1
|
Li S, Liu Y, Zhang X, Liu Y, Si L, Jiang S, Wang A, Che X, Chen J, Hu J. Multi-pathway oxidative stress amplification via controllably targeted nanomaterials for photoimmunotherapy of tumors. J Nanobiotechnology 2025; 23:33. [PMID: 39844145 PMCID: PMC11753039 DOI: 10.1186/s12951-025-03116-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
Photoimmunotherapy, which combines phototherapy with immunotherapy, exhibits significantly improved therapeutic effects compared with mono-treatment regimens. However, its use is associated with drawbacks, such as insufficient reactive oxygen species (ROS) production and uneven photosensitizer distribution. To address these issues, we developed a controllable, targeted nanosystem that enhances oxidative stress through multiple pathways, achieving synergistic photothermal, photodynamic, and immunotherapy effects for tumor treatment. These nanoparticles (D/I@HST NPs) accurately target overexpressed transferrin receptors (TfRs) on the surface of tumor cells through surface-modified transferrin (Tf). After endocytosis, D/I@HST NPs generate ROS under 808-nm laser irradiation, breaking the ROS-responsive crosslinking agent and increasing drug release and utilization. Tf also carries Fe3+, which is reduced to Fe2+ by iron reductase in the acidic tumor microenvironment (TME). Consequently, the endoperoxide bridge structure in dihydroartemisinin is cleaved, causing additional ROS generation. Furthermore, the released IR-780 exerts both photodynamic and photothermal effects, enhancing tumor cell death. This multi-pathway oxidative stress amplification and photothermal effect can trigger immunogenic cell death in tumors, promoting the release of relevant antigens and damage-associated molecular patterns, thereby increasing dendritic cell maturation and sensitivity of tumor cells to immunotherapy. Mature dendritic cells transmit signals to T cells, increasing T cells infiltration and activation, facilitating tumor growth inhibition and the suppression of lung metastasis. Furthermore, the myeloid-derived suppressor cells in the tumor decreases significantly after treatment. In summary, this multi-pathway oxidative stress-amplified targeted nanosystem effectively inhibits tumors, reverses the immunosuppressive tumor microenvironment, and provides new insights into tumor immunotherapy combined with phototherapy.
Collapse
Affiliation(s)
- Song Li
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Yunheng Liu
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Xiaokang Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Yurong Liu
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Longqing Si
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Shaojing Jiang
- Yantai Engineering Research Center for Digital Technology of Stomatology, School of Stomatology, Binzhou Medical University, Yantai, 264003, China
| | - Aoya Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Xukai Che
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Jing Chen
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| | - Jinghui Hu
- Yantai Engineering Research Center for Digital Technology of Stomatology, School of Stomatology, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
2
|
Irsara C, Weissenbacher A, Krendl FJ, Anliker M, Hofmann J, Hautz T, Schneeberger S, Griesmacher A, Loacker L. Expression of sPD-L1 levels in an ex vivo liver perfusion model. Clin Exp Immunol 2025; 219:uxae094. [PMID: 39435859 PMCID: PMC11773811 DOI: 10.1093/cei/uxae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/13/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024] Open
Abstract
The programmed cell death protein 1 (PD-1) acts as a central inhibitory immune checkpoint receptor. The soluble form of its primary ligand, sPD-L1, was found to be elevated in the serum of patients with cancer, infectious diseases, and chronic inflammation. So far, the hepatic origin of sPD-L1 has received relatively little attention and is therefore the subject of this study in the context of normothermic machine perfusion (NMP) of liver grafts. sPD-L1 concentrations as well as several well-established clinically relevant laboratory parameters were determined in the perfusate of 16 donor liver grafts undergoing NMP up to 30 hours. sPD-L1 levels continuously increased during NMP and significantly correlated with markers of hepatic synthesis (cholinesterase), acute-phase proteins (von Willebrand factor, procalcitonin, antithrombin, interleukin-6, fibrinogen), and liver decay markers (gamma-glutamyltransferase, alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase). Perfusate leukocytes were in the lower reference range and decreased after 12 hours. Mean sPD-L1 levels in the perfusate correlated with donor levels of gamma-glutamyltransferase, alanine aminotransferase, creatinine, and blood urea nitrogen. Our study reveals a significant increase in the concentration of sPD-L1 following ischemia-reperfusion injury in a hepatic ex vivo model. sPD-L1 concentrations during NMP correlate with established acute-phase proteins and liver cell decay markers, suggesting that hepatic sPD-L1 synthesis or shedding increases during the acute phase and cell decay. Furthermore, sPD-L1 correlates with established liver function and synthesis parameters as well as with donor laboratory values and might therefore be a potential biomarker for the hepatic function of liver grafts.
Collapse
Affiliation(s)
- Christian Irsara
- Central Institute of Clinical and Chemical Laboratory Diagnostics, University Hospital of Innsbruck, Innsbruck, Austria
| | - Annemarie Weissenbacher
- Department of Visceral, Transplant and Thoracic Surgery, and organLife Laboratory, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Julius Krendl
- Department of Visceral, Transplant and Thoracic Surgery, and organLife Laboratory, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Anliker
- Central Institute of Clinical and Chemical Laboratory Diagnostics, University Hospital of Innsbruck, Innsbruck, Austria
| | - Julia Hofmann
- Department of Visceral, Transplant and Thoracic Surgery, and organLife Laboratory, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Theresa Hautz
- Department of Visceral, Transplant and Thoracic Surgery, and organLife Laboratory, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, and organLife Laboratory, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrea Griesmacher
- Central Institute of Clinical and Chemical Laboratory Diagnostics, University Hospital of Innsbruck, Innsbruck, Austria
| | - Lorin Loacker
- Central Institute of Clinical and Chemical Laboratory Diagnostics, University Hospital of Innsbruck, Innsbruck, Austria
| |
Collapse
|
3
|
Xue C, Dai YZ, Li GL, Zhang Y. Prediction of prognosis, efficacy of lung adenocarcinoma by machine learning model based on immune and metabolic related genes. Discov Oncol 2024; 15:778. [PMID: 39692796 DOI: 10.1007/s12672-024-01515-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/04/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND The aim of this study is to integrate immune and metabolism-related genes in order to construct a predictive model for predicting the prognosis and treatment response of LUAD(lung adenocarcinoma) patients, aiming to address the challenges posed by this highly lethal and heterogeneous disease. MATERIAL AND METHODS Using TCGA-LUAD as the training subset, differential gene expression analysis, batch survival analysis, Lasso regression analysis, univariate and multivariate Cox regression analysis were performed to construct prognostic related gene models. GEO queue as validation subsets, is used to validate build Riskscore. Then, we explore the Riskscore and mutation status, immune cell infiltration, the relationship between immune therapy and chemotherapy, and build the model of the nomogram. RESULTS The Riskscore has been determined to be composed of seven gene. In the high-risk group defined by this score, both early-stage and advanced-stage LUAD patients exhibit a decreased overall survival rate. The mutation status of patients as well as immune cell infiltration show associations with the Riskscore value obtained from these genes' expression levels. Furthermore, there exist variations in response to immunotherapy as well as sensitivity to commonly used chemotherapy drugs among different individuals. Lastly, when using a column line plot model based on the calculated Riskscore values, we obtain a concordance index (C-index) was 0 .716 (95% CI 0.671-0.762), and time-dependent ROC predicted probabilities of 1-, 3- and 5-year survival for LUAD patients were 0.752, 0.725 and 0.654, respectively. CONCLUSION In conclusion, we have successfully developed a predictive model incorporating immune and metabolism-related genes, encompassing gene expression levels of CAT/CCL20/GPI/INSL4 NT5E/GSTA3/GNPNAT1. This comprehensive model not only enables the prognosis prediction for LUAD patients but also facilitates the prediction of their response to first-line chemotherapy drugs and immune checkpoint inhibitors, thus demonstrating its broad potential in clinical applications. However, our study still has limitations as it is based on TCGA and GEO databases with limited pathological characteristics of patients. Therefore, more practical and valuable factors are needed to predict efficacy. The crosstalk between metabolism and immunity remains to be explored. Finally, this study lacks experimental evidence for the underlying gene expression of prognosis and further research is required.
Collapse
Affiliation(s)
- Cong Xue
- Department of Cardiothoracic Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, No. 59, Shengli Road, Zhangzhou, 363000, Fujian, China
| | - Yi-Zhi Dai
- Department of Cardiothoracic Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, No. 59, Shengli Road, Zhangzhou, 363000, Fujian, China
| | - Gui-Long Li
- Department of Cardiothoracic Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, No. 59, Shengli Road, Zhangzhou, 363000, Fujian, China
| | - Yi Zhang
- Department of Cardiothoracic Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, No. 59, Shengli Road, Zhangzhou, 363000, Fujian, China.
| |
Collapse
|
4
|
Jiang H, Ye Y, Wang M, Sun X, Sun T, Chen Y, Li P, Zhang M, Wang T. The progress on the relationship between gut microbiota and immune checkpoint blockade in tumors. Biotechnol Genet Eng Rev 2024; 40:4446-4465. [PMID: 37191003 DOI: 10.1080/02648725.2023.2212526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023]
Abstract
Immune checkpoint blockade (ICB) has emerged as a promising immunotherapeutic approach for the treatment of various tumors. However, the efficacy of this therapy is limited in a subset of patients, and it is important to develop strategies to enhance immune responses. Studies have demonstrated a critical role of gut microbiota in regulating the therapeutic response to ICB. Gut microbiota composition, diversity, and function are mediated by metabolites, such as short-chain fatty acids and secondary bile acids, that interact with host immune cells through specific receptors. In addition, gut bacteria may translocate to the tumor site and stimulate antitumor immune responses. Therefore, maintaining a healthy gut microbiota composition, for instance through avoiding the use of antibiotics or probiotic interventions, can be an effective approach to optimize ICB therapy. This review summarizes the current understanding of the microbiota-immunity interactions in the context of ICB therapy, and discusses potential clinical implications of these findings.
Collapse
Affiliation(s)
- Haili Jiang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yingquan Ye
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mingqi Wang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xin Sun
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ting Sun
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yang Chen
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ping Li
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mei Zhang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ting Wang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
5
|
Groeger S, Meyle J. The role of programmed death receptor (PD-)1/PD-ligand (L)1 in periodontitis and cancer. Periodontol 2000 2024; 96:150-169. [PMID: 38351432 PMCID: PMC11579837 DOI: 10.1111/prd.12548] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/02/2023] [Accepted: 12/14/2023] [Indexed: 11/22/2024]
Abstract
The programmed-death-ligand-1 (PD-L1) is an immune-modulating molecule that is constitutively expressed on various immune cells, different epithelial cells and a multitude of cancer cells. It is a costimulatory molecule that may impair T-cell mediated immune response. Ligation to the programmed-death-receptor (PD)-1, on activated T-cells and further triggering of the related signaling pathways can induce T-cells apoptosis or anergy. The upregulation of PD-L1 in various cancer types, including oral squamous cell carcinomas, was demonstrated and has been linked to immune escape of tumors and poor prognosis. A bidirectional relationship exists between the increased PD-L1 expression and periodontitis as well as the epithelial-mesenchymal transition (EMT), a process of interconversion of epithelial cells to mesenchymal cells that may induce immune escape of tumors. Interaction between exosomal PD-L1 and PD-1 on T-cells may cause immunosuppression by blocking the activation and proliferation of T-cells. The efficacy and importance of treatment with PD-1/PD-L1 checkpoint inhibitors and their prognostic influence on human cancers was demonstrated. Regarding PD-1/PD-L1 checkpoint inhibitors, resistances exist or may develop, basing on various factors. Further investigations of the underlying mechanisms will help to overcome the therapeutic limitations that result from resistances and to develop new strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Sabine Groeger
- Department of Periodontology, Dental SchoolJustus‐Liebig‐University of GiessenGiessenGermany
- Department of Orthodontics, Dental SchoolJustus‐Liebig‐University of GiessenGiessenGermany
| | - Joerg Meyle
- Department of Periodontology, Dental SchoolJustus‐Liebig‐University of GiessenGiessenGermany
| |
Collapse
|
6
|
Zhang MQ, Jin HY, Wang J, Shu L. Mechanism of immune checkpoint inhibitor resistance in colorectal cancer patients and its interventional strategies. Shijie Huaren Xiaohua Zazhi 2024; 32:645-651. [DOI: 10.11569/wcjd.v32.i9.645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/04/2024] [Accepted: 08/14/2024] [Indexed: 09/28/2024] Open
Abstract
The remarkable efficacy demonstrated by immune checkpoint inhibitors (ICIs) in melanoma treatment has driven their widespread use in the treatment of a variety of solid tumours, and they have now become one of the mainstays of oncology treatment, especially in the field of colorectal cancer, where they have demonstrated great potential. However, in long-term large-sample studies, it was found that the response to ICIs is low, and there are problems of primary and acquired resistance, which seriously affect their therapeutic effect. In this paper, we will review the mechanism of resistance to ICIs in patients with colorectal cancer and the progress in research of interventional strategies for ICI resistance, aiming to provide new ideas for the solution of the problem of clinical drug resistance to ICIs.
Collapse
Affiliation(s)
- Mei-Qi Zhang
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, Jiangsu Province, China
| | - Hei-Ying Jin
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, Jiangsu Province, China
| | - Jun Wang
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, Jiangsu Province, China
| | - Lei Shu
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, Jiangsu Province, China
| |
Collapse
|
7
|
Sesma A, Pardo J, Isla D, M. Gálvez E, Gascón-Ruiz M, Martínez-Lostao L, Moratiel A, Paño-Pardo JR, Quílez E, Torres-Ramón I, Yubero A, Zapata-García M, Domingo MP, Esteban P, Sanz Pamplona R, Lastra R, Ramírez-Labrada A. Peripheral Blood TCRβ Repertoire, IL15, IL2 and Soluble Ligands for NKG2D Activating Receptor Predict Efficacy of Immune Checkpoint Inhibitors in Lung Cancer. Cancers (Basel) 2024; 16:2798. [PMID: 39199571 PMCID: PMC11352724 DOI: 10.3390/cancers16162798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
The development of immune checkpoint inhibitors (ICIs) has changed the therapeutic paradigm of lung cancer (LC), becoming the standard of treatment for previously untreated advanced non-small cell lung cancer (NSCLC) without actionable mutations. It has allowed the achievement of durable responses and resulted in significant survival benefits. However, not all patients respond; hence, molecular biomarkers are needed to help us predict which patients will respond. With this objective, a prospective observational study was designed, including a cohort of 55 patients with NSCLC who received ICIs. We studied whether biomarkers such as TCRβ and specific cytokines involved in the regulation of T cell activity were related to the immunotherapy response. In the survival analysis, it was found that patients with higher TCRβ clonality, lower TCRβ evenness, higher TCRβ Shannon diversity and lower TCRβ convergence had higher overall survival (OS) and progression-free survival (PFS). However, no statistically significant association was observed. Regarding cytokines, those patients with higher levels of IL-2 and IL-15 presented statistically significantly shorter OS and PFS, respectively. In fact, in the multivariable analysis, the high IL-15 level increased the risk of death by three times. Although the sample size was small and more studies are needed to confirm our results, our study reveals promising markers of responses to ICIs.
Collapse
Affiliation(s)
- Andrea Sesma
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.G.-R.); (A.M.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.-G.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - Julian Pardo
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain;
- Microbiology, Radiology, Pediatry and Public Health Department Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - Dolores Isla
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.G.-R.); (A.M.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.-G.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - Eva M. Gálvez
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain;
- Instituto de Carboquímica (ICB-CSIC), Miguel Luesma 4, 50018 Zaragoza, Spain
| | - Marta Gascón-Ruiz
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.G.-R.); (A.M.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.-G.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - Luis Martínez-Lostao
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
- Department of Microbiology, Pediatrics, Radiology and Public Health, University of Zaragoza, 50009 Zaragoza, Spain
- Aragon Nanoscience Institute, 50018 Zaragoza, Spain
- Aragon Materials Science Institute, 50009 Zaragoza, Spain
- Immunology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain;
| | - Alba Moratiel
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.G.-R.); (A.M.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.-G.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - J. Ramón Paño-Pardo
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain;
- Infectious Disease Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain
| | - Elisa Quílez
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.G.-R.); (A.M.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.-G.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - Irene Torres-Ramón
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.G.-R.); (A.M.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.-G.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - Alfonso Yubero
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.G.-R.); (A.M.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.-G.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - María Zapata-García
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.G.-R.); (A.M.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.-G.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - María Pilar Domingo
- Immunology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain;
| | - Patricia Esteban
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - Rebeca Sanz Pamplona
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - Rodrigo Lastra
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.G.-R.); (A.M.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.-G.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - Ariel Ramírez-Labrada
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain;
| |
Collapse
|
8
|
Wang L, Mu M, Guo Y, Huang J, Zhang R, Zhang M, Hu Y, Wang Y, Gao Z, Liu L, Wang W, Cheng Y, Zhu X, Liu J, Wang W, Ying S. PD-1/PD-L1 Provides Protective Role in Hypoxia-Induced Pulmonary Vascular Remodeling. Hypertension 2024; 81:1822-1836. [PMID: 38853755 DOI: 10.1161/hypertensionaha.123.22393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Hypoxia-induced pulmonary hypertension (HPH) is a T helper 17 cell response-driven disease, and PD-1 (programmed cell death 1)/PD-L1 (programmed cell death-ligand 1) inhibitor-associated pulmonary hypertension has been reported recently. This study is designed to explore whether the PD-1/PD-L1 pathway participates in HPH via regulating endothelial dysfunction and T helper 17 cell response. METHODS Lung tissue samples were obtained from eligible patients. Western blotting, immunohistochemistry, and immunofluorescence techniques were used to assess protein expression, while immunoprecipitation was utilized to detect ubiquitination. HPH models were established in C57BL/6 WT (wild-type) and PD-1-/- mice, followed by treatment with PD-L1 recombinant protein. Adeno-associated virus vector delivery was used to upregulate PD-L1 in the endothelial cells. Endothelial cell function was assessed through assays for cell angiogenesis and adhesion. RESULTS Expression of the PD-1/PD-L1 pathway was downregulated in patients with HPH and mouse models, with a notable decrease in PD-L1 expression in endothelial cells compared with the normoxia group. In comparison to WT mice, PD-1-/- mice exhibited a more severe HPH phenotype following exposure to hypoxia, However, administration of PD-L1 recombinant protein and overexpression of PD-L1 in lung endothelial cells mitigated HPH. In vitro, blockade of PD-L1 with a neutralizing antibody promoted endothelial cell angiogenesis, adhesion, and pyroptosis. Mechanistically, hypoxia downregulated PD-L1 protein expression through ubiquitination. Additionally, both in vivo and in vitro, PD-L1 inhibited T helper 17 cell response through the PI3K (phosphoinositide 3-kinase)/AKT (protein kinase B)/mTOR (mammalian target of rapamycin) pathway in HPH. CONCLUSIONS PD-1/PD-L1 plays a role in ameliorating HPH development by inhibiting T helper 17 cell response through the PI3K/AKT/mTOR pathway and improving endothelial dysfunction, suggesting a novel therapeutic indication for PD-1/PD-L1-based immunomodulatory therapies in the treatment of HPH.
Collapse
Affiliation(s)
- Lei Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China (L.W.)
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
| | - Mi Mu
- Department of Respiratory and Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, China (M.M.)
| | - Yu Guo
- Department of Immunology, School of Basic Medical Sciences (Y.G., M.Z., Y.H., Z.G., J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
| | - Jing Huang
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China (J.H., Y.W.)
| | - Ruoyang Zhang
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing (R.Z.)
| | - Muzhi Zhang
- Department of Immunology, School of Basic Medical Sciences (Y.G., M.Z., Y.H., Z.G., J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
| | - Yue Hu
- Department of Immunology, School of Basic Medical Sciences (Y.G., M.Z., Y.H., Z.G., J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
| | - Yanhua Wang
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China (J.H., Y.W.)
| | - Zhenqiang Gao
- Department of Immunology, School of Basic Medical Sciences (Y.G., M.Z., Y.H., Z.G., J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
| | - Lin Liu
- Department of Immunology, School of Basic Medical Sciences (Y.G., M.Z., Y.H., Z.G., J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
| | - Wang Wang
- Department of Immunology, School of Basic Medical Sciences (Y.G., M.Z., Y.H., Z.G., J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
| | - Yuli Cheng
- Department of Microbiology, School of Basic Medical Sciences (Y.C., X.Z.), Capital Medical University, Beijing, China
| | - XinPing Zhu
- Department of Microbiology, School of Basic Medical Sciences (Y.C., X.Z.), Capital Medical University, Beijing, China
| | - Jie Liu
- Department of Immunology, School of Basic Medical Sciences (Y.G., M.Z., Y.H., Z.G., J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences (Y.G., M.Z., Y.H., Z.G., J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
| | - Sun Ying
- Department of Immunology, School of Basic Medical Sciences (Y.G., M.Z., Y.H., Z.G., J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
- Department of Respiratory Medicine (L.W., Y.G., R.Z., M.Z., Y.H., Z.G., L.L., Wang Wang, J.L., Wei Wang, S.Y.), Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Choi S, Jo JC, Lee YJ, Chae SW, Cha HJ. Immunophenotypic classification regarding prognosis in peripheral T cell lymphoma, NOS, and nodal T follicular helper T cell lymphoma, angioimmunoblastic-type. Ann Hematol 2024; 103:2429-2443. [PMID: 38814447 DOI: 10.1007/s00277-024-05817-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
This study aimed to determine the clinicopathological predictive factors of peripheral T-cell lymphoma, not otherwise specified (PTCL, NOS), and nodal T-follicular helper cell lymphoma, angioimmunoblastic-type (nTFH, AI-type). In this single-centered, retrospective study, medical records of 59 patients who were diagnosed with PTCL, NOS, or nTFH, AI-type from March 2007 to September 2022 were reviewed. The clinicopathological variables, including immunohistochemistry(IHC) subgroups, distinguishing TBX21 from the GATA3 subgroups were analyzed. Overall, 28 patients (75.7%) in the TBX21 group were PTCL, NOS. There were 9 (24.3%) patients in the GATA3 group. In univariable analyses, lymphoma subtype, age, and performance status were associated with progression-free survival (PFS), and overall survival (OS). In multivariable analyses, lymphoma subtype, and performance status were related to PFS and OS (P = 0.012, P < 0.001, P = 0.006, and P < 0.001, respectively). The GATA3 subgroup tended to have a worse prognosis in univariable analyses; however, it became more insignificant in multivariable when lymphoma subtype and performance status were adjusted (P = 0.065, P = 0.180, P = 0.972, and P = 0.265, respectively). The double-positive group showed variable prognoses of better PFS and worse OS. PD-1 and PD-L1 were associated with the EBV in situ hybridization (P = 0.027, and P = 0.005), and PD-1 was associated with CD30 expression (P = 0.043). This study demonstrated the potential of IHC classification to predict prognosis for PTCL, NOS, as well as nTFH AI-type, although further validation is necessary. Treatments targeting CD30, PD-1, and PD-L1 appear promising for lymphoma treatment.
Collapse
Affiliation(s)
- Soyeon Choi
- Department of Pathology, National Cancer Center, Goyang-si, Korea
| | - Jae-Cheol Jo
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Yoo Jin Lee
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Seoung Wan Chae
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Jeong Cha
- Department of Pathology, Ulsan University Hospital, University of Ulsan College of Medicine, Daehakbyungwonro 25, Dong-gu, Ulsan, 44033, Korea.
| |
Collapse
|
10
|
Santhanam M, Kumar Pandey S, Shteinfer-Kuzmine A, Paul A, Abusiam N, Zalk R, Shoshan-Barmatz V. Interaction of SMAC with a survivin-derived peptide alters essential cancer hallmarks: Tumor growth, inflammation, and immunosuppression. Mol Ther 2024; 32:1934-1955. [PMID: 38582961 PMCID: PMC11184343 DOI: 10.1016/j.ymthe.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/14/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024] Open
Abstract
Second mitochondrial-derived activator of caspase (SMAC), also known as direct inhibitor of apoptosis-binding proteins with low pI (Diablo), is known as a pro-apoptotic mitochondrial protein released into the cytosol in response to apoptotic signals. We recently reported SMAC overexpression in cancers as essential for cell proliferation and tumor growth due to non-apoptotic functions, including phospholipid synthesis regulation. These functions may be associated with its interactions with partner proteins. Using a peptide array with 768 peptides derived from 11 selected SMAC-interacting proteins, we identified SMAC-interacting sequences. These SMAC-binding sequences were produced as cell-penetrating peptides targeted to the cytosol, mitochondria, or nucleus, inhibiting cell proliferation and inducing apoptosis in several cell lines. For in vivo study, a survivin/baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5)-derived peptide was selected, due to its overexpression in many cancers and its involvement in mitosis, apoptosis, autophagy, cell proliferation, inflammation, and immune responses, as a target for cancer therapy. Specifically, a SMAC-targeting survivin/BIRC5-derived peptide, given intratumorally or intravenously, strongly inhibited lung tumor growth, cell proliferation, angiogenesis, and inflammation, induced apoptosis, and remodeled the tumor microenvironment. The peptide promoted tumor infiltration of CD-8+ cells and increased cell-intrinsic programmed cell death protein 1 (PD-1) and programmed cell death ligand 1 (PD-L1) expression, resulting in cancer cell self-destruction and increased tumor cell death, preserving immune cells. Thus, targeting the interaction between the multifunctional proteins SMAC and survivin represents an innovative therapeutic cancer paradigm.
Collapse
Affiliation(s)
- Manikandan Santhanam
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 0084105, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 0084105, Israel
| | - Swaroop Kumar Pandey
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 0084105, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 0084105, Israel
| | - Anna Shteinfer-Kuzmine
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 0084105, Israel
| | - Avijit Paul
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 0084105, Israel
| | - Nur Abusiam
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 0084105, Israel
| | - Ran Zalk
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva 0084105, Israel
| | - Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 0084105, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 0084105, Israel.
| |
Collapse
|
11
|
Mitra A, Kumar A, Amdare NP, Pathak R. Current Landscape of Cancer Immunotherapy: Harnessing the Immune Arsenal to Overcome Immune Evasion. BIOLOGY 2024; 13:307. [PMID: 38785789 PMCID: PMC11118874 DOI: 10.3390/biology13050307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Cancer immune evasion represents a leading hallmark of cancer, posing a significant obstacle to the development of successful anticancer therapies. However, the landscape of cancer treatment has significantly evolved, transitioning into the era of immunotherapy from conventional methods such as surgical resection, radiotherapy, chemotherapy, and targeted drug therapy. Immunotherapy has emerged as a pivotal component in cancer treatment, harnessing the body's immune system to combat cancer and offering improved prognostic outcomes for numerous patients. The remarkable success of immunotherapy has spurred significant efforts to enhance the clinical efficacy of existing agents and strategies. Several immunotherapeutic approaches have received approval for targeted cancer treatments, while others are currently in preclinical and clinical trials. This review explores recent progress in unraveling the mechanisms of cancer immune evasion and evaluates the clinical effectiveness of diverse immunotherapy strategies, including cancer vaccines, adoptive cell therapy, and antibody-based treatments. It encompasses both established treatments and those currently under investigation, providing a comprehensive overview of efforts to combat cancer through immunological approaches. Additionally, the article emphasizes the current developments, limitations, and challenges in cancer immunotherapy. Furthermore, by integrating analyses of cancer immunotherapy resistance mechanisms and exploring combination strategies and personalized approaches, it offers valuable insights crucial for the development of novel anticancer immunotherapeutic strategies.
Collapse
Affiliation(s)
- Ankita Mitra
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Anoop Kumar
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida 201309, Uttar Pradesh, India
| | - Nitin P. Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
12
|
John N, Schlintl V, Sassmann T, Lindenmann J, Fediuk M, Wurm R, Douschan P, Zacharias M, Kalson L, Posch F, Absenger G, Brcic L, Jost PJ, Terbuch A. Longitudinal analysis of PD-L1 expression in patients with relapsed NSCLC. J Immunother Cancer 2024; 12:e008592. [PMID: 38604811 PMCID: PMC11015283 DOI: 10.1136/jitc-2023-008592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND The use and approval of immune checkpoint inhibitors for the treatment of non-small cell lung cancer (NSCLC) depends on PD-L1 expression in the tumor tissue. Nevertheless, PD-L1 often fails to predict response to treatment. One possible explanation could be a change in PD-L1 expression during the course of the disease and the neglect of reassessment. The purpose of this study was a longitudinal analysis of PD-L1 expression in patients with relapsed NSCLC. METHODS We retrospectively analyzed PD-L1 expression in patients with early-stage NSCLC and subsequent relapse in preoperative samples, matched surgical specimens and biopsy samples of disease recurrence. Ventana PD-L1 (SP263) immunohistochemistry assay was used for all samples. PD-L1 expression was scored based on clinically relevant groups (0%, 1%-49%, and ≥50%). The primary endpoint was the change in PD-L1 score group between preoperative samples, matched surgical specimens and relapsed tumor tissue. RESULTS 395 consecutive patients with stages I-III NSCLC and 136 (34%) patients with a subsequent relapse were identified. For 87 patients at least two specimens for comparison of PD-L1 expression between early stage and relapsed disease were available. In 72 cases, a longitudinal analysis between preoperative biopsy, the surgically resected specimen and biopsy of disease recurrence was feasible. When comparing preoperative and matched surgical specimens, a treatment-relevant conversion of PD-L1 expression group was found in 25 patients (34.7%). Neoadjuvant treatment showed no significant effect on PD-L1 alteration (p=0.39). In 32 (36.8%) out of 87 cases, a change in PD-L1 group was observed when biopsies of disease relapse were compared with early-stage disease. Adjuvant treatment was not significantly associated with a change in PD-L1 expression (p=0.53). 39 patients (54.2%) showed at least 1 change into a different PD-L1 score group during the course of disease. 14 patients (19.4%) changed the PD-L1 score group twice, 5 (6.9%) of them being found in all different score groups. CONCLUSION PD-L1 expression shows dynamic changes during the course of disease. There is an urgent need for consensus guidelines to define a PD-L1 testing strategy including time points of reassessment, the number of biopsies to be obtained and judgment of surgical specimens.
Collapse
Affiliation(s)
- Nikolaus John
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Verena Schlintl
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Teresa Sassmann
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Jörg Lindenmann
- Division of Thoracic Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Melanie Fediuk
- Division of Thoracic Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Robert Wurm
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Philipp Douschan
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Department of Internal Medicine, Marburg Lung Center, Giessen, Germany
| | - Martin Zacharias
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Lipika Kalson
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Florian Posch
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Gudrun Absenger
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Philipp J Jost
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed-Graz Office, Graz, Austria
| | - Angelika Terbuch
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
13
|
Wang H, Yang J, Li X, Zhao H. Current state of immune checkpoints therapy for glioblastoma. Heliyon 2024; 10:e24729. [PMID: 38298707 PMCID: PMC10828821 DOI: 10.1016/j.heliyon.2024.e24729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 02/02/2024] Open
Abstract
Glioblastoma (GBM), one of the most aggressive forms of brain cancer, has limited treatment options. Recent years have witnessed the remarkable success of checkpoint inhibitor immunotherapy across various cancer types. Against this backdrop, several clinical trials investigating checkpoint inhibitors for GBM are underway in multiple countries. Furthermore, the integration of immunotherapy with traditional treatment approaches is now emerging as a highly promising strategy. This review summarizes the latest advancements in checkpoint inhibitor immunotherapy for GBM treatment. We provide a concise yet comprehensive overview of current GBM immunotherapy options. Additionally, this review underscores combination strategies and potential biomarkers for predicting response and resistance in GBM immunotherapies.
Collapse
Affiliation(s)
- He Wang
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Jing Yang
- Department of Emergency Surgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Xiangjun Li
- School of medicine, Department of Breast surgery, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, 266000, China
| | - Hai Zhao
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| |
Collapse
|
14
|
Chamani FK, Etebari A, Hajivalili M, Mosaffa N, Jalali SA. Hypoxia and programmed cell death-ligand 1 expression in the tumor microenvironment: a review of the effects of hypoxia-induced factor-1 on immunotherapy. Mol Biol Rep 2024; 51:88. [PMID: 38183512 DOI: 10.1007/s11033-023-08947-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/24/2023] [Indexed: 01/08/2024]
Abstract
One useful cancer treatment approach is activating the patient's immune response against the tumor. In this regard, immunotherapy (IT) based on immune checkpoint blockers (ICBs) has made great progress in the last two decades. Although ITs are considered a novel approach to cancer treatment and have had good results in preclinical studies, their clinical success has shown that only a small proportion of treated patients (about 20%) benefited from them. Moreover, in highly progressed tumors, almost no acceptable response could be expected. In this regard finding the key molecules that are the main players of tumor immunosuppression might be helpful in overcoming the possible burdens. Hypoxia is one of the main components of the tumor microenvironment (TME), which can create an immunosuppressive microenvironment in various ways. For example, hypoxia is one of the main factors of programmed cell death ligand-1 (PD-L1) upregulation in tumor-infiltrating Myeloid-Derived Suppressor Cells (MDSCs). Therefore, hypoxia can be targeted to increase the efficiency of Anti-PD-L1 IT and has become one of the important issues in cancer treatment strategy. In this review, we described the effect of hypoxia in the TME, on tumor progression and immune responses and the challenges created by it for IT.
Collapse
Affiliation(s)
- Fateme Khani Chamani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Etebari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Jalali
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Ekemen S, Bilir E, Soultan HEA, Zafar S, Demir F, Tabandeh B, Toprak S, Yapicier O, Coban C. The Programmed Cell Death Ligand 1 and Lipocalin 2 Expressions in Primary Breast Cancer and Their Associations with Molecular Subtypes and Prognostic Factors. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:1-13. [PMID: 38192518 PMCID: PMC10771776 DOI: 10.2147/bctt.s444077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024]
Abstract
Purpose Breast cancers exhibit molecular heterogeneity, leading to diverse clinical outcomes and therapeutic responses. Immune checkpoint inhibitors targeting PD-L1 have shown promise in various malignancies, including breast cancer. Lipocalin 2 (LCN2) has also been associated with tumor aggressiveness and prognostic potential in breast cancers. However, the expression of PD-L1 and LCN2 in breast cancer subtypes and their prognostic implications remains poorly investigated. Methods A retrospective analysis of 89 primary breast cancer cases was conducted to assess PD-L1 and LCN2 expressions using immunohistochemistry. Cases were classified into four different molecular subtypes based on ER, PR, HER2, and Ki-67 status. Associations between PD-L1 and LCN2 expressions and various prognostic factors were examined. Results Although low expression of LCN2 (Allred score of <3) was observed even in normal breast tissue, LCN2 expression with increasing Allred score (≥3) positively correlated with the histological grade, high Ki-67 proliferation index, and ER/PR negativity. Significant elevations of LCN2 and PD-L1 expressions were observed in triple-negative and HER2-positive breast cancers. Conclusion The results of the study highlight the association of LCN2 with known prognostic factors and molecular subtypes. To identify potential immunotherapy recipients, it would be useful to evaluate LCN2 as well as PD-L1 immune targets in different subgroups of breast cancer patients. Further studies with larger patient numbers are warranted to validate these observations and establish standardized scoring criteria for LCN2 expression assessment.
Collapse
Affiliation(s)
- Suheyla Ekemen
- Vocational School of Health Services, Acibadem University, Istanbul, Turkey
- Division of Malaria Immunology, Department of Microbiology and Immunology, Institute of Medical Science (IMSUT), the University of Tokyo, Tokyo, Japan
| | - Ebru Bilir
- Residency Program, Bahcesehir University School of Medicine, Istanbul, Turkey
| | | | - Sadia Zafar
- Residency Program, Bahcesehir University School of Medicine, Istanbul, Turkey
| | - Figen Demir
- Department of Public Health, Acibadem University School of Medicine, Istanbul, Turkey
| | - Babek Tabandeh
- Department of General Surgery, Bahcesehir University School of Medicine, Istanbul, Turkey
| | - Sadik Toprak
- Department of Forensic Medicine, Istanbul University School of Medicine, Istanbul, Turkey
| | - Ozlem Yapicier
- Department of Pathology, Bahcesehir University School of Medicine, Istanbul, Turkey
| | - Cevayir Coban
- Division of Malaria Immunology, Department of Microbiology and Immunology, Institute of Medical Science (IMSUT), the University of Tokyo, Tokyo, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
- International Vaccine Design Center, Institute of Medical Science (IMSUT), the University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Fantini M, Tsang KY, Arlen PM. Generation of the therapeutic monoclonal antibody NEO-201, derived from a cancer vaccine, which targets human malignancies and immune suppressor cells. Expert Rev Vaccines 2024; 23:812-829. [PMID: 39186325 DOI: 10.1080/14760584.2024.2397011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
INTRODUCTION Cancer vaccines stimulate the activation of specific humoral and cellular adaptive responses against cancer cells.Antibodies generated post vaccination can be isolated and further selected to develop highly specific and potent monoclonal antibodies (mAbs) against tumor-associated antigens. AREAS COVERED This review describes different types of cancer vaccines, the process of the generation of the mAb NEO-201 from the Hollinshead cancer vaccine platform, the characterization of the antigen recognized by NEO-201, the ability of NEO-201 to bind and mediate the killing of cancer cells and immunosuppressive cells (gMDSCs and Tregs) through ADCC and CDC, NEO-201 preclinical and clinical toxicity and efficacy. EXPERT OPINION To overcome the problem of poor clinical efficacy of cancer vaccines, due to the activity of immunosuppressive cells, cancer vaccines could be combined with other immunotherapeutics able to deplete immunosuppressive cells. Results from clinical trials, employing NEO-201 alone or in combination with pembrolizumab, showed that durable stabilization of disease after treatment was due to the ability of NEO-201 to target and reduce the percentage of circulating Tregs and gMDSCs.These findings provide compelling support to combine NEO-201 with cancer vaccines to reintegrate their ability to elicit a robust and durable immune adaptive response against cancer.
Collapse
|
17
|
Wang J, Li L, Xu ZP. Enhancing Cancer Chemo-Immunotherapy: Innovative Approaches for Overcoming Immunosuppression by Functional Nanomaterials. SMALL METHODS 2024; 8:e2301005. [PMID: 37743260 DOI: 10.1002/smtd.202301005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/05/2023] [Indexed: 09/26/2023]
Abstract
Chemotherapy is a critical modality in cancer therapy to combat malignant cell proliferation by directly attacking cancer cells and inducing immunogenic cell death, serving as a vital component of multi-modal treatment strategies for enhanced therapeutic outcomes. However, chemotherapy may inadvertently contribute to the immunosuppression of the tumor microenvironment (TME), inducing the suppression of antitumor immune responses, which can ultimately affect therapeutic efficacy. Chemo-immunotherapy, combining chemotherapy and immunotherapy in cancer treatment, has emerged as a ground-breaking approach to target and eliminate malignant tumors and revolutionize the treatment landscape, offering promising, durable responses for various malignancies. Notably, functional nanomaterials have substantially contributed to chemo-immunotherapy by co-delivering chemo-immunotherapeutic agents and modulating TME. In this review, recent advancements in chemo-immunotherapy are thus summarized to enhance treatment effectiveness, achieved by reversing the immunosuppressive TME (ITME) through the exploitation of immunotherapeutic drugs, or immunoregulatory nanomaterials. The effects of two-way immunomodulation and the causes of immunoaugmentation and suppression during chemotherapy are illustrated. The current strategies of chemo-immunotherapy to surmount the ITME and the functional materials to target and regulate the ITME are discussed and compared. The perspective on tumor immunosuppression reversal strategy is finally proposed.
Collapse
Affiliation(s)
- Jingjing Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
18
|
Fantini M, Arlen PM, Tsang KY. Potentiation of natural killer cells to overcome cancer resistance to NK cell-based therapy and to enhance antibody-based immunotherapy. Front Immunol 2023; 14:1275904. [PMID: 38077389 PMCID: PMC10704476 DOI: 10.3389/fimmu.2023.1275904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023] Open
Abstract
Natural killer (NK) cells are cellular components of the innate immune system that can recognize and suppress the proliferation of cancer cells. NK cells can eliminate cancer cells through direct lysis, by secreting perforin and granzymes, or through antibody-dependent cell-mediated cytotoxicity (ADCC). ADCC involves the binding of the Fc gamma receptor IIIa (CD16), present on NK cells, to the constant region of an antibody already bound to cancer cells. Cancer cells use several mechanisms to evade antitumor activity of NK cells, including the accumulation of inhibitory cytokines, recruitment and expansion of immune suppressor cells such as myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs), modulation of ligands for NK cells receptors. Several strategies have been developed to enhance the antitumor activity of NK cells with the goal of overcoming cancer cells resistance to NK cells. The three main strategies to engineer and boost NK cells cytotoxicity include boosting NK cells with modulatory cytokines, adoptive NK cell therapy, and the employment of engineered NK cells to enhance antibody-based immunotherapy. Although the first two strategies improved the efficacy of NK cell-based therapy, there are still some limitations, including immune-related adverse events, induction of immune-suppressive cells and further cancer resistance to NK cell killing. One strategy to overcome these issues is the combination of monoclonal antibodies (mAbs) that mediate ADCC and engineered NK cells with potentiated anti-cancer activity. The advantage of using mAbs with ADCC activity is that they can activate NK cells, but also favor the accumulation of immune effector cells to the tumor microenvironment (TME). Several clinical trials reported that combining engineered NK cells with mAbs with ADCC activity can result in a superior clinical response compared to mAbs alone. Next generation of clinical trials, employing engineered NK cells with mAbs with higher affinity for CD16 expressed on NK cells, will provide more effective and higher-quality treatments to cancer patients.
Collapse
|
19
|
Singh DK, Bhaskar A, Pahuja I, Shaji A, Moitra B, Shi Y, Dwivedi VP, Das G. Cotreatment With Clofazimine and Rapamycin Eliminates Drug-Resistant Tuberculosis by Inducing Polyfunctional Central Memory T-Cell Responses. J Infect Dis 2023; 228:1166-1178. [PMID: 37290049 DOI: 10.1093/infdis/jiad214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/10/2023] [Accepted: 06/07/2023] [Indexed: 06/10/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, is acquiring drug resistance at a faster rate than the discovery of new antibiotics. Therefore, alternate therapies that can limit the drug resistance and disease recurrence are urgently needed. Emerging evidence indicates that combined treatment with antibiotics and an immunomodulator provides superior treatment efficacy. Clofazimine (CFZ) enhances the generation of T central memory (TCM) cells by blocking the Kv1.3+ potassium channels. Rapamycin (RAPA) facilitates M. tuberculosis clearance by inducing autophagy. In this study, we observed that cotreatment with CFZ and RAPA potently eliminates both multiple and extensively drug-resistant (MDR and XDR) clinical isolates of M. tuberculosis in a mouse model by inducing robust T-cell memory and polyfunctional TCM responses. Furthermore, cotreatment reduces the expression of latency-associated genes of M. tuberculosis in human macrophages. Therefore, CFZ and RAPA cotherapy holds promise for treating patients infected with MDR and XDR strains of M. tuberculosis.
Collapse
Affiliation(s)
- Dhiraj Kumar Singh
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Ashima Bhaskar
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Isha Pahuja
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Aishwarya Shaji
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Barnani Moitra
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Yufang Shi
- State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Gobardhan Das
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
20
|
Johansson K, Gagnon JD, Zhou SK, Fassett MS, Schroeder AW, Kageyama R, Bautista RA, Pham H, Woodruff PG, Ansel KM. An essential role for miR-15/16 in Treg suppression and restriction of proliferation. Cell Rep 2023; 42:113298. [PMID: 37862171 PMCID: PMC10664750 DOI: 10.1016/j.celrep.2023.113298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/07/2023] [Accepted: 10/02/2023] [Indexed: 10/22/2023] Open
Abstract
The miR-15/16 family targets a large network of genes in T cells to restrict their cell cycle, memory formation, and survival. Upon T cell activation, miR-15/16 are downregulated, allowing rapid expansion of differentiated effector T cells to mediate a sustained response. Here, we used conditional deletion of miR-15/16 in regulatory T cells (Tregs) to identify immune functions of the miR-15/16 family in T cells. miR-15/16 are indispensable to maintain peripheral tolerance by securing efficient suppression by a limited number of Tregs. miR-15/16 deficiency alters expression of critical Treg proteins and results in accumulation of functionally impaired FOXP3loCD25loCD127hi Tregs. Excessive proliferation in the absence of miR-15/16 shifts Treg fate and produces an effector Treg phenotype. These Tregs fail to control immune activation, leading to spontaneous multi-organ inflammation and increased allergic inflammation in a mouse model of asthma. Together, our results demonstrate that miR-15/16 expression in Tregs is essential to maintain immune tolerance.
Collapse
Affiliation(s)
- Kristina Johansson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 40530 Gothenburg, Sweden; Department of Internal Medicine and Clinical Nutrition, University of Gothenburg, 40530 Gothenburg, Sweden
| | - John D Gagnon
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Simon K Zhou
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Marlys S Fassett
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Andrew W Schroeder
- Department of Medicine, Genomics CoLab, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Robin Kageyama
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Rodriel A Bautista
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hewlett Pham
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Prescott G Woodruff
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - K Mark Ansel
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
21
|
Karim F, Amin A, Liu M, Vishnuvardhan N, Amin S, Shabbir R, Swed B, Khan U. Role of Checkpoint Inhibitors in the Management of Gastroesophageal Cancers. Cancers (Basel) 2023; 15:4099. [PMID: 37627127 PMCID: PMC10452271 DOI: 10.3390/cancers15164099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
PURPOSE This article reviews the essential clinical trials that have led to these immunotherapy approvals and explores the use of predictive biomarkers, such as PD-L1 expression and MSI status, to identify patients who are most likely to benefit from immunotherapies. METHODS This case review series describe findings from different clinical trials and contribute to the evolving understanding of the role of CPIs in managing advanced gastroesophageal cancers and may lead to improved treatment options and patient outcomes. Ongoing clinical trials also hold promise for expanding treatment options and improving patient outcomes in the future. METHODS The systematic review followed the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The protocol has not been registered. A systematic literature review was conducted to identify relevant clinical trials and studies that describe the role of immune checkpoint inhibitors in managing advanced gastroesophageal cancers. Electronic database (PubMed, Clinicaltrials.gov, Society of Immunotherapy of Cancer, Aliment Pharmacology & Therapeutics, BMC cancer, Molecular Cancer Research, Nature Reviews Molecular Cell Biology, American Association for Cancer Research, Science, Nature, Cancer Discovery, Journal of the National Cancer Institute, Advanced Immunology, Oncotarget, Nature Medicine, Nature Genetics, Gut, Pathology and Oncology Research, Journal of Clinical Oncology, The New England Journal of Medicine, Gastrointestinal oncology, JAMA Oncology, Journal of Gastrointestinal Oncology, Current Oncology, Annals of Oncology, The Lancet, JCO Oncology Practice, Future Oncology, Gastric Cancer, CA: A Cancer Journal for Clinicians, American Journal of Gastroenterology, Gastroenterology, Journal of the National Cancer Institute, International Journal of Epidemiology, Helicobacter, Gastroenterology Review) were searched using a combination of relevant keywords and MESH terms. The search encompassed articles published up to 5/2023. Additionally, manual searches of reference lists of selected articles and pertinent review papers were conducted to ensure comprehensive coverage of relevant studies. Studies were included if they provided insights into clinical trials evaluating the efficacy and safety of CPIs in treating advanced gastroesophageal cancers. Relevant case reviews and trials exploring combination therapies involving CPIs were also considered. Articles discussed in the utilization of predictive biomarkers were included to assess their impact on treatment outcomes. Data from selected studies were extracted to inform the narrative review. Key findings were summarized, including clinical trial designs, patient populations, treatment regimens, response rates, progression-free survival (PFS), overall survival (OS), and adverse events. The role of predictive biomarkers, particularly PD-L1 expression and MSI status, in identifying patients likely to benefit from CPIs was critically evaluated based on study results. Ongoing clinical trials investigating novel combination strategies and exploring the broader scope of CPIs in gastroesophageal cancers were also highlighted. The collected data were synthesized to provide a comprehensive overview of the crucial clinical trials that have contributed to the approval of CPIs for advanced gastroesophageal cancers. The role of CPIs in different lines of therapy, including first-line regimens, was discussed. Furthermore, the evolving landscape of predictive biomarkers was examined, emphasizing their potential significance in optimizing patient selection for CPI therapy. Ongoing clinical trials were reviewed to underscore the continuous efforts in expanding treatment options and improving patient outcomes in the future.
Collapse
Affiliation(s)
- Frederic Karim
- Internal Medicine, New York-Presbyterian Brooklyn Methodist Hospital, 506 6th Street, Brooklyn, NY 11215, USA; (A.A.); (M.L.); (S.A.); (R.S.)
| | - Adina Amin
- Internal Medicine, New York-Presbyterian Brooklyn Methodist Hospital, 506 6th Street, Brooklyn, NY 11215, USA; (A.A.); (M.L.); (S.A.); (R.S.)
| | - Marie Liu
- Internal Medicine, New York-Presbyterian Brooklyn Methodist Hospital, 506 6th Street, Brooklyn, NY 11215, USA; (A.A.); (M.L.); (S.A.); (R.S.)
| | - Nivetha Vishnuvardhan
- Hematology/Oncology, New York-Presbyterian Brooklyn Methodist Hospital, 506 6th Street, Brooklyn, NY 11215, USA;
| | - Saif Amin
- Internal Medicine, New York-Presbyterian Brooklyn Methodist Hospital, 506 6th Street, Brooklyn, NY 11215, USA; (A.A.); (M.L.); (S.A.); (R.S.)
| | - Raffey Shabbir
- Internal Medicine, New York-Presbyterian Brooklyn Methodist Hospital, 506 6th Street, Brooklyn, NY 11215, USA; (A.A.); (M.L.); (S.A.); (R.S.)
| | - Brandon Swed
- Hematology/Oncology, Weill Cornell Medicine, 515 6th Street, Brooklyn, NY 11215, USA; (B.S.); (U.K.)
| | - Uqba Khan
- Hematology/Oncology, Weill Cornell Medicine, 515 6th Street, Brooklyn, NY 11215, USA; (B.S.); (U.K.)
| |
Collapse
|
22
|
Wang L, Yang Z, Guo F, Chen Y, Wei J, Dai X, Zhang X. Research progress of biomarkers in the prediction of anti-PD-1/PD-L1 immunotherapeutic efficiency in lung cancer. Front Immunol 2023; 14:1227797. [PMID: 37465684 PMCID: PMC10351040 DOI: 10.3389/fimmu.2023.1227797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
Currently, anti-PD-1/PD-L1 immunotherapy using immune checkpoint inhibitors is widely used in the treatment of multiple cancer types including lung cancer, which is a leading cause of cancer death in the world. However, only a limited proportion of lung cancer patients will benefit from anti-PD-1/PD-L1 therapy. Therefore, it is of importance to predict the response to immunotherapy for the precision treatment of patients. Although the expression of PD-L1 and tumor mutation burden (TMB) are commonly used to predict the clinical response of anti-PD-1/PD-L1 therapy, other factors such as tumor-specific genes, dMMR/MSI, and gut microbiome are also promising predictors for immunotherapy in lung cancer. Furthermore, invasive peripheral blood biomarkers including blood DNA-related biomarkers (e.g., ctDNA and bTMB), blood cell-related biomarkers (e.g., immune cells and TCR), and other blood-related biomarkers (e.g., soluble PD-L1 and cytokines) were utilized to predict the immunotherapeutic response. In this review, the current achievements of anti-PD-1/PD-L1 therapy and the potential biomarkers for the prediction of anti-PD-1/PD-L1 immunotherapy in lung cancer treatment were summarized and discussed.
Collapse
Affiliation(s)
- Luyao Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Zongxing Yang
- Department of Clinical Laboratory, First Hospital of Jilin University, Changchun, China
| | - Fucheng Guo
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Yurong Chen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Jiarui Wei
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
23
|
Yang YL, Yang F, Huang ZQ, Li YY, Shi HY, Sun Q, Ma Y, Wang Y, Zhang Y, Yang S, Zhao GR, Xu FH. T cells, NK cells, and tumor-associated macrophages in cancer immunotherapy and the current state of the art of drug delivery systems. Front Immunol 2023; 14:1199173. [PMID: 37457707 PMCID: PMC10348220 DOI: 10.3389/fimmu.2023.1199173] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
The immune system provides full protection for the body by specifically identifying 'self' and removing 'others'; thus protecting the body from diseases. The immune system includes innate immunity and adaptive immunity, which jointly coordinate the antitumor immune response. T cells, natural killer (NK) cells and tumor-associated macrophages (TAMs) are the main tumor-killing immune cells active in three antitumor immune cycle. Cancer immunotherapy focusses on activating and strengthening immune response or eliminating suppression from tumor cells in each step of the cancer-immunity cycle; thus, it strengthens the body's immunity against tumors. In this review, the antitumor immune cycles of T cells, natural killer (NK) cells and tumor-associated macrophages (TAMs) are discussed. Co-stimulatory and co-inhibitory molecules in the three activity cycles and the development of drugs and delivery systems targeting these molecules are emphasized, and the current state of the art of drug delivery systems for cancer immunotherapy are summarized.
Collapse
Affiliation(s)
- Ya-long Yang
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Fei Yang
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Zhuan-qing Huang
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Yuan-yuan Li
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Hao-yuan Shi
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Qi Sun
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Yue Ma
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Yao Wang
- Department of Biotherapeutic, The First Medical Centre, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Ying Zhang
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Sen Yang
- Chinese People’s Armed Police Force Hospital of Beijing, Beijing, China
| | - Guan-ren Zhao
- Department of Pharmacy, Medical Supplies Center, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Feng-hua Xu
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of China (PLA) General Hospital, Beijing, China
| |
Collapse
|
24
|
Wang B, Han Y, Zhang Y, Zhao Q, Wang H, Wei J, Meng L, Xin Y, Jiang X. Overcoming acquired resistance to cancer immune checkpoint therapy: potential strategies based on molecular mechanisms. Cell Biosci 2023; 13:120. [PMID: 37386520 DOI: 10.1186/s13578-023-01073-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) targeting CTLA-4 and PD-1/PD-L1 to boost tumor-specific T lymphocyte immunity have opened up new avenues for the treatment of various histological types of malignancies, with the possibility of durable responses and improved survival. However, the development of acquired resistance to ICI therapy over time after an initial response remains a major obstacle in cancer therapeutics. The potential mechanisms of acquired resistance to ICI therapy are still ambiguous. In this review, we focused on the current understanding of the mechanisms of acquired resistance to ICIs, including the lack of neoantigens and effective antigen presentation, mutations of IFN-γ/JAK signaling, and activation of alternate inhibitory immune checkpoints, immunosuppressive tumor microenvironment, epigenetic modification, and dysbiosis of the gut microbiome. Further, based on these mechanisms, potential therapeutic strategies to reverse the resistance to ICIs, which could provide clinical benefits to cancer patients, are also briefly discussed.
Collapse
Affiliation(s)
- Bin Wang
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yin Han
- Cancer Prevention and Treatment Institute of Chengdu, Department of Pathology, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611137, China
| | - Yuyu Zhang
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Qin Zhao
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Cancer Prevention and Treatment Institute of Chengdu, Department of Pathology, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611137, China
| | - Huanhuan Wang
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Jinlong Wei
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, China.
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, China.
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
25
|
Shi W, Zhang Y, Hao C, Guo X, Yang Q, Du J, Hou Y, Cao G, Li J, Wang H, Fang W. The significance of PD-1/PD-L1 imbalance in ulcerative colitis. PeerJ 2023; 11:e15481. [PMID: 37273534 PMCID: PMC10239227 DOI: 10.7717/peerj.15481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Objectives To investigate the expression and significance of programmed cell death protein 1 (PD-1) and programmed cell death ligand-1 (PD-L1) in the mucosal tissues and peripheral blood of patients with ulcerative colitis (UC). Methods Eighty patients with UC were recruited from January 2021 to August 2022 from the Shanxi Province People's Hospital. PD-1 and PD-L1 expression was assessed by immunohistochemistry in mucosal tissues. An enzyme-linked immunosorbent assay was used to measure soluble PD-1 and PD-L1 levels in peripheral blood serum, and the membrane-bound forms of PD-1 (mPD-1), (T-helper cell) Th1 and Th17, in peripheral blood were determined by flow cytometry. Result PD-1 expression was observed only in the monocytes of the mucosal lamina propria of UC patients, while PD-L1 was mainly located in both epithelial cells and monocytes on the cell membrane. The expression level of PD-1/PD-L1 in the monocytes and epithelial cells of mucosal lamina propria increased with disease activity (P < 0.05). The percentages of PD-1/T and PD-1/CD4+T in the peripheral blood of moderate UC patients (PD-1/T 12.83 ± 6.15% and PD-1/CD4+T 19.67 ± 9.95%) and severe UC patients (PD-1/T 14.29 ± 5.71% and PD-1/CD4+T 21.63 ± 11.44%) were higher than in mild UC patients (PD-1/T 8.17 ± 2.80% and PD-1/CD4+T 12.44 ± 4.73%; P < 0.05). There were no significant differences in PD-1/CD8+T cells between mild and severe UC patients (P > 0.05). There was a statistically significant difference in the expression level of sPD-L1 between the UC groups and healthy controls, and the expression level of sPD-L1 increased with disease severity (P < 0.05); however, there was no statistically significant difference in sPD-1 expression levels between the UC groups and healthy controls (P > 0.05). The correlation coefficients between Th1 and sPD-L1, PD-1/T, PD-1/CD4+T and PD-1/CD8+T were 0.427, 0.589, 0.486, and 0.329, respectively (P < 0.001). The correlation coefficients between Th17 and sPD-L1, PD-1/T, PD-1/CD4+T and PD-1/CD8+T were 0.323, 0.452, 0.320, and 0.250, respectively (P < 0.05). Conclusion The expression level of PD-1/PD-L1 was correlated with UC disease activity, and two forms of PD-1 and PD-L1 may be used as a potential marker for predicting UC and assessing disease progression in UC patients. PD-1/PD-L1 imbalance was a significant phenomenon of UC immune dysfunction. Future research should focus on two forms of PD-1/PD-L1 signaling molecules to better understand the pathogenesis of UC and to identify potential drug therapies.
Collapse
Affiliation(s)
- Wei Shi
- Department of Clinical Laboratory, Shanxi Provincial People’s Hospital, Taiyuan, China
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Yu Zhang
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Chonghua Hao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Xiaofeng Guo
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Qin Yang
- Department of Pathology, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Junfang Du
- Department of Clinical Laboratory, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Yabin Hou
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Gaigai Cao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Jingru Li
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Haijiao Wang
- Shanxi Center for Disease Control and Prevention, Taiyuan, China
| | - Wei Fang
- Department of Clinical Laboratory, Shanxi Provincial People’s Hospital, Taiyuan, China
| |
Collapse
|
26
|
Yi W, Yan D, Wang D, Li Y. Smart drug delivery systems to overcome drug resistance in cancer immunotherapy. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0009. [PMID: 37144580 PMCID: PMC10157806 DOI: 10.20892/j.issn.2095-3941.2023.0009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Cancer immunotherapy, a therapeutic approach that inhibits tumors by activating or strengthening anti-tumor immunity, is currently an important clinical strategy for cancer treatment; however, tumors can develop drug resistance to immune surveillance, resulting in poor response rates and low therapeutic efficacy. In addition, changes in genes and signaling pathways in tumor cells prevent susceptibility to immunotherapeutic agents. Furthermore, tumors create an immunosuppressive microenvironment via immunosuppressive cells and secrete molecules that hinder immune cell and immune modulator infiltration or induce immune cell malfunction. To address these challenges, smart drug delivery systems (SDDSs) have been developed to overcome tumor cell resistance to immunomodulators, restore or boost immune cell activity, and magnify immune responses. To combat resistance to small molecules and monoclonal antibodies, SDDSs are used to co-deliver numerous therapeutic agents to tumor cells or immunosuppressive cells, thus increasing the drug concentration at the target site and improving efficacy. Herein, we discuss how SDDSs overcome drug resistance during cancer immunotherapy, with a focus on recent SDDS advances in thwarting drug resistance in immunotherapy by combining immunogenic cell death with immunotherapy and reversing the tumor immunosuppressive microenvironment. SDDSs that modulate the interferon signaling pathway and improve the efficacy of cell therapies are also presented. Finally, we discuss potential future SDDS perspectives in overcoming drug resistance in cancer immunotherapy. We believe that this review will contribute to the rational design of SDDSs and development of novel techniques to overcome immunotherapy resistance.
Collapse
Affiliation(s)
- Wenzhe Yi
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Yan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211116, China
| | - Dangge Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264000, China
| |
Collapse
|
27
|
Nikoo M, Rabiee F, Mohebbi H, Eghbalifard N, Rajabi H, Yazdani Y, Sakhaei D, Khosravifarsani M, Akhavan-Sigari R. Nivolumab plus ipilimumab combination therapy in cancer: Current evidence to date. Int Immunopharmacol 2023; 117:109881. [PMID: 37012882 DOI: 10.1016/j.intimp.2023.109881] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 03/06/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer immunotherapy, yielding significant antitumor responses across multiple cancer types. Combination ICI therapy with anti-CTLA-4 and anti-PD-1 antibodies outperforms either antibody alone in terms of clinical efficacy. As a consequence, the U.S. Food and Drug Administration (FDA) approved ipilimumab (anti-CTLA-4) plus nivolumab (anti-PD-1) as the first-ever approved therapies for combined ICI in patients with metastatic melanoma. Despite the success of ICIs, treatment with checkpoint inhibitor combinations poses significant clinical challenges, such as increased rates of immune-related adverse events (irAEs) and drug resistance. Thus, identifying optimal prognostic biomarkers could help to monitor the safety and efficacy of ICIs and identify patients who may benefit the most from these treatments. In this review, we will first go over the fundamentals of the CTLA-4 and PD-1 pathways, as well as the mechanisms of ICI resistance. The results of clinical findings that evaluated the combination of ipilimumab and nivolumab are then summarized to support future research in the field of combination therapy. Finally, the irAEs associated with combined ICI therapy, as well as the underlying biomarkers involved in their management, are discussed.
Collapse
|
28
|
Neweigy HA, Gouida MS, El Nagger MS, Salem ML. Cancer micro-environment immune modulation by Egyptian cobra (Naja haje) crud venom. EGYPTIAN PHARMACEUTICAL JOURNAL 2023; 22:237-250. [DOI: 10.4103/epj.epj_156_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2024]
Abstract
Background
Cancer can control immune system suppression mechanisms by activating regulatory T cells; myeloid-derived suppressor cells (MDSCs) and increasing the expression of co-inhibitor proteins. Snake venoms showed anticancer activity by targeting specific molecular pathways.
Objective
Here, we investigate the immunomodulatory effects of Egyptian cobra (Naja haje) venom different doses compared with cisplatin in healthy and cancer murine models.
Materials and methods
Female Balb/c mice aged 2–3 months, are separated into three general groups (control groups, solid (subcutaneous) tumors, and soft (ehrlich ascites) tumors. Mice were inoculated with ehrlich ascites carcinoma cells about 2×106 and 1.5×106 cells subcutaneously and intraperitoneal for 28 and 10 days, respectively.
Results
MDSCs decreased nonsignificantly in control groups treated with cisplatin, 1/10, 1/30 LD50 also, in ascites tumor group treated with 1/30 LD50 (P=0.055). While it increased non-significantly in healthy control treated with 1/20 LD50, all treated solid tumor groups and in ascites tumor groups treated with cisplatin and 1/20 LD50, on the other hand, Regulatory T cells in control groups decreased significantly in groups treated with cisplatin and 1/30 LD50 on the other hand it increased nonsignificantly in groups treated with 1/20 and 1/10 LD50. In solid tumor groups, T regs increased with no statistical significance in all treated solid tumor groups also, in ascites tumor groups treated with 1/20 LD50 and cisplatin.
Conclusion
Low doses of (Naja haje) crud venom reduce MDSCs and T reg in the microenvironment of tumor while higher doses increase them, further investigation will be needed.
Collapse
|
29
|
Cole CB, Morelli MP, Fantini M, Miettinen M, Fetsch P, Peer C, Figg WD, Yin T, Houston N, McCoy A, Lipkowitz S, Zimmer A, Lee JM, Pavelova M, Villanueva EN, Trewhitt K, Solarz BB, Fergusson M, Mavroukakis SA, Zaki A, Tsang KY, Arlen PM, Annunziata CM. First-in-human phase 1 clinical trial of anti-core 1 O-glycans targeting monoclonal antibody NEO-201 in treatment-refractory solid tumors. J Exp Clin Cancer Res 2023; 42:76. [PMID: 36991390 PMCID: PMC10053355 DOI: 10.1186/s13046-023-02649-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND NEO201 is a humanized IgG1 monoclonal antibody (mAb) generated against tumor-associated antigens from patients with colorectal cancer. NEO-201 binds to core 1 or extended core 1 O-glycans expressed by its target cells. Here, we present outcomes from a phase I trial of NEO-201 in patients with advanced solid tumors that have not responded to standard treatments. METHODS This was a single site, open label 3 + 3 dose escalation clinical trial. NEO-201 was administered intravenously every two weeks in a 28-day cycle at dose level (DL) 1 (1 mg/kg), DL 1.5 (1.5 mg/kg) and DL 2 (2 mg/kg) until dose limiting toxicity (DLT), disease progression, or patient withdrawal. Disease evaluations were conducted after every 2 cycles. The primary objective was to assess the maximum tolerated dose (MTD) and recommended phase 2 dose (RP2D) of NEO-201. The secondary objective was to assess the antitumor activity by RECIST v1.1. The exploratory objectives assessed pharmacokinetics and the effect of NEO-201 administration on immunologic parameters and their impact on clinical response. RESULTS Seventeen patients (11 colorectal, 4 pancreatic and 2 breast cancers) were enrolled; 2 patients withdrew after the first dose and were not evaluable for DLT. Twelve of the 15 patients evaluable for safety discontinued due to disease progression and 3 patients discontinued due to DLT (grade 4 febrile neutropenia [1 patient] and prolonged neutropenia [1 patient] at DL 2, and grade 3 prolonged (> 72 h) febrile neutropenia [1 patient] at DL 1.5). A total of 69 doses of NEO-201 were administered (range 1-15, median 4). Common (> 10%) grade 3/4 toxicities occurred as follows: neutropenia (26/69 doses, 17/17 patients), white blood cell decrease (16/69 doses, 12/17 patients), lymphocyte decrease (8/69 doses, 6/17 patients). Thirteen patients were evaluable for disease response; the best response was stable disease (SD) in 4 patients with colorectal cancer. Analysis of soluble factors in serum revealed that a high level of soluble MICA at baseline was correlated with a downregulation of NK cell activation markers and progressive disease. Unexpectedly, flow cytometry showed that NEO-201 also binds to circulating regulatory T cells and reduction of the quantities of these cells was observed especially in patients with SD. CONCLUSIONS NEO-201 was safe and well tolerated at the MTD of 1.5 mg/kg, with neutropenia being the most common adverse event. Furthermore, a reduction in the percentage of regulatory T cells following NEO-201 treatment supports our ongoing phase II clinical trial evaluating the efficiency of the combination of NEO-201 with the immune checkpoint inhibitor pembrolizumab in adults with treatment-resistant solid tumors. TRIAL REGISTRATION NCT03476681 . Registered 03/26/2018.
Collapse
Affiliation(s)
- Christopher B Cole
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maria Pia Morelli
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Markku Miettinen
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patricia Fetsch
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cody Peer
- Clinical Pharmacology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - William D Figg
- Clinical Pharmacology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tyler Yin
- Clinical Pharmacology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nicole Houston
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ann McCoy
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stanley Lipkowitz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alexandra Zimmer
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jung-Min Lee
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Miroslava Pavelova
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erin N Villanueva
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kathryn Trewhitt
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - B Brooke Solarz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maria Fergusson
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Anjum Zaki
- Precision Biologics, Inc, Bethesda, MD, USA
| | | | | | - Christina M Annunziata
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
30
|
Johansson K, Gagnon JD, Zhou S, Fassett MS, Schroeder AW, Kageyama R, Bautista RA, Pham H, Woodruff PG, Ansel KM. An essential role for miR-15/16 in Treg suppression and restriction of proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.26.533356. [PMID: 36993421 PMCID: PMC10055372 DOI: 10.1101/2023.03.26.533356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The miR-15/16 family is a highly expressed group of tumor suppressor miRNAs that target a large network of genes in T cells to restrict their cell cycle, memory formation and survival. Upon T cell activation, miR-15/16 are downregulated, allowing rapid expansion of differentiated effector T cells to mediate a sustained immune response. Here, using conditional deletion of miR-15/16 in immunosuppressive regulatory T cells (Tregs) that express FOXP3, we identify new functions of the miR-15/16 family in T cell immunity. miR-15/16 are indispensable to maintain peripheral tolerance by securing efficient suppression by a limited number of Tregs. miR-15/16-deficiency alters Treg expression of critical functional proteins including FOXP3, IL2Rα/CD25, CTLA4, PD-1 and IL7Rα/CD127, and results in accumulation of functionally impaired FOXP3loCD25loCD127hi Tregs. Excessive proliferation in the absence of miR-15/16 inhibition of cell cycle programs shifts Treg diversity and produces an effector Treg phenotype characterized by low expression of TCF1, CD25 and CD62L, and high expression of CD44. These Tregs fail to control immune activation of CD4+ effector T cells, leading to spontaneous multi-organ inflammation and increased allergic airway inflammation in a mouse model of asthma. Together, our results demonstrate that miR-15/16 expression in Tregs is essential to maintain immune tolerance.
Collapse
|
31
|
De Leon-Rodríguez SG, Aguilar-Flores C, Gajón JA, Mantilla A, Gerson-Cwilich R, Martínez-Herrera JF, Rodríguez-Soto BE, Gutiérrez-Quiroz CT, Pérez-Koldenkova V, Muñoz-Cruz S, Bonifaz LC, Fuentes-Pananá EM. Acral Melanoma Is Infiltrated with cDC1s and Functional Exhausted CD8 T Cells Similar to the Cutaneous Melanoma of Sun-Exposed Skin. Int J Mol Sci 2023; 24:4786. [PMID: 36902214 PMCID: PMC10003718 DOI: 10.3390/ijms24054786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023] Open
Abstract
Acral melanoma (AM) is the most common melanoma in non-Caucasian populations, yet it remains largely understudied. As AM lacks the UV-radiation mutational signatures that characterize other cutaneous melanomas, it is considered devoid of immunogenicity and is rarely included in clinical trials assessing novel immunotherapeutic regimes aiming to recover the antitumor function of immune cells. We studied a Mexican cohort of melanoma patients from the Mexican Institute of Social Security (IMSS) (n = 38) and found an overrepresentation of AM (73.9%). We developed a multiparametric immunofluorescence technique coupled with a machine learning image analysis to evaluate the presence of conventional type 1 dendritic cells (cDC1) and CD8 T cells in the stroma of melanoma, two of the most relevant immune cell types for antitumor responses. We observed that both cell types infiltrate AM at similar and even higher levels than other cutaneous melanomas. Both melanoma types harbored programmed cell death protein 1 (PD-1+) CD8 T cells and PD-1 ligand (PD-L1+) cDC1s. Despite this, CD8 T cells appeared to preserve their effector function and expanding capacity as they expressed interferon-γ (IFN-γ) and KI-67. The density of cDC1s and CD8 T cells significantly decreased in advanced stage III and IV melanomas, supporting these cells' capacity to control tumor progression. These data also argue that AM could respond to anti-PD-1-PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Saraí G. De Leon-Rodríguez
- UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Inmunoquímica, Mexico City 06720, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Cristina Aguilar-Flores
- UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Julián A. Gajón
- UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Inmunoquímica, Mexico City 06720, Mexico
- Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Alejandra Mantilla
- Servicio de Patología, Hospital de Oncología Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | | | - José Fabián Martínez-Herrera
- Cancer Center, Medical Center American British Cowdray, Mexico City 01120, Mexico
- Latin American Network for Cancer Research (LAN-CANCER), Lima 11702, Peru
| | | | | | - Vadim Pérez-Koldenkova
- Laboratorio Nacional de Microscopía Avanzada-IMSS, División de Desarrollo de la Investigación, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Samira Muñoz-Cruz
- UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Inmunoquímica, Mexico City 06720, Mexico
| | - Laura C. Bonifaz
- UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Inmunoquímica, Mexico City 06720, Mexico
- Coordinación de Investigación en Salud, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Ezequiel M. Fuentes-Pananá
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| |
Collapse
|
32
|
A Phase 1/2 study of the PD-L1 inhibitor, BGB-A333, alone and in combination with the PD-1 inhibitor, tislelizumab, in patients with advanced solid tumours. Br J Cancer 2023; 128:1418-1428. [PMID: 36797356 PMCID: PMC10070264 DOI: 10.1038/s41416-022-02128-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Many patients do not respond or eventually relapse on treatment with programmed cell death protein-1 (PD-1)/programmed death-ligand 1 (PD-L1) checkpoint inhibitors due to secondary or acquired resistance; therefore, there is a need to investigate novel PD-1/PD-L1 inhibitors. METHODS This open-label, non-randomised study investigated the safety and anti-tumour activity of BGB-A333, a PD-L1 inhibitor, alone and in combination with tislelizumab in patients with advanced solid tumours with progression during/after standard therapy. The primary objectives were to determine the recommended Phase 2 dose (RP2D), safety and tolerability for BGB-A333 alone and in combination with tislelizumab (Phase 1a/1b) and to determine the overall response rate (ORR) with BGB-A333 plus tislelizumab (Phase 2). RESULTS Overall, 39 patients across Phase 1a (N = 15), 1b (N = 12) and 2 (N = 12) were enroled. In Phase 1a, an RP2D of 1350 mg was determined. In Phase 1a and 1b/2, serious treatment-emergent adverse events (TEAEs) were reported in five and eight patients, respectively. Two patients experienced TEAEs that led to death. In Phase 2, the ORR was 41.7% (n = 5/12; 95% confidence interval: 15.17%, 72.33%). CONCLUSIONS TEAEs reported with BGB-A333 were consistent with other PD-L1 inhibitors. Encouraging preliminary anti-tumour activity was observed with BGB-A333 in combination with tislelizumab. CLINICAL TRIAL REGISTRATION NCT03379259.
Collapse
|
33
|
Yeong J, Goh D, Tan TJ, Tan B, Sivaraj H, Koh V, Tatt Lim JC, Joseph CR, Ye J, Yong Tay TK, Chan Lau M, Chan JY, Ng C, Iqbal J, Teh BT, Dent RA, Tan PH. Early Triple-Negative Breast Cancers in a Singapore Cohort Exhibit High PIK3CA Mutation Rates Associated With Low PD-L1 Expression. Mod Pathol 2023; 36:100056. [PMID: 36788078 DOI: 10.1016/j.modpat.2022.100056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/20/2022] [Accepted: 11/30/2022] [Indexed: 01/11/2023]
Abstract
Mutations in the PI3K pathway, particularly PIK3CA, were reported to be intimately associated with triple-negative breast cancer (TNBC) progression and the development of treatment resistance. We profiled PIK3CA and other genes on 166 early-stage TNBC tumors from Singapore for comparison to publicly available TNBC cohorts. These tumors were profiled transcriptionally using a NanoString panel of immune genes and multiplex immunohistochemistry, then manually scored for PD-L1-positivity using 2 clinically relevant clones, SP142 and 22C3. We discovered a higher rate of PIK3CA mutations in our TNBC cohort than in non-Asian cohorts, along with TP53, BRCA1, PTPN11, and MAP3K1 alterations. PIK3CA mutations did not affect overall or recurrence-free survival, and when compared with PIK3CAWT tumors, there were no differences in immune infiltration. Using 2 clinically approved antibodies, PIK3CAmut tumors were associated with PD-L1 negativity. Analysis of comutation frequencies further revealed that PIK3CA mutations tended to be accompanied by MAP kinase pathway mutation. The mechanism and impact of PIK3CA alterations on the TNBC tumor immune microenvironment and PD-L1 positivity warrant further study.
Collapse
Affiliation(s)
- Joe Yeong
- Division of Pathology, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore; Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Denise Goh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Tira J Tan
- Duke-NUS Medical School, Singapore; National Cancer Centre Singapore, Singapore
| | - Benedict Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | | | - Valerie Koh
- Division of Pathology, Singapore General Hospital, Singapore
| | - Jeffrey Chun Tatt Lim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Craig Ryan Joseph
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Jiangfeng Ye
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | | | - Mai Chan Lau
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | | | - Cedric Ng
- National Cancer Centre Singapore, Singapore
| | - Jabed Iqbal
- Division of Pathology, Singapore General Hospital, Singapore
| | | | | | - Puay Hoon Tan
- Division of Pathology, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore; KK Women's and Children's Hospital, Singapore; Luma Women's Imaging Centre/Medical Centre, Singapore.
| |
Collapse
|
34
|
Modified method for differentiation of myeloid-derived suppressor cells in vitro enhances immunosuppressive ability via glutathione metabolism. Biochem Biophys Rep 2022; 33:101416. [PMID: 36605123 PMCID: PMC9807831 DOI: 10.1016/j.bbrep.2022.101416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs), which accumulate in tumor bearers, are known to suppress anti-tumor immunity and thus promote tumor progression. MDSCs are considered a major cause of resistance against immune checkpoint inhibitors in patients with cancer. Therefore, MDSCs are potential targets in cancer immunotherapy. In this study, we modified an in vitro method of MDSC differentiation. Upon stimulating bone marrow (BM) cells with granulocyte-macrophage colony-stimulating factor in vitro, we obtained both lymphocyte antigen 6G positive (Ly-6G+) and negative (Ly-6G-) MDSCs (collectively, hereafter referred to as conventional MDSCs), which were non-immunosuppressive and immunosuppressive, respectively. We then found that MDSCs differentiated from Ly-6G- BM (hereafter called 6G- BM-MDSC) suppressed T-cell proliferation more strongly than conventional MDSCs, whereas the cells differentiated from Ly-6G+ BM (hereafter called 6G+ BM-MDSC) were non-immunosuppressive. In line with this, conventional MDSCs or 6G- BM-MDSC, but not 6G+ BM-MDSC, promoted tumor progression in tumor-bearing mice. Moreover, we identified that activated glutathione metabolism was responsible for the enhanced immunosuppressive ability of 6G- BM-MDSC. Finally, we showed that Ly-6G+ cells in 6G- BM-MDSC, which exhibited weak immunosuppression, expressed higher levels of Cybb mRNA, an immunosuppressive gene of MDSCs, than 6G+ BM-MDSC. Together, these data suggest that the depletion of Ly-6G+ cells from the BM cells leads to differentiation of immunosuppressive Ly-6G+ MDSCs. In summary, we propose a better method for MDSC differentiation in vitro. Moreover, our findings contribute to the understanding of MDSC subpopulations and provide a basis for further research on MDSCs.
Collapse
Key Words
- Ab, antibody
- BM, bone marrow
- BM-MDSC
- CTLA-4, cytotoxic T-lymphocyte-associated protein 4
- Cybb, Cytochrome b-245 beta polypeptide
- FBS, fetal bovine serum
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- Glutathione metabolism
- ICI, immune checkpoint inhibitor
- Immunosuppression
- Ly-6G
- Ly-6G, lymphocyte antigen 6G
- M-MDSCs, monocytic MDSCs
- MDSCs, myeloid-derived suppressor cells
- Myeloid-derived suppressor cell
- PBS, phosphate-buffered saline
- PD-1, programmed cell death 1
- PD-L1, programmed cell death 1 ligand 1
- PMN-MDSCs, polymorphonuclear MDSCs
- ROS, reactive oxygen species
- Rb1, retinoblastoma 1
- Tumor progression
- iNOS, inducible nitric oxide synthase
Collapse
|
35
|
Recent and Future Strategies to Overcome Resistance to Targeted Therapies and Immunotherapies in Metastatic Colorectal Cancer. J Clin Med 2022; 11:jcm11247523. [PMID: 36556139 PMCID: PMC9783354 DOI: 10.3390/jcm11247523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cause of cancer-related deaths worldwide, and 20% of patients with CRC present at diagnosis with metastases. The treatment of metastatic CRC is based on a fluoropyrimidine-based chemotherapy plus additional agents such as oxaliplatin and irinotecan. To date, on the basis of the molecular background, targeted therapies (e.g., monoclonal antibodies against epidermal growth factor receptor or inhibiting angiogenesis) are administered to improve the treatment of metastatic CRC. In addition, more recently, immunological agents emerged as effective in patients with a defective mismatch repair system. The administration of targeted therapies and immunotherapy lead to a significant increase in the survival of patients; however these drugs do not always prove effective. In most cases the lack of effectiveness is due to the development of primary resistance, either a resistance-inducing factor is already present before treatment or resistance is acquired when it occurs after treatment initiation. In this review we describe the most relevant targeted therapies and immunotherapies and expand on the reasons for resistance to the different approved or under development targeted drugs. Then we showed the possible mechanisms and drugs that may lead to overcoming the primary or acquired resistance in metastatic CRC.
Collapse
|
36
|
Preclinical Study of Plasmodium Immunotherapy Combined with Radiotherapy for Solid Tumors. Cells 2022; 11:cells11223600. [PMID: 36429033 PMCID: PMC9688403 DOI: 10.3390/cells11223600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Immune checkpoint blockade therapy (ICB) is ineffective against cold tumors and, although it is effective against some hot tumors, drug resistance can occur. We have developed a Plasmodium immunotherapy (PI) that can overcome these shortcomings. However, the specific killing effect of PI on tumor cells is relatively weak. Radiotherapy (RT) is known to have strong specific lethality to tumor cells. Therefore, we hypothesized that PI combined with RT could produce synergistic antitumor effects. We tested our hypothesis using orthotopic and subcutaneous models of mouse glioma (GL261, a cold tumor) and a subcutaneous model of mouse non-small cell lung cancer (NSCLC, LLC, a hot tumor). Our results showed that, compared with each monotherapy, the combination therapy more significantly inhibited tumor growth and extended the life span of tumor-bearing mice. More importantly, the combination therapy could cure approximately 70 percent of glioma. By analyzing the immune profile of the tumor tissues, we found that the combination therapy was more effective in upregulating the perforin-expressing effector CD8+ T cells and downregulating the myeloid-derived suppressor cells (MDSCs), and was thus more effective in the treatment of cancer. The clinical transformation of PI combined with RT in the treatment of solid tumors, especially glioma, is worthy of expectation.
Collapse
|
37
|
Tang Q, Chen Y, Li X, Long S, Shi Y, Yu Y, Wu W, Han L, Wang S. The role of PD-1/PD-L1 and application of immune-checkpoint inhibitors in human cancers. Front Immunol 2022; 13:964442. [PMID: 36177034 PMCID: PMC9513184 DOI: 10.3389/fimmu.2022.964442] [Citation(s) in RCA: 203] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Programmed cell death protein-1 (PD-1) is a checkpoint receptor expressed on the surface of various immune cells. PD-L1, the natural receptor for PD-1, is mainly expressed in tumor cells. Studies have indicated that PD-1 and PD-L1 are closely associated with the progression of human cancers and are promising biomarkers for cancer therapy. Moreover, the interaction of PD-1 and PD-L1 is one of the important mechanism by which human tumors generate immune escape. This article provides a review on the role of PD-L1/PD-1, mechanisms of immune response and resistance, as well as immune-related adverse events in the treatment of anti-PD-1/PD-L1 immunotherapy in human cancers. Moreover, we summarized a large number of clinical trials to successfully reveal that PD-1/PD-L1 Immune-checkpoint inhibitors have manifested promising therapeutic effects, which have been evaluated from different perspectives, including overall survival, objective effective rate and medium progression-free survival. Finally, we pointed out the current problems faced by PD-1/PD-L1 Immune-checkpoint inhibitors and its future prospects. Although PD-1/PD-L1 immune checkpoint inhibitors have been widely used in the treatment of human cancers, tough challenges still remain. Combination therapy and predictive models based on integrated biomarker determination theory may be the future directions for the application of PD-1/PD-L1 Immune-checkpoint inhibitors in treating human cancers.
Collapse
Affiliation(s)
- Qing Tang
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Clinical and Basic Research Team of Traditional Chinese Medicine (TCM) Prevention and Treatment of Non small cell lung cancer (NSCLC), Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yun Chen
- Department of Organ Transplantation, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaojuan Li
- Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shunqin Long
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Clinical and Basic Research Team of Traditional Chinese Medicine (TCM) Prevention and Treatment of Non small cell lung cancer (NSCLC), Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yao Shi
- Department of Cerebrovascular Disease, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaya Yu
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Wanyin Wu
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Clinical and Basic Research Team of Traditional Chinese Medicine (TCM) Prevention and Treatment of Non small cell lung cancer (NSCLC), Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Wanyin Wu, ; Ling Han, ; Sumei Wang,
| | - Ling Han
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Wanyin Wu, ; Ling Han, ; Sumei Wang,
| | - Sumei Wang
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Clinical and Basic Research Team of Traditional Chinese Medicine (TCM) Prevention and Treatment of Non small cell lung cancer (NSCLC), Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Wanyin Wu, ; Ling Han, ; Sumei Wang,
| |
Collapse
|
38
|
Madureira AC. Programmed Cell Death-Ligand-1 expression in Bladder Schistosomal Squamous Cell Carcinoma – There’s room for Immune Checkpoint Blockage? Front Immunol 2022; 13:955000. [PMID: 36148227 PMCID: PMC9486959 DOI: 10.3389/fimmu.2022.955000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Schistosoma haematobium, the causative agent of urogenital schistosomiasis, is a carcinogen type 1 since 1994. It is strongly associated with bladder squamous-cell carcinoma in endemic regions, where it accounts for 53-69% of bladder-carcinoma cases. This histological subtype is associated with chronic inflammation being more aggressive and resistant to conventional chemo and radiotherapy. Immune-Checkpoint-Blockage (ICB) therapies targeting the Programmed-Cell-Death-Protein-1(PD-1)/Programmed-Cell-Death-Ligand-1(PD-L1) axis showed considerable success in treating advanced bladder urothelial carcinoma. PD-L1 is induced by inflammatory stimuli and expressed in immune and tumor cells. The binding of PD-L1 with PD-1 modulates immune response leading to T-cell exhaustion. PD-L1 presents in several isoforms and its expression is dynamic and can serve as a companion marker for patients’ eligibility, allowing the identification of positive tumors that are more likely to respond to ICB therapy. The high PD-L1 expression in bladder-urothelial-carcinoma and squamous-cell carcinoma may affect further ICB-therapy application and outcomes. In general, divergent histologies are ineligible for therapy. These treatments are expensive and prone to auto-immune side effects and resistance. Thus, biomarkers capable of predicting therapy response are needed. Also, the PD-L1 expression assessment still needs refinement. Studies focused on squamous cell differentiation associated with S. haematobium remain scarce. Furthermore, in low and middle-income-regions, where schistosomiasis is endemic, SCC biomarkers are needed. This mini-review provides an overview of the current literature regarding PD-L1 expression in bladder-squamous-cell-carcinoma and schistosomiasis. It aims to pinpoint future directions, controversies, challenges, and the importance of PD-L1 as a biomarker for diagnosis, disease aggressiveness, and ICB-therapy prognosis in bladder-schistosomal-squamous-cell carcinoma.
Collapse
|
39
|
Tahir IM, Rauf A, Mehboob H, Sadaf S, Alam MS, Kalsoom F, Bouyahya A, El Allam A, El Omari N, Bakrim S, Akram M, Raza SK, Emran TB, Mabkhot YN, Zengin G, Derkho M, Natalya S, Shariati MA. Prognostic significance of programmed death-1 and programmed death ligand-1 proteins in breast cancer. Hum Antibodies 2022; 30:131-150. [PMID: 35938242 DOI: 10.3233/hab-220001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In numerous studies related to tumor prognosis, programmed death-ligand 1 (PD-L1) has been identified as a biomarker. This work aimed to determine the prognostic importance of PD-L1 in breast cancer. We searched electronic databases such as PubMed, Google scholar, home pages of publishing groups, medical, clinical, and pharmaceutical sciences journals, as well as other relevant sources to discover the importance of PD-1 and PD-L1 expression in breast cancer therapies and also recurrence. The keywords used in this search were autoimmunity, programmed cell death, PD-L1 or PD-1, and breast cancer. Our inclusion criteria included studies showing the synergy between the expression of PD-L1 and PD-1 in primary breast cancers as prognostic markers and this research was limited to humans only. We included review articles, original research, letters to the editor, case reports, and short communications in our study, published in English. We focused our work on PD-L1 mRNA expression in breast cancer cell lines. PD-L1 expression has been decisively demonstrated to be a high-risk factor for breast cancer with a bad prognosis.
Collapse
Affiliation(s)
- Imtiaz Mahmood Tahir
- College of Allied Health Professionals, Government College University, Faisalabad, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, KPK, Pakistan
| | - Huma Mehboob
- Department of Biochemistry, Government College Women University, Faisalabad, Pakistan
| | - Samia Sadaf
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chittagong, Bangladesh
| | - Muhammad Shaiful Alam
- Department of Pharmacy, University of Science and Technology Chittagong, Chittagong, Bangladesh
| | - Fadia Kalsoom
- College of Allied Health Professionals, Government College University, Faisalabad, Pakistan
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Aicha El Allam
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetics, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnologies and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, Morocco
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad Pakistan, Faisalabad, Pakistan
| | - Syed Kashif Raza
- College of Allied Health Professionals, Government College University, Faisalabad, Pakistan
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh.,Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Yahia N Mabkhot
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Marina Derkho
- South-Urals State Agrarian University, Troitsk, Chelyabinsk Region, Russia
| | - Suray Natalya
- K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Moscow, Russia
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Moscow, Russia
| |
Collapse
|
40
|
Tang XY, Xiong YL, Shi XG, Zhao YB, Shi AP, Zheng KF, Liu YJ, Jiang T, Ma N, Zhao JB. IGSF11 and VISTA: a pair of promising immune checkpoints in tumor immunotherapy. Biomark Res 2022; 10:49. [PMID: 35831836 PMCID: PMC9277907 DOI: 10.1186/s40364-022-00394-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022] Open
Abstract
Immunotherapy has become the major treatment for tumors in clinical practice, but some intractable problems such as the low response rate and high rates of immune-related adverse events still hinder the progress of tumor immunotherapy. Hence, it is essential to explore additional immunotherapy treatment targets. In this review, we focus on the structure, expression and expression-related mechanisms, interactions, biological functions and the progress in preclinical/clinical research of IGSF11 and VISTA in tumors. We cover the progress in recent research with this pair of immune checkpoints in tumor immune regulation, proliferation, immune resistance and predictive prognosis. Both IGSF11 and VISTA are highly expressed in tumors and are modulated by various factors. They co-participate in the functional regulation of immune cells and the inhibition of cytokine production. Besides, in the downregulation of IGSF11 and VISTA, both inhibit the growth of some tumors. Preclinical and clinical trials all emphasize the predictive role of IGSF11 and VISTA in the prognosis of tumors, and that the predictive role of the same gene varies from tumor to tumor. At present, further research is proving the enormous potential of IGSF11 and VISTA in tumors, and especially the role of VISTA in tumor immune resistance. This may prove to be a breakthrough to solve the current clinical immune resistance, and most importantly, since research has focused on VISTA but less on IGSF11, IGSF11 may be the next candidate for tumor immunotherapy.
Collapse
Affiliation(s)
- Xi-Yang Tang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Yan-Lu Xiong
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Xian-Gui Shi
- College of Basic Medicine, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Ya-Bo Zhao
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - An-Ping Shi
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Kai-Fu Zheng
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Yu-Jian Liu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Tao Jiang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Nan Ma
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, 710038, Xi'an, China.
| | - Jin-Bo Zhao
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
41
|
Tsang KY, Fantini M, Mavroukakis SA, Zaki A, Annunziata CM, Arlen PM. Development and Characterization of an Anti-Cancer Monoclonal Antibody for Treatment of Human Carcinomas. Cancers (Basel) 2022; 14:cancers14133037. [PMID: 35804808 PMCID: PMC9264992 DOI: 10.3390/cancers14133037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
NEO-201 is an IgG1 humanized monoclonal antibody (mAb) that binds to tumor-associated variants of carcinoembryonic antigen-related cell adhesion molecule (CEACAM)-5 and CEACAM-6. NEO-201 reacts to colon, ovarian, pancreatic, non-small cell lung, head and neck, cervical, uterine and breast cancers, but is not reactive against most normal tissues. NEO-201 can kill tumor cells via antibody-dependent cell-mediated cytotoxicity (ADCC) and complement dependent cytotoxicity (CDC) to directly kill tumor cells expressing its target. We explored indirect mechanisms of its action that may enhance immune tumor killing. NEO-201 can block the interaction between CEACAM-5 expressed on tumor cells and CEACAM-1 expressed on natural killer (NK) cells to reverse CEACAM-1-dependent inhibition of NK cytotoxicity. Previous studies have demonstrated safety/tolerability in non-human primates, and in a first in human phase 1 clinical trial at the National Cancer Institute (NCI). In addition, preclinical studies have demonstrated that NEO-201 can bind to human regulatory T (Treg) cells. The specificity of NEO-201 in recognizing suppressive Treg cells provides the basis for combination cancer immunotherapy with checkpoint inhibitors targeting the PD-1/PD-L1 pathway.
Collapse
Affiliation(s)
- Kwong yok Tsang
- Precision Biologics, Inc., Bethesda, MD 20814, USA; (M.F.); (S.A.M.); (A.Z.); (P.M.A.)
- Correspondence: ; Tel.: +1-301-500-8646
| | - Massimo Fantini
- Precision Biologics, Inc., Bethesda, MD 20814, USA; (M.F.); (S.A.M.); (A.Z.); (P.M.A.)
| | - Sharon A. Mavroukakis
- Precision Biologics, Inc., Bethesda, MD 20814, USA; (M.F.); (S.A.M.); (A.Z.); (P.M.A.)
| | - Anjum Zaki
- Precision Biologics, Inc., Bethesda, MD 20814, USA; (M.F.); (S.A.M.); (A.Z.); (P.M.A.)
| | - Christina M. Annunziata
- Women’s Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Philip M. Arlen
- Precision Biologics, Inc., Bethesda, MD 20814, USA; (M.F.); (S.A.M.); (A.Z.); (P.M.A.)
| |
Collapse
|
42
|
Wang JC, Sun L. PD-1/PD-L1, MDSC Pathways, and Checkpoint Inhibitor Therapy in Ph(-) Myeloproliferative Neoplasm: A Review. Int J Mol Sci 2022; 23:5837. [PMID: 35628647 PMCID: PMC9143160 DOI: 10.3390/ijms23105837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022] Open
Abstract
There has been significant progress in immune checkpoint inhibitor (CPI) therapy in many solid tumor types. However, only a single failed study has been published in treating Ph(-) myeloproliferative neoplasm (MPN). To make progress in CPI studies on this disease, herein, we review and summarize the mechanisms of activation of the PD-L1 promoter, which are as follows: (a) the extrinsic mechanism, which is activated by interferon gamma (IFN γ) by tumor infiltration lymphocytes (TIL) and NK cells; (b) the intrinsic mechanism of EGFR or PTEN loss resulting in the activation of the MAPK and AKT pathways and then stat 1 and 3 activation; and (c) 9p24 amplicon amplification, resulting in PD-L1 and Jak2 activation. We also review the literature and postulate that many of the failures of CPI therapy in MPN are likely due to excessive MDSC activities. We list all of the anti-MDSC agents, especially those with ruxolitinib, IMID compounds, and BTK inhibitors, which may be combined with CPI therapy in the future as part of clinical trials applying CPI therapy to Ph(-) MPN.
Collapse
Affiliation(s)
- Jen-Chin Wang
- Division of Hematology/Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY 11212, USA;
| | | |
Collapse
|
43
|
Mudassar F, Shen H, Cook KM, Hau E. Improving the synergistic combination of programmed death‐1/programmed death ligand‐1 blockade and radiotherapy by targeting the hypoxic tumour microenvironment. J Med Imaging Radiat Oncol 2022; 66:560-574. [PMID: 35466515 PMCID: PMC9322583 DOI: 10.1111/1754-9485.13416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/05/2022] [Accepted: 04/10/2022] [Indexed: 11/28/2022]
Abstract
Immune checkpoint inhibition with PD‐1/PD‐L1 blockade is a promising area in the field of anti‐cancer therapy. Although clinical data have revealed success of PD‐1/PD‐L1 blockade as monotherapy or in combination with CTLA‐4 or chemotherapy, the combination with radiotherapy could further boost anti‐tumour immunity and enhance clinical outcomes due to the immunostimulatory effects of radiation. However, the synergistic combination of PD‐1/PD‐L1 blockade and radiotherapy can be challenged by the complex nature of the tumour microenvironment (TME), including the presence of tumour hypoxia. Hypoxia is a major barrier to the effectiveness of both radiotherapy and PD‐1/PD‐L1 blockade immunotherapy. Thus, targeting the hypoxic TME is an attractive strategy to enhance the efficacy of the combination. Addition of compounds that directly or indirectly reduce hypoxia, to the combination of PD‐1/PD‐L1 inhibitors and radiotherapy may optimize the success of the combination and improve therapeutic outcomes. In this review, we will discuss the synergistic combination of PD‐1/PD‐L1 blockade and radiotherapy and highlight the role of hypoxic TME in impeding the success of both therapies. In addition, we will address the potential approaches for targeting tumour hypoxia and how exploiting these strategies could benefit the combination of PD‐1/PD‐L1 blockade and radiotherapy.
Collapse
Affiliation(s)
- Faiqa Mudassar
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research The Westmead Institute for Medical Research Sydney New South Wales Australia
- Sydney Medical School The University of Sydney Sydney New South Wales Australia
| | - Han Shen
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research The Westmead Institute for Medical Research Sydney New South Wales Australia
- Sydney Medical School The University of Sydney Sydney New South Wales Australia
| | - Kristina M Cook
- Sydney Medical School The University of Sydney Sydney New South Wales Australia
- Charles Perkins Centre The University of Sydney Sydney New South Wales Australia
| | - Eric Hau
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research The Westmead Institute for Medical Research Sydney New South Wales Australia
- Sydney Medical School The University of Sydney Sydney New South Wales Australia
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre Westmead Hospital Sydney New South Wales Australia
- Blacktown Hematology and Cancer Centre Blacktown Hospital Sydney New South Wales Australia
| |
Collapse
|
44
|
Abstract
With the development of precision medicine, the efficiency of tumor treatment has been significantly improved. More attention has been paid to targeted therapy and immunotherapy as the key to precision treatment of cancer. Targeting epidermal growth factor receptor (EGFR) has become one of the most important targeted treatments for various cancers. Comparing with traditional chemotherapy drugs, targeting EGFR is highly selective in killing tumor cells with better safety, tolerability and less side effect. In addition, tumor immunotherapy has become the fourth largest tumor therapy after surgery, radiotherapy and chemotherapy, especially immune checkpoint inhibitors. However, these treatments still produce a certain degree of drug resistance. Non-coding RNAs (ncRNAs) were found to play a key role in carcinogenesis, treatment and regulation of the efficacy of anticancer drugs in the past few years. Therefore, in this review, we aim to summarize the targeted treatment of cancers and the functions of ncRNAs in cancer treatment.
Collapse
|
45
|
Kaltschmidt B, Witte KE, Greiner JFW, Weissinger F, Kaltschmidt C. Targeting NF-κB Signaling in Cancer Stem Cells: A Narrative Review. Biomedicines 2022; 10:biomedicines10020261. [PMID: 35203471 PMCID: PMC8869483 DOI: 10.3390/biomedicines10020261] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/14/2022] Open
Abstract
Among the cell populations existing within a tumor, cancer stem cells are responsible for metastasis formation and chemotherapeutic resistance. In the present review, we focus on the transcription factor NF-κB, which is present in every cell type including cancer stem cells. NF-κB is involved in pro-tumor inflammation by its target gene interleukin 1 (IL1) and can be activated by a feed-forward loop in an IL1-dependent manner. Here, we summarize current strategies targeting NF-κB by chemicals and biologicals within an integrated cancer therapy. Specifically, we start with a tyrosine kinase inhibitor targeting epidermal growth factor (EGF)-receptor-mediated phosphorylation. Furthermore, we summarize current strategies of multiple myeloma treatment involving lenalidomide, bortezomib, and dexamethasone as potential NF-κB inhibitors. Finally, we discuss programmed death-ligand 1 (PD-L1) as an NF-κB target gene and its role in checkpoint therapy. We conclude, that NF-κB inhibition by specific inhibitors of IκB kinase was of no clinical use but inhibition of upstream and downstream targets with drugs or biologicals might be a fruitful way to treat cancer stem cells.
Collapse
Affiliation(s)
- Barbara Kaltschmidt
- Molecular Neurobiology, Faculty of Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany;
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Maraweg 21, 33617 Bielefeld, Germany; (K.E.W.); (J.F.W.G.); (F.W.)
| | - Kaya E. Witte
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Maraweg 21, 33617 Bielefeld, Germany; (K.E.W.); (J.F.W.G.); (F.W.)
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Johannes F. W. Greiner
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Maraweg 21, 33617 Bielefeld, Germany; (K.E.W.); (J.F.W.G.); (F.W.)
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Florian Weissinger
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Maraweg 21, 33617 Bielefeld, Germany; (K.E.W.); (J.F.W.G.); (F.W.)
- Department of Hematology, Oncology, Internal Medicine, Bone Marrow and Stem Cell Transplantation, Palliative Medicine, and Tumor Center, Protestant Hospital of Bethel Foundation, University Hospital OWL of Bielefeld University, Schildescher Str. 99, 33611 Bielefeld, Germany
| | - Christian Kaltschmidt
- Forschungsverbund BioMedizin Bielefeld FBMB e.V., Maraweg 21, 33617 Bielefeld, Germany; (K.E.W.); (J.F.W.G.); (F.W.)
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Correspondence: ; Tel.: +49-521-106-5625
| |
Collapse
|
46
|
Puleo J, Polyak K. A Darwinian perspective on tumor immune evasion. Biochim Biophys Acta Rev Cancer 2022; 1877:188671. [PMID: 34933050 PMCID: PMC8818030 DOI: 10.1016/j.bbcan.2021.188671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/21/2021] [Accepted: 12/14/2021] [Indexed: 01/03/2023]
Abstract
Evading immune-mediated destruction is a critical step of tumor evolution and the immune system is one of the strongest selective pressures during tumorigenesis. Analyzing tumor immune evasion from a Darwinian perspective may provide critical insight into the mechanisms of primary immune escape and acquired resistance to immunotherapy. Here, we review the steps required to mount an anti-tumor immune response, describe how each of these steps is disrupted during tumorigenesis, list therapeutic strategies to restore anti-tumor immunity, and discuss each mechanism of immune and therapeutic evasion from a Darwinian perspective.
Collapse
Affiliation(s)
- Julieann Puleo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
47
|
Bae J, Accardi F, Hideshima T, Tai YT, Prabhala R, Shambley A, Wen K, Rowell S, Richardson PG, Munshi NC, Anderson KC. Targeting LAG3/GAL-3 to overcome immunosuppression and enhance anti-tumor immune responses in multiple myeloma. Leukemia 2022; 36:138-154. [PMID: 34290359 PMCID: PMC8727303 DOI: 10.1038/s41375-021-01301-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/29/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023]
Abstract
Immune profiling in patients with monoclonal gammopathy of undetermined significance (MGUS), smoldering multiple myeloma (SMM), and multiple myeloma (MM) provides the framework for developing novel immunotherapeutic strategies. Here, we demonstrate decreased CD4+ Th cells, increased Treg and G-type MDSC, and upregulation of immune checkpoints on effector/regulatory and CD138+ cells in MM patients, compared MGUS/SMM patients or healthy individuals. Among the checkpoints profiled, LAG3 was most highly expressed on proliferating CD4+ Th and CD8+ Tc cells in MM patients BMMC and PBMC. Treatment with antibody targeting LAG3 significantly enhanced T cells proliferation and activities against MM. XBP1/CD138/CS1-specific CTL generated in vitro displayed anti-MM activity, which was further enhanced following anti-LAG3 treatment, within the antigen-specific memory T cells. Treg and G-type MDSC weakly express LAG3 and were minimally impacted by anti-LAG3. CD138+ MM cells express GAL-3, a ligand for LAG3, and anti-GAL-3 treatment increased MM-specific responses, as observed for anti-LAG3. Finally, we demonstrate checkpoint inhibitor treatment evokes non-targeted checkpoints as a cause of resistance and propose combination therapeutic strategies to overcome this resistance. These studies identify and validate blockade of LAG3/GAL-3, alone or in combination with immune strategies including XBP1/CD138/CS1 multipeptide vaccination, to enhance anti-tumor responses and improve patient outcome in MM.
Collapse
Affiliation(s)
- Jooeun Bae
- Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Fabrizio Accardi
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Teru Hideshima
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yu-Tzu Tai
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Rao Prabhala
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Aaron Shambley
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kenneth Wen
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sean Rowell
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Paul G Richardson
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Nikhil C Munshi
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kenneth C Anderson
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
48
|
Scandolara TB, Pacholak LM, Tavares IM, Kern R, Garcia-Velazquez L, Panis C. Cross talks between autoimmunity and cancer. TRANSLATIONAL AUTOIMMUNITY 2022:15-49. [DOI: 10.1016/b978-0-323-85415-3.00005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
49
|
Akbari H, Taghizadeh-Hesary F, Bahadori M. Mitochondria determine response to anti-programmed cell death protein-1 (anti-PD-1) immunotherapy: An evidence-based hypothesis. Mitochondrion 2021; 62:151-158. [PMID: 34890822 DOI: 10.1016/j.mito.2021.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 02/06/2023]
Abstract
Immunotherapy based on programmed cell death protein-1 (PD-1) is a promising approach in oncology. However, a significant fraction of patients remain unresponsive. Therefore, it is imperative to clarify the relevant predictive factors. A decrease in cellular adenosine triphosphate (c-ATP) level can predispose to cellular dysfunction. ATP is a prerequisite for proper T cell migration and activation. Therefore, a decrease in the c-ATP level impairs T cell function and promotes cancer progression. This article gives an overview of the potential predictive factors of PD-1 blockade. Besides, it highlights the pivotal role of mitochondria in response to anti-PD-1 therapies.
Collapse
Affiliation(s)
- Hassan Akbari
- Department of Pathology, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Traditional Medicine School, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Moslem Bahadori
- Professor Emeritus, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Jiang Y, Yuan Y, Chen M, Li S, Bai J, Zhang Y, Sun Y, Wang G, Xu H, Wang Z, Zheng Y, Nie H. PRMT5 disruption drives antitumor immunity in cervical cancer by reprogramming T cell-mediated response and regulating PD-L1 expression. Am J Cancer Res 2021; 11:9162-9176. [PMID: 34522232 PMCID: PMC8419032 DOI: 10.7150/thno.59605] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 08/20/2021] [Indexed: 12/31/2022] Open
Abstract
Rationale: Protein arginine methyltransferase 5 (PRMT5) is an oncogene that promotes tumor cell proliferation, invasion and metastasis. However, the underlying mechanisms by which PRMT5 contributes to the progression of cervical cancer and especially the tumor microenvironment remain poorly understood. Methods: PRMT5 expression level was analyzed by Q-PCR, western blot, immunohistochemistry, and TCGA database. The role of PRMT5 in tumor growth was observed by transplanted tumor models, and the function of T cells in tumor microenvironment and in vitro co-culture system was investigated through flow cytometry. The transcriptional regulation of PRMT5 was analyzed using luciferase reporter and chromatin immunoprecipitation (ChIP) assay. The therapeutic effect of PRMT5 inhibitor was evaluated in a cervical cancer cell line transplanted tumor model. Results: We observed that the mRNA and protein expression levels of PRMT5 were increased in cervical cancer tissues, and the high expression of PRMT5 was associated with poor outcomes in cervical cancer patients. The absence of PRMT5 significantly inhibited tumor growth in a cervical cancer transplanted tumor model, and importantly, PRMT5 absence in tumors led to increase the number and enhance the function of tumor infiltrating T cells. Mechanistically, PRMT5 enhanced the transcription of STAT1 through symmetric dimethylation of histone H3R2 and thus promoted PD-L1 expression in cervical cancer cells. Moreover, in an in vitro co-culture system, knockdown of PRMT5 in tumor cells could directly enhance the expression of IFN-γ, TNF-α and granzyme B in T cells. These results suggested that PRMT5 promoted the development of cervical cancer by the crosstalk between tumor cells and T cells. Furthermore, the PRMT5 inhibitor EPZ015666 treatment could suppress tumor growth in a cervical cancer transplanted tumor model. Conclusion: Our results clarify a new mechanism which PRMT5 knockdown in cervical cancer cells drives an antitumor function via reprogramming T cell-mediated response and regulating PD-L1 expression. Thus, our study highlights that PRMT5 may be a potential target for cervical cancer therapy.
Collapse
|