1
|
Yeo IJ, Yu JE, Kim SH, Kim DH, Jo M, Son DJ, Yun J, Han SB, Hong JT. TNF receptor 2 knockout mouse had reduced lung cancer growth and schizophrenia-like behavior through a decrease in TrkB-dependent BDNF level. Arch Pharm Res 2024; 47:341-359. [PMID: 38592583 PMCID: PMC11045614 DOI: 10.1007/s12272-024-01487-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 03/07/2024] [Indexed: 04/10/2024]
Abstract
The relationship between schizophrenia (SCZ) and cancer development remains controversial. Based on the disease-gene association platform, it has been revealed that tumor necrosis factor receptor (TNFR) could be an important mediatory factor in both cancer and SCZ development. TNF-α also increases the expression of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) in the development of SCZ and tumor, but the role of TNFR in mediating the association between the two diseases remains unclear. We studied the vital roles of TNFR2 in the progression of tumor and SCZ-like behavior using A549 lung cancer cell xenografted TNFR2 knockout mice. TNFR2 knockout mice showed significantly decreased tumor size and weight as well as schizophrenia-like behaviors compared to wild-type mice. Consistent with the reduced tumor growth and SCZ-like behaviors, the levels of TrkB and BDNF expression were significantly decreased in the lung tumor tissues and pre-frontal cortex of TNFR2 knockout mice. However, intravenous injection of BDNF (160 μg/kg) to TNFR2 knockout mice for 4 weeks increased tumor growth and SCZ-like behaviors as well as TrkB expression. In in vitro study, significantly decreased cell growth and expression of TrkB and BDNF by siTNFR2 transfection were found in A549 lung cancer cells. However, the addition of BDNF (100 ng/ml) into TNFR2 siRNA transfected A549 lung cancer cells recovered cell growth and the expression of TrkB. These results suggest that TNFR2 could be an important factor in mediating the comorbidity between lung tumor growth and SCZ development through increased TrkB-dependent BDNF levels.
Collapse
MESH Headings
- Animals
- Brain-Derived Neurotrophic Factor/metabolism
- Brain-Derived Neurotrophic Factor/genetics
- Mice, Knockout
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Lung Neoplasms/genetics
- Humans
- Mice
- Schizophrenia/metabolism
- Schizophrenia/genetics
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Receptors, Tumor Necrosis Factor, Type II/deficiency
- Receptor, trkB/metabolism
- Receptor, trkB/genetics
- A549 Cells
- Male
- Behavior, Animal/drug effects
- Cell Proliferation/drug effects
- Mice, Inbred C57BL
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
Collapse
Affiliation(s)
- In Jun Yeo
- College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Ji Eun Yu
- College of Pharmacy, Mokpo National University, 1666, Yeongsan-ro, Muan-gun, Jeonnam, 58554, Republic of Korea
| | - Sung-Hyun Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Dae Hwan Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Miran Jo
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea.
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea.
| |
Collapse
|
2
|
Moessinger H, Jacob L, Smith L, Koyanagi A, Kostev K. Psychiatric disorder and its association with gastrointestinal cancer: a retrospective cohort study with 45,842 patients in Germany. J Cancer Res Clin Oncol 2023; 149:14509-14518. [PMID: 37573275 DOI: 10.1007/s00432-023-05229-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/29/2023] [Indexed: 08/14/2023]
Abstract
PURPOSE Psychiatric disorders and cancer are both common, and comorbidity has detrimental impacts on cancer outcomes. Previous studies focus on affective disorders which arise after cancer diagnosis, not on the impact of psychiatric disorders on cancer risk. We investigate the association between psychiatric disorders and subsequent gastrointestinal cancer in a large cohort in Germany. METHODS This case-control study used secondary data (electronic medical records) from the national IQVIA Disease Analyzer database. We evaluated the association between previous psychiatric diagnosis in 44,582 matched patients with and without gastrointestinal (GI) cancer. Regression analyses were stratified by psychiatric diagnosis and adjusted by chronic comorbidities and previous psychiatric treatments. RESULTS No association between any previous psychiatric disease and GI cancers was found (OR = 0.98 (0.95-1.02 95%CL, p = 0.39). Previous psychosomatic disorder and GI cancer showed a significant negative association (OR: 0.86, 0.81-0.90 95%CL, p < 0.0001). No association was found between previous diagnosis with depression or PTSD and GI cancer. These results remained consistent when including previous psychiatric treatments in the regression analyses. CONCLUSION Psychiatric disease was not associated with GI cancer risk. Further investigation into the pathways linking psychiatric disease and cancer needs to be conducted, taking into consideration psychiatric treatments administered, to enhance our understanding of the relationship between these two common and devastating diseases.
Collapse
Affiliation(s)
| | - Louis Jacob
- Department of Physical Medicine and Rehabilitation, Université Paris Cité, AP-HP, Lariboisière-Fernand Widal Hospital, Paris, France
- Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases (EpiAgeing), Université Paris Cité, Paris, France
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, ISCIII, Dr. Antoni Pujadas, Barcelona, Spain
| | - Lee Smith
- Centre for Health, Performance, and Wellbeing, Anglia Ruskin University, Cambridge, UK
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, ISCIII, Dr. Antoni Pujadas, Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Pg. Lluis Companys 23, Barcelona, Spain
| | - Karel Kostev
- Epidemiology, IQVIA, Frankfurt, Germany.
- Department of Gynecology and Obstetrics, University Hospital Marburg, Philipps-University Marburg, Baldingerstraße, 35043, Marburg, Germany.
| |
Collapse
|
3
|
Hamoud AR, Bach K, Kakrecha O, Henkel N, Wu X, McCullumsmith RE, O’Donovan SM. Adenosine, Schizophrenia and Cancer: Does the Purinergic System Offer a Pathway to Treatment? Int J Mol Sci 2022; 23:ijms231911835. [PMID: 36233136 PMCID: PMC9570456 DOI: 10.3390/ijms231911835] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
For over a century, a complex relationship between schizophrenia diagnosis and development of many cancers has been observed. Findings from epidemiological studies are mixed, with reports of increased, reduced, or no difference in cancer incidence in schizophrenia patients. However, as risk factors for cancer, including elevated smoking rates and substance abuse, are commonly associated with this patient population, it is surprising that cancer incidence is not higher. Various factors may account for the proposed reduction in cancer incidence rates including pathophysiological changes associated with disease. Perturbations of the adenosine system are hypothesized to contribute to the neurobiology of schizophrenia. Conversely, hyperfunction of the adenosine system is found in the tumor microenvironment in cancer and targeting the adenosine system therapeutically is a promising area of research in this disease. We outline the current biochemical and pharmacological evidence for hypofunction of the adenosine system in schizophrenia, and the role of increased adenosine metabolism in the tumor microenvironment. In the context of the relatively limited literature on this patient population, we discuss whether hypofunction of this system in schizophrenia, may counteract the immunosuppressive role of adenosine in the tumor microenvironment. We also highlight the importance of studies examining the adenosine system in this subset of patients for the potential insight they may offer into these complex disorders.
Collapse
Affiliation(s)
- Abdul-Rizaq Hamoud
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Karen Bach
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Ojal Kakrecha
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Nicholas Henkel
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Xiaojun Wu
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Robert E. McCullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
- Neurosciences Institute, ProMedica, Toledo, OH 43606, USA
| | - Sinead M. O’Donovan
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
- Correspondence:
| |
Collapse
|
4
|
Wootten JC, Wiener JC, Blanchette PS, Anderson KK. Cancer incidence and stage at diagnosis among people with psychotic disorders: Systematic review and meta-analysis. Cancer Epidemiol 2022; 80:102233. [PMID: 35952461 DOI: 10.1016/j.canep.2022.102233] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/16/2022]
Abstract
Research regarding the incidence of cancer among people with psychotic disorders relative to the general population is equivocal, although the evidence suggests that they have more advanced stage cancer at diagnosis. We conducted a systematic review and meta-analysis to examine the incidence and stage at diagnosis of cancer among people with, relative to those without, psychotic disorders. We searched the MEDLINE, EMBASE, PsycINFO, and CINAHL databases. Articles were included if they reported the incidence and/or stage at diagnosis of cancer in people with psychotic disorders. Random effects meta-analyses were used to determine risk of cancer and odds of advanced stage cancer at diagnosis in people with psychosis, relative to those without psychotic disorders. A total of 40 articles were included in the review, of which, 31 were included in the meta-analyses. The pooled age-adjusted risk ratio for all cancers in people with psychotic disorders was 1.08 (95% CI: 1.01-1.15), relative to those without psychotic disorders, with significant heterogeneity by cancer site. People with psychotic disorders had a higher incidence of breast, oesophageal, colorectal, testicular, uterine, and cervical cancer, and a lower incidence of skin, prostate, and thyroid cancer. People with psychotic disorders also had 22% higher (95% CI: 2-46%) odds of metastases at diagnosis, compared to those without psychotic disorders. Our systematic review found a significant difference in overall cancer incidence among people diagnosed with psychotic disorders and people with psychotic disorders were more likely to present with advanced stage cancer at diagnosis. This finding may reflect a need for improved access to and uptake of cancer screening for patients diagnosed with psychotic disorders.
Collapse
Affiliation(s)
- Jared C Wootten
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
| | - Joshua C Wiener
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Phillip S Blanchette
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; ICES Western, London, Ontario, Canada; Division of Medical Oncology, London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
| | - Kelly K Anderson
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; ICES Western, London, Ontario, Canada; Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
5
|
Ermakov EA, Melamud MM, Buneva VN, Ivanova SA. Immune System Abnormalities in Schizophrenia: An Integrative View and Translational Perspectives. Front Psychiatry 2022; 13:880568. [PMID: 35546942 PMCID: PMC9082498 DOI: 10.3389/fpsyt.2022.880568] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/30/2022] [Indexed: 12/12/2022] Open
Abstract
The immune system is generally known to be the primary defense mechanism against pathogens. Any pathological conditions are reflected in anomalies in the immune system parameters. Increasing evidence suggests the involvement of immune dysregulation and neuroinflammation in the pathogenesis of schizophrenia. In this systematic review, we summarized the available evidence of abnormalities in the immune system in schizophrenia. We analyzed impairments in all immune system components and assessed the level of bias in the available evidence. It has been shown that schizophrenia is associated with abnormalities in all immune system components: from innate to adaptive immunity and from humoral to cellular immunity. Abnormalities in the immune organs have also been observed in schizophrenia. Evidence of increased C-reactive protein, dysregulation of cytokines and chemokines, elevated levels of neutrophils and autoantibodies, and microbiota dysregulation in schizophrenia have the lowest risk of bias. Peripheral immune abnormalities contribute to neuroinflammation, which is associated with cognitive and neuroanatomical alterations and contributes to the pathogenesis of schizophrenia. However, signs of severe inflammation are observed in only about 1/3 of patients with schizophrenia. Immunological parameters may help identify subgroups of individuals with signs of inflammation who well respond to anti-inflammatory therapy. Our integrative approach also identified gaps in knowledge about immune abnormalities in schizophrenia, and new horizons for the research are proposed.
Collapse
Affiliation(s)
- Evgeny A. Ermakov
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Mark M. Melamud
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Valentina N. Buneva
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Svetlana A. Ivanova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
6
|
An C, Choi JW, Lee HS, Lim H, Ryu SJ, Chang JH, Oh HC. Prediction of the risk of developing hepatocellular carcinoma in health screening examinees: a Korean cohort study. BMC Cancer 2021; 21:755. [PMID: 34187409 PMCID: PMC8243543 DOI: 10.1186/s12885-021-08498-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/15/2021] [Indexed: 01/06/2023] Open
Abstract
Background Almost all Koreans are covered by mandatory national health insurance and are required to undergo health screening at least once every 2 years. We aimed to develop a machine learning model to predict the risk of developing hepatocellular carcinoma (HCC) based on the screening results and insurance claim data. Methods The National Health Insurance Service-National Health Screening database was used for this study (NHIS-2020-2-146). Our study cohort consisted of 417,346 health screening examinees between 2004 and 2007 without cancer history, which was split into training and test cohorts by the examination date, before or after 2005. Robust predictors were selected using Cox proportional hazard regression with 1000 different bootstrapped datasets. Random forest and extreme gradient boosting algorithms were used to develop a prediction model for the 9-year risk of HCC development after screening. After optimizing a prediction model via cross validation in the training cohort, the model was validated in the test cohort. Results Of the total examinees, 0.5% (1799/331,694) and 0.4% (390/85,652) in the training cohort and the test cohort were diagnosed with HCC, respectively. Of the selected predictors, older age, male sex, obesity, abnormal liver function tests, the family history of chronic liver disease, and underlying chronic liver disease, chronic hepatitis virus or human immunodeficiency virus infection, and diabetes mellitus were associated with increased risk, whereas higher income, elevated total cholesterol, and underlying dyslipidemia or schizophrenic/delusional disorders were associated with decreased risk of HCC development (p < 0.001). In the test, our model showed good discrimination and calibration. The C-index, AUC, and Brier skill score were 0.857, 0.873, and 0.078, respectively. Conclusions Machine learning-based model could be used to predict the risk of HCC development based on the health screening examination results and claim data. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08498-w.
Collapse
Affiliation(s)
- Chansik An
- Department of Radiology, National Health Insurance Service Ilsan Hospital, Goyang, South Korea.,Research Institute, National Health Insurance Service Ilsan Hospital, Goyang, South Korea
| | - Jong Won Choi
- Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, South Korea
| | - Hyung Soon Lee
- Department of Surgery, National Health Insurance Service Ilsan Hospital, Goyang, South Korea
| | - Hyunsun Lim
- Research Institute, National Health Insurance Service Ilsan Hospital, Goyang, South Korea
| | - Seok Jong Ryu
- Department of Radiology, National Health Insurance Service Ilsan Hospital, Goyang, South Korea
| | - Jung Hyun Chang
- Research Institute, National Health Insurance Service Ilsan Hospital, Goyang, South Korea. .,Department of Otolaryngology-Head and Neck Surgery, National Health Insurance Service Ilsan Hospital, Goyang, South Korea.
| | - Hyun Cheol Oh
- Research Institute, National Health Insurance Service Ilsan Hospital, Goyang, South Korea.,Department of Orthopedic Surgery, National Health Insurance Service Ilsan Hospital, Goyang, South Korea
| |
Collapse
|
7
|
Rai S, Tanaka H, Suzuki M, Espinoza JL, Kumode T, Tanimura A, Yokota T, Oritani K, Watanabe T, Kanakura Y, Matsumura I. Chlorpromazine eliminates acute myeloid leukemia cells by perturbing subcellular localization of FLT3-ITD and KIT-D816V. Nat Commun 2020; 11:4147. [PMID: 32811837 PMCID: PMC7434901 DOI: 10.1038/s41467-020-17666-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Mutated receptor tyrosine kinases (MT-RTKs) such as internal tandem duplication of FMS-like tyrosine kinase 3 (FLT3 ITD) and a point mutation KIT D816V are driver mutations for acute myeloid leukemia (AML). Clathrin assembly lymphoid myeloid leukemia protein (CALM) regulates intracellular transport of RTKs, however, the precise role for MT-RTKs remains elusive. We here show that CALM knock down leads to severely impaired FLT3 ITD- or KIT D814V-dependent cell growth compared to marginal influence on wild-type FLT3- or KIT-mediated cell growth. An antipsychotic drug chlorpromazine (CPZ) suppresses the growth of primary AML samples, and human CD34+CD38- AML cells including AML initiating cells with MT-RTKs in vitro and in vivo. Mechanistically, CPZ reduces CALM protein at post transcriptional level and perturbs the intracellular localization of MT-RTKs, thereby blocking their signaling. Our study presents a therapeutic strategy for AML with MT-RTKs by altering the intracellular localization of MT-RTKs using CPZ.
Collapse
Affiliation(s)
- Shinya Rai
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | - Hirokazu Tanaka
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan.
| | - Mai Suzuki
- Division of Hematological Malignancy, National Cancer Center Research Institute, Chuo, Tokyo, Japan
| | - J Luis Espinoza
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | - Takahiro Kumode
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | - Akira Tanimura
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takafumi Yokota
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kenji Oritani
- Department of Hematology, International University of Health and Welfare, Narita, Chiba, Japan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Nara, Japan
| | - Yuzuru Kanakura
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Itaru Matsumura
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| |
Collapse
|
8
|
The overall and sex- and age-group specific incidence rates of cancer in people with schizophrenia: a population-based cohort study. Epidemiol Psychiatr Sci 2020; 29:e132. [PMID: 32460950 PMCID: PMC7264860 DOI: 10.1017/s204579602000044x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
AIMS Decades of research show that people with schizophrenia have an increased risk of death from cancer; however, the relationship between schizophrenia and cancer incidence remains less clear. This population-based study investigates the incidence of seven common types of cancer among people with a hospital diagnosis of schizophrenia and accounting for the effects of age, sex and calendar time. METHODS This population-based study used 1990-2013 data from three nationwide Swedish registries to calculate the incidence (in total, by age group and by sex) of any cancer and of lung, oesophageal, pancreatic, stomach, colon, (in men) prostate and (in women) breast cancer in 111 306 people with a hospital diagnosis of schizophrenia. The incidence in people with diagnosed schizophrenia was compared with the incidence in the general population. Risk estimates accounted for the effects of calendar time. RESULTS In 1 424 829 person-years of follow-up, schizophrenia did not confer an overall higher cancer risk (IRR 1.02, 95% CI 0.91-1.13) but was associated with a higher risk for female breast (IRR 1.19, 95% CI 1.12-1.26), lung (IRR 1.42, 95% CI 1.28-1.58), oesophageal (IRR 1.25, 95% CI 1.07-1.46) and pancreatic (IRR 1.10, 95% CI 1.01-1.21) and a lower risk of prostate (IRR 0.66, 95% CI 0.55-0.79) cancer. Some age- and sex-specific differences in risk were observed. CONCLUSIONS People with schizophrenia do not have a higher overall incidence of cancer than people in the general population. However, there are significant differences in the risk of specific cancer types overall and by sex calling for efforts to develop disease-specific prevention programmes. In people with schizophrenia, higher risk generally occurs in those <75 years.
Collapse
|
9
|
Firth J, Siddiqi N, Koyanagi A, Siskind D, Rosenbaum S, Galletly C, Allan S, Caneo C, Carney R, Carvalho AF, Chatterton ML, Correll CU, Curtis J, Gaughran F, Heald A, Hoare E, Jackson SE, Kisely S, Lovell K, Maj M, McGorry PD, Mihalopoulos C, Myles H, O'Donoghue B, Pillinger T, Sarris J, Schuch FB, Shiers D, Smith L, Solmi M, Suetani S, Taylor J, Teasdale SB, Thornicroft G, Torous J, Usherwood T, Vancampfort D, Veronese N, Ward PB, Yung AR, Killackey E, Stubbs B. The Lancet Psychiatry Commission: a blueprint for protecting physical health in people with mental illness. Lancet Psychiatry 2019; 6:675-712. [PMID: 31324560 DOI: 10.1016/s2215-0366(19)30132-4] [Citation(s) in RCA: 771] [Impact Index Per Article: 154.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Joseph Firth
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia; Division of Psychology and Mental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia.
| | - Najma Siddiqi
- Department of Health Sciences, University of York, Hull York Medical School, Bradford, UK; Bradford District Care NHS Foundation Trust, Bradford, UK
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, Universitat de Barcelona, Fundació Sant Joan de Déu, Barcelona, Spain; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain; Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Dan Siskind
- Metro South Addiction and Mental Health Service, Brisbane, QLD, Australia; School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Simon Rosenbaum
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Cherrie Galletly
- Ramsay Health Care Mental Health, Adelaide, SA, Australia; Northern Adelaide Local Health Network, Adelaide, SA, Australia; Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
| | - Stephanie Allan
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Constanza Caneo
- Departamento de Psiquiatría, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rebekah Carney
- Division of Psychology and Mental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Youth Mental Health Research Unit, Greater Manchester Mental Health NHS Foundation Trust, Manchester, UK
| | - Andre F Carvalho
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Mary Lou Chatterton
- Deakin Health Economics, Institute for Health Transformation, Faculty of Health, Deakin University, Melbourne, VIC, Australia
| | - Christoph U Correll
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Department of Psychiatry, Zucker Hillside Hospital, Glen Oaks, NY, USA; Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| | - Jackie Curtis
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Keeping the Body in Mind Program, South Eastern Sydney Local Health District, Sydney, NSW, Australia
| | - Fiona Gaughran
- South London and Maudsley NHS Foundation Trust, London, UK; Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Adrian Heald
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, University of Manchester, Manchester, UK; Department of Diabetes and Endocrinology, Salford Royal Hospital, Salford, UK
| | - Erin Hoare
- Food and Mood Centre, Deakin University, Melbourne, VIC, Australia
| | - Sarah E Jackson
- Department of Behavioural Science and Health, University College London, London, UK
| | - Steve Kisely
- School of Medicine, University of Queensland, Brisbane, QLD, Australia; Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Karina Lovell
- Division of Nursing, Midwifery and Social Work, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Greater Manchester Mental Health NHS Foundation Trust, Manchester, UK
| | - Mario Maj
- Department of Psychiatry, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Patrick D McGorry
- Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Cathrine Mihalopoulos
- Deakin Health Economics, Institute for Health Transformation, Faculty of Health, Deakin University, Melbourne, VIC, Australia
| | - Hannah Myles
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
| | - Brian O'Donoghue
- Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Toby Pillinger
- South London and Maudsley NHS Foundation Trust, London, UK; Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Medical Research Council London Institute of Medical Sciences, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Jerome Sarris
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia; Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia; The Melbourne Clinic, Melbourne, VIC, Australia
| | - Felipe B Schuch
- Department of Sports Methods and Techniques, Federal University of Santa Maria, Santa Maria, Brazil
| | - David Shiers
- Division of Psychology and Mental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Psychosis Research Unit, Greater Manchester Mental Health NHS Foundation Trust, Manchester, UK
| | - Lee Smith
- Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, UK
| | - Marco Solmi
- Neurosciences Department and Padua Neuroscience Centre, University of Padua, Padua, Italy
| | - Shuichi Suetani
- Metro South Addiction and Mental Health Service, Brisbane, QLD, Australia; Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia; Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia
| | - Johanna Taylor
- Department of Health Sciences, University of York, Hull York Medical School, Bradford, UK
| | - Scott B Teasdale
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Keeping the Body in Mind Program, South Eastern Sydney Local Health District, Sydney, NSW, Australia
| | - Graham Thornicroft
- Centre for Global Mental Health, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - John Torous
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tim Usherwood
- The George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia; Department of General Practice, Westmead Clinical School, University of Sydney, Westmead, NSW, Australia
| | - Davy Vancampfort
- Department of Rehabilitation Sciences, Katholieke Universiteit Leuven, Leuven, Belgium; University Psychiatric Centre, Katholieke Universiteit Leuven, Kortenberg, Belgium
| | - Nicola Veronese
- National Research Council, Neuroscience Institute, Aging Branch, Padova, Italy
| | - Philip B Ward
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Schizophrenia Research Unit, Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Alison R Yung
- Division of Psychology and Mental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Eoin Killackey
- Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Brendon Stubbs
- South London and Maudsley NHS Foundation Trust, London, UK; Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
10
|
Zhuo C, Wang D, Zhou C, Chen C, Li J, Tian H, Li S, Ji F, Liu C, Chen M, Zhang L. Double-Edged Sword of Tumour Suppressor Genes in Schizophrenia. Front Mol Neurosci 2019; 12:1. [PMID: 30809121 PMCID: PMC6379290 DOI: 10.3389/fnmol.2019.00001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 01/07/2019] [Indexed: 12/18/2022] Open
Abstract
Schizophrenia (SCZ) is a common psychiatric disorder with polygenetic pathogenesis. Among the many identified candidate genes and loci, the group of tumour suppressor genes has drawn our interest. In this mini-review article, we describe evidence of a correlation between major tumour suppressor genes and SCZ development. Genetic mutations ranging from single nucleotide polymorphisms to large structural alterations have been found in tumour-related genes in patients with SCZ. Epigenetic mechanisms, including DNA methylation/acetylation and microRNA regulation of tumour suppressor genes, have also been implicated in SCZ. Beyond genetic correlations, we hope to establish causal relationships between tumour suppressor gene function and SCZ risk. Accumulating evidence shows that tumour suppressor genes may mediate cell survival and neural development, both of which contribute to SCZ aetiology. Moreover, converging intracellular signalling pathways indicate a role of tumour suppressor genes in SCZ pathogenesis. Tumour suppressor gene function may mediate a direct link between neural development and function and psychiatric disorders, including SCZ. A deeper understanding of how neural cell development is affected by tumour suppressors may lead to improved anti-psychotic drugs.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Genetics Laboratory, Department of Neuroimaging, Department of Psychiatry, Nankai University Affiliated Anding Hospital, Tianjin Anding Hospital, Tianjin, China.,Psychiatric Genetic Laboratory, Department of Psychiatry, Jining Medical University, Jining, China.,Department of Psychiatric Genetics, Tianjin Medical University, Tianjin, China.,Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Dawei Wang
- Department of Neuroimaging Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Chunhua Zhou
- Department of Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ce Chen
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Jie Li
- Genetics Laboratory, Department of Neuroimaging, Department of Psychiatry, Nankai University Affiliated Anding Hospital, Tianjin Anding Hospital, Tianjin, China
| | - Hongjun Tian
- Genetics Laboratory, Department of Neuroimaging, Department of Psychiatry, Nankai University Affiliated Anding Hospital, Tianjin Anding Hospital, Tianjin, China
| | - Shen Li
- Genetics Laboratory, Department of Neuroimaging, Department of Psychiatry, Nankai University Affiliated Anding Hospital, Tianjin Anding Hospital, Tianjin, China.,Department of Psychiatric Genetics, Tianjin Medical University, Tianjin, China
| | - Feng Ji
- Psychiatric Genetic Laboratory, Department of Psychiatry, Jining Medical University, Jining, China
| | - Chuanxin Liu
- Psychiatric Genetic Laboratory, Department of Psychiatry, Jining Medical University, Jining, China
| | - Min Chen
- Psychiatric Genetic Laboratory, Department of Psychiatry, Jining Medical University, Jining, China
| | - Li Zhang
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|