regulating inflammatory cytokine release and the Wnt5a/JNK/NF-κB axis. All the findings highlight that GB might provide a novel treatment approach for RA.
Collapse
Affiliation(s)
- Chuanmei Xie
- Department of Rheumatology, the Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jing Jiang
- Department of Gynecology and Obstetrics, the Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jianping Liu
- Department of Rheumatology, the Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Guohua Yuan
- Department of Rheumatology, the Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Zhenyi Zhao
- Department of Rheumatology, the Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
6
|
Cui C, Han S, Shen X, He H, Chen Y, Zhao J, Wei Y, Wang Y, Zhu Q, Li D, Yin H. ISLR regulates skeletal muscle atrophy via IGF1-PI3K/Akt-Foxo signaling pathway. Cell Tissue Res 2020; 381:479-492. [PMID: 32696215 DOI: 10.1007/s00441-020-03251-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/24/2020] [Indexed: 12/31/2022]
Abstract
Immunoglobulin superfamily containing leucine-rich repeat (Islr) contains an Ig-like domain, an LRR motif, and a transmembrane domain and is highly expressed in various chicken tissues. Although Islr has known roles in muscle regeneration, its role in the regulation of muscle atrophy has not been studied. In this study, we constructed Islr-silenced or Islr-overexpressed myoblasts to investigate its role during the differentiation of myoblasts into myotubes. The results showed that Islr was highly expressed in chicken skeletal muscle tissue and regulated myoblast differentiation, but not proliferation. Islr regulated the expression of atrophy-related genes including atrogin-1 and MuRF-1, and could rescue dexamethasone-induced atrophy in myoblasts and myotubes. Western blot analysis indicated that Islr participates in myoblast atrophy through IGF/PI3K/AKT-FOXO signaling. Meanwhile, the expression of caspase-8 and caspase-9 increased in Islr-silenced groups, indicating its role in cell viability. Taken together, these data suggested that Islr plays an important role in myoblasts differentiation, and which can alleviate skeletal muscle atrophy and prevents muscle cell apoptosis via IGF/PI3K/AKT-FOXO signaling pathway.
Collapse
Affiliation(s)
- Can Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Shunshun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Xiaoxu Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Haorong He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Yuqi Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Jing Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Yuanhang Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China.
| |
Collapse
|
7
|
Wang J, Wang Y, Zhang H, Chang J, Lu M, Gao W, Liu W, Li Y, Yin L, Wang X, Wang Y, Gao M, Yin Z. Identification of a novel microRNA-141-3p/Forkhead box C1/β-catenin axis associated with rheumatoid arthritis synovial fibroblast function in vivo and in vitro. Theranostics 2020; 10:5412-5434. [PMID: 32373221 PMCID: PMC7196314 DOI: 10.7150/thno.45214] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023] Open
Abstract
Rationale: Rheumatoid arthritis (RA) is a prototype of inflammatory arthritis in which synovial fibroblasts (SFs) play key roles in cartilage and bone destruction through tumor-like proliferation, migration, invasion and inflammation. This study aimed to research forkhead box protein C1 (FoxC1) and microRNA (miR)-141-3p, which modulate pathological changes in the synovial membrane, to find possible strategies for treating RA. Methods: FoxC1, β-catenin and miR-141-3p gene expression in synovial tissues and SFs was quantified by real-time PCR; FoxC1 and β-catenin protein levels were evaluated by immunohistochemistry, immunofluorescence, and Western blotting. We transiently transfected human SFs with FoxC1 and β-catenin overexpression and silencing vectors and assessed proliferation, migration, invasion and inflammation by cell function and enzyme-linked immunosorbent assays. We also assessed downstream signaling activation using immunofluorescence, real-time PCR and Western blotting. Double luciferase, coimmunoprecipitation and chromatin immunoprecipitation assays were used to verify miR-141-3p, FoxC1 and β-catenin gene and protein combinations. Finally, the therapeutic effects of FoxC1 silencing and miR-141-3p overexpression were evaluated in type II collagen-induced arthritis (CIA) rats. Results: We found that FoxC1 expression was significantly upregulated in synovium and SFs in both RA patients and rats with collagen-induced arthritis (CIA). FoxC1 overexpression increased β-catenin messenger RNA (mRNA) and protein levels and upregulated cyclin D1, c-Myc, fibronectin and matrix metalloproteinase 3 (MMP3) mRNA and protein expression in RA SFs (RASFs). In contrast, FoxC1 knockdown reduced β-catenin mRNA and protein levels as well as cyclin D1, c-Myc, and fibronectin mRNA and protein levels in RASFs. Furthermore, altering FoxC1 expression did not significantly change GSK3β and pGSK3β levels. FoxC1 overexpression promoted proliferation, migration, invasion and proinflammatory cytokine (interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α)) production and reduced anti-inflammatory cytokine (IL-10) levels in RASFs. FoxC1 bound to the β-catenin promoter, and β-catenin mediated the FoxC1-induced pathological changes. We also observed downregulated microRNA (miR)-141-3p expression in SFs from both RA patients and CIA rats and further found that miR-141-3p bound to the FoxC1 3′UTR and suppressed FoxC1 expression. Intra-ankle miR-141-3p agomir or FoxC1-specific siRNA injection hindered CIA development in rats. Conclusions: FoxC1 and miR-141-3p participate in RA pathogenesis by mediating inflammation and SF proliferation, migration, and invasion and thus could be novel targets for RA therapy as a nonimmunosuppressive approach.
Collapse
|
8
|
Sun YW, Bao Y, Yu H, Chen QJ, Lu F, Zhai S, Zhang CF, Li F, Wang CZ, Yuan CS. Anti-rheumatoid arthritis effects of flavonoids from Daphne genkwa. Int Immunopharmacol 2020; 83:106384. [PMID: 32199350 DOI: 10.1016/j.intimp.2020.106384] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/18/2020] [Accepted: 03/05/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE This study aims to select the most effective anti-Rheumatoid Arthritis (RA) component of flavonoids from Daphne genkwa Sieb. et Zucc. by anti-inflammatory and immunomodulatory effects in vitro, and to elucidate the mechanism. METHODS The anti-inflammatory and immunomodulatory effects of total flavonoids (TF) and four flavonoid components (genkwanin, hydroxygenkwanin, luteolin and apigenin) were determined by pharmacological approach in LPS-induced RAW 264.7 macrophages and ConA-induced T lymphocytes. Principal component analysis (PCA) was used to obtain the optimal anti-RA component in vitro. Western blot and real-time quantitative PCR (q-PCR) were used to explore the mechanisms. Finally, the in vitro anti-RA effect was verified by human rheumatoid arthritis fibroblast-like synoviocytes (FLSs). RESULTS TF and four flavonoids significantly reduced the expressions of NO, iNOS, TNF-α, IL-6, IFN-γ and IL-2. PCA showed that genkwanin was the most effective anti-RA component in vitro. Genkwanin inhibited nuclear factor-κB (NF-κB) pathway by decreasing the phosphorylation levels of IKK, IκB and NF-κB, and down-regulated the expressions of iNOS, COX-2 and IL-6 mRNA. Genkwanin also inhibited the abnormal proliferation of FLSs and down-regulated the secretions of NO and IL-6. CONCLUSION The most effective anti-RA component was genkwanin. Genkwanin exerts anti-RA effect through down-regulating the activation of NF-κB pathway and mRNA expressions of inflammatory mediators, and also by inhibiting the abnormal proliferation of FLSs and its NO and IL-6 secretion levels.
Collapse
Affiliation(s)
- Yue-Wen Sun
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Yarigui Bao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Hui Yu
- Shandong Drug and Food Vocational College, Zibo, Shandong 255000, China
| | - Qiu-Jing Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Fang Lu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Shuo Zhai
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Chun-Feng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.
| | - Fei Li
- School of Pharmacy, Xinjiang Medical University, Urumqi 830011, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Chong-Zhi Wang
- Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Chun-Su Yuan
- Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
9
|
|
10
|
Dinesh P, Kalaiselvan S, Sujitha S, Rasool M. MiR-145-5p mitigates dysregulated Wnt1/β-catenin signaling pathway in rheumatoid arthritis. Int Immunopharmacol 2020; 82:106328. [PMID: 32088641 DOI: 10.1016/j.intimp.2020.106328] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/04/2020] [Accepted: 02/14/2020] [Indexed: 12/28/2022]
Abstract
Fibroblast-like synoviocytes (FLS) lining the arthritic synovial joint region have been implicated to be a key player in bone remodeling. The uncontrolled proliferation of this cell subtype is strictly regulated by various molecular elements including microRNAs (miRNAs). The Wnt1/β-catenin signaling pathway plays a crucial role in the survival of FLS cells. This study explores the underlying mechanism of miR-145-5p towards the Wnt1/β-catenin pathway. MiR-145-5p depicted a strong binding affinity towards frizzled class receptor 4 (FZD4) 3' UTR, a key receptor complex essential for recognizing circulating Wnt1 molecules. Adjuvant induced arthritic fibroblast-like synoviocytes (AA-FLS) isolated from rats stimulated with Wnt1 (10 ng/ml) elicited active Wnt1/β-catenin signaling. Transfection of miR-145-5p mimic (50 pmol) to AA-FLS stimulated with Wnt1 elicited reduced expression levels of various factors of Wnt1/β-catenin signaling including low-density lipoprotein receptor-related protein 5 (LRP5), dishevelled segment polarity protein 1 (Dvl1) and β-catenin transcription factor. Moreover, pro-inflammatory cytokines (TNFα, IL-1β, IL-6 and IL-23) were regulated compared to the diseased groups. Furthermore, miR-145-5p counterbalanced the levels of receptor activator of nuclear factor kappa B ligand (RANKL) and osteoprotegerin (OPG) at the cellular level, essential for bone remodeling. Hence, we suggest that miR-145-5p regulates the survival/proliferation of FLS cells in RA disease condition through attenuation of Wnt1/β-catenin signaling.
Collapse
Affiliation(s)
- Palani Dinesh
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Sowmiya Kalaiselvan
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Sali Sujitha
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India.
| |
Collapse
|
11
|
Sujitha S, Dinesh P, Rasool M. Berberine encapsulated PEG-coated liposomes attenuate Wnt1/β-catenin signaling in rheumatoid arthritis via miR-23a activation. Eur J Pharm Biopharm 2020; 149:170-191. [PMID: 32068029 DOI: 10.1016/j.ejpb.2020.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/16/2020] [Accepted: 02/12/2020] [Indexed: 10/25/2022]
Abstract
Bone erosion is a debilitating pathological process of osteopathic disorder like rheumatoid arthritis (RA). Current treatment strategies render low disease activity but with disease recurrence. To find an alternative, we designed this study with an aim to explore the underlying therapeutic effect of PEGylated liposomal BBR (PEG-BBR) against Wnt1/β-catenin mediated bone erosion in adjuvant-induced arthritic (AA) rat model and fibroblast-like synoviocytes (FLS) with reference to microRNA-23a (miR-23a) activity. Our initial studies using confocal microscopy and Near-Infrared Imaging (NIR) showed successful internalization of PEG-BBR and PEG-miR-23a in vitro and in vivo respectively and was retained till 48 h. The preferential internalization of PEG-BBR into the inflamed joint region significantly reduced the gene and protein level expression of major Wnt1 signaling mediators and reduced bone erosion in rats. Moreover, PEG-BBR treatment in FLS cells attenuated the gene and protein expression levels of FZD4, LRP5, β-catenin, and Dvl-1 through the induction of CYLD. Furthermore, inhibition of these factors resulted in reduced bone loss and increased calcium retainability by altering the RANKL/OPG axis. PEG-BBR treatment markedly inhibited the expression of LRP5 protein on par with the DKK-1 (LRP5/Wnt signaling inhibitor) and suppressed the transcriptional activation of β-catenin inside the cells. We further witnessed that miR-23a altered the expression levels of LRP5 through RNA interference. Overall, our findings endorsed that miR-23a possesses a multifaceted therapeutic efficiency like berberine in RA pathogenesis and can be considered as a potential candidate for therapeutic targeting of Wnt1/β-catenin signaling in RA disease condition.
Collapse
Affiliation(s)
- Sali Sujitha
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Palani Dinesh
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India.
| |
Collapse
|
12
|
Effect of electroacupuncture on c-IAP1 mRNA and c-IAP2 mRNA in synovial tissues of rats with adjuvant arthritis. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2019. [DOI: 10.1007/s11726-019-1088-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Sharma M, Castro-Piedras I, Simmons GE, Pruitt K. Dishevelled: A masterful conductor of complex Wnt signals. Cell Signal 2018; 47:52-64. [PMID: 29559363 DOI: 10.1016/j.cellsig.2018.03.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 12/21/2022]
Abstract
The Dishevelled gene was first identified in Drosophila mutants with disoriented hair and bristle polarity [1-3]. The Dsh gene (Dsh/Dvl, in Drosophila and vertebrates respectively) gained popularity when it was discovered that it plays a key role in segment polarity during early embryonic development in Drosophila [4]. Subsequently, the vertebrate homolog of Dishevelled genes were identified in Xenopus (Xdsh), mice (Dvl1, Dvl2, Dvl3), and in humans (DVL1, DVL2, DVL3) [5-10]. Dishevelled functions as a principal component of Wnt signaling pathway and governs several cellular processes including cell proliferation, survival, migration, differentiation, polarity and stem cell renewal. This review will revisit seminal discoveries and also summarize recent advances in characterizing the role of Dishevelled in both normal and pathophysiological settings.
Collapse
Affiliation(s)
- Monica Sharma
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Isabel Castro-Piedras
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Glenn E Simmons
- Department of Biomedical Sciences, University of Minnesota, School of Medicine, Duluth, MN, USA
| | - Kevin Pruitt
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
14
|
Deng X, Zheng LP, Mu ZQ, Lai R, Niu GP, Tu LP, Zhu D, Liu YQ. The inhibitory effect of Aconiti Sinomontani Radix extracts on the proliferation and migration of human synovial fibroblast cell line SW982. JOURNAL OF ETHNOPHARMACOLOGY 2018; 213:321-327. [PMID: 29191397 DOI: 10.1016/j.jep.2017.11.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 11/23/2017] [Accepted: 11/26/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aconiti Sinomontani Radix is frequently used in the treatment of Bi syndrome in traditional Chinese medicine. Several reports indicate that Aconiti Sinomontani Radix has therapeutic effects for rheumatoid arthritis (RA). However, the cellular mode of action is still unclear. To investigate the effect of alkaloid extracts of Aconiti Sinomontani Radix on proliferation and migration of human synovial sarcoma SW982 cells as well as the molecular mechanism underlying. MATERIALS AND METHODS SW982 cells were examined for proliferation by a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) method. Wound scratch assays were performed to assess the migrated rate of SW982 cells. Quantitative real-time PCR was used to measure the mRNA expression levels of Wnt5a, Runx2, MMP3, and Bmp2. Western blotting was used to measure the phosphorylated levels of JNK and NF-κB as well as the expression of MMP3. RESULTS The alkaloid extract from Aconiti Sinomontani Radix (MQA) and MQB, which removed lappaconitine from MQA significantly inhibited the proliferation of SW982 in a dose-dependent manner. The proliferation inhibitory effect of MQB was more potent. Incubation with 10μg/ml MQB for 12, 24, and 36h inhibited the migration of SW982 cells by 83%, 58%, and 42%, respectively. Treatment with different concentrations of MQB for 24h inhibited mRNA expression of Wnt5a, Runx2, and MMP3, but Bmp2 mRNA expression was elevated by MQB. Further, MQB inhibited phosphorylation of JNK and NF-κB p65 as well as MMP3 expression by Western blotting analysis. CONCLUSION The results showed that MQB inhibited proliferation and migration of SW982 cells possibly through suppressing Wnt5a-mediated JNK and NF-κB pathways. These results indicated that MQB might be an active extract of Aconiti Sinomontani Radix for targeting fibroblast-like synoviocytes (FLS) and be potential for RA therapy.
Collapse
Affiliation(s)
- Xue Deng
- Institute (College) of Integrative Medicine, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China
| | - Lu-Ping Zheng
- Institute (College) of Integrative Medicine, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China
| | - Zhen-Qiang Mu
- School of Chemical Engineering, Sichuan University of Science & Engineering, Chongqin 643000, China
| | - Rui Lai
- Institute (College) of Integrative Medicine, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China
| | - Guo-Ping Niu
- Institute (College) of Integrative Medicine, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China
| | - Liang-Ping Tu
- School of Chemical Engineering, Sichuan University of Science & Engineering, Chongqin 643000, China
| | - Di Zhu
- Institute (College) of Integrative Medicine, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China
| | - Yan-Qiu Liu
- Institute (College) of Integrative Medicine, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China.
| |
Collapse
|
15
|
Wang QL, Yang DZ, Lv C. Anti‑inflammatory effects of gambogic acid in murine collagen‑induced arthritis through PI3K/Akt signaling pathway. Mol Med Rep 2018; 17:4791-4796. [PMID: 29328461 DOI: 10.3892/mmr.2018.8389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/05/2017] [Indexed: 11/05/2022] Open
Abstract
Garcinia angustifolia is a dry resin secreted by Garcinia cambogia, which has the functions of breaking blood, detoxifying, stopping bleeding and killing insects. It is used for the treatment of cancer and brain edema. Gambogic acid is the primary active ingredient. The present study aimed to investigate the anti‑inflammatory and antiproliferative effects of gambogic acid on arthritis and the possible mechanisms. It was demonstrated that gambogic acid decreased arthritic scores in murine collagen‑induced arthritic mice. The tumor necrosis factor (TNF)‑α, interleukin (IL)‑1β, IL‑6 and IL‑18 concentrations, and caspase‑3 and caspase‑9 were significantly inhibited by gambogic acid in arthritic mice. Gambogic acid decreased matrix metalloproteinases (MMP)‑2, MMP‑9, nuclear factor (NF)‑κB and phosphorylated‑p38 protein expression, and increased tissue inhibitors of matrix metalloproteases‑1 (TIMP‑1) protein expression in arthritic mice. Furthermore, the phosphoinositide 3‑kinase (PI3K)/AKT serine/threonine kinase (Akt) signaling pathway was induced in arthritic mice treated with gambogic acid. The results suggested that gambogic acid induced anti‑inflammatory effects in murine collagen‑induced arthritis, through the PI3K/Akt signaling pathway, and offers future potential for application in arthritis patients.
Collapse
Affiliation(s)
- Qing Lai Wang
- Department of Traditional Chinese Medicine Orthopaedics, Chinese Traditional Medicine Hospital of Wenzhou, Wenzhou, Zhejiang 325000, P.R. China
| | - Dong Zhen Yang
- Department of Traditional Chinese Medicine Orthopaedics, Chinese Traditional Medicine Hospital of Wenzhou, Wenzhou, Zhejiang 325000, P.R. China
| | - Cunxian Lv
- Department of Traditional Chinese Medicine Orthopaedics, Chinese Traditional Medicine Hospital of Wenzhou, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
16
|
Feng Z, Zhai Y, Zheng Z, Yang L, Luo X, Dong X, Han Q, Jin J, Chen ZN, Zhu P. Loss of A20 in BM-MSCs regulates the Th17/Treg balance in Rheumatoid Arthritis. Sci Rep 2018; 8:427. [PMID: 29323140 PMCID: PMC5765124 DOI: 10.1038/s41598-017-18693-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/15/2017] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multi-potent cells that are self-renewable and possess the potential to differentiate into multiple lineages. Several studies demonstrated that MSCs could regulate a Th17/Treg balance and could be a potential therapeutic target for Rheumatoid Arthritis (RA). A20 is highly expressed in many cell types after the stimulation of TNF-α, where it may inhibit pro-inflammatory cytokine secretion. However, the expression of A20 in BM-MSCs in RA is not fully understood. In our study, we found that A20 was decreased in RA patients’ bone marrow MSCs (BM-MSCs), and with more IL-6 secretion, the balance of Th17/Treg was broken. In CIA mice, we found a moderate A20 decrease in mice MSCs as compared with those of control group in mRNA and protein levels. However, the IL-6 expression was increased. After umbilical cord MSCs treatment, A20 and IL-6 expressions were equal to the control group. Thus, our study indicates that loss of A20 in MSCs regulates the Th17/Treg balance in RA and the regulatory role of A20 in pro-inflammatory IL-6 production could be a potential target for the transfer of MSCs in RA adoptive therapy.
Collapse
Affiliation(s)
- Zhuan Feng
- Department of Clinical Immunology, Xijing Hospital, The Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, People's Republic of China.,Department of Cell Biology, Fourth Military Medical University, Xi'an, China.,National Translational Science Center for Molecular Medicine, Xi'an, 710032, China
| | - Yue Zhai
- Department of Clinical Immunology, Xijing Hospital, The Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, People's Republic of China.,Department of Cell Biology, Fourth Military Medical University, Xi'an, China.,National Translational Science Center for Molecular Medicine, Xi'an, 710032, China
| | - Zhaohui Zheng
- Department of Clinical Immunology, Xijing Hospital, The Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, People's Republic of China.,National Translational Science Center for Molecular Medicine, Xi'an, 710032, China
| | - Lijie Yang
- Department of hematology, Xijing Hospital, The Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, People's Republic of China
| | - Xing Luo
- Department of Clinical Immunology, Xijing Hospital, The Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, People's Republic of China.,National Translational Science Center for Molecular Medicine, Xi'an, 710032, China
| | - Xiwen Dong
- Department of Clinical Immunology, Xijing Hospital, The Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, People's Republic of China.,Department of Cell Biology, Fourth Military Medical University, Xi'an, China.,National Translational Science Center for Molecular Medicine, Xi'an, 710032, China
| | - Qing Han
- Department of Clinical Immunology, Xijing Hospital, The Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, People's Republic of China.,National Translational Science Center for Molecular Medicine, Xi'an, 710032, China
| | - Jin Jin
- Department of Cell Biology, Fourth Military Medical University, Xi'an, China.,National Translational Science Center for Molecular Medicine, Xi'an, 710032, China
| | - Zhi-Nan Chen
- Department of Cell Biology, Fourth Military Medical University, Xi'an, China. .,National Translational Science Center for Molecular Medicine, Xi'an, 710032, China.
| | - Ping Zhu
- Department of Clinical Immunology, Xijing Hospital, The Fourth Military Medical University, No. 127 West Changle Road, Xi'an, Shaanxi Province, People's Republic of China. .,National Translational Science Center for Molecular Medicine, Xi'an, 710032, China.
| |
Collapse
|
17
|
Mehta BB, Sharma S, Vasishta RK, Sen RK, Sharma A, Luthra-Guptasarma M. Blocking osteopontin-fibronectin interactions reduce extracellular fibronectin deployment and arthritic immunopathology. Int Immunopharmacol 2018; 55:297-305. [PMID: 29306173 DOI: 10.1016/j.intimp.2017.12.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/18/2017] [Accepted: 12/22/2017] [Indexed: 02/07/2023]
Abstract
Elevated levels of a thrombin-cleaved fragment of osteopontin (OPNT) are seen in synovial fluid (SF) and tissues of rheumatoid arthritis (RA) patients. OPNT binds to integrins on cell surfaces, inducing adhesion, migration and survival of inflammatory cells in the synovial joints, where OPNT binds to fibronectin to link fibroblast-like synoviocytes (FLS) with B cells, stimulating the latter to produce inflammatory cytokines. Our aim was to block OPNT-fibronectin interactions and examine whether this reduces inflammation. A human antibody (phage displayed) library was used to select scFv antibodies cognate to OPNT, and a particular scFv antibody (scFv 31) was evaluated. Adhesion, migration and fibronectin polymerization of FLS cells derived from RA patients were monitored, in cultures incorporating scFv 31. Also, scFv 31 was used in mice with CAIA (collagen antibody-induced arthritis), subjected to clinical and histological assessment, analysis of fibronectin and cartilage damage and induction of pro-inflammatory cytokines. The scFv antibody, scFv 31, appeared to cause significantly reduced migration of synovial fibroblasts, altered cell morphology, changes in actin stress fiber arrangement, and marked reduction in fibronectin. In CAIA mice, scFv 31 appeared to prevent arthritic changes through inhibition of synovial hypertrophy and loss of articular cartilage, decrease in fibronectin polymerization and expression of pro-inflammatory cytokines implicated in arthritis. Osteopontin-fibronectin interaction(s) appear to play a role in the expression of key inflammatory molecules by B cells infiltrating the synovial joint. The scFv antibody, scFv 31, provides a potential therapeutic lead for inhibition of some processes implicated in rheumatoid arthritis.
Collapse
Affiliation(s)
- Brij Bhushan Mehta
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Saniya Sharma
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Rakesh K Vasishta
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Ramesh K Sen
- Department of Orthopaedics, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Aman Sharma
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Manni Luthra-Guptasarma
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India.
| |
Collapse
|
18
|
Wallace J, Lutgen V, Avasarala S, St Croix B, Winn RA, Al-Harthi L. Wnt7a induces a unique phenotype of monocyte-derived macrophages with lower phagocytic capacity and differential expression of pro- and anti-inflammatory cytokines. Immunology 2017; 153:203-213. [PMID: 28872671 DOI: 10.1111/imm.12830] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/24/2017] [Accepted: 08/26/2017] [Indexed: 12/25/2022] Open
Abstract
The variation of macrophage functions suggests the involvement of multiple signalling pathways in fine tuning their differentiation. Macrophages that originate from monocytes in the blood migrate to tissue in response to homeostatic or 'danger' signals and undergo substantial morphological and functional modifications to meet the needs of the dominant signals in the microenvironment. Wnts are secreted glycoproteins that play a significant role in organ and cell differentiation, yet their impact on monocyte differentiation is not clear. In this study, we assessed the role of Wnt1 and Wnt7a on the differentiation of monocytes and the subsequent phenotype and function of monocyte-derived macrophages (MDMs). We show that Wnt7a decreased the expression of CD14, CD11b, CD163 and CD206, whereas Wnt1 had no effect. The Wnt7a effect on CD11b was also observed in the brain and spleen of Wnt7a-/- adult brain mouse tissue and in embryonic Wnt7a-/- tissue. Wnt7a reduced the phagocytic capacity of M-MDMs, decreased interleukin-10 (IL-10) and IL-12 secretion and increased IL-6 secretion. Collectively, these findings demonstrate that Wnt7a generates an MDM phenotype with both pro-inflammatory and alternative MDM cytokine profiles and reduced phagocytic capacity. As such, Wnt7a can have a significant impact on macrophage responses in health and disease.
Collapse
Affiliation(s)
- Jennillee Wallace
- Department of Immunology and Microbiology, Rush University Medical Center, Chicago, IL, USA
| | - Victoria Lutgen
- Department of Immunology and Microbiology, Rush University Medical Center, Chicago, IL, USA
| | - Sreedevi Avasarala
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Brad St Croix
- Center for Cancer Research (CCR), National Cancer Institute (NCI), Frederick, MD, USA
| | - Robert A Winn
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Lena Al-Harthi
- Department of Immunology and Microbiology, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
19
|
Liu XZ, Gao Y, Fan J, Xu X, Zhang J, Gao J, Wan W, Zhao DB. Metabolic abnormalities in rheumatoid arthritis patients with comorbid diabetes mellitus. Clin Rheumatol 2017; 37:219-226. [PMID: 28944421 DOI: 10.1007/s10067-017-3847-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/18/2017] [Accepted: 09/18/2017] [Indexed: 12/17/2022]
Abstract
The metabolic characteristics of rheumatoid arthritis (RA) or diabetes mellitus (DM) have been studied, but the metabolic abnormalities of RA patients complicated with DM are not completely understood. Therefore, we recruited RA patients with DM to investigate the metabolic abnormalities in these patients. We collected data of RA patients with DM and age- and sex-matched RA and DM patients from Changhai Hospital's electronic medical record system. Data of demographically matched healthy controls were also collected from the health management system of the Hangzhou Sanatorium of People's Liberation Army. Blood pressure, uric acid, glucose, and lipid levels were compared. The clinical data of RA with DM (n = 104), DM (n = 100), and RA (n = 100) patients and healthy controls (n = 100) were collected and compared. RA patients with DM had higher blood pressure and lower high-density lipoprotein cholesterol levels than the other three groups, a higher triglycerides (TG) level than healthy controls and RA patients, and a lower TG level than DM patients. RA patients with DM exhibited a relatively high proportion of metabolic abnormalities based on existing standards. Our study examined metabolic abnormalities in RA patients with DM for the first time, and our results suggest that clinicians should pay more attention to the metabolic abnormalities of RA patients with DM.
Collapse
Affiliation(s)
- Xing Zhen Liu
- Department of Rheumatology and immunology, Changhai Hospital, The Second Military Medical University, No. 168, Changhai Road, Yangpu District, Shanghai, 200433, China.,Army Convalescence Area, Hangzhou Sanatorium of People's Liberation Army, Hangzhou, China
| | - Ying Gao
- Department of Rheumatology and immunology, Changhai Hospital, The Second Military Medical University, No. 168, Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Jie Fan
- Army Convalescence Area, Hangzhou Sanatorium of People's Liberation Army, Hangzhou, China
| | - Xia Xu
- Department of Rheumatology and immunology, Changhai Hospital, The Second Military Medical University, No. 168, Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Ju Zhang
- Department of Rheumatology and immunology, Changhai Hospital, The Second Military Medical University, No. 168, Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Jie Gao
- Department of Rheumatology and immunology, Changhai Hospital, The Second Military Medical University, No. 168, Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Wei Wan
- Department of Rheumatology and immunology, Changhai Hospital, The Second Military Medical University, No. 168, Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Dong Bao Zhao
- Department of Rheumatology and immunology, Changhai Hospital, The Second Military Medical University, No. 168, Changhai Road, Yangpu District, Shanghai, 200433, China.
| |
Collapse
|