1
|
Yan J, Yang Y, Liu Y, Shi X, Wu H, Dai M. MicroRNA let-7g links foam cell formation and adipogenic differentiation: A key regulator of Paeonol treating atherosclerosis-osteoporosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155447. [PMID: 38394732 DOI: 10.1016/j.phymed.2024.155447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/30/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUD High comorbidity rates have been reported in patients with atherosclerosis and osteoporosis, posing a serious risk to the health and well-being of elderly patients. To improve and update clinical practice regarding the joint treatment of these two diseases, the common mechanisms of atherosclerosis and osteoporosis need to be clarified. MicroRNAs (miRNAs), are importance molecules in the pathogenesis of human diseases, including in cardiovascular and orthopedic fields. They have garnered interest as potential targets for novel therapeutic strategies. However, the key miRNAs involved in atherosclerosis and osteoporosis and their precise regulation mechanisms remain unknown. Paeonol (Pae), an active ingredient in Cortex Moutan, has shown promising results in improving both lipid and bone metabolic abnormalities. However, it is uncertain whether this agent can exert a cotherapeutic effect on atherosclerosis and osteoporosis. OBJECTIVE This study aimed to screen important shared miRNAs in atherosclerotic and osteoporotic complications, and explore the mechanism of the protective effects of Pae against atherosclerosis and osteoporosis in high-fat diet (HFD)-fed ApoE-/- mice. METHODS An experimental atherosclerosis and osteoporosis model was established in 40-week-old HFD ApoE-/- mice. Various techniques such as Oil Red O staining, HE staining and micro-CT were used to confirm the co-occurrence of these two diseases and efficacy of Pae in addition to the associated biochemical changes. Bioinformatics was used to screen key miRNAs in the atherosclerosis and osteoporosis model, and gene involvement was assessed through serum analyses, qRT-PCR, and western blot. To investigate the effect of Pae on the modulation of the miR let-7g/HMGA2/CEBPβ pathway, Raw 264.7 cells were cocultured with bone marrow mesenchymal stem cells (BMSCs) and treated with an miR let-7g mimic/inhibitor. RESULTS miR let-7g identified using bioinformatics was assessed to evaluate its participation in atherosclerosis-osteoporosis. Experimental analysis showed reduced miR let-7g levels in the atherosclerosis-osteoporosis mice model. Moreover, miR let-7g was required for BMSC - Raw 264.7 cell crosstalk, thereby promoting foam cell formation and adipocyte differentiation. Treatment with Pae significantly reduced plaque accumulation and foam cell number in the aorta while increasing bone density and improving trabecular bone microarchitecture in HFD ApoE-/- mice. Pae also increased the level of miR let-7g in the bloodstream of model mice. In vitro studies, Pae enhanced miR let-7g expression in BMSCs, thereby suppressing the HMGA2/CEBPβ pathway to prevent the formation of foam cells and differentiation of adipocytes induced by oxidized low-density lipoprotein (ox-LDL). CONCLUSION The study results suggested that miR let-7g participates in atherosclerosis -osteoporosis regulation and that Pae acts as a potential therapeutic agent for preventing atherosclerosis-osteoporosis through regulatory effects on the miR let-7g/HMGA2/CEBPβ pathway to hinder foam cell formation and adipocyte differentiation.
Collapse
Affiliation(s)
- Jinjin Yan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China
| | - Yulong Yang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China
| | - Yarong Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China; Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei, Anhui 230012, PR China
| | - Xiaoyan Shi
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China; Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei, Anhui 230012, PR China
| | - Hongfei Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China; Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei, Anhui 230012, PR China.
| | - Min Dai
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China; Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei, Anhui 230012, PR China.
| |
Collapse
|
2
|
Pang HH, Huang CY, Chen PY, Li NS, Hsu YP, Wu JK, Fan HF, Wei KC, Yang HW. Bioengineered Bacteriophage-Like Nanoparticles as RNAi Therapeutics to Enhance Radiotherapy against Glioblastomas. ACS NANO 2023; 17:10407-10422. [PMID: 37120837 DOI: 10.1021/acsnano.3c01102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Since glioblastomas (GBMs) are radioresistant malignancies and most GBM recurrences occur in radiotherapy, increasing the effectiveness of radiotherapy by gene-silencing has recently attracted attention. However, the difficulty in precisely tuning the composition and RNA loading in nanoparticles leads to batch-to-batch variations of the RNA therapeutics, thus significantly restricting their clinical translation. Here, we bioengineer bacteriophage Qβ particles with a designed broccoli light-up three-way junction (b-3WJ) RNA scaffold (contains two siRNA/miRNA sequences and one light-up aptamer) packaging for the silencing of genes in radioresistant GBM cells. The in vitro results demonstrate that the cleavage of de novo designed b-3WJ RNA by Dicer enzyme can be easily monitored in real-time using fluorescence microscopy, and the TrQβ@b-3WJLet-7gsiEGFR successfully knocks down EGFR and IKKα simultaneously and thereby inactivates NF-κB signaling to inhibit DNA repair. Delivery of TrQβ@b-3WJLet-7gsiEGFR through convection-enhanced delivery (CED) infusion followed by 2Gy X-ray irradiation demonstrated that the median survival was prolonged to over 60 days compared with the 2Gy X-ray irradiated group (median survival: 31 days). Altogether, the results of this study could be critical for the design of RNAi-based genetic therapeutics, and CED infusion serves as a powerful delivery system for promoting radiotherapy against GBMs without evidence of systemic toxicity.
Collapse
Affiliation(s)
- Hao-Han Pang
- Department of Biomedical Engineering, National Cheng Kung University, No. 1, University Rd., Tainan 70101, Taiwan
| | - Chiung-Yin Huang
- Department of Neurosurgery, Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, 5 Fuxing St., Guishan Dist., Taoyuan 33305, Taiwan
| | - Pin-Yuan Chen
- Department of Neurosurgery, Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, 5 Fuxing St., Guishan Dist., Taoyuan 33305, Taiwan
- School of Medicine, Chang Gung University, 259 Wenhua 1st Rd., Guishan Dist., Taoyuan 33302, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital, Keelung, 222 Maijin Rd., Keelung 20401, Taiwan
| | - Nan-Si Li
- Department of Biomedical Engineering, National Cheng Kung University, No. 1, University Rd., Tainan 70101, Taiwan
| | - Ying-Pei Hsu
- Department of Biomedical Engineering, National Cheng Kung University, No. 1, University Rd., Tainan 70101, Taiwan
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung 80424, Taiwan
| | - Jan-Kai Wu
- Department of Chemistry, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung 80424, Taiwan
| | - Hsiu-Fang Fan
- Department of Chemistry, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung 80424, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung 80424, Taiwan
| | - Kuo-Chen Wei
- Department of Neurosurgery, Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, 5 Fuxing St., Guishan Dist., Taoyuan 33305, Taiwan
- School of Medicine, Chang Gung University, 259 Wenhua 1st Rd., Guishan Dist., Taoyuan 33302, Taiwan
- Department of Neurosurgery, New Taipei Municipal TuCheng Hospital, 6, Sec 2, JunCheng Rd., New Taipei City 23652, Taiwan
| | - Hung-Wei Yang
- Department of Biomedical Engineering, National Cheng Kung University, No. 1, University Rd., Tainan 70101, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, No. 1, University Rd., Tainan 70101, Taiwan
| |
Collapse
|
3
|
Al-Hawary SIS, Jasim SA, Romero-Parra RM, Bustani GS, Hjazi A, Alghamdi MI, Kareem AK, Alwaily ER, Zabibah RS, Gupta J, Mahmoudi R, Hosseini-Fard S. NLRP3 inflammasome pathway in atherosclerosis: Focusing on the therapeutic potential of non-coding RNAs. Pathol Res Pract 2023; 246:154490. [PMID: 37141699 DOI: 10.1016/j.prp.2023.154490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome pathway has a critical role in the pathogenesis of atherosclerosis. Activation of this pathway is implicated in the subendothelial inflammation and atherosclerosis progression. The NLRP3 inflammasome are cytoplasmic sensors with the distinct capacity to identify a wide range of inflammation-related signals, which enhance NLRP3 inflammasome assembly and allow it to trigger inflammation. This pathway is triggered by a variety of intrinsic signals which exist in atherosclerotic plaques, like cholesterol crystals and oxidized LDL. Further pharmacological findings indicated that NLRP3 inflammasome enhanced caspase-1-mediated secretion of pro-inflammatory mediators like interleukin (IL)- 1β/18. Newly published cutting-edge studies suggested that non-coding RNAs (ncRNAs) including microRNAs (miRNAs, miRs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) are major modulators of NLRP3 inflammasome in atherosclerosis. Therefore, in this review, we aimed to discuss the NLRP3 inflammasome pathway, biogenesis of ncRNAs as well as the modulatory role of ncRNAs in regulating the various mediators of NLRP3 inflammasome pathway including TLR4, NF-kB, NLRP3, and caspase 1. We also discussed the importance of NLRP3 inflammasome pathway-related ncRNAs as a diagnostic biomarker in atherosclerosis and current therapeutics in the modulation of NLRP3 inflammasome in atherosclerosis. Finally, we speak about the limitations and future prospects of ncRNAs in regulating inflammatory atherosclerosis via the NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Al-anbar-Ramadi, Iraq
| | | | | | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Kingdom of Saudi Arabia
| | | | - Ali Kamil Kareem
- Biomedical Engineering Department, Al-Mustaqbal University College, Hillah 51001, Iraq
| | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, UP, India
| | - Reza Mahmoudi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyedreza Hosseini-Fard
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Kafshdooz T, Farajnia S, Sharifi R, Najmi S. Hsa-let-7g-5p, a circulating microRNA, as a biomarker for Alzheimer's disease. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2023.101203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
|
5
|
Sirt6 inhibits vascular endothelial cell pyroptosis by regulation of the Lin28b/let-7 pathway in atherosclerosis. Int Immunopharmacol 2022; 110:109056. [DOI: 10.1016/j.intimp.2022.109056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/03/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022]
|
6
|
Mo L, Ma C, Wang Z, Li J, He W, Niu W, Chen Z, Zhou C, Liu Y. Integrated Bioinformatic Analysis of the Shared Molecular Mechanisms Between Osteoporosis and Atherosclerosis. Front Endocrinol (Lausanne) 2022; 13:950030. [PMID: 35937806 PMCID: PMC9353191 DOI: 10.3389/fendo.2022.950030] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
Background Osteoporosis and atherosclerosis are common in the elderly population, conferring a heavy worldwide burden. Evidence links osteoporosis and atherosclerosis but the exact underlying common mechanism of its occurrence is unclear. The purpose of this study is to further explore the molecular mechanism between osteoporosis and atherosclerosis through integrated bioinformatic analysis. Methods The microarray data of osteoporosis and atherosclerosis in the Gene Expression Omnibus (GEO) database were downloaded. The Weighted Gene Co-Expression Network Analysis (WGCNA) and differentially expressed genes (DEGs) analysis were used to identify the co-expression genes related to osteoporosis and atherosclerosis. In addition, the common gene targets of osteoporosis and atherosclerosis were analyzed and screened through three public databases (CTD, DISEASES, and GeneCards). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed by Metascape. Then, the common microRNAs (miRNAs) in osteoporosis and atherosclerosis were screened out from the Human microRNA Disease Database (HMDD) and the target genes of whom were predicted through the miRTarbase. Finally, the common miRNAs-genes network was constructed by Cytoscape software. Results The results of common genes analysis showed that immune and inflammatory response may be a common feature in the pathophysiology of osteoporosis and atherosclerosis. Six hub genes (namely, COL1A1, IBSP, CTSD, RAC2, MAF, and THBS1) were obtained via taking interaction of different analysis results. The miRNAs-genes network showed that has-let-7g might play an important role in the common mechanisms between osteoporosis and atherosclerosis. Conclusion This study provides new sights into shared molecular mechanisms between osteoporosis and atherosclerosis. These common pathways and hub genes may offer promising clues for further experimental studies.
Collapse
Affiliation(s)
- Liang Mo
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chao Ma
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhangzheng Wang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianxiong Li
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei He
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, Guangzhou, China
| | - Wei Niu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhengqiu Chen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chi Zhou
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuhao Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
7
|
Wang L, Wu T, Si C, Wang H, Yue K, Shang S, Li X, Chen Y, Guan H. Danlou Tablet Activates Autophagy of Vascular Adventitial Fibroblasts Through PI3K/Akt/mTOR to Protect Cells From Damage Caused by Atherosclerosis. Front Pharmacol 2021; 12:730525. [PMID: 34867337 PMCID: PMC8637544 DOI: 10.3389/fphar.2021.730525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/11/2021] [Indexed: 01/23/2023] Open
Abstract
Danlou tablet (DLT), a commercial Chinese patent medicine, has been widely used to treat cardiovascular diseases for many years. Atherosclerosis (AS) is the leading cause of cardiovascular disease. Increasing evidence indicates that autophagy plays a vital role in the development of AS. Here we investigated whether DLT could activate autophagy to improve AS and further clarified its underlying mechanisms. In an ApoE−/− mice model, the results of Oil red O, Masson’s trichrome, and H&E staining techniques showed that DLT significantly inhibited lipid accumulation and fibrosis formation in atherosclerotic plaque tissue. DLT also inhibited serum triglyceride, cholesterol, and low-density lipoprotein levels and suppressed serum levels of inflammatory factors interleukin-6 and tumor necrosis factor-α in ApoE−/− mice. Moreover, DLT suppressed proliferation, migration, and invasion of human vascular adventitial fibroblasts (HVAFs) by inhibiting the PI3K/Akt/mTOR pathway. In addition, western blot analysis showed that Danlou tablet treatment decreased the expression of p62 and increased Beclin 1 and LC3 I -to-LC3 II ratios in HVAFs. The role of autophagy in treating atherosclerosis by DLT is confirmed by 3-methyladenine (autophagy inhibitor) and rapamycin (autophagy activator) in HVAFs. In summary, DLT activated PI3K/Akt/mTOR-mediated autophagy of vascular adventitial fibroblasts to protect cells from damage caused by atherosclerosis.
Collapse
Affiliation(s)
- Li Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Tong Wu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunying Si
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - He Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Ke Yue
- The First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shasha Shang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaohui Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yushan Chen
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Huaimin Guan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
8
|
Fatmi A, Chabni N, Cernada M, Vento M, González-López M, Aribi M, Pallardó FV, García-Giménez JL. Clinical and immunological aspects of microRNAs in neonatal sepsis. Biomed Pharmacother 2021; 145:112444. [PMID: 34808550 DOI: 10.1016/j.biopha.2021.112444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Neonatal sepsis constitutes a highly relevant public health challenge and is the most common cause of infant morbidity and mortality worldwide. Recent studies have demonstrated that during infection epigenetic changes may occur leading to reprogramming of gene expression. Post-transcriptional regulation by short non-coding RNAs (e.g., microRNAs) have recently acquired special relevance because of their role in the regulation of the pathophysiology of sepsis and their potential clinical use as biomarkers. ~22-nucleotide of microRNAs are not only involved in regulating multiple relevant cellular and molecular functions, such as immune cell function and inflammatory response, but have also been proposed as good candidates as biomarkers in sepsis. Nevertheless, establishing clinical practice guidelines based on microRNA patterns as biomarkers for diagnosis and prognosis in neonatal sepsis has yet to be achieved. Given their differential expression across tissues in neonates, the release of specific microRNAs to blood and their expression pattern can differ compared to sepsis in adult patients. Further in-depth research is necessary to fully understand the biological relevance of microRNAs and assess their potential use in clinical settings. This review provides a general overview of microRNAs, their structure, function and biogenesis before exploring their potential clinical interest as diagnostic and prognostic biomarkers of neonatal sepsis. An important part of the review is focused on immune and inflammatory aspects of selected microRNAs that may become biomarkers for clinical use and therapeutic intervention.
Collapse
Affiliation(s)
- Ahlam Fatmi
- Laboratory of Applied Molecular Biology and Immunology, University of Tlemcen, W0414100, 13000 Tlemcen, Algeria
| | - Nafissa Chabni
- Faculty of Medicine, Tlemcen Medical Centre University, 13000 Tlemcen, Algeria
| | - María Cernada
- Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain; Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Máximo Vento
- Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain; Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - María González-López
- Department of Pediatrics. Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, University of Tlemcen, W0414100, 13000 Tlemcen, Algeria; Biotechnology Center of Constantine (CRBt), 25000 Constantine, Algeria
| | - Federico V Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain; INCLIVA Health Research Institute, Mixed Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain; INCLIVA Health Research Institute, Mixed Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.
| |
Collapse
|
9
|
Zingg JM, Vlad A, Ricciarelli R. Oxidized LDLs as Signaling Molecules. Antioxidants (Basel) 2021; 10:antiox10081184. [PMID: 34439432 PMCID: PMC8389018 DOI: 10.3390/antiox10081184] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022] Open
Abstract
Levels of oxidized low-density lipoproteins (oxLDLs) are usually low in vivo but can increase whenever the balance between formation and scavenging of free radicals is impaired. Under normal conditions, uptake and degradation represent the physiological cellular response to oxLDL exposure. The uptake of oxLDLs is mediated by cell surface scavenger receptors that may also act as signaling molecules. Under conditions of atherosclerosis, monocytes/macrophages and vascular smooth muscle cells highly exposed to oxLDLs tend to convert to foam cells due to the intracellular accumulation of lipids. Moreover, the atherogenic process is accelerated by the increased expression of the scavenger receptors CD36, SR-BI, LOX-1, and SRA in response to high levels of oxLDL and oxidized lipids. In some respects, the effects of oxLDLs, involving cell proliferation, inflammation, apoptosis, adhesion, migration, senescence, and gene expression, can be seen as an adaptive response to the rise of free radicals in the vascular system. Unlike highly reactive radicals, circulating oxLDLs may signal to cells at more distant sites and possibly trigger a systemic antioxidant defense, thus elevating the role of oxLDLs to that of signaling molecules with physiological relevance.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Correspondence: (J.-M.Z.); (R.R.); Tel.: +1-(305)-2433531 (J.-M.Z.); +39-010-3538831 (R.R.)
| | - Adelina Vlad
- Physiology Department, “Carol Davila” UMPh, 020021 Bucharest, Romania;
| | - Roberta Ricciarelli
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Correspondence: (J.-M.Z.); (R.R.); Tel.: +1-(305)-2433531 (J.-M.Z.); +39-010-3538831 (R.R.)
| |
Collapse
|
10
|
Javadifar A, Rastgoo S, Banach M, Jamialahmadi T, Johnston TP, Sahebkar A. Foam Cells as Therapeutic Targets in Atherosclerosis with a Focus on the Regulatory Roles of Non-Coding RNAs. Int J Mol Sci 2021; 22:ijms22052529. [PMID: 33802600 PMCID: PMC7961492 DOI: 10.3390/ijms22052529] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a major cause of human cardiovascular disease, which is the leading cause of mortality around the world. Various physiological and pathological processes are involved, including chronic inflammation, dysregulation of lipid metabolism, development of an environment characterized by oxidative stress and improper immune responses. Accordingly, the expansion of novel targets for the treatment of atherosclerosis is necessary. In this study, we focus on the role of foam cells in the development of atherosclerosis. The specific therapeutic goals associated with each stage in the formation of foam cells and the development of atherosclerosis will be considered. Processing and metabolism of cholesterol in the macrophage is one of the main steps in foam cell formation. Cholesterol processing involves lipid uptake, cholesterol esterification and cholesterol efflux, which ultimately leads to cholesterol equilibrium in the macrophage. Recently, many preclinical studies have appeared concerning the role of non-encoding RNAs in the formation of atherosclerotic lesions. Non-encoding RNAs, especially microRNAs, are considered regulators of lipid metabolism by affecting the expression of genes involved in the uptake (e.g., CD36 and LOX1) esterification (ACAT1) and efflux (ABCA1, ABCG1) of cholesterol. They are also able to regulate inflammatory pathways, produce cytokines and mediate foam cell apoptosis. We have reviewed important preclinical evidence of their therapeutic targeting in atherosclerosis, with a special focus on foam cell formation.
Collapse
Affiliation(s)
- Amin Javadifar
- Department of Allergy and Immunology, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran; (A.J.); (S.R.)
| | - Sahar Rastgoo
- Department of Allergy and Immunology, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran; (A.J.); (S.R.)
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, 93338 Lodz, Poland
- Polish Mother’s Memorial Hospital Research Institute (PMMHRI), 93338 Lodz, Poland
- Correspondence: (M.B.); or (A.S.); Tel.: +98-5118002288 (M.B. & A.S.); Fax: +98-5118002287 (M.B. & A.S.)
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan 9479176135, Iran;
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Thomas P. Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108-2718, USA;
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Correspondence: (M.B.); or (A.S.); Tel.: +98-5118002288 (M.B. & A.S.); Fax: +98-5118002287 (M.B. & A.S.)
| |
Collapse
|
11
|
Poznyak AV, Nikiforov NG, Markin AM, Kashirskikh DA, Myasoedova VA, Gerasimova EV, Orekhov AN. Overview of OxLDL and Its Impact on Cardiovascular Health: Focus on Atherosclerosis. Front Pharmacol 2021; 11:613780. [PMID: 33510639 PMCID: PMC7836017 DOI: 10.3389/fphar.2020.613780] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular pathologies maintain the leading position in mortality worldwide. Atherosclerosis is a chronic disease that can result in a variety of serious complications, such as myocardial infarction, stroke, and cardiovascular disease. Inflammation and lipid metabolism alterations play a crucial role in atherogenesis, but the details of relationships and causality of these fundamental processes remain not clear. The oxidation of LDL was considered the main atherogenic modification of LDL within the vascular wall for decades. However, recent investigations provided a growing body of evidence in support of the multiple LDL modification theory. It suggests that LDL particles undergo numerous modifications that change their size, density, and chemical properties within the blood flow and vascular wall. Oxidation is the last stage in this cascade resulting in the atherogenic properties. Moreover, recent investigations have discovered that oxLDL may have both anti-inflammatory and pro-inflammatory properties. Oxidized LDL can trigger inflammation through the activation of macrophages and other cells. After all, oxidized LDL is still a promising object for further investigations that have the potential to clarify the unknown parts of the atherogenic process. In this review, we discuss the role of oxLDL in atherosclerosis development on different levels.
Collapse
Affiliation(s)
- Anastasia V Poznyak
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - Nikita G Nikiforov
- Centre of Collective Usage, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Center of Cardiology, Institute of Experimental Cardiology, Moscow, Russia.,Laboratory of Cellular and Molecular Pathology of the Cardiovascular System, Institute of Human Morphology, Moscow, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Alexander M Markin
- Laboratory of Cellular and Molecular Pathology of the Cardiovascular System, Institute of Human Morphology, Moscow, Russia
| | - Dmitry A Kashirskikh
- Laboratory of Cellular and Molecular Pathology of the Cardiovascular System, Institute of Human Morphology, Moscow, Russia
| | - Veronika A Myasoedova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia.,Centro Cardiologico Monzino, Istituti di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Elena V Gerasimova
- Department of Systemic Rheumatic Diseases, V.A. Nasonova Research Institute of Rheumatology, Moscow, Russia
| | - Alexander N Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia.,Laboratory of Cellular and Molecular Pathology of the Cardiovascular System, Institute of Human Morphology, Moscow, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
12
|
Mills WT, Nassar NN, Ravindra D, Li X, Meffert MK. Multi-Level Regulatory Interactions between NF-κB and the Pluripotency Factor Lin28. Cells 2020; 9:E2710. [PMID: 33348917 PMCID: PMC7767241 DOI: 10.3390/cells9122710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/22/2022] Open
Abstract
An appreciation for the complex interactions between the NF-κB transcription factor and the Lin28 RNA binding protein/let-7 microRNA pathways has grown substantially over the past decade. Both the NF-κB and Lin28/let-7 pathways are master regulators impacting cell survival, growth and proliferation, and an understanding of how interfaces between these pathways participate in governing pluripotency, progenitor differentiation, and neuroplastic responses remains an emerging area of research. In this review, we provide a concise summary of the respective pathways and focus on the function of signaling interactions at both the transcriptional and post-transcriptional levels. Regulatory loops capable of providing both reinforcing and extinguishing feedback have been described. We highlight convergent findings in disparate biological systems and indicate future directions for investigation.
Collapse
Affiliation(s)
- William T. Mills
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (W.T.M.IV); (N.N.N.); (D.R.); (X.L.)
| | - Noor N. Nassar
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (W.T.M.IV); (N.N.N.); (D.R.); (X.L.)
| | - Deepa Ravindra
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (W.T.M.IV); (N.N.N.); (D.R.); (X.L.)
| | - Xinbei Li
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (W.T.M.IV); (N.N.N.); (D.R.); (X.L.)
| | - Mollie K. Meffert
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (W.T.M.IV); (N.N.N.); (D.R.); (X.L.)
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
13
|
Gao S, Xue X, Yin J, Gao L, Li Z, Li L, Gao S, Wang S, Liang R, Xu Y, Yu C, Zhu Y. Danlou tablet inhibits the inflammatory reaction of high-fat diet-induced atherosclerosis in ApoE knockout mice with myocardial ischemia via the NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113158. [PMID: 32745509 DOI: 10.1016/j.jep.2020.113158] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 06/08/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danlou tablet (DLT), a traditional herbal formula, has been used to treat chest discomfort (coronary atherosclerosis) in China. Although the anti-inflammatory activities of DLT have been proposed previously, the mechanisms of DLT in treating atherosclerosis with myocardial ischemia (AWMI) remain unknown. AIM OF THE STUDY Atherosclerosis can result in heart disease caused by stenosis or occlusion of the lumen, resulting in myocardial ischemia, hypoxia, or necrosis. In recent years, changes in people's diets, increased stress, and secondary fatigue and obesity etc. have resulted in increases in the number of patients with atherosclerosis. In cases where the condition has further developed, patients may suffer from myocardial ischemia, hypoxia, or necrosis. Many traditional Chinese medicine compounds have been prescribed for the treatment of AWMI. DLT has been used to treat chest discomfort (coronary atherosclerosis) in China. Based on previous research, the aim of this study was to further investigate the effect of DLT on AWMI, and describe the underlying mechanisms. MATERIALS AND METHODS To achieve this, an animal model of AWMI was established using apolipoprotein E (ApoE-/-) mice fed a high fat diet combined with isoprenaline (ISO) injection. For comparison, mouse models of only atherosclerosis and only myocardial ischemia were included. In the treatment groups, mice were treated daily with DLT at 700 mg/kg for four weeks. Echocardiographic evaluation, hematoxylin and eosin (H&E) staining, oil red O staining, ELISAs, Western blots, and immunohistochemical analyses were subsequently used to investigate the mechanism of DLT based on the NF-κB signaling pathway. RESULTS The results indicate that the use of DLT is effective, to varying degrees, for the treatment of atherosclerosis, myocardial ischemia, and AWMI in mice. After DLT treatment, the left ventricular structure and morphology of the mice, the histopathology of cardiac tissue, and atherosclerotic plaques in the aortas all improved to varying degrees. DLT could play a therapeutic role by regulating the NF-κB signaling pathway related to inflammatory factors, including TNF-α, IL-6, IL-1β, IL-8, MMP-1 and MMP-2, as well as protein expression of NF-κB p-50 and IκB-α, and positive cell expression of NF-κB p-50, IκB-α and phospho-NF-κB p-50 in the model mice. CONCLUSION These preliminary results indicate that the therapeutic efficacy of DLT on high-fat diet-induced atherosclerosis in ApoE-/- mice with myocardial ischemia could be exerted at least in part by regulating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Shan Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Xiaoxue Xue
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Jia Yin
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Lina Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China; College of Pharmacy, Jining Medical University, Rizhao, PR China.
| | - Zhu Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Lin Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Shuming Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Shuo Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Ru Liang
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Yilan Xu
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Chunquan Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Yan Zhu
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| |
Collapse
|
14
|
Lightbody RJ, Taylor JMW, Dempsie Y, Graham A. MicroRNA sequences modulating inflammation and lipid accumulation in macrophage “foam” cells: Implications for atherosclerosis. World J Cardiol 2020; 12:303-333. [PMID: 32843934 PMCID: PMC7415235 DOI: 10.4330/wjc.v12.i7.303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Accumulation of macrophage “foam” cells, laden with cholesterol and cholesteryl ester, within the intima of large arteries, is a hallmark of early “fatty streak” lesions which can progress to complex, multicellular atheromatous plaques, involving lipoproteins from the bloodstream and cells of the innate and adaptive immune response. Sterol accumulation triggers induction of genes encoding proteins mediating the atheroprotective cholesterol efflux pathway. Within the arterial intima, however, this mechanism is overwhelmed, leading to distinct changes in macrophage phenotype and inflammatory status. Over the last decade marked gains have been made in understanding of the epigenetic landscape which influence macrophage function, and in particular the importance of small non-coding micro-RNA (miRNA) sequences in this context. This review identifies some of the miRNA sequences which play a key role in regulating “foam” cell formation and atherogenesis, highlighting sequences involved in cholesterol accumulation, those influencing inflammation in sterol-loaded cells, and novel sequences and pathways which may offer new strategies to influence macrophage function within atherosclerotic lesions.
Collapse
Affiliation(s)
- Richard James Lightbody
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Janice Marie Walsh Taylor
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Yvonne Dempsie
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Annette Graham
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| |
Collapse
|
15
|
Aharon A, Spector P, Ahmad RS, Horrany N, Sabbach A, Brenner B, Aharon-Peretz J. Extracellular Vesicles of Alzheimer's Disease Patients as a Biomarker for Disease Progression. Mol Neurobiol 2020; 57:4156-4169. [PMID: 32676990 DOI: 10.1007/s12035-020-02013-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 07/08/2020] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative brain pathology and the most common form of dementia. Evidence suggests that extracellular vesicles (EVs) containing cytokines and microRNA are involved in inflammation regulation. The current study aimed to explore a potential impact of AD patients' EVs on disease progression. Blood samples were collected after obtaining signed informed consent (No. 0462-14-RMB) from 42 AD patients at three stages of disease severity and from 19 healthy controls (HC). EV size and concentration were studied by nanotracking analysis. EV membrane antigens were defined by flow cytometry and Western blot; EV protein contents were screened by protein array; the miRNA content was screened by nanostring technology and validated by RT-PCR. HC and AD patients' EVs consisted of a mixture of small (< 100 nm) and larger vesicles. The myelin oligodendrocyte glycoprotein (MOG) expression on EVs correlated with disease severity. EVs of patients with moderate and severe AD had significantly higher levels of MOG, compared with mild AD patients. Levels of EVs expressing the axonal glycoprotein CD171 were significantly higher in severe AD patients than in HC. Increase in endothelial EVs was observed in AD patients. An above twofold increase was found in the content of inflammatory cytokines and > 50% decrease in growth factors in AD patients' EVs compared with HC-EVs. Levels of let-7g-5p, miR126-3p, miR142-3p, miR-146a-5p, and mir223-3p correlated with disease severity. Neural damage, specific miRNA downregulation, and inflammatory cytokine upregulation, found in patients' EVs, might be used as a biomarker reflecting AD severity.
Collapse
Affiliation(s)
- Anat Aharon
- Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel. .,Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel. .,Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| | - Polina Spector
- Cognitive Neurology Unit, Rambam Health Care Campus, Haifa, Israel
| | | | - Nizar Horrany
- Cognitive Neurology Unit, Rambam Health Care Campus, Haifa, Israel
| | - Annie Sabbach
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel
| | - Benjamin Brenner
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel.,Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Judith Aharon-Peretz
- Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Cognitive Neurology Unit, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
16
|
Cheng M, Wang B, Yang M, Ma J, Ye Z, Xie L, Zhou M, Chen W. microRNAs expression in relation to particulate matter exposure: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113961. [PMID: 32006883 DOI: 10.1016/j.envpol.2020.113961] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/27/2019] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
MicroRNAs (miRNAs) are a class of small, non-coding RNAs with a post-transcriptional regulatory function on gene expression and cell processes, including proliferation, apoptosis and differentiation. In recent decades, miRNAs have attracted increasing interest to explore the role of epigenetics in response to air pollution. Air pollution, which always contains kinds of particulate matters, are able to reach respiratory tract and blood circulation and then causing epigenetics changes. In addition, extensive studies have illustrated that miRNAs serve as a bridge between particulate matter exposure and health-related effects, like inflammatory cytokines, blood pressure, vascular condition and lung function. The purpose of this review is to summarize the present knowledge about the expression of miRNAs in response to particulate matter exposure. Epidemiological and experimental studies were reviewed in two parts according to the size and source of particles. In this review, we also discussed various functions of the altered miRNAs and predicted potential biological mechanism participated in particulate matter-induced health effects. More rigorous studies are worth conducting to understand contribution of particulate matter on miRNAs alteration and the etiology between environmental exposure and disease development.
Collapse
Affiliation(s)
- Man Cheng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jixuan Ma
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zi Ye
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Xie
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
17
|
|
18
|
Zare N, Haghjooy Javanmard SH, Mehrzad V, Eskandari N, Andalib AR. Effect of Plasma-Derived Exosomes of Refractory/Relapsed or Responsive Patients with Diffuse Large B-Cell Lymphoma on Natural Killer Cells Functions. CELL JOURNAL 2019; 22:40-54. [PMID: 31606965 PMCID: PMC6791076 DOI: 10.22074/cellj.2020.6550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022]
Abstract
Objective The purpose of this study was to investigate effect of plasma-derived exosomes of refractory/relapsed or
responsive diffuse large B-cell lymphoma (DLBCL) patients on natural killer (NK) cell functions.
Materials and Methods In this cross-sectional and experimental study, NK cells were purified from responsive patients
(n=10) or refractory/relapsed patients (n=12) and healthy donors (n=12). NK cells were treated with plasma-derived
exosomes of responsive or refractory/relapsed patients. We examined the expression levels of hsa-miR-155-5p, hsa-
let-7g-5p, INPP5D (SHIP-1) and SOCS-1 in NK cells quantitative reverse transcription-polymerase chain reaction
(qRT-PCR). Percentages of NK cells expressing CD69, NKG2D and CD16, NK cell cytotoxicity and NK cell proliferation
(using flow-cytometry) as well as interferon-gamma (IFN-γ) level in the supernatant of NK cells using ELISA were also
investigated.
Results We observed an increased level of hsa-miR-155-5p and a decreased level of SOCS-1 in NK cells
treated with exosomes compared to untreated NK cell in healthy donors and DLBCL patients. An increase in
hsa-miR-155-5p level was associated with an increased level of IFN-γ in healthy donors. The decreased levels
of hsa-let-7g-5p were observed in NK cells treated with exosomes in comparison with untreated NK cells in
DLBCL patients (P<0.05). There was no significant difference in the percentage of CD69+NK cells and NKG2D+
NK cells in the absence or presence of exosomes of DLBCL patients in each group. Furthermore, we observed
significant reduction of NK cell proliferation in DLBCL patients and healthy donors in the presence of exosomes
of refractory/relapsed patients (P<0.05). A significant decrease was observed in cytotoxicity of NK cell in patients
with DLBCL treated with exosomes of responsive patients.
Conclusion Our findings demonstrated adverse effect of plasma-derived exosomes of DLBCL patients on some functions
of NK cell. It was also determined that low NK cell count might be associated with impaired response to R-CHOP and an
increased recurrence risk of cancer.
Collapse
Affiliation(s)
- Nasrin Zare
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - S Haghayegh Haghjooy Javanmard
- Department of Physiology, School of Medicine and Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Valiollah Mehrzad
- Department of Hematology and Medical Oncology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nahid Eskandari
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.Electronic Address:
| | - Ali Reza Andalib
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
19
|
Hardeland R. Aging, Melatonin, and the Pro- and Anti-Inflammatory Networks. Int J Mol Sci 2019; 20:ijms20051223. [PMID: 30862067 PMCID: PMC6429360 DOI: 10.3390/ijms20051223] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022] Open
Abstract
Aging and various age-related diseases are associated with reductions in melatonin secretion, proinflammatory changes in the immune system, a deteriorating circadian system, and reductions in sirtuin-1 (SIRT1) activity. In non-tumor cells, several effects of melatonin are abolished by inhibiting SIRT1, indicating mediation by SIRT1. Melatonin is, in addition to its circadian and antioxidant roles, an immune stimulatory agent. However, it can act as either a pro- or anti-inflammatory regulator in a context-dependent way. Melatonin can stimulate the release of proinflammatory cytokines and other mediators, but also, under different conditions, it can suppress inflammation-promoting processes such as NO release, activation of cyclooxygenase-2, inflammasome NLRP3, gasdermin D, toll-like receptor-4 and mTOR signaling, and cytokine release by SASP (senescence-associated secretory phenotype), and amyloid-β toxicity. It also activates processes in an anti-inflammatory network, in which SIRT1 activation, upregulation of Nrf2 and downregulation of NF-κB, and release of the anti-inflammatory cytokines IL-4 and IL-10 are involved. A perhaps crucial action may be the promotion of macrophage or microglia polarization in favor of the anti-inflammatory phenotype M2. In addition, many factors of the pro- and anti-inflammatory networks are subject to regulation by microRNAs that either target mRNAs of the respective factors or upregulate them by targeting mRNAs of their inhibitor proteins.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, 37073 Göttingen, Germany.
| |
Collapse
|
20
|
Fernández I, Fernandes JM, Roberto VP, Kopp M, Oliveira C, Riesco MF, Dias J, Cox CJ, Leonor Cancela M, Cabrita E, Gavaia P. Circulating small non-coding RNAs provide new insights into vitamin K nutrition and reproductive physiology in teleost fish. Biochim Biophys Acta Gen Subj 2019; 1863:39-51. [DOI: 10.1016/j.bbagen.2018.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 12/23/2022]
|
21
|
Indoxyl Sulfate Promotes Macrophage IL-1β Production by Activating Aryl Hydrocarbon Receptor/NF-κ/MAPK Cascades, but the NLRP3 inflammasome Was Not Activated. Toxins (Basel) 2018; 10:toxins10030124. [PMID: 29543732 PMCID: PMC5869412 DOI: 10.3390/toxins10030124] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/11/2018] [Accepted: 03/13/2018] [Indexed: 02/07/2023] Open
Abstract
In chronic kidney disease (CKD) patients, accumulation of uremic toxins is associated with cardiovascular risk and mortality. One of the hallmarks of kidney disease-related cardiovascular disease is intravascular macrophage inflammation, but the mechanism of the reaction with these toxins is not completely understood. Macrophages differentiated from THP-1 cells were exposed to indoxyl sulfate (IS), a representative uremic toxin, and changes in inflammatory cytokine production and intracellular signaling molecules including interleukin (IL)-1, aryl hydrocarbon receptor (AhR), nuclear factor (NF)-κ, and mitogen-activated protein kinase (MAPK) cascades as well as the NLRP3 inflammasome were quantified by real-time PCR, Western blot analysis, and enzyme-linked immunosorbent assay. IS induced macrophage pro-IL-1β mRNA expression, although mature IL-1 was only slightly increased. IS increased AhR and the AhR-related mRNA expression; this change was suppressed by administration of proteasome inhibitor. IS promoted phosphorylation of NF-κB p65 and MAPK enzymes; the reaction and IL-1 expression were inhibited by BAY11-7082, an inhibitor of NF-κB. In contrast, IS decreased NLRP3 and did not change ASC, pro-caspase 1, or caspase-1 activation. IS-inducing inflammation in macrophages results from accelerating AhR-NF-κB/MAPK cascades, but the NLRP3 inflammasome was not activated. These reactions may restrict mature IL-1β production, which may explain sustained chronic inflammation in CKD patients.
Collapse
|