1
|
Milewski D, Jung H, Brown GT, Liu Y, Somerville B, Lisle C, Ladanyi M, Rudzinski ER, Choo-Wosoba H, Barkauskas DA, Lo T, Hall D, Linardic CM, Wei JS, Chou HC, Skapek SX, Venkatramani R, Bode PK, Steinberg SM, Zaki G, Kuznetsov IB, Hawkins DS, Shern JF, Collins J, Khan J. Predicting Molecular Subtype and Survival of Rhabdomyosarcoma Patients Using Deep Learning of H&E Images: A Report from the Children's Oncology Group. Clin Cancer Res 2023; 29:364-378. [PMID: 36346688 PMCID: PMC9843436 DOI: 10.1158/1078-0432.ccr-22-1663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/01/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE Rhabdomyosarcoma (RMS) is an aggressive soft-tissue sarcoma, which primarily occurs in children and young adults. We previously reported specific genomic alterations in RMS, which strongly correlated with survival; however, predicting these mutations or high-risk disease at diagnosis remains a significant challenge. In this study, we utilized convolutional neural networks (CNN) to learn histologic features associated with driver mutations and outcome using hematoxylin and eosin (H&E) images of RMS. EXPERIMENTAL DESIGN Digital whole slide H&E images were collected from clinically annotated diagnostic tumor samples from 321 patients with RMS enrolled in Children's Oncology Group (COG) trials (1998-2017). Patches were extracted and fed into deep learning CNNs to learn features associated with mutations and relative event-free survival risk. The performance of the trained models was evaluated against independent test sample data (n = 136) or holdout test data. RESULTS The trained CNN could accurately classify alveolar RMS, a high-risk subtype associated with PAX3/7-FOXO1 fusion genes, with an ROC of 0.85 on an independent test dataset. CNN models trained on mutationally-annotated samples identified tumors with RAS pathway with a ROC of 0.67, and high-risk mutations in MYOD1 or TP53 with a ROC of 0.97 and 0.63, respectively. Remarkably, CNN models were superior in predicting event-free and overall survival compared with current molecular-clinical risk stratification. CONCLUSIONS This study demonstrates that high-risk features, including those associated with certain mutations, can be readily identified at diagnosis using deep learning. CNNs are a powerful tool for diagnostic and prognostic prediction of rhabdomyosarcoma, which will be tested in prospective COG clinical trials.
Collapse
Affiliation(s)
| | - Hyun Jung
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - G. Thomas Brown
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland
- Artificial Intelligence Resource, NCI, NIH, Bethesda, Maryland
| | - Yanling Liu
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | - Curtis Lisle
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland
- KnowledgeVis, LLC, Altamonte Springs, Florida
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Erin R. Rudzinski
- Department of Laboratories, Seattle Children's Hospital, Seattle, Washington
| | - Hyoyoung Choo-Wosoba
- Biostatistics and Data Management Section, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Donald A. Barkauskas
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, California
- Children's Oncology Group, Monrovia, California
| | - Tammy Lo
- Children's Oncology Group, Monrovia, California
| | - David Hall
- Children's Oncology Group, Monrovia, California
| | - Corinne M. Linardic
- Departments of Pediatrics and Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Jun S. Wei
- Genetics Branch, NCI, NIH, Bethesda, Maryland
| | | | - Stephen X. Skapek
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Rajkumar Venkatramani
- Division of Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Peter K. Bode
- Institut für Pathologie, Kantonsspital Winterthur, Winterthur, Switzerland
| | - Seth M. Steinberg
- Biostatistics and Data Management Section, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - George Zaki
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Igor B. Kuznetsov
- Department of Epidemiology & Biostatistics, School of Public Health, University at Albany, Rensselaer, New York
| | - Douglas S. Hawkins
- Chair of Children's Oncology Group, Department of Pediatrics, Seattle Children's Hospital, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington
| | - Jack F. Shern
- Pediatric Oncology Branch, Center for Cancer Research, NIH, Bethesda, Maryland
| | - Jack Collins
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Javed Khan
- Genetics Branch, NCI, NIH, Bethesda, Maryland
| |
Collapse
|
2
|
Lomakin A, Svedlund J, Strell C, Gataric M, Shmatko A, Rukhovich G, Park JS, Ju YS, Dentro S, Kleshchevnikov V, Vaskivskyi V, Li T, Bayraktar OA, Pinder S, Richardson AL, Santagata S, Campbell PJ, Russnes H, Gerstung M, Nilsson M, Yates LR. Spatial genomics maps the structure, nature and evolution of cancer clones. Nature 2022; 611:594-602. [PMID: 36352222 PMCID: PMC9668746 DOI: 10.1038/s41586-022-05425-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/07/2022] [Indexed: 11/10/2022]
Abstract
Genome sequencing of cancers often reveals mosaics of different subclones present in the same tumour1-3. Although these are believed to arise according to the principles of somatic evolution, the exact spatial growth patterns and underlying mechanisms remain elusive4,5. Here, to address this need, we developed a workflow that generates detailed quantitative maps of genetic subclone composition across whole-tumour sections. These provide the basis for studying clonal growth patterns, and the histological characteristics, microanatomy and microenvironmental composition of each clone. The approach rests on whole-genome sequencing, followed by highly multiplexed base-specific in situ sequencing, single-cell resolved transcriptomics and dedicated algorithms to link these layers. Applying the base-specific in situ sequencing workflow to eight tissue sections from two multifocal primary breast cancers revealed intricate subclonal growth patterns that were validated by microdissection. In a case of ductal carcinoma in situ, polyclonal neoplastic expansions occurred at the macroscopic scale but segregated within microanatomical structures. Across the stages of ductal carcinoma in situ, invasive cancer and lymph node metastasis, subclone territories are shown to exhibit distinct transcriptional and histological features and cellular microenvironments. These results provide examples of the benefits afforded by spatial genomics for deciphering the mechanisms underlying cancer evolution and microenvironmental ecology.
Collapse
Affiliation(s)
- Artem Lomakin
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
- Wellcome Sanger Institute, Hinxton, UK
- Division of AI in Oncology, German Cancer Research Centre DKFZ, Heidelberg, Germany
| | - Jessica Svedlund
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Carina Strell
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Milana Gataric
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Artem Shmatko
- Division of AI in Oncology, German Cancer Research Centre DKFZ, Heidelberg, Germany
| | - Gleb Rukhovich
- Wellcome Sanger Institute, Hinxton, UK
- Division of AI in Oncology, German Cancer Research Centre DKFZ, Heidelberg, Germany
| | - Jun Sung Park
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
- Wellcome Sanger Institute, Hinxton, UK
- Division of AI in Oncology, German Cancer Research Centre DKFZ, Heidelberg, Germany
| | - Young Seok Ju
- Laboratory of Cancer Genomics, GSMSE, KAIST, Daejeon, Korea
| | - Stefan Dentro
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
- Wellcome Sanger Institute, Hinxton, UK
- Division of AI in Oncology, German Cancer Research Centre DKFZ, Heidelberg, Germany
| | | | | | - Tong Li
- Wellcome Sanger Institute, Hinxton, UK
| | | | - Sarah Pinder
- Guys and St Thomas' NHS Trust, London, UK
- School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | | | - Sandro Santagata
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Boston, MA, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | | | - Hege Russnes
- Department of Pathology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Moritz Gerstung
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK.
- Division of AI in Oncology, German Cancer Research Centre DKFZ, Heidelberg, Germany.
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.
| | | |
Collapse
|
3
|
Katopodis P, Anikin V, Kishore U, Carter T, Hall M, Asadi N, Polychronis A, Karteris E. Circulating tumour cells and circulating cell-free DNA in patients with lung cancer: a comparison between thoracotomy and video-assisted thoracoscopic surgery. BMJ Open Respir Res 2021; 8:8/1/e000917. [PMID: 34493540 PMCID: PMC8424856 DOI: 10.1136/bmjresp-2021-000917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/07/2021] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION The type of lung cancer surgery impacts on tumour manipulation during surgery and may drive dissemination of cancer cells into the vasculature, thus facilitating metastatic spread. The aim of this study was to investigate the impact of surgically induced trauma using peripheral blood from preoperative and postoperative patients with non-small cell lung cancer (NSCLC) undergoing thoracotomy or video-assisted thoracoscopic surgery (VATS) resection. METHODS Imaging flow cytometry was used to measure circulating cancer-associated cells (CCs). Circulating cell-free DNA (ccfDNA) isolation was performed using Promega dsDNA HS Assay Kit. DNA integrity measurements were calculated by the ALU247 to ALU115 ratio and cytokine levels measured using the Luminex screening assay. RESULTS CCs were increased in postoperative blood samples in 54 patients with NSCLC. Patients who underwent thoracotomy instead of VATS had higher numbers of EpCAM (p=0.004) and PanCK-labelled (p=0.03) CCs postoperatively. ccfDNA and DNA integrity index were also significantly increased in postoperative samples (p=0.0009 and p=0.04), with concomitant increase in interleukin 6 and interleukin 10 levels in the same cohorts (p=0.0004 and p=0.034, respectively). CONCLUSIONS In this study we have shown the potential clinical utility of several biomarkers from liquid biopsies to guide perioperative management, as well as provide a snapshot of the type of surgical resection in terms of circulating tumour cell release. Obtaining reliable readouts from blood can provide crucial information for disease progression, as well as being of prognostic value monitoring patients' response to treatment.
Collapse
Affiliation(s)
- Periklis Katopodis
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK.,Thoracic Surgery, Royal Brompton & Harefield NHS Foundation Trust, Harefield, UK
| | - Vladimir Anikin
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK.,Thoracic Surgery, Royal Brompton & Harefield NHS Foundation Trust, Harefield, UK.,Department of Oncology and Reconstructive Surgery, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | | | - Marcia Hall
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK.,Mount Vernon Cancer Centre, Northwood, UK
| | - Nizar Asadi
- Royal Brompton and Harefield NHS Trust, London, UK
| | | | - Emmanouil Karteris
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK .,Thoracic Surgery, Royal Brompton & Harefield NHS Foundation Trust, Harefield, UK
| |
Collapse
|
4
|
Yachida N, Yoshihara K, Suda K, Nakaoka H, Ueda H, Sugino K, Yamaguchi M, Mori Y, Yamawaki K, Tamura R, Ishiguro T, Kase H, Motoyama T, Enomoto T. Biological significance of KRAS mutant allele expression in ovarian endometriosis. Cancer Sci 2021; 112:2020-2032. [PMID: 33675098 PMCID: PMC8088964 DOI: 10.1111/cas.14871] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022] Open
Abstract
KRAS is the most frequently mutated in ovarian endometriosis. However, it is unclear whether the KRAS mutant allele's mRNA is expressed and plays a biological role in ovarian endometriosis. Here, we performed mutation-specific RNA in situ hybridization to evaluate mutant allele expression of KRAS p.G12V, the most frequently detected mutation in ovarian endometriosis in our previous study, in formalin-fixed paraffin-embedded tissue (FFPE) samples of ovarian endometriosis, cancer cell lines, and ovarian cancers. First, we verified that mutant or wild-type allele of KRAS were expressed in all 5 cancer cell lines and 9 ovarian cancer cases corresponding to the mutation status. Next, we applied this assay to 26 ovarian endometriosis cases, and observed mutant allele expression of KRAS p.G12V in 10 cases. Mutant or wild-type allele of KRAS were expressed in line with mutation status in 12 available endometriosis cases for which KRAS gene sequence was determined. Comparison of clinical features between ovarian endometriosis with KRAS p.G12V mutant allele expression and with KRAS wild-type showed that KRAS p.G12V mutant allele expression was significantly associated with inflammation in ovarian endometriosis. Finally, we assessed the spatial distribution of KRAS mutant allele expression in 5 endometriosis cases by performing multiregional sampling. Intratumor heterogeneity of KRAS mutant allele expression was observed in two endometriosis cases, whereas the spatial distribution of KRAS p.G12V mutation signals were diffuse and homogenous in ovarian cancer. In conclusion, evaluation of oncogene mutant expression will be useful for clarifying the biological significance of oncogene mutations in benign tumors.
Collapse
Affiliation(s)
- Nozomi Yachida
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazuaki Suda
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hirofumi Nakaoka
- Human Genetics Laboratory, National Institute of Genetics, Mishima, Japan.,Department of Cancer Genome Research, Sasaki Institute, Sasaki Foundation, Chiyoda-ku, Japan
| | - Haruka Ueda
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kentaro Sugino
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Manako Yamaguchi
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yutaro Mori
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kaoru Yamawaki
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryo Tamura
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tatsuya Ishiguro
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroaki Kase
- Department of Obstetrics and Gynecology, Nagaoka Chuo General Hospital, Nagaoka, Japan
| | - Teiichi Motoyama
- Department of Molecular and Diagnostic Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takayuki Enomoto
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
5
|
Svedlund J, Strell C, Qian X, Zilkens KJC, Tobin NP, Bergh J, Sieuwerts AM, Nilsson M. Generation of in situ sequencing based OncoMaps to spatially resolve gene expression profiles of diagnostic and prognostic markers in breast cancer. EBioMedicine 2019; 48:212-223. [PMID: 31526717 PMCID: PMC6838368 DOI: 10.1016/j.ebiom.2019.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Gene expression analysis of breast cancer largely relies on homogenized tissue samples. Due to the high degree of cellular and molecular heterogeneity of tumor tissues, bulk tissue-based analytical approaches can only provide very limited system-level information about different signaling mechanisms and cellular interactions within the complex tissue context. METHODS We describe an analytical approach using in situ sequencing (ISS), enabling highly multiplexed, spatially and morphologically resolved gene expression profiling. Ninety-one genes including prognostic and predictive marker profiles, as well as genes involved in specific cellular pathways were mapped within whole breast cancer tissue sections, covering luminal A/B-like, HER2-positive and triple negative tumors. Finally, all these features were combined and assembled into a molecular-morphological OncoMap for each tumor tissue. FINDINGS Our in situ approach spatially revealed intratumoral heterogeneity with regard to tumor subtype as well as to the OncotypeDX recurrence score and even uncovered areas of minor cellular subpopulations. Since ISS-resolved molecular profiles are linked to their histological context, a deeper analysis of the core and periphery of tumor foci enabled identification of specific gene expression patterns associated with these morphologically relevant regions. INTERPRETATION ISS generated OncoMaps represent useful tools to extend our general understanding of the biological processes behind tumor progression and can further support the identification of novel therapeutical targets as well as refine tumor diagnostics. FUND: Swedish Cancerfonden, UCAN, Vetenskapsrådet, Cancer Genomics Netherlands, Iris, Stig och Gerry Castenbäcks Stiftelse, BRECT, PCM Program, King Gustaf V Jubilee Fund, BRO, KI and Stockholm County Council, Alice Wallenberg Foundation.
Collapse
Affiliation(s)
- Jessica Svedlund
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Carina Strell
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Xiaoyan Qian
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Kilian J C Zilkens
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Nicholas P Tobin
- Karolinska Institutet and Breast Cancer Section, Cancer Theme Karolinska University Hospital, Department of Oncology and Pathology, Stockholm, Sweden
| | - Jonas Bergh
- Karolinska Institutet and Breast Cancer Section, Cancer Theme Karolinska University Hospital, Department of Oncology and Pathology, Stockholm, Sweden; Department of Public Health, Oxford University, Oxford, United Kingdom
| | - Anieta M Sieuwerts
- Erasmus MC Cancer Institute and Cancer Genomics Netherlands, Department of Medical Oncology, Rotterdam, the Netherlands
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
6
|
Baker AM, Graham TA. Concurrent in situ analysis of point mutations and immune infiltrate in FFPE cancers. Methods Enzymol 2019; 636:287-297. [PMID: 32178822 DOI: 10.1016/bs.mie.2019.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Existing methodology for analysis of genetic heterogeneity generally involves digestion of the tumor tissue, followed by bulk DNA extraction or single cell preparation. Such methods destroy the tissue morphology, and therefore opportunities to analyze tumor heterogeneity and clonal architecture within the native spatial context are lost. Thus, there is a clear need for the development of generally applicable methods of in situ mutation detection (ISMD), in which tumor cells can be genetically analyzed in the context of their cellular microenvironment, including immune infiltrate. Furthermore, protocols in which ISMD can be combined with immunohistochemical analysis are highly sought after, as the combination of these two techniques enables insight not only into genetic heterogeneity, but is also permissive of genotype-phenotype analysis, whilst preserving tissue morphology and spatial context. Here we describe a novel method for in situ point mutation detection using commercially available BaseScope reagents, followed by immunohistochemical detection of immune infiltrate on the same tissue section.
Collapse
Affiliation(s)
- Ann-Marie Baker
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.
| | - Trevor A Graham
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
7
|
Wu L, Garrido-Maestu A, Guerreiro JRL, Carvalho S, Abalde-Cela S, Prado M, Diéguez L. Amplification-free SERS analysis of DNA mutation in cancer cells with single-base sensitivity. NANOSCALE 2019; 11:7781-7789. [PMID: 30951061 DOI: 10.1039/c9nr00501c] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Accurate and sensitive identification of DNA mutations in tumor cells is critical to the diagnosis, prognosis and personalized therapy of cancer. Conventional polymerase chain reaction (PCR)-based methods are limited by the complicated amplification process. Herein, an amplification-free surface enhanced Raman spectroscopy (SERS) approach which directly detects point mutations in cancer cells has been proposed. A highly sensitive and uniform SERS substrate was fabricated using gold@silver core-shell nanorods, achieving an enhancement factor of 1.85 × 106. By combining the SERS-active nanosubstrate with molecular beacon probes, the limit of detection reached as low as 50 fM. To enable parallel analysis and automated operation, the SERS sensor was integrated into a microfluidic chip. This novel chip-based assay was able to differentiate between mutated and wild-type KRAS genes among a variety of other nucleic acids from cancer cells in 40 min. Owing to the simple operation and fast analysis, the SERS-based DNA assay chip could potentially provide insights into clinical cancer theranostics in an easy and inexpensive manner at the point of care.
Collapse
Affiliation(s)
- Lei Wu
- International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal.
| | | | | | | | | | | | | |
Collapse
|
8
|
Salmén F, Ståhl PL, Mollbrink A, Navarro JF, Vickovic S, Frisén J, Lundeberg J. Barcoded solid-phase RNA capture for Spatial Transcriptomics profiling in mammalian tissue sections. Nat Protoc 2019; 13:2501-2534. [PMID: 30353172 DOI: 10.1038/s41596-018-0045-2] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Spatial resolution of gene expression enables gene expression events to be pinpointed to a specific location in biological tissue. Spatially resolved gene expression in tissue sections is traditionally analyzed using immunohistochemistry (IHC) or in situ hybridization (ISH). These technologies are invaluable tools for pathologists and molecular biologists; however, their throughput is limited to the analysis of only a few genes at a time. Recent advances in RNA sequencing (RNA-seq) have made it possible to obtain unbiased high-throughput gene expression data in bulk. Spatial Transcriptomics combines the benefits of traditional spatially resolved technologies with the massive throughput of RNA-seq. Here, we present a protocol describing how to apply the Spatial Transcriptomics technology to mammalian tissue. This protocol combines histological staining and spatially resolved RNA-seq data from intact tissue sections. Once suitable tissue-specific conditions have been established, library construction and sequencing can be completed in ~5-6 d. Data processing takes a few hours, with the exact timing dependent on the sequencing depth. Our method requires no special instruments and can be performed in any laboratory with access to a cryostat, microscope and next-generation sequencing.
Collapse
Affiliation(s)
- Fredrik Salmén
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden.,Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Cancer Genomics Netherlands, Utrecht, The Netherlands
| | - Patrik L Ståhl
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Annelie Mollbrink
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - José Fernández Navarro
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Sanja Vickovic
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Joakim Lundeberg
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
9
|
Liu R, Mignardi M, Jones R, Enge M, Kim SK, Quake SR, Zou J. Modeling Spatial Correlation of Transcripts with Application to Developing Pancreas. Sci Rep 2019; 9:5592. [PMID: 30944357 PMCID: PMC6447534 DOI: 10.1038/s41598-019-41951-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 03/21/2019] [Indexed: 12/20/2022] Open
Abstract
Recently high-throughput image-based transcriptomic methods were developed and enabled researchers to spatially resolve gene expression variation at the molecular level for the first time. In this work, we develop a general analysis tool to quantitatively study the spatial correlations of gene expression in fixed tissue sections. As an illustration, we analyze the spatial distribution of single mRNA molecules measured by in situ sequencing on human fetal pancreas at three developmental time points–80, 87 and 117 days post-fertilization. We develop a density profile-based method to capture the spatial relationship between gene expression and other morphological features of the tissue sample such as position of nuclei and endocrine cells of the pancreas. In addition, we build a statistical model to characterize correlations in the spatial distribution of the expression level among different genes. This model enables us to infer the inhibitory and clustering effects throughout different time points. Our analysis framework is applicable to a wide variety of spatially-resolved transcriptomic data to derive biological insights.
Collapse
Affiliation(s)
- Ruishan Liu
- Department of Electrical Engineering, Stanford University, 450 Serra Mall, Stanford, CA, 94305, USA
| | - Marco Mignardi
- Department of Bioengineering and Applied Physics, Stanford University, 450 Serra Mall, Stanford, CA, 94305, USA. .,Department of Information Technology, Uppsala University, Lgerhyddsvgen 2, Uppsala, SE-751 05, Sweden. .,Chan-Zuckerberg Biohub, 499 Illinois St., San Francisco, CA, 94158, USA.
| | - Robert Jones
- Department of Bioengineering and Applied Physics, Stanford University, 450 Serra Mall, Stanford, CA, 94305, USA
| | - Martin Enge
- Department of Bioengineering and Applied Physics, Stanford University, 450 Serra Mall, Stanford, CA, 94305, USA
| | - Seung K Kim
- Department of Developmental Biology, Stanford University, 279 Campus Drive, Stanford, CA, 94305, USA
| | - Stephen R Quake
- Department of Information Technology, Uppsala University, Lgerhyddsvgen 2, Uppsala, SE-751 05, Sweden.,Chan-Zuckerberg Biohub, 499 Illinois St., San Francisco, CA, 94158, USA
| | - James Zou
- Department of Biomedical Data Science, Stanford University, 450 Serra Mall, Stanford, CA, 94305, USA. .,Chan-Zuckerberg Biohub, 499 Illinois St., San Francisco, CA, 94158, USA.
| |
Collapse
|
10
|
Yeom H, Lee Y, Ryu T, Noh J, Lee AC, Lee HB, Kang E, Song SW, Kwon S. Barcode-free next-generation sequencing error validation for ultra-rare variant detection. Nat Commun 2019; 10:977. [PMID: 30816127 PMCID: PMC6395625 DOI: 10.1038/s41467-019-08941-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/30/2019] [Indexed: 12/31/2022] Open
Abstract
The advent of next-generation sequencing (NGS) has accelerated biomedical research by enabling the high-throughput analysis of DNA sequences at a very low cost. However, NGS has limitations in detecting rare-frequency variants (< 1%) because of high sequencing errors (> 0.1~1%). NGS errors could be filtered out using molecular barcodes, by comparing read replicates among those with the same barcodes. Accordingly, these barcoding methods require redundant reads of non-target sequences, resulting in high sequencing cost. Here, we present a cost-effective NGS error validation method in a barcode-free manner. By physically extracting and individually amplifying the DNA clones of erroneous reads, we distinguish true variants of frequency > 0.003% from the systematic NGS error and selectively validate NGS error after NGS. We achieve a PCR-induced error rate of 2.5×10−6 per base per doubling event, using 10 times less sequencing reads compared to those from previous studies. Next generation sequencing has difficulty in detecting rare-frequency variants due to high sequencing errors. Here the authors present a barcode-free error validation method that physically extracts erroneous reads to identify true variants.
Collapse
Affiliation(s)
- Huiran Yeom
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yonghee Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taehoon Ryu
- Department of Molecular and Genetical Engineering, Celemics Inc., 371-17, Gasan-dong, Geumcheon-gu, 08506, Seoul, Republic of Korea
| | - Jinsung Noh
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Amos Chungwon Lee
- Interdisciplinary Program for Bioengineering, Seoul National University, 08826, Seoul, Republic of Korea
| | - Han-Byoel Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul National University Hospital Biomedical Research Institute, 03080, Seoul, Republic of Korea
| | - Eunji Kang
- Cancer Research Institute, Seoul National University, 03080, Seoul, Republic of Korea
| | - Seo Woo Song
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sunghoon Kwon
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea. .,Department of Molecular and Genetical Engineering, Celemics Inc., 371-17, Gasan-dong, Geumcheon-gu, 08506, Seoul, Republic of Korea. .,Interdisciplinary Program for Bioengineering, Seoul National University, 08826, Seoul, Republic of Korea. .,Bio-MAX institute, Seoul National University, 08826, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Fuchs J, Mueller M, Daxböck C, Stückler M, Lang I, Leitinger G, Bock E, El-Heliebi A, Moser G, Glasmacher B, Brislinger D. Histological processing of un-/cellularized thermosensitive electrospun scaffolds. Histochem Cell Biol 2018; 151:343-356. [PMID: 30560287 PMCID: PMC6469612 DOI: 10.1007/s00418-018-1757-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2018] [Indexed: 11/28/2022]
Abstract
Histological processing of thermosensitive electrospun poly(ε-caprolactone)/poly(l-lactide) (PCL/PLA) scaffolds fails, as poly(ε-caprolactone) (PCL) is characterized by its low-melting temperature (Tm = 60 °C). Here, we present an optimized low-temperature preparation method for the histological processing of un-/cellularized thermosensitive PCL/PLA scaffolds. Our study is aimed at the establishment of an optimized dehydration and low-melting-point paraffin-embedding method of electrospun PCL/PLA scaffolds (un-/cellularized). Furthermore, we compared this method with (a) automatized dehydration and standard paraffin embedding, (b) gelatin embedding followed by automatized dehydration and standard paraffin embedding, (c) cryofixation, and (d) acrylic resin embedding methods. We investigated pepsin and proteinase K antigen retrieval for their efficiency in epitope demasking at low temperatures and evaluated protocols for immunohistochemistry and immunofluorescence for cytokeratin 7 (CK7) and in situ padlock probe technology for beta actin (ACTB). Optimized dehydration and low-melting-point paraffin embedding preserved the PCL/PLA scaffold, as the diameter and structure of its fibers were unchanged. Cells attached to the PCL/PLA scaffolds showed limited alterations in size and morphology compared to control. Epitope demasking by enzymatic pepsin digestion and immunostaining of CK7 displayed an invasion of attached cells into the scaffold. Expression of ACTB and CK7 was shown by a combination of mRNA-based in situ padlock probe technology and immunofluorescence. In contrast, gelatin stabilization followed by standard paraffin embedding led to an overall shrinkage and melting of fibers, and therefore, no further analysis was possible. Acrylic resin embedding and cyrofixation caused fiber structures that were nearly unchanged in size and diameter. However, acrylic resin-embedded scaffolds are limited to 3 µm sections, whereas cyrofixation led to a reduction of the cell size by 14% compared to low-melting paraffin embedding. The combination of low-melting-point paraffin embedding and pepsin digestion as an antigen retrieval method offers a successful opportunity for histological investigations in thermosensitive specimens.
Collapse
Affiliation(s)
- Julia Fuchs
- Department of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Marc Mueller
- Institute for Multiphase Processes, Leibniz University Hannover, Callinstraße 36, 30167, Hannover, Germany
| | - Christine Daxböck
- Department of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Manuela Stückler
- Department of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Ingrid Lang
- Department of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Gerd Leitinger
- Department of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Elisabeth Bock
- Department of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Amin El-Heliebi
- Department of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Gerit Moser
- Department of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Birgit Glasmacher
- Institute for Multiphase Processes, Leibniz University Hannover, Callinstraße 36, 30167, Hannover, Germany
| | - Dagmar Brislinger
- Department of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria.
| |
Collapse
|
12
|
Abstract
Rapid development of high-throughput DNA analyzation methods has enabled global characterization of genetic landscapes and aberrations in study subjects in a time and cost effective fashion. In most methods, however, spatial tissue context is lost since sample preparation requires isolation of nucleic acids out of their native environment. We hereby present the most recent protocol for multiplexed, in situ detection of mRNAs and single nucleotide polymorphisms using padlock probes and rolling circle amplification. We take advantage of a single nucleotide variant within conserved ACTB mRNA to successfully differentiate human and mice cocultured cells and apply presented protocol to genotype PCDH X and Y homologs in human brain. We provide a method for automated characterization and quantitation of target mRNA in single cells or chosen tissue area. mRNA of interest, harboring a polymorphism, is first reverse-transcribed to cDNA. Allele specific padlock probes are hybridized to the cDNA target and enzymatically circularized maintaining a physical link with the parent mRNA molecule. Lastly, circularized probes are replicated in situ, using rolling circle amplification mechanism to facilitate detection.
Collapse
|
13
|
Ishigaki Y, Sato K. Effects of Microchannel Shape and Ultrasonic Mixing on Microfluidic Padlock Probe Rolling Circle Amplification (RCA) Reactions. MICROMACHINES 2018; 9:mi9060272. [PMID: 30424205 PMCID: PMC6187661 DOI: 10.3390/mi9060272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/22/2018] [Accepted: 05/29/2018] [Indexed: 01/17/2023]
Abstract
The fluorescence in situ hybridization (FISH)-based padlock probe and rolling circle amplification (RCA) method allows for the detection of point mutations. However, it requires multiple reaction steps and solution exchanges, making it costly, labor-intensive, and time-consuming. In this study, we aimed to improve the efficiency of padlock/RCA by determining the effects of microchannel shape and ultrasonic solution mixing. Using a circular-shaped microchamber and ultrasonic mixing, the efficiency of microfluidic padlock/RCA was improved, and the consumption of the expensive probe solution was reduced from 10 µL to approximately 3.5 µL. Moreover, the fluorescent probe hybridization time was reduced to 5 min, which is four times faster than that of the standard protocol. We used this method to successfully detect mitochondrial DNA and transcripts of β-actin and K-ras proto-oncogene codon 12 in cells. Our method offers improvements over current padlock/RCA methods and will be helpful in optimizing other microfluidics-based FISH-related analyses.
Collapse
Affiliation(s)
- Yuri Ishigaki
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo, Tokyo 112-8681, Japan.
| | - Kae Sato
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo, Tokyo 112-8681, Japan.
| |
Collapse
|
14
|
Quantification and localization of oncogenic receptor tyrosine kinase variant transcripts using molecular inversion probes. Sci Rep 2018; 8:7072. [PMID: 29728634 PMCID: PMC5935718 DOI: 10.1038/s41598-018-25328-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 04/20/2018] [Indexed: 12/27/2022] Open
Abstract
Oncogenic membrane receptor tyrosine kinases such as MET and EGFR, or auto-active variants thereof, are important targets for cancer precision therapy. Targeted inhibition of these oncogenic receptors however invariably leads to resistance, resulting from acquisition of resistance-inducing mutations or from selective outgrowth of a priori resistant tumour cells. Most applied molecular protocols cannot distinguish between intracellular and intercellular heterogeneity of oncogene (variant) expression, which may lead to misinterpretation of the molecular make-up of a cancer and suboptimal application of targeted therapies. We here combined two related techniques to allow semiquantitative and localized in situ detection of specific transcript splice variants using single molecule molecular inversion probe (smMIP)-based next generation sequencing and padlock probe-based rolling circle amplification, respectively. We show highly specific padlock probe-based multiplex detection of MET, METΔ7-8 and METΔ14 transcripts, lacking exons 7-8 and exon 14 respectively, and of EGFR and the auto-active EGFRvIII, lacking exons 2-7. The combination of quantitative transcript variant detection with smMIPs and transcript localization using padlock probes can be used for detection of oncogenic transcripts on the single-cell level, allowing study of tumour heterogeneity. Visualization of tumour heterogeneity can shed light on the biology underlying drug resistance and potentially improve targeted therapeutics.
Collapse
|
15
|
Sebagh M, Bosselut N, Santos AD, Allard MA, Ruiz A, Saffroy R, Cherqui D, Vibert E, Castaing D, Adam R, Cunha AS, Lemoine A. Rare genetic heterogeneity within single tumor discovered for the first time in colorectal liver metastases after liver resection. Oncotarget 2018; 9:21921-21929. [PMID: 29774112 PMCID: PMC5955166 DOI: 10.18632/oncotarget.25119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
Effective individualized treatment of patients with colorectal liver metastases (CLM) requires tumor genotyping, usually based on the analysis of one single sample per patient. Therapy failure may partially be explained by sampling errors and/or intratumoral genetic heterogeneity. We aimed to demonstrate intratumoral genetic heterogeneity in CLM and enable pathologists to select tumor tissue for genotyping. All the tumors of 86 patients who underwent liver resection for a single CLM were reviewed. Of the 86 patients, 66 patients received chemotherapy and 20 patients did not receive chemotherapy before liver resection. All the tumor areas sampled were analyzed for KRAS, BRAF, PIK3CA, and NRAS mutations. The mutational status was tested in 74 cases, 7 cases had no tumoral cells due to complete responses and 5 blocks were unavailable. Of the 59/74 CLM with > 1 sample, 56 showed the same mutational status between the samples. The remaining 3 cases (5% of all cases) showed genetic heterogeneity for KRAS in 2 and BRAF in 1 patient. Genetic heterogeneity correlated with lower rate of viable tumor cells (p=0.009) and higher rate of mucin pools (p=0.013). We demonstrate for the first time the existence of genetic intratumoral heterogeneity in 5% of CLM. In routine practice, this low incidence does not require the genotyping of additional tumor samples. The correlation between the genetic heterogeneity and some histological components of the CLM should be verified by further in situ mutation assay.
Collapse
Affiliation(s)
- Mylène Sebagh
- AP-HP Hôpital Paul Brousse, Laboratoire d'Anatomie Pathologique, Villejuif, France.,Inserm, Unité 1193, Université Paris-Saclay, Villejuif, France.,Univ Paris-Sud, UMR-S 1193, Université Paris-Saclay, Villejuif, France.,DHU Hepatinov, Villejuif, France
| | - Nelly Bosselut
- Inserm, Unité 1193, Université Paris-Saclay, Villejuif, France.,Univ Paris-Sud, UMR-S 1193, Université Paris-Saclay, Villejuif, France.,DHU Hepatinov, Villejuif, France.,AP-HP Hôpital Paul Brousse, Département d'Oncogénétique, Villejuif, France
| | - Alexandre Dos Santos
- Inserm, Unité 1193, Université Paris-Saclay, Villejuif, France.,Univ Paris-Sud, UMR-S 1193, Université Paris-Saclay, Villejuif, France.,DHU Hepatinov, Villejuif, France
| | - Marc-Antoine Allard
- Inserm, Unité 1193, Université Paris-Saclay, Villejuif, France.,Univ Paris-Sud, UMR-S 1193, Université Paris-Saclay, Villejuif, France.,DHU Hepatinov, Villejuif, France.,AP-HP Hôpital Paul-Brousse, Centre Hépato-Biliaire, Villejuif, France.,Inserm, Unité 935, Université Paris-Saclay, Villejuif, France
| | - Aldrick Ruiz
- AP-HP Hôpital Paul-Brousse, Centre Hépato-Biliaire, Villejuif, France.,University Medical Center Utrecht, Department of Surgery, Utrecht, The Netherlands
| | - Raphaël Saffroy
- Inserm, Unité 1193, Université Paris-Saclay, Villejuif, France.,Univ Paris-Sud, UMR-S 1193, Université Paris-Saclay, Villejuif, France.,DHU Hepatinov, Villejuif, France.,AP-HP Hôpital Paul Brousse, Département d'Oncogénétique, Villejuif, France
| | - Daniel Cherqui
- Inserm, Unité 1193, Université Paris-Saclay, Villejuif, France.,Univ Paris-Sud, UMR-S 1193, Université Paris-Saclay, Villejuif, France.,DHU Hepatinov, Villejuif, France.,AP-HP Hôpital Paul-Brousse, Centre Hépato-Biliaire, Villejuif, France
| | - Eric Vibert
- Inserm, Unité 1193, Université Paris-Saclay, Villejuif, France.,Univ Paris-Sud, UMR-S 1193, Université Paris-Saclay, Villejuif, France.,DHU Hepatinov, Villejuif, France.,AP-HP Hôpital Paul-Brousse, Centre Hépato-Biliaire, Villejuif, France
| | - Denis Castaing
- Inserm, Unité 1193, Université Paris-Saclay, Villejuif, France.,Univ Paris-Sud, UMR-S 1193, Université Paris-Saclay, Villejuif, France.,DHU Hepatinov, Villejuif, France.,AP-HP Hôpital Paul-Brousse, Centre Hépato-Biliaire, Villejuif, France
| | - René Adam
- Univ Paris-Sud, UMR-S 1193, Université Paris-Saclay, Villejuif, France.,DHU Hepatinov, Villejuif, France.,AP-HP Hôpital Paul-Brousse, Centre Hépato-Biliaire, Villejuif, France.,Inserm, Unité 935, Université Paris-Saclay, Villejuif, France
| | - Antonio Sa Cunha
- Inserm, Unité 1193, Université Paris-Saclay, Villejuif, France.,Univ Paris-Sud, UMR-S 1193, Université Paris-Saclay, Villejuif, France.,DHU Hepatinov, Villejuif, France.,AP-HP Hôpital Paul-Brousse, Centre Hépato-Biliaire, Villejuif, France
| | - Antoinette Lemoine
- Inserm, Unité 1193, Université Paris-Saclay, Villejuif, France.,Univ Paris-Sud, UMR-S 1193, Université Paris-Saclay, Villejuif, France.,DHU Hepatinov, Villejuif, France.,AP-HP Hôpital Paul Brousse, Département d'Oncogénétique, Villejuif, France
| |
Collapse
|
16
|
Stanta G, Bonin S. Overview on Clinical Relevance of Intra-Tumor Heterogeneity. Front Med (Lausanne) 2018; 5:85. [PMID: 29682505 PMCID: PMC5897590 DOI: 10.3389/fmed.2018.00085] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
Today, clinical evaluation of tumor heterogeneity is an emergent issue to improve clinical oncology. In particular, intra-tumor heterogeneity (ITH) is closely related to cancer progression, resistance to therapy, and recurrences. It is interconnected with complex molecular mechanisms including spatial and temporal phenomena, which are often peculiar for every single patient. This review tries to describe all the types of ITH including morphohistological ITH, and at the molecular level clonal ITH derived from genomic instability and nonclonal ITH derived from microenvironment interaction. It is important to consider the different types of ITH as a whole for any patient to investigate on cancer progression, prognosis, and treatment opportunities. From a practical point of view, analytical methods that are widely accessible today, or will be in the near future, are evaluated to investigate the complex pattern of ITH in a reproducible way for a clinical application.
Collapse
Affiliation(s)
- Giorgio Stanta
- DSM, Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Serena Bonin
- DSM, Department of Medical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
17
|
Strell C, Hilscher MM, Laxman N, Svedlund J, Wu C, Yokota C, Nilsson M. Placing RNA in context and space - methods for spatially resolved transcriptomics. FEBS J 2018. [PMID: 29542254 DOI: 10.1111/febs.14435] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Single-cell transcriptomics provides us with completely new insights into the molecular diversity of different cell types and the different states they can adopt. The technique generates inventories of cells that constitute the building blocks of multicellular organisms. However, since the method requires isolation of discrete cells, information about the original location within tissue is lost. Therefore, it is not possible to draw detailed cellular maps of tissue architecture and their positioning in relation to other cells. In order to better understand the cellular and tissue function of multicellular organisms, we need to map the cells within their physiological, morphological, and anatomical context and space. In this review, we will summarize and compare the different methods of in situ RNA analysis and the most recent developments leading to more comprehensive and highly multiplexed spatially resolved transcriptomic approaches. We will discuss their highlights and advantages as well as their limitations and challenges and give an outlook on promising future applications and directions both within basic research as well as clinical integration.
Collapse
Affiliation(s)
- Carina Strell
- Science for Life Laboratory, Department of Biophysics and biochemistry, Stockholm University, Solna, Sweden
| | - Markus M Hilscher
- Science for Life Laboratory, Department of Biophysics and biochemistry, Stockholm University, Solna, Sweden
| | - Navya Laxman
- Science for Life Laboratory, Department of Biophysics and biochemistry, Stockholm University, Solna, Sweden
| | - Jessica Svedlund
- Science for Life Laboratory, Department of Biophysics and biochemistry, Stockholm University, Solna, Sweden
| | - Chenglin Wu
- Science for Life Laboratory, Department of Biophysics and biochemistry, Stockholm University, Solna, Sweden
| | - Chika Yokota
- Science for Life Laboratory, Department of Biophysics and biochemistry, Stockholm University, Solna, Sweden
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biophysics and biochemistry, Stockholm University, Solna, Sweden
| |
Collapse
|
18
|
El-Heliebi A, Hille C, Laxman N, Svedlund J, Haudum C, Ercan E, Kroneis T, Chen S, Smolle M, Rossmann C, Krzywkowski T, Ahlford A, Darai E, von Amsberg G, Alsdorf W, König F, Löhr M, de Kruijff I, Riethdorf S, Gorges TM, Pantel K, Bauernhofer T, Nilsson M, Sedlmayr P. In Situ Detection and Quantification of AR-V7, AR-FL, PSA, and KRAS Point Mutations in Circulating Tumor Cells. Clin Chem 2018; 64:536-546. [PMID: 29301749 DOI: 10.1373/clinchem.2017.281295] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/11/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Liquid biopsies can be used in castration-resistant prostate cancer (CRPC) to detect androgen receptor splice variant 7 (AR-V7), a splicing product of the androgen receptor. Patients with AR-V7-positive circulating tumor cells (CTCs) have greater benefit of taxane chemotherapy compared with novel hormonal therapies, indicating a treatment-selection biomarker. Likewise, in those with pancreatic cancer (PaCa), KRAS mutations act as prognostic biomarkers. Thus, there is an urgent need for technology investigating the expression and mutation status of CTCs. Here, we report an approach that adds AR-V7 or KRAS status to CTC enumeration, compatible with multiple CTC-isolation platforms. METHODS We studied 3 independent CTC-isolation devices (CellCollector, Parsortix, CellSearch) for the evaluation of AR-V7 or KRAS status of CTCs with in situ padlock probe technology. Padlock probes allow highly specific detection and visualization of transcripts on a cellular level. We applied padlock probes for detecting AR-V7, androgen receptor full length (AR-FL), and prostate-specific antigen (PSA) in CRPC and KRAS wild-type (wt) and mutant (mut) transcripts in PaCa in CTCs from 46 patients. RESULTS In situ analysis showed that 71% (22 of 31) of CRPC patients had detectable AR-V7 expression ranging from low to high expression [1-76 rolling circle products (RCPs)/CTC]. In PaCa patients, 40% (6 of 15) had KRAS mut expressing CTCs with 1 to 8 RCPs/CTC. In situ padlock probe analysis revealed CTCs with no detectable cytokeratin expression but positivity for AR-V7 or KRAS mut transcripts. CONCLUSIONS Padlock probe technology enables quantification of AR-V7, AR-FL, PSA, and KRAS mut/wt transcripts in CTCs. The technology is easily applicable in routine laboratories and compatible with multiple CTC-isolation devices.
Collapse
Affiliation(s)
- Amin El-Heliebi
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Austria;
| | - Claudia Hille
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Navya Laxman
- Science for Life Laboratory, Department of Biophysics and Biochemistry, Stockholm University, Solna, Sweden
| | - Jessica Svedlund
- Science for Life Laboratory, Department of Biophysics and Biochemistry, Stockholm University, Solna, Sweden
| | - Christoph Haudum
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Austria
- Center for Biomarker Research in Medicine (CBmed); Graz, Austria
| | - Erkan Ercan
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Austria
| | - Thomas Kroneis
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Austria
| | - Shukun Chen
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Austria
| | - Maria Smolle
- Center for Biomarker Research in Medicine (CBmed); Graz, Austria
| | - Christopher Rossmann
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Tomasz Krzywkowski
- Science for Life Laboratory, Department of Biophysics and Biochemistry, Stockholm University, Solna, Sweden
| | - Annika Ahlford
- Science for Life Laboratory, Department of Biophysics and Biochemistry, Stockholm University, Solna, Sweden
- Devyser AB, Stockholm, Sweden
| | - Evangelia Darai
- Science for Life Laboratory, Department of Biophysics and Biochemistry, Stockholm University, Solna, Sweden
| | - Gunhild von Amsberg
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Winfried Alsdorf
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Matthias Löhr
- Center for Digestive Diseases, Karolinska University Hospital and Division of Surgery, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Inge de Kruijff
- Erasmus MC Cancer Institute, Department of Medical Oncology and Cancer Genomics Netherlands, Rotterdam, the Netherlands
| | - Sabine Riethdorf
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias M Gorges
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Bauernhofer
- Center for Biomarker Research in Medicine (CBmed); Graz, Austria
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biophysics and Biochemistry, Stockholm University, Solna, Sweden
| | - Peter Sedlmayr
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Austria
| |
Collapse
|
19
|
Abstract
The last past decade has witnessed a revolution in our appreciation of transcriptome complexity and regulation. This remarkable expansion in our knowledge largely originates from the advent of high-throughput methodologies, and the consecutive discovery that up to 90% of eukaryotic genomes are transcribed, thus generating an unanticipated large range of noncoding RNAs (Hangauer et al., 15(4):112, 2014). Besides leading to the identification of new noncoding RNA species, transcriptome-wide studies have uncovered novel layers of posttranscriptional regulatory mechanisms controlling RNA processing, maturation or translation, and each contributing to the precise and dynamic regulation of gene expression. Remarkably, the development of systems-level studies has been accompanied by tremendous progress in the visualization of individual RNA molecules in single cells, such that it is now possible to image RNA species with a single-molecule resolution from birth to translation or decay. Monitoring quantitatively, with unprecedented spatiotemporal resolution, the fate of individual molecules has been key to understanding the molecular mechanisms underlying the different steps of RNA regulation. This has also revealed biologically relevant, intracellular and intercellular heterogeneities in RNA distribution or regulation. More recently, the convergence of imaging and high-throughput technologies has led to the emergence of spatially resolved transcriptomic techniques that provide a means to perform large-scale analyses while preserving spatial information. By generating transcriptome-wide data on single-cell RNA content, or even subcellular RNA distribution, these methodologies are opening avenues to a wide range of network-level studies at the cell and organ-level, and promise to strongly improve disease diagnostic and treatment.In this introductory chapter, we highlight how recently developed technologies aiming at detecting and visualizing RNA molecules have contributed to the emergence of entirely new research fields, and to dramatic progress in our understanding of gene expression regulation.
Collapse
Affiliation(s)
- Caroline Medioni
- Université Côte d'Azur, CNRS, Inserm, iBV, Parc Valrose, 06100, Nice, France
| | - Florence Besse
- Université Côte d'Azur, CNRS, Inserm, iBV, Parc Valrose, 06100, Nice, France.
| |
Collapse
|
20
|
Annaratone L, Simonetti M, Wernersson E, Marchiò C, Garnerone S, Scalzo MS, Bienko M, Chiarle R, Sapino A, Crosetto N. Quantification of HER2 and estrogen receptor heterogeneity in breast cancer by single-molecule RNA fluorescence in situ hybridization. Oncotarget 2017; 8:18680-18698. [PMID: 28423635 PMCID: PMC5386639 DOI: 10.18632/oncotarget.15727] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 02/06/2017] [Indexed: 11/25/2022] Open
Abstract
Intra-tumor heterogeneity is a pervasive property of human cancers that poses a major clinical challenge. Here, we describe the characterization, at the transcriptional level, of the intra-tumor topography of two prominent breast cancer biomarkers and drug targets, epidermal growth factor receptor 2 (HER2) and estrogen receptor 1 (ER) in 49 archival breast cancer samples. We developed a protocol for single-molecule RNA FISH in formalin-fixed, paraffin-embedded tissue sections (FFPE-smFISH), which enabled us to simultaneously detect and perform absolute quantification of HER2 and ER mature transcripts in single cells and multiple tumor regions. We benchmarked our method with standard diagnostic techniques, demonstrating that FFPE-smFISH is able to correctly classify breast cancers into well-established molecular subgroups. By counting transcripts in thousands of single cells, we identified different expression modes and levels of inter-cellular variability. In samples expressing both HER2 and ER, many cells co-expressed both genes, although expression levels were typically uncorrelated. Finally, we applied diversity metrics from the field of ecology to assess the intra-tumor topography of HER2 and ER gene expression, revealing that the spatial distribution of these key biomarkers can vary substantially even among breast cancers of the same subtype. Our results demonstrate that FFPE-smFISH is a reliable diagnostic assay and a powerful method for quantification of intra-tumor transcriptional heterogeneity of selected biomarkers in clinical samples.
Collapse
Affiliation(s)
- Laura Annaratone
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Michele Simonetti
- Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Karolinska Institutet, Stockholm, Sweden
| | - Erik Wernersson
- Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Karolinska Institutet, Stockholm, Sweden
| | - Caterina Marchiò
- Department of Medical Sciences, University of Turin, Turin, Italy.,Department of Laboratory Medicine, Pathology Unit, Azienda Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy
| | - Silvano Garnerone
- Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Magda Bienko
- Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Karolinska Institutet, Stockholm, Sweden
| | - Roberto Chiarle
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Anna Sapino
- Department of Medical Sciences, University of Turin, Turin, Italy.,Candiolo Cancer Institute - FPO, IRCCS, Candiolo, Italy
| | - Nicola Crosetto
- Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Simultaneous Single-Cell In Situ Analysis of Human Adenovirus Type 5 DNA and mRNA Expression Patterns in Lytic and Persistent Infection. J Virol 2017; 91:JVI.00166-17. [PMID: 28298601 DOI: 10.1128/jvi.00166-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/06/2017] [Indexed: 12/14/2022] Open
Abstract
An efficient adenovirus infection results in high-level accumulation of viral DNA and mRNAs in the infected cell population. However, the average viral DNA and mRNA content in a heterogeneous cell population does not necessarily reflect the same abundance in individual cells. Here, we describe a novel padlock probe-based rolling-circle amplification technique that enables simultaneous detection and analysis of human adenovirus type 5 (HAdV-5) genomic DNA and virus-encoded mRNAs in individual infected cells. We demonstrate that the method is applicable for detection and quantification of HAdV-5 DNA and mRNAs in short-term infections in human epithelial cells and in long-term infections in human B lymphocytes. Single-cell evaluation of these infections revealed high heterogeneity and unique cell subpopulations defined by differential viral DNA content and mRNA expression. Further, our single-cell analysis shows that the specific expression pattern of viral E1A 13S and 12S mRNA splice variants is linked to HAdV-5 DNA content in the individual cells. Furthermore, we show that expression of a mature form of the HAdV-5 histone-like protein VII affects virus genome detection in HAdV-5-infected cells. Collectively, padlock probes combined with rolling-circle amplification should be a welcome addition to the method repertoire for the characterization of the molecular details of the HAdV life cycle in individual infected cells.IMPORTANCE Human adenoviruses (HAdVs) have been extensively used as model systems to study various aspects of eukaryotic gene expression and genome organization. The vast majority of the HAdV studies are based on standard experimental procedures carried out using heterogeneous cell populations, where data averaging often masks biological differences. As every cell is unique, characteristics and efficiency of an HAdV infection can vary from cell to cell. Therefore, the analysis of HAdV gene expression and genome organization would benefit from a method that permits analysis of individual infected cells in the heterogeneous cell population. Here, we show that the padlock probe-based rolling-circle amplification method can be used to study concurrent viral DNA accumulation and mRNA expression patterns in individual HAdV-5-infected cells. Hence, this versatile method can be applied to detect the extent of infection and virus gene expression changes in different HAdV-5 infections.
Collapse
|
22
|
Spira A, Yurgelun MB, Alexandrov L, Rao A, Bejar R, Polyak K, Giannakis M, Shilatifard A, Finn OJ, Dhodapkar M, Kay NE, Braggio E, Vilar E, Mazzilli SA, Rebbeck TR, Garber JE, Velculescu VE, Disis ML, Wallace DC, Lippman SM. Precancer Atlas to Drive Precision Prevention Trials. Cancer Res 2017; 77:1510-1541. [PMID: 28373404 PMCID: PMC6681830 DOI: 10.1158/0008-5472.can-16-2346] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 02/07/2023]
Abstract
Cancer development is a complex process driven by inherited and acquired molecular and cellular alterations. Prevention is the holy grail of cancer elimination, but making this a reality will take a fundamental rethinking and deep understanding of premalignant biology. In this Perspective, we propose a national concerted effort to create a Precancer Atlas (PCA), integrating multi-omics and immunity - basic tenets of the neoplastic process. The biology of neoplasia caused by germline mutations has led to paradigm-changing precision prevention efforts, including: tumor testing for mismatch repair (MMR) deficiency in Lynch syndrome establishing a new paradigm, combinatorial chemoprevention efficacy in familial adenomatous polyposis (FAP), signal of benefit from imaging-based early detection research in high-germline risk for pancreatic neoplasia, elucidating early ontogeny in BRCA1-mutation carriers leading to an international breast cancer prevention trial, and insights into the intricate germline-somatic-immunity interaction landscape. Emerging genetic and pharmacologic (metformin) disruption of mitochondrial (mt) respiration increased autophagy to prevent cancer in a Li-Fraumeni mouse model (biology reproduced in clinical pilot) and revealed profound influences of subtle changes in mt DNA background variation on obesity, aging, and cancer risk. The elaborate communication between the immune system and neoplasia includes an increasingly complex cellular microenvironment and dynamic interactions between host genetics, environmental factors, and microbes in shaping the immune response. Cancer vaccines are in early murine and clinical precancer studies, building on the recent successes of immunotherapy and HPV vaccine immune prevention. Molecular monitoring in Barrett's esophagus to avoid overdiagnosis/treatment highlights an important PCA theme. Next generation sequencing (NGS) discovered age-related clonal hematopoiesis of indeterminate potential (CHIP). Ultra-deep NGS reports over the past year have redefined the premalignant landscape remarkably identifying tiny clones in the blood of up to 95% of women in their 50s, suggesting that potentially premalignant clones are ubiquitous. Similar data from eyelid skin and peritoneal and uterine lavage fluid provide unprecedented opportunities to dissect the earliest phases of stem/progenitor clonal (and microenvironment) evolution/diversity with new single-cell and liquid biopsy technologies. Cancer mutational signatures reflect exogenous or endogenous processes imprinted over time in precursors. Accelerating the prevention of cancer will require a large-scale, longitudinal effort, leveraging diverse disciplines (from genetics, biochemistry, and immunology to mathematics, computational biology, and engineering), initiatives, technologies, and models in developing an integrated multi-omics and immunity PCA - an immense national resource to interrogate, target, and intercept events that drive oncogenesis. Cancer Res; 77(7); 1510-41. ©2017 AACR.
Collapse
Affiliation(s)
- Avrum Spira
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Pathology and Bioinformatics, Boston University School of Medicine, Boston, Massachusetts
| | - Matthew B Yurgelun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ludmil Alexandrov
- Theoretical Division, Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Rafael Bejar
- Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Olivera J Finn
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Madhav Dhodapkar
- Department of Hematology and Immunology, Yale Cancer Center, New Haven, Connecticut
| | - Neil E Kay
- Department of Hematology, Mayo Clinic Hospital, Rochester, Minnesota
| | - Esteban Braggio
- Department of Hematology, Mayo Clinic Hospital, Phoenix, Arizona
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sarah A Mazzilli
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Pathology and Bioinformatics, Boston University School of Medicine, Boston, Massachusetts
| | - Timothy R Rebbeck
- Division of Hematology and Oncology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Judy E Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Victor E Velculescu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Mary L Disis
- Department of Medicine, Center for Translational Medicine in Women's Health, University of Washington, Seattle, Washington
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Scott M Lippman
- Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, California.
| |
Collapse
|
23
|
Visualization of tumor heterogeneity by in situ padlock probe technology in colorectal cancer. Histochem Cell Biol 2017; 148:105-115. [PMID: 28321501 PMCID: PMC5508037 DOI: 10.1007/s00418-017-1557-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2017] [Indexed: 01/02/2023]
Abstract
Tumor heterogeneity is considered a major cause for therapy resistance in colorectal cancer. Sub-populations of cells with different genetic alterations may exist in spatially distinct areas. Upon therapy, resistant sub-clones may enrich and ultimately lead to disease progression. Although ample data are available on tumors which are heterogeneous on a morphological level, only little is known about morphologically homogeneous tumors. We aimed to investigate if morphologically homogeneous colorectal cancer can harbor a heterogeneous genetic landscape. We chose to microdissect six morphologically homogeneous colorectal carcinomas into several areas and performed next-generation sequencing (NGS) to identify tumors with genetic heterogeneity. We then applied an mRNA-based in situ mutation detection technology based on padlock probes to localize and visualize mutations directly in the tumor tissue. In three out of six tumors, NGS revealed a high rate of variability of mutations between different tumor areas. We selected two cases for in situ mutation detection to visualize genetic heterogeneity. In situ mutation detection confirmed differences in mutant allele frequencies between different tumor areas of morphological homogeneous tumors. We conclude that genetic heterogeneity in morphologically homogeneous colorectal cancer is an observable, but underreported event. Our results illustrate the power of in situ mutation analysis to visualize genetic heterogeneity directly in tumor tissue.
Collapse
|
24
|
Mathot L, Kundu S, Ljungström V, Svedlund J, Moens L, Adlerteg T, Falk-Sörqvist E, Rendo V, Bellomo C, Mayrhofer M, Cortina C, Sundström M, Micke P, Botling J, Isaksson A, Moustakas A, Batlle E, Birgisson H, Glimelius B, Nilsson M, Sjöblom T. Somatic Ephrin Receptor Mutations Are Associated with Metastasis in Primary Colorectal Cancer. Cancer Res 2017; 77:1730-1740. [PMID: 28108514 DOI: 10.1158/0008-5472.can-16-1921] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/12/2016] [Accepted: 12/29/2016] [Indexed: 11/16/2022]
Abstract
The contribution of somatic mutations to metastasis of colorectal cancers is currently unknown. To find mutations involved in the colorectal cancer metastatic process, we performed deep mutational analysis of 676 genes in 107 stages II to IV primary colorectal cancer, of which half had metastasized. The mutation prevalence in the ephrin (EPH) family of tyrosine kinase receptors was 10-fold higher in primary tumors of metastatic colorectal than in nonmetastatic cases and preferentially occurred in stage III and IV tumors. Mutational analyses in situ confirmed expression of mutant EPH receptors. To enable functional studies of EPHB1 mutations, we demonstrated that DLD-1 colorectal cancer cells expressing EPHB1 form aggregates upon coculture with ephrin B1 expressing cells. When mutations in the fibronectin type III and kinase domains of EPHB1 were compared with wild-type EPHB1 in DLD-1 colorectal cancer cells, they decreased ephrin B1-induced compartmentalization. These observations provide a mechanistic link between EPHB receptor mutations and metastasis in colorectal cancer. Cancer Res; 77(7); 1730-40. ©2017 AACR.
Collapse
Affiliation(s)
- Lucy Mathot
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Snehangshu Kundu
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Viktor Ljungström
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Jessica Svedlund
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Lotte Moens
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Tom Adlerteg
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Elin Falk-Sörqvist
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Verónica Rendo
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Claudia Bellomo
- Department of Medical Biochemistry and Microbiology, Ludwig Cancer Research, Science for Life Laboratory, Uppsala University, Sweden
| | - Markus Mayrhofer
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Sweden
| | - Carme Cortina
- Oncology Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Magnus Sundström
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Patrick Micke
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Johan Botling
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Anders Isaksson
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Sweden
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Ludwig Cancer Research, Science for Life Laboratory, Uppsala University, Sweden
| | - Eduard Batlle
- Oncology Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Helgi Birgisson
- Department of Surgical Sciences, Colorectal Surgery, Uppsala University, Sweden
| | - Bengt Glimelius
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Mats Nilsson
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden.,Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Tobias Sjöblom
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden.
| |
Collapse
|
25
|
Targeted DNA sequencing and in situ mutation analysis using mobile phone microscopy. Nat Commun 2017; 8:13913. [PMID: 28094784 PMCID: PMC5247573 DOI: 10.1038/ncomms13913] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/11/2016] [Indexed: 02/07/2023] Open
Abstract
Molecular diagnostics is typically outsourced to well-equipped centralized laboratories, often far from the patient. We developed molecular assays and portable optical imaging designs that permit on-site diagnostics with a cost-effective mobile-phone-based multimodal microscope. We demonstrate that targeted next-generation DNA sequencing reactions and in situ point mutation detection assays in preserved tumour samples can be imaged and analysed using mobile phone microscopy, achieving a new milestone for tele-medicine technologies.
On-site diagnostics technologies allow for rapid, cost-effective diagnosis with a particular importance for remote communities. Here the authors demonstrate the use of mobile phone based microscopy for targeted DNA sequencing and in situ point mutation detection in tumours.
Collapse
|
26
|
Krzywkowski T, Hauling T, Nilsson M. In Situ Single-Molecule RNA Genotyping Using Padlock Probes and Rolling Circle Amplification. Methods Mol Biol 2017; 1492:59-76. [PMID: 27822856 DOI: 10.1007/978-1-4939-6442-0_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Present-day techniques allow for massively parallel and high-throughput characterization of the somatic mutation status of samples. Most of these assays rely on whole specimen extracts, where heterogeneous spatial context of the specimen is lost. This chapter describes an up-to-date protocol for multiplexed, in situ genotyping of RNA in preserved tissue and cell lines, using padlock probes and rolling circle amplification. The presented approach allows for automated quantification of mRNA expression and mutation status, in single cells or in designated specimen areas. Briefly, mRNA is first reverse-transcribed to cDNA. Padlock probes specifically hybridize to the cDNA copy of the allele and become circularized and thereby physically linked to their targets. Following this conversion, padlock probes are copied in situ by rolling circle amplification and labeled with flourophore-conjugated probes, allowing for their detection with conventional fluorescence microscopy.
Collapse
Affiliation(s)
- Tomasz Krzywkowski
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Tomtebodavägem 23A, 17165, Solna, Sweden
| | - Thomas Hauling
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Tomtebodavägem 23A, 17165, Solna, Sweden
| | - Mats Nilsson
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Tomtebodavägem 23A, 17165, Solna, Sweden.
| |
Collapse
|
27
|
Sato K. Microdevice in Cellular Pathology: Microfluidic Platforms for Fluorescence in situ Hybridization and Analysis of Circulating Tumor Cells. ANAL SCI 2016; 31:867-73. [PMID: 26353951 DOI: 10.2116/analsci.31.867] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Microfluidic devices enable the miniaturization, integration, automation, and parallelization of chemical and biochemical processes. This new technology also provides opportunity for expansion in the field of cellular pathology. Fluorescence in situ hybridization (FISH) is a well-known gene-based method to image genetic abnormalities. Development of a FISH microfluidic platform has offered the possibility of automation with significant time and cost reductions, which overcomes many drawbacks of the current protocols. Microfluidic devices are also powerful tools for single-cell analysis. Capturing the circulating tumor cells (CTCs) from blood samples is one of the most promising approaches to enable the early diagnosis of cancer. The microfluidic devices are also useful to isolate rare CTCs at high efficiency and purity. In this review, I outline recent FISH and CTC analyses using microfluidic devices, and describe their applications for the cellular diagnosis of cancers.
Collapse
Affiliation(s)
- Kae Sato
- Department of Chemical and Biological Sciences, Faculty of Science
| |
Collapse
|
28
|
Deciphering intra-tumor heterogeneity of lung adenocarcinoma confirms that dominant, branching, and private gene mutations occur within individual tumor nodules. Virchows Arch 2016; 468:651-62. [DOI: 10.1007/s00428-016-1931-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 01/09/2016] [Accepted: 03/21/2016] [Indexed: 01/17/2023]
|
29
|
Siwetz M, Blaschitz A, El-Heliebi A, Hiden U, Desoye G, Huppertz B, Gauster M. TNF-α alters the inflammatory secretion profile of human first trimester placenta. J Transl Med 2016; 96:428-38. [PMID: 26752743 DOI: 10.1038/labinvest.2015.159] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/23/2015] [Accepted: 10/12/2015] [Indexed: 12/22/2022] Open
Abstract
Implantation and subsequent placental development depend on a well-orchestrated interaction between fetal and maternal tissues, involving a fine balanced synergistic cross-talk of inflammatory and immune-modulating factors. Tumor necrosis factor (TNF)-α has been increasingly recognized as pivotal factor for successful pregnancy, although high maternal TNF-α levels are associated with a number of adverse pregnancy conditions including gestational hypertension and gestational diabetes mellitus. This study describes effects of exogenously applied TNF-α, mimicking increased maternal TNF-α levels, on the secretion profile of inflammation associated factors in human first trimester villous placenta. Conditioned culture media from first trimester villous placental explants were analyzed by inflammation antibody arrays and ELISA after 48 h culture in the presence or absence of TNF-α. Inflammation antibody arrays identified interleukin (IL)-6, IL-8, chemokine (C-C motif) ligand 2 (CCL2), CCL4, and granulocyte-macrophage colony-stimulating factor (GM-CSF) as the most abundantly secreted inflammation-associated factors under basal culture conditions. In the presence of TNF-α, secretion of GM-CSF, CCL5, and IL-10 increased, whereas IL-4 and macrophage CSF levels decreased compared with controls. ELISA analysis verified antibody arrays by showing significantly increased synthesis and release of GM-CSF and CCL5 by placental explants in response to TNF-α. Immunohistochemistry localized GM-CSF in the villous trophoblast compartment, whereas CCL5 was detected in maternal platelets adhering to perivillous fibrin deposits on the villous surface. mRNA-based in situ padlock probe approach localized GM-CSF and CCL5 transcripts in the villous trophoblast layer and the villous stroma. Results from this study suggest that the inflammatory secretion profile of human first trimester placenta shifts towards increased levels of GM-CSF, CCL5, and IL10 in response to elevated maternal TNF-α levels, whereas IL-6 and IL-8 remain unaffected. This shift may represent a protective mechanism by human first trimester villous placenta to sustain trophoblast function and dampen inflammatory processes in the intervillous space.
Collapse
Affiliation(s)
- Monika Siwetz
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Graz, Austria
| | - Astrid Blaschitz
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Graz, Austria
| | - Amin El-Heliebi
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Graz, Austria
| | - Ursula Hiden
- Department of Obstetrics and Gynaecology, Medical University Graz, Graz, Austria
| | - Gernot Desoye
- Department of Obstetrics and Gynaecology, Medical University Graz, Graz, Austria
| | - Berthold Huppertz
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Graz, Austria
| | - Martin Gauster
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Graz, Austria
| |
Collapse
|
30
|
Raub CB, Lee CC, Shibata D, Taylor C, Kartalov E. HistoMosaic Detecting KRAS G12V Mutation Across Colorectal Cancer Tissue Slices through in Situ PCR. Anal Chem 2016; 88:2792-8. [PMID: 26820161 PMCID: PMC7446286 DOI: 10.1021/acs.analchem.5b04460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We report on HistoMosaic, a novel technique for genetic analysis of formalin-fixed, paraffin-embedded tissue slices. It combines microfluidic compartmentalization, in situ allele-specific PCR, and fluorescence microscopy. The experimental proof of principle was achieved by in situ detection of KRAS G12V mutation in colorectal cancer tissues and is presented herein. HistoMosaic offers the ability to detect mutations over the entire tissue slide simultaneously, rapidly, economically, and without selection bias, while coregistering the genetic information with the preserved morphological information. Thus, HistoMosaic has wide applicability in basic science as a tool to map genetic heterogeneity. It is also a platform to build companion diagnostics for targeted therapies in oncology, to help ensure that the right drug is given to the right patient, thereby saving healthcare resources and improving patient outcomes.
Collapse
Affiliation(s)
| | - Chen-Chung Lee
- Department of Pathology, Keck School of Medicine of the University of Southern California, 2011 Zonal Avenue, Los Angeles, California 90089, United States
| | - Darryl Shibata
- Department of Pathology, Keck School of Medicine of the University of Southern California, 2011 Zonal Avenue, Los Angeles, California 90089, United States
| | - Clive Taylor
- Department of Pathology, Keck School of Medicine of the University of Southern California, 2011 Zonal Avenue, Los Angeles, California 90089, United States
| | - Emil Kartalov
- Department of Pathology, Keck School of Medicine of the University of Southern California, 2011 Zonal Avenue, Los Angeles, California 90089, United States
| |
Collapse
|
31
|
McGinn S, Bauer D, Brefort T, Dong L, El-Sagheer A, Elsharawy A, Evans G, Falk-Sörqvist E, Forster M, Fredriksson S, Freeman P, Freitag C, Fritzsche J, Gibson S, Gullberg M, Gut M, Heath S, Heath-Brun I, Heron AJ, Hohlbein J, Ke R, Lancaster O, Le Reste L, Maglia G, Marie R, Mauger F, Mertes F, Mignardi M, Moens L, Oostmeijer J, Out R, Pedersen JN, Persson F, Picaud V, Rotem D, Schracke N, Sengenes J, Stähler PF, Stade B, Stoddart D, Teng X, Veal CD, Zahra N, Bayley H, Beier M, Brown T, Dekker C, Ekström B, Flyvbjerg H, Franke A, Guenther S, Kapanidis AN, Kaye J, Kristensen A, Lehrach H, Mangion J, Sauer S, Schyns E, Tost J, van Helvoort JMLM, van der Zaag PJ, Tegenfeldt JO, Brookes AJ, Mir K, Nilsson M, Willcocks JP, Gut IG. New technologies for DNA analysis--a review of the READNA Project. N Biotechnol 2015; 33:311-30. [PMID: 26514324 DOI: 10.1016/j.nbt.2015.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/17/2015] [Indexed: 01/09/2023]
Abstract
The REvolutionary Approaches and Devices for Nucleic Acid analysis (READNA) project received funding from the European Commission for 41/2 years. The objectives of the project revolved around technological developments in nucleic acid analysis. The project partners have discovered, created and developed a huge body of insights into nucleic acid analysis, ranging from improvements and implementation of current technologies to the most promising sequencing technologies that constitute a 3(rd) and 4(th) generation of sequencing methods with nanopores and in situ sequencing, respectively.
Collapse
Affiliation(s)
- Steven McGinn
- CEA - Centre National de Génotypage, 2, rue Gaston Cremieux, 91057 Evry Cedex, France
| | - David Bauer
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Thomas Brefort
- Comprehensive Biomarker Center GmbH, Im Neuenheimer Feld 583, D-69120 Heidelberg, Germany
| | - Liqin Dong
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Afaf El-Sagheer
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK; Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd, Oxford OX1 3TA, UK; Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| | - Abdou Elsharawy
- Institute of Clinical Molecular Biology, Christian-Albrechts-University (CAU), Am Botanischen Garten 11, D-24118 Kiel, Germany; Faculty of Sciences, Division of Biochemistry, Chemistry Department, Damietta University, New Damietta City, Egypt
| | - Geraint Evans
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, Parks Road, Oxford OX1 3PU, UK
| | - Elin Falk-Sörqvist
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Michael Forster
- Institute of Clinical Molecular Biology, Christian-Albrechts-University (CAU), Am Botanischen Garten 11, D-24118 Kiel, Germany
| | | | - Peter Freeman
- University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Camilla Freitag
- Department of Physics, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Joachim Fritzsche
- Department of Applied Physics, Chalmers University of Technology, Kemivägen 10, 412 96 Göteborg, Sweden
| | - Spencer Gibson
- University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Mats Gullberg
- Olink AB, Dag Hammarskjölds väg 52A, 752 37 Uppsala, Sweden
| | - Marta Gut
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, C/Baldiri Reixac 7, 08028 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Simon Heath
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, C/Baldiri Reixac 7, 08028 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Isabelle Heath-Brun
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, C/Baldiri Reixac 7, 08028 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Andrew J Heron
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, UK
| | - Johannes Hohlbein
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, Parks Road, Oxford OX1 3PU, UK
| | - Rongqin Ke
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Box 1031, Se-171 21 Solna, Sweden; Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Owen Lancaster
- University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Ludovic Le Reste
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, Parks Road, Oxford OX1 3PU, UK
| | - Giovanni Maglia
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, UK
| | - Rodolphe Marie
- DTU Nanotech, Oerstedsplads Building 345 East, 2800, Kongens Lyngby, Denmark
| | - Florence Mauger
- CEA - Centre National de Génotypage, 2, rue Gaston Cremieux, 91057 Evry Cedex, France
| | - Florian Mertes
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | - Marco Mignardi
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Box 1031, Se-171 21 Solna, Sweden; Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Lotte Moens
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | | | - Ruud Out
- FlexGen BV, Galileiweg 8, 2333 BD Leiden, The Netherlands
| | | | - Fredrik Persson
- Department of Physics, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Vincent Picaud
- CEA-Saclay, Bât DIGITEO 565 - Pt Courrier 192, 91191 Gif-sur-Yvette Cedex, France
| | - Dvir Rotem
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, UK
| | - Nadine Schracke
- Comprehensive Biomarker Center GmbH, Im Neuenheimer Feld 583, D-69120 Heidelberg, Germany
| | - Jennifer Sengenes
- CEA - Centre National de Génotypage, 2, rue Gaston Cremieux, 91057 Evry Cedex, France
| | - Peer F Stähler
- Comprehensive Biomarker Center GmbH, Im Neuenheimer Feld 583, D-69120 Heidelberg, Germany
| | - Björn Stade
- Institute of Clinical Molecular Biology, Christian-Albrechts-University (CAU), Am Botanischen Garten 11, D-24118 Kiel, Germany
| | - David Stoddart
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, UK
| | - Xia Teng
- FlexGen BV, Galileiweg 8, 2333 BD Leiden, The Netherlands
| | - Colin D Veal
- University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Nathalie Zahra
- University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Hagan Bayley
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, UK
| | - Markus Beier
- Comprehensive Biomarker Center GmbH, Im Neuenheimer Feld 583, D-69120 Heidelberg, Germany
| | - Tom Brown
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK; Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd, Oxford OX1 3TA, UK
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Björn Ekström
- Olink AB, Dag Hammarskjölds väg 52A, 752 37 Uppsala, Sweden
| | - Henrik Flyvbjerg
- DTU Nanotech, Oerstedsplads Building 345 East, 2800, Kongens Lyngby, Denmark
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University (CAU), Am Botanischen Garten 11, D-24118 Kiel, Germany
| | - Simone Guenther
- Thermo Fisher Scientific Frankfurter Straße 129B, 64293 Darmstadt, Germany
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, Parks Road, Oxford OX1 3PU, UK
| | - Jane Kaye
- HeLEX - Centre for Health, Law and Emerging Technologies, Nuffield Department of Population Health, University of Oxford, Old Road Campus, Oxford OX3 7LF, UK
| | - Anders Kristensen
- DTU Nanotech, Oerstedsplads Building 345 East, 2800, Kongens Lyngby, Denmark
| | - Hans Lehrach
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | - Jonathan Mangion
- Thermo Fisher Scientific Frankfurter Straße 129B, 64293 Darmstadt, Germany
| | - Sascha Sauer
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | - Emile Schyns
- PHOTONIS France S.A.S. Avenue Roger Roncier, 19100 Brive B.P. 520, 19106 BRIVE Cedex, France
| | - Jörg Tost
- CEA - Centre National de Génotypage, 2, rue Gaston Cremieux, 91057 Evry Cedex, France
| | | | - Pieter J van der Zaag
- Philips Research Laboratories, High Tech Campus 11, 5656 AE Eindhoven, The Netherlands
| | - Jonas O Tegenfeldt
- Division of Solid State Physics and NanoLund, Lund University, Box 118, 22100 Lund, Sweden
| | | | - Kalim Mir
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Box 1031, Se-171 21 Solna, Sweden; Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - James P Willcocks
- Oxford Nanopore Technologies, Edmund Cartwright House, 4 Robert Robinson Avenue, Oxford Science Park, Oxford OX4 4GA, UK
| | - Ivo G Gut
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, C/Baldiri Reixac 7, 08028 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
32
|
Janiszewska M, Liu L, Almendro V, Kuang Y, Paweletz C, Sakr RA, Weigelt B, Hanker AB, Chandarlapaty S, King TA, Reis-Filho JS, Arteaga CL, Park SY, Michor F, Polyak K. In situ single-cell analysis identifies heterogeneity for PIK3CA mutation and HER2 amplification in HER2-positive breast cancer. Nat Genet 2015; 47:1212-9. [PMID: 26301495 PMCID: PMC4589505 DOI: 10.1038/ng.3391] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/31/2015] [Indexed: 12/19/2022]
Abstract
Detection of minor, genetically distinct subpopulations within tumors is a key challenge in cancer genomics. Here we report STAR-FISH (specific-to-allele PCR-FISH), a novel method for the combined detection of single-nucleotide and copy number alterations in single cells in intact archived tissues. Using this method, we assessed the clinical impact of changes in the frequency and topology of PIK3CA mutation and HER2 (ERBB2) amplification within HER2-positive breast cancer during neoadjuvant therapy. We found that these two genetic events are not always present in the same cells. Chemotherapy selects for PIK3CA-mutant cells, a minor subpopulation in nearly all treatment-naive samples, and modulates genetic diversity within tumors. Treatment-associated changes in the spatial distribution of cellular genetic diversity correlated with poor long-term outcome following adjuvant therapy with trastuzumab. Our findings support the use of in situ single cell-based methods in cancer genomics and imply that chemotherapy before HER2-targeted therapy may promote treatment resistance.
Collapse
Affiliation(s)
- Michalina Janiszewska
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Lin Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Vanessa Almendro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Yanan Kuang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Belfer Institute of Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Cloud Paweletz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Belfer Institute of Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Rita A Sakr
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ariella B Hanker
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Tari A King
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Carlos L Arteaga
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA
- Department of Medicine, Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA
| | - So Yeon Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Franziska Michor
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
33
|
Mignardi M, Mezger A, Qian X, La Fleur L, Botling J, Larsson C, Nilsson M. Oligonucleotide gap-fill ligation for mutation detection and sequencing in situ. Nucleic Acids Res 2015; 43:e151. [PMID: 26240388 PMCID: PMC4678841 DOI: 10.1093/nar/gkv772] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 07/19/2015] [Indexed: 11/12/2022] Open
Abstract
In clinical diagnostics a great need exists for targeted in situ multiplex nucleic acid analysis as the mutational status can offer guidance for effective treatment. One well-established method uses padlock probes for mutation detection and multiplex expression analysis directly in cells and tissues. Here, we use oligonucleotide gap-fill ligation to further increase specificity and to capture molecular substrates for in situ sequencing. Short oligonucleotides are joined at both ends of a padlock gap probe by two ligation events and are then locally amplified by target-primed rolling circle amplification (RCA) preserving spatial information. We demonstrate the specific detection of the A3243G mutation of mitochondrial DNA and we successfully characterize a single nucleotide variant in the ACTB mRNA in cells by in situ sequencing of RCA products generated by padlock gap-fill ligation. To demonstrate the clinical applicability of our assay, we show specific detection of a point mutation in the EGFR gene in fresh frozen and formalin-fixed, paraffin-embedded (FFPE) lung cancer samples and confirm the detected mutation by in situ sequencing. This approach presents several advantages over conventional padlock probes allowing simpler assay design for multiplexed mutation detection to screen for the presence of mutations in clinically relevant mutational hotspots directly in situ.
Collapse
Affiliation(s)
- Marco Mignardi
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, SE-17121 Sweden
| | - Anja Mezger
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, SE-17121 Sweden
| | - Xiaoyan Qian
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, SE-17121 Sweden
| | - Linnea La Fleur
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, SE-75185, Sweden
| | - Johan Botling
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, SE-75185, Sweden
| | - Chatarina Larsson
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, SE-75185, Sweden
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, SE-17121 Sweden
| |
Collapse
|
34
|
Koos B, Kamali-Moghaddam M, David L, Sobrinho-Simões M, Dimberg A, Nilsson M, Wählby C, Söderberg O. Next-Generation Pathology—Surveillance of Tumor Microecology. J Mol Biol 2015; 427:2013-22. [DOI: 10.1016/j.jmb.2015.02.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 02/18/2015] [Accepted: 02/18/2015] [Indexed: 11/30/2022]
|
35
|
Beliveau BJ, Boettiger AN, Avendaño MS, Jungmann R, McCole RB, Joyce EF, Kim-Kiselak C, Bantignies F, Fonseka CY, Erceg J, Hannan MA, Hoang HG, Colognori D, Lee JT, Shih WM, Yin P, Zhuang X, Wu CT. Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes. Nat Commun 2015; 6:7147. [PMID: 25962338 PMCID: PMC4430122 DOI: 10.1038/ncomms8147] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 04/09/2015] [Indexed: 01/06/2023] Open
Abstract
Fluorescence in situ hybridization (FISH) is a powerful single-cell technique for studying nuclear structure and organization. Here we report two advances in FISH-based imaging. We first describe the in situ visualization of single-copy regions of the genome using two single-molecule super-resolution methodologies. We then introduce a robust and reliable system that harnesses single-nucleotide polymorphisms (SNPs) to visually distinguish the maternal and paternal homologous chromosomes in mammalian and insect systems. Both of these new technologies are enabled by renewable, bioinformatically designed, oligonucleotide-based Oligopaint probes, which we augment with a strategy that uses secondary oligonucleotides (oligos) to produce and enhance fluorescent signals. These advances should substantially expand the capability to query parent-of-origin-specific chromosome positioning and gene expression on a cell-by-cell basis.
Collapse
Affiliation(s)
- Brian J. Beliveau
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Alistair N. Boettiger
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02138, USA
| | - Maier S. Avendaño
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ralf Jungmann
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ruth B. McCole
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Eric F. Joyce
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Caroline Kim-Kiselak
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Frédéric Bantignies
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Institut de Génétique Humaine, CNRS UPR 1142, 141 rue de la Cardonille, 34396 Montpellier, France
| | - Chamith Y. Fonseka
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jelena Erceg
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mohammed A. Hannan
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Hien G. Hoang
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - David Colognori
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Boston, Massachusetts 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Jeannie T. Lee
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Boston, Massachusetts 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - William M. Shih
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Xiaowei Zhuang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02138, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Chao-ting Wu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
36
|
Kiflemariam S, Mignardi M, Ali MA, Bergh A, Nilsson M, Sjöblom T. In situ sequencing identifies TMPRSS2-ERG fusion transcripts, somatic point mutations and gene expression levels in prostate cancers. J Pathol 2014; 234:253-61. [PMID: 24931216 DOI: 10.1002/path.4392] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 05/12/2014] [Accepted: 06/10/2014] [Indexed: 11/07/2022]
Abstract
Translocations contribute to the genesis and progression of epithelial tumours and in particular to prostate cancer development. To better understand the contribution of fusion transcripts and visualize the clonal composition of multifocal tumours, we have developed a technology for multiplex in situ detection and identification of expressed fusion transcripts. When compared to immunohistochemistry, TMPRSS2-ERG fusion-negative and fusion-positive prostate tumours were correctly classified. The most prevalent TMPRSS2-ERG fusion variants were visualized, identified, and quantitated in human prostate cancer tissues, and the ratio of the variant fusion transcripts could for the first time be directly determined by in situ sequencing. Further, we demonstrate concurrent in situ detection of gene expression, point mutations, and gene fusions of the prostate cancer relevant targets AMACR, AR, TP53, and TMPRSS2-ERG. This unified approach to in situ analyses of somatic mutations can empower studies of intra-tumoural heterogeneity and future tissue-based diagnostics of mutations and translocations.
Collapse
Affiliation(s)
- Sara Kiflemariam
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
37
|
van de Stolpe A, den Toonder JMJ. Circulating Tumor Cells: What Is in It for the Patient? A Vision towards the Future. Cancers (Basel) 2014; 6:1195-207. [PMID: 24879438 PMCID: PMC4074824 DOI: 10.3390/cancers6021195] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/22/2014] [Accepted: 05/22/2014] [Indexed: 12/22/2022] Open
Abstract
Knowledge on cellular signal transduction pathways as drivers of cancer growth and metastasis has fuelled development of “targeted therapy” which “targets” aberrant oncogenic signal transduction pathways. These drugs require nearly invariably companion diagnostic tests to identify the tumor-driving pathway and the cause of the abnormal pathway activity in a tumor sample, both for therapy response prediction as well as for monitoring of therapy response and emerging secondary drug resistance. Obtaining sufficient tumor material for this analysis in the metastatic setting is a challenge, and circulating tumor cells (CTCs) may provide an attractive alternative to biopsy on the premise that they can be captured from blood and the companion diagnostic test results are correctly interpreted. We discuss novel companion diagnostic directions, including the challenges, to identify the tumor driving pathway in CTCs, which in combination with a digital pathology platform and algorithms to quantitatively interpret complex CTC diagnostic results may enable optimized therapy response prediction and monitoring. In contrast to CTC-based companion diagnostics, CTC enumeration is envisioned to be largely replaced by cell free tumor DNA measurements in blood for therapy response and recurrence monitoring. The recent emergence of novel in vitro human model systems in the form of cancer-on-a-chip may enable elucidation of some of the so far elusive characteristics of CTCs, and is expected to contribute to more efficient CTC capture and CTC-based diagnostics.
Collapse
Affiliation(s)
- Anja van de Stolpe
- Fellow, Precision and Decentralized Diagnostics, Philips Research, Eindhoven 5656 AE, The Netherlands.
| | - Jaap M J den Toonder
- Chair Microsystems, Eindhoven University of Technology, Postbox 513, Eindhoven 5600 MB, The Netherlands.
| |
Collapse
|
38
|
KURODA A, ISHIGAKI Y, NILSSON M, SATO K, SATO K. Microfluidics-based in situ Padlock/Rolling Circle Amplification System for Counting Single DNA Molecules in a Cell. ANAL SCI 2014; 30:1107-12. [DOI: 10.2116/analsci.30.1107] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Arisa KURODA
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women’s University
| | - Yuri ISHIGAKI
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women’s University
| | - Mats NILSSON
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University
| | - Kiichi SATO
- Division of Molecular Science, School of Science and Technology, Gunma University
| | - Kae SATO
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women’s University
| |
Collapse
|