1
|
Nersisyan S, Loher P, Nazeraj I, Shao Z, Fullard JF, Voloudakis G, Girdhar K, Roussos P, Rigoutsos I. Comprehensive profiling of small RNAs and their changes and linkages to mRNAs in schizophrenia and bipolar disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.24.630254. [PMID: 39763727 PMCID: PMC11703252 DOI: 10.1101/2024.12.24.630254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
We investigated small non-coding RNAs (sncRNAs) from the prefrontal cortex of 93 individuals diagnosed with schizophrenia (SCZ) or bipolar disorder (BD) and 77 controls. We uncovered recurring complex sncRNA profiles, with 98% of all sncRNAs being accounted for by miRNA isoforms (60.6%), tRNA-derived fragments (17.8%), rRNA-derived fragments (11.4%), and Y RNA-derived fragments (8.3%). In SCZ, 15% of all sncRNAs exhibit statistically significant changes in their abundance. In BD, the fold changes (FCs) are highly correlated with those in SCZ but less acute. Non-templated nucleotide additions to the 3´-ends of many miRNA isoforms determine their FC independently of miRNA identity or genomic locus of origin. In both SCZ and BD, disease- and age-associated sncRNAs and mRNAs reveal accelerated aging. Co-expression modules between sncRNAs and mRNAs align with the polarities of SCZ changes and implicate sncRNAs in critical processes, including synaptic signaling, neurogenesis, memory, behavior, and cognition.
Collapse
Affiliation(s)
- Stepan Nersisyan
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Phillipe Loher
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Iliza Nazeraj
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zhiping Shao
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - John F. Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Georgios Voloudakis
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Precision Medicine and Translational Therapeutics, JJ Peters VA Medical Center, Bronx, New York, USA
- Mental Illness Research Education and Clinical Center (MIRECC), JJ Peters VA Medical Center, Bronx, New York, USA
| | - Kiran Girdhar
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Center for Precision Medicine and Translational Therapeutics, JJ Peters VA Medical Center, Bronx, New York, USA
- Mental Illness Research Education and Clinical Center (MIRECC), JJ Peters VA Medical Center, Bronx, New York, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
2
|
Cherlin T, Jing Y, Shah S, Kennedy A, Telonis AG, Pliatsika V, Wilson H, Thompson L, Vlantis PI, Loher P, Leiby B, Rigoutsos I. The subcellular distribution of miRNA isoforms, tRNA-derived fragments, and rRNA-derived fragments depends on nucleotide sequence and cell type. BMC Biol 2024; 22:205. [PMID: 39267057 PMCID: PMC11397057 DOI: 10.1186/s12915-024-01970-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 08/01/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND MicroRNA isoforms (isomiRs), tRNA-derived fragments (tRFs), and rRNA-derived fragments (rRFs) represent most of the small non-coding RNAs (sncRNAs) found in cells. Members of these three classes modulate messenger RNA (mRNA) and protein abundance and are dysregulated in diseases. Experimental studies to date have assumed that the subcellular distribution of these molecules is well-understood, independent of cell type, and the same for all isoforms of a sncRNA. RESULTS We tested these assumptions by investigating the subcellular distribution of isomiRs, tRFs, and rRFs in biological replicates from three cell lines from the same tissue and same-sex donors that model the same cancer subtype. In each cell line, we profiled the isomiRs, tRFs, and rRFs in the nucleus, cytoplasm, whole mitochondrion (MT), mitoplast (MP), and whole cell. Using a rigorous mathematical model we developed, we accounted for cross-fraction contamination and technical errors and adjusted the measured abundances accordingly. Analyses of the adjusted abundances show that isomiRs, tRFs, and rRFs exhibit complex patterns of subcellular distributions. These patterns depend on each sncRNA's exact sequence and the cell type. Even in the same cell line, isoforms of the same sncRNA whose sequences differ by a few nucleotides (nts) can have different subcellular distributions. CONCLUSIONS SncRNAs with similar sequences have different subcellular distributions within and across cell lines, suggesting that each isoform could have a different function. Future computational and experimental studies of isomiRs, tRFs, and rRFs will need to distinguish among each molecule's various isoforms and account for differences in each isoform's subcellular distribution in the cell line at hand. While the findings add to a growing body of evidence that isomiRs, tRFs, rRFs, tRNAs, and rRNAs follow complex intracellular trafficking rules, further investigation is needed to exclude alternative explanations for the observed subcellular distribution of sncRNAs.
Collapse
Affiliation(s)
- Tess Cherlin
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA
- University of Pennsylvania, Philadelphia, PA, USA
| | - Yi Jing
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA
| | - Siddhartha Shah
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA
| | - Anne Kennedy
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Aristeidis G Telonis
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA
- University of Miami, Miami, FL, USA
| | - Venetia Pliatsika
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA
- New York University, New York, NY, USA
| | - Haley Wilson
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lily Thompson
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Panagiotis I Vlantis
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA
- Independent Scholar, Athens, Greece
| | - Phillipe Loher
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA
| | - Benjamin Leiby
- Division of Biostatistics, Thomas Jefferson University, Philadelphia, PA, 19017, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA.
| |
Collapse
|
3
|
Wagner V, Meese E, Keller A. The intricacies of isomiRs: from classification to clinical relevance. Trends Genet 2024; 40:784-796. [PMID: 38862304 DOI: 10.1016/j.tig.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/13/2024]
Abstract
MicroRNAs (miRNAs) and isoforms of their archetype, called isomiRs, regulate gene expression via complementary base-pair binding to messenger RNAs (mRNAs). The partially evolutionarily conserved isomiR sequence variations are differentially expressed among tissues, populations, and genders, and between healthy and diseased states. Aiming towards the clinical use of isomiRs as diagnostic biomarkers and for therapeutic purposes, several challenges need to be addressed, including (i) clarification of isomiR definition, (ii) improved annotation in databases with new standardization (such as the mirGFF3 format), and (iii) improved methods of isomiR detection, functional verification, and in silico analysis. In this review we discuss the respective challenges, and highlight the opportunities for clinical use of isomiRs, especially in the light of increasing amounts of next-generation sequencing (NGS) data.
Collapse
Affiliation(s)
- Viktoria Wagner
- Chair for Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Saarland University Campus, 66123 Saarbrücken, Germany
| | - Eckart Meese
- Department of Human Genetics, Saarland University, 66421 Homburg/Saar, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Saarland University Campus, 66123 Saarbrücken, Germany.
| |
Collapse
|
4
|
Dai Y, Xu Y, Shen J, Hu C, Li X, Chen Y, Liu Y, Hu D. MiR-30a-5p isoform -1|1 promotes the progression of gastric cancer by inhibiting TMEM66 and reducing intratumoral cytotoxic T cells. Exp Cell Res 2024; 439:114099. [PMID: 38802035 DOI: 10.1016/j.yexcr.2024.114099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Gastric cancer is histologically classified into the intestinal subtype, which forms tubular structures, and the aggressive diffuse subtype, characterized by rapid invasion and poor prognosis. The variety and quantity of miRNA isoforms between different histological subtypes of gastric cancer were unknown. Through systematic filtering, we found that more diverse miR-30a-5p isoforms was present in the diffuse subtype of gastric cancer, and was associated with patients' worse survival independent of tumor stage based on the TCGA miRNA-seq data. Among all nine isoforms of miR-30a-5p, miR-30a-5p -1|1 was more abundant than the archetype of miR-30a-5p. Higher expression of miR-30a-5p -1|1 was observed in patients with advanced tumor stage and poor survival. Furthermore, miR-30a-5p -1|1 could promote the metastasis of gastric cancer cells both in vitro and in vivo by down-regulating TMEM66. In clinical samples, decreased expression of TMEM66 was characteristic of gastric cancer, and the low level of TMEM66 correlated with deceased CD8 positive cells in the tumor microenvironment probably due to decreased cytokines production. In conclusion, the variety of miR-30a-5p isoforms correlates with worse survival in gastric cancer patients. Moreover, miR-30a-5p -1|1 could promote gastric cancer metastasis by inhibiting TMEM66 and the infiltration of intratumoral CD8 positive cells.
Collapse
Affiliation(s)
- Yanmiao Dai
- Department of Gastroenterology, Traditional Chinese Medicine Hospital of Kunshan, Kunshan, China
| | - Yudong Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Shen
- Department of Gastroenterology, Traditional Chinese Medicine Hospital of Kunshan, Kunshan, China
| | - Caihong Hu
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Soochow University, Suzhou, China
| | - Xiaoli Li
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Soochow University, Suzhou, China
| | - Yongyu Chen
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Soochow University, Suzhou, China
| | - Yao Liu
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Soochow University, Suzhou, China.
| | - Duanmin Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
5
|
Lukosevicius R, Alzbutas G, Varkalaite G, Salteniene V, Tilinde D, Juzenas S, Kulokiene U, Janciauskas D, Poskiene L, Adamonis K, Kiudelis G, Kupcinskas J, Skieceviciene J. 5'-Isoforms of miR-1246 Have Distinct Targets and Stronger Functional Impact Compared with Canonical miR-1246 in Colorectal Cancer Cells In Vitro. Int J Mol Sci 2024; 25:2808. [PMID: 38474054 DOI: 10.3390/ijms25052808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Colorectal cancer (CRC) is a multifactorial disease involving genetic and epigenetic factors, such as miRNAs. Sequencing-based studies have revealed that miRNAs have many isoforms (isomiRs) with modifications at the 3'- and 5'-ends or in the middle, resulting in distinct targetomes and, consequently, functions. In the present study, we aimed to evaluate the putative targets and functional role of miR-1246 and its two 5'-isoforms (ISO-miR-1246_a and ISO-miR-1246_G) in vitro. Commercial Caco-2 cells of CRC origin were analyzed for the expression of WT-miR-1246 and its 5'-isoforms using small RNA sequencing data, and the overabundance of the two miR-1246 isoforms was determined in cells. The transcriptome analysis of Caco-2 cells transfected with WT-miR-1246, ISO-miR-1246_G, and ISO-miR-1246_a indicated the minor overlap of the targetomes between the studied miRNA isoforms. Consequently, an enrichment analysis showed the involvement of the potential targets of the miR-1246 isoforms in distinct signaling pathways. Cancer-related pathways were predominantly more enriched in dysregulated genes in ISO-miR-1246_G and ISO-miR-1246_a, whereas cell cycle pathways were more enriched in WT-miR-1246. The functional analysis of WT-miR-1246 and its two 5'-isoforms revealed that the inhibition of any of these molecules had a tumor-suppressive role (reduced cell viability and migration and promotion of early cell apoptosis) in CRC cells. However, the 5'-isoforms had a stronger effect on viability compared with WT-miR-1246. To conclude, this research shows that WT-miR-1246 and its two 5'-isoforms have different targetomes and are involved in distinct signaling pathways but collectively play an important role in CRC pathogenesis.
Collapse
Affiliation(s)
- Rokas Lukosevicius
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Gediminas Alzbutas
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Greta Varkalaite
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Violeta Salteniene
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Deimante Tilinde
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Simonas Juzenas
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
- Institute of Biotechnology, Life Science Centre, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Ugne Kulokiene
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Dainius Janciauskas
- Department of Pathology, Medical Academy, Hospital of Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Lina Poskiene
- Department of Pathology, Medical Academy, Hospital of Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Kestutis Adamonis
- Department of Gastroenterology, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Gediminas Kiudelis
- Department of Gastroenterology, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Juozas Kupcinskas
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
- Department of Gastroenterology, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Jurgita Skieceviciene
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| |
Collapse
|
6
|
Pliatsika V, Cherlin T, Loher P, Vlantis P, Nagarkar P, Nersisyan S, Rigoutsos I. MINRbase: a comprehensive database of nuclear- and mitochondrial-ribosomal-RNA-derived fragments (rRFs). Nucleic Acids Res 2024; 52:D229-D238. [PMID: 37843123 PMCID: PMC10767805 DOI: 10.1093/nar/gkad833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
We describe the Mitochondrial and Nuclear rRNA fragment database (MINRbase), a knowledge repository aimed at facilitating the study of ribosomal RNA-derived fragments (rRFs). MINRbase provides interactive access to the profiles of 130 238 expressed rRFs arising from the four human nuclear rRNAs (18S, 5.8S, 28S, 5S), two mitochondrial rRNAs (12S, 16S) or four spacers of 45S pre-rRNA. We compiled these profiles by analyzing 11 632 datasets, including the GEUVADIS and The Cancer Genome Atlas (TCGA) repositories. MINRbase offers a user-friendly interface that lets researchers issue complex queries based on one or more criteria, such as parental rRNA identity, nucleotide sequence, rRF minimum abundance and metadata keywords (e.g. tissue type, disease). A 'summary' page for each rRF provides a granular breakdown of its expression by tissue type, disease, sex, ancestry and other variables; it also allows users to create publication-ready plots at the click of a button. MINRbase has already allowed us to generate support for three novel observations: the internal spacers of 45S are prolific producers of abundant rRFs; many abundant rRFs straddle the known boundaries of rRNAs; rRF production is regimented and depends on 'personal attributes' (sex, ancestry) and 'context' (tissue type, tissue state, disease). MINRbase is available at https://cm.jefferson.edu/MINRbase/.
Collapse
Affiliation(s)
- Venetia Pliatsika
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Tess Cherlin
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Phillipe Loher
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Panagiotis Vlantis
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Parth Nagarkar
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Stepan Nersisyan
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
7
|
Pawlina-Tyszko K, Szmatoła T. Benchmarking of bioinformatics tools for NGS-based microRNA profiling with RT-qPCR method. Funct Integr Genomics 2023; 23:347. [PMID: 38030823 PMCID: PMC10687144 DOI: 10.1007/s10142-023-01276-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/03/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
MicroRNAs are vital gene expression regulators, extensively studied worldwide. The large-scale characterization of miRNAomes is possible using next-generation sequencing (NGS). This technology offers great opportunities, but these cannot be fully exploited without proper and comprehensive bioinformatics analysis. This may be achieved by the use of reliable dedicated software; however, different programs may generate divergent results, leading to additional discrepancies. Thus, the aim of this study was to compare three bioinformatic algorithms dedicated to NGS-based microRNA profiling and validate them using an alternative method, namely RT-qPCR. The comparison analysis revealed differences in the number and sets of identified miRNAs. The qPCR confirmed the expression of the investigated microRNAs. The correlation analysis of NGS and qPCR measurements showed strong and significant coefficients for a subset of the tested miRNAs, including those detected by all three algorithms. Single miRNA variants (isomiRs) showed different levels of correlation with the qPCR data. The obtained results revealed the good performance of all tested programs, despite the observed differences. Moreover, they implied that some specific miRNAs may be differentially estimated using NGS technology and the qPCR method, regardless of the used bioinformatics software. These discrepancies may stem from many factors, including the composition of the isomiR profile, their abundance, length, and investigated species. In conclusion, in this study, we shed light on the bioinformatics aspects of miRNAome profiling, elucidating its complexity and pinpointing potential features influencing validation. Thus, qPCR validation results should be open to interpretation when not fully concordant with NGS results until further, additional analyses are conducted.
Collapse
Affiliation(s)
- Klaudia Pawlina-Tyszko
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1 st., 32-083, Balice, Poland.
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1 st., 32-083, Balice, Poland
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Redzina 1c, 30-248, Krakow, Poland
| |
Collapse
|
8
|
Wong LL, Fadzil AB, Chen Q, Rademaker MT, Charles CJ, Richards AM, Wang P. Interrogating the Role of miR-125b and Its 3'isomiRs in Protection against Hypoxia. Int J Mol Sci 2023; 24:16015. [PMID: 37958999 PMCID: PMC10650460 DOI: 10.3390/ijms242116015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
MiR-125b has therapeutic potential in the amelioration of myocardial ischemic injury. MicroRNA isomiRs, with either 5' or 3' addition or deletion of nucleotide(s), have been reported from next-generation sequencing data (NGS). However, due to technical challenges, validation and functional studies of isomiRs are few. In this study, we discovered using NGS, four 3'isomiRs of miR-125b, i.e., addition of A (adenosine), along with deletions of A, AG (guanosine) and AGU (uridine) from rat and sheep heart. These findings were validated using RT-qPCR. Comprehensive functional studies were carried out in the H9C2 hypoxia model. After miR-125b, isomiRs of Plus A, Trim A, AG and AGU mimic transfection, the H9C2 cells were subjected to hypoxic challenge. As assessed using cell viability, apoptosis, CCK-8 and LDH release, miR-125b and isomiRs were all protective against hypoxia. However, Plus A and Trim A were more effective than miR-125b, whilst Trim AG and Trim AGU had far weaker effects than miR-125b. Interestingly, both the gene regulation profile and apoptotic gene validation indicated a major overlap among miR-125b, Plus A and Trim A, whilst Trims AG and AGU revealed a different profile compared to miR-125b. Conclusions: miR-125b and its 3' isomiRs are expressed stably in the heart. miR-125b and isomiRs with addition or deletion of A might function concurrently and concordantly under specific physiological and pathophysiological conditions. In-depth understanding of isomiRs' metabolism and function will contribute to better miRNA therapeutic drug design.
Collapse
Affiliation(s)
- Lee Lee Wong
- Cardiovascular Research Institute, National University Health System, Singapore 117599, Singapore; (A.B.F.); (Q.C.); (A.M.R.)
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Azizah Binti Fadzil
- Cardiovascular Research Institute, National University Health System, Singapore 117599, Singapore; (A.B.F.); (Q.C.); (A.M.R.)
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Qiying Chen
- Cardiovascular Research Institute, National University Health System, Singapore 117599, Singapore; (A.B.F.); (Q.C.); (A.M.R.)
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Miriam T. Rademaker
- Christchurch Heart Institute, Department of Medicine, University of Otago-Christchurch, Christchurch P.O. Box 4345, New Zealand;
| | - Christopher J. Charles
- Cardiovascular Research Institute, National University Health System, Singapore 117599, Singapore; (A.B.F.); (Q.C.); (A.M.R.)
- Christchurch Heart Institute, Department of Medicine, University of Otago-Christchurch, Christchurch P.O. Box 4345, New Zealand;
| | - Arthur Mark Richards
- Cardiovascular Research Institute, National University Health System, Singapore 117599, Singapore; (A.B.F.); (Q.C.); (A.M.R.)
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Christchurch Heart Institute, Department of Medicine, University of Otago-Christchurch, Christchurch P.O. Box 4345, New Zealand;
| | - Peipei Wang
- Cardiovascular Research Institute, National University Health System, Singapore 117599, Singapore; (A.B.F.); (Q.C.); (A.M.R.)
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
9
|
Akins RB, Ostberg K, Cherlin T, Tsiouplis NJ, Loher P, Rigoutsos I. The Typical tRNA Co-Expresses Multiple 5' tRNA Halves Whose Sequences and Abundances Depend on Isodecoder and Isoacceptor and Change with Tissue Type, Cell Type, and Disease. Noncoding RNA 2023; 9:69. [PMID: 37987365 PMCID: PMC10660753 DOI: 10.3390/ncrna9060069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/02/2023] [Accepted: 10/12/2023] [Indexed: 11/22/2023] Open
Abstract
Transfer RNA-derived fragments (tRFs) are noncoding RNAs that arise from either mature transfer RNAs (tRNAs) or their precursors. One important category of tRFs comprises the tRNA halves, which are generated through cleavage at the anticodon. A given tRNA typically gives rise to several co-expressed 5'-tRNA halves (5'-tRHs) that differ in the location of their 3' ends. These 5'-tRHs, even though distinct, have traditionally been treated as indistinguishable from one another due to their near-identical sequences and lengths. We focused on co-expressed 5'-tRHs that arise from the same tRNA and systematically examined their exact sequences and abundances across 10 different human tissues. To this end, we manually curated and analyzed several hundred human RNA-seq datasets from NCBI's Sequence Run Archive (SRA). We grouped datasets from the same tissue into their own collection and examined each group separately. We found that a given tRNA produces different groups of co-expressed 5'-tRHs in different tissues, different cell lines, and different diseases. Importantly, the co-expressed 5'-tRHs differ in their sequences, absolute abundances, and relative abundances, even among tRNAs with near-identical sequences from the same isodecoder or isoacceptor group. The findings suggest that co-expressed 5'-tRHs that are produced from the same tRNA or closely related tRNAs have distinct, context-dependent roles. Moreover, our analyses show that cell lines modeling the same tissue type and disease may not be interchangeable when it comes to experimenting with tRFs.
Collapse
Affiliation(s)
| | | | | | | | | | - Isidore Rigoutsos
- Computational Medical Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
10
|
Nersisyan S, Montenont E, Loher P, Middleton EA, Campbell R, Bray P, Rigoutsos I. Characterization of all small RNAs in and comparisons across cultured megakaryocytes and platelets of healthy individuals and COVID-19 patients. J Thromb Haemost 2023; 21:3252-3267. [PMID: 37558133 DOI: 10.1016/j.jtha.2023.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/03/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND The small noncoding RNAs (sncRNAs) in megakaryocytes (MKs) and platelets are not well characterized. Neither is the impact of SARS-CoV-2 infection on the sncRNAs of platelets. OBJECTIVES To investigate the sorting of MK sncRNAs into platelets, and the differences in the platelet sncRNAomes of healthy donors (HDs) and COVID-19 patients. METHODS We comprehensively profiled sncRNAs from MKs cultured from cord blood-derived CD34+ cells, platelets from HDs, and platelets from patients with moderate and severe SARS-CoV-2 infection. We also comprehensively profiled Argonaute (AGO)-bound sncRNAs from the cultured MKs. RESULTS We characterized the sncRNAs in MKs and platelets and can account for ∼95% of all sequenced reads. We found that MKs primarily comprise microRNA isoforms (isomiRs), tRNA-derived fragments (tRFs), rRNA-derived fragments (rRFs), and Y RNA-derived fragments (yRFs) in comparable abundances. The platelets of HDs showed a skewed distribution by comparison: 56.7% of all sncRNAs are yRFs, 34.4% are isomiRs, and <2.0% are tRFs and rRFs. Most isomiRs in MKs and platelets are either noncanonical, nontemplated, or both. When comparing MKs and platelets from HDs, we found numerous isomiRs, tRFs, rRFs, and yRFs showing opposite enrichments or depletions, including molecules from the same parental miRNA arm, tRNA, rRNA, or Y RNA. The sncRNAome of platelets from patients with COVID-19 is skewed compared to that of HDs with only 19.8% of all sncRNAs now being yRFs, isomiRs increasing to 63.6%, and tRFs and rRFs more than tripling their presence to 6.1%. CONCLUSION The sncRNAomes of MKs and platelets are very rich and more complex than it has been believed. The evidence suggests complex mechanisms that sort MK sncRNAs into platelets. SARS-CoV-2 infection acutely alters the contents of platelets by changing the relative proportions of their sncRNAs.
Collapse
Affiliation(s)
- Stepan Nersisyan
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Emilie Montenont
- University of Utah Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Phillipe Loher
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Elizabeth A Middleton
- University of Utah Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA; Division of Pulmonary Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Robert Campbell
- University of Utah Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA; Division of General Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Paul Bray
- University of Utah Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA; Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
11
|
Orbán TI. One locus, several functional RNAs-emerging roles of the mechanisms responsible for the sequence variability of microRNAs. Biol Futur 2023:10.1007/s42977-023-00154-7. [PMID: 36847925 DOI: 10.1007/s42977-023-00154-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/08/2023] [Indexed: 03/01/2023]
Abstract
With the development of modern molecular genetics, the original "one gene-one enzyme" hypothesis has been outdated. For protein coding genes, the discovery of alternative splicing and RNA editing provided the biochemical background for the RNA repertoire of a single locus, which also serves as an important pillar for the enormous protein variability of the genomes. Non-protein coding RNA genes were also revealed to produce several RNA species with distinct functions. The loci of microRNAs (miRNAs), encoding for small endogenous regulatory RNAs, were also found to produce a population of small RNAs, rather than a single defined product. This review aims to present the mechanisms contributing to the astonishing variability of miRNAs revealed by the new sequencing technologies. One important source is the careful balance of arm selection, producing sequentially different 5p- or 3p-miRNAs from the same pre-miRNA, thereby broadening the number of regulated target RNAs and the phenotypic response. In addition, the formation of 5', 3' and polymorphic isomiRs, with variable end and internal sequences also leads to a higher number of targeted sequences, and increases the regulatory output. These miRNA maturation processes, together with other known mechanisms such as RNA editing, further increase the potential outcome of this small RNA pathway. By discussing the subtle mechanisms behind the sequence diversity of miRNAs, this review intends to reveal this engaging aspect of the inherited "RNA world", how it contributes to the almost infinite molecular variability among living organisms, and how this variability can be exploited to treat human diseases.
Collapse
Affiliation(s)
- Tamás I Orbán
- Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok Körútja 2, Budapest, 1117, Hungary.
| |
Collapse
|
12
|
Zhiyanov A, Engibaryan N, Nersisyan S, Shkurnikov M, Tonevitsky A. Differential co-expression network analysis with DCoNA reveals isomiR targeting aberrations in prostate cancer. Bioinformatics 2023; 39:6998206. [PMID: 36688696 PMCID: PMC9901399 DOI: 10.1093/bioinformatics/btad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/10/2023] [Accepted: 01/22/2023] [Indexed: 01/24/2023] Open
Abstract
MOTIVATION One of the standard methods of high-throughput RNA sequencing analysis is differential expression. However, it does not detect changes in molecular regulation. In contrast to the standard differential expression analysis, differential co-expression one aims to detect pairs or clusters whose mutual expression changes between two conditions. RESULTS We developed Differential Co-expression Network Analysis (DCoNA)-an open-source statistical tool that allows one to identify pair interactions, which correlation significantly changes between two conditions. Comparing DCoNA with the state-of-the-art analog, we showed that DCoNA is a faster, more accurate and less memory-consuming tool. We applied DCoNA to prostate mRNA/miRNA-seq data collected from The Cancer Genome Atlas (TCGA) and compared predicted regulatory interactions of miRNA isoforms (isomiRs) and their target mRNAs between normal and cancer samples. As a result, almost all highly expressed isomiRs lost negative correlation with their targets in prostate cancer samples compared to ones without the pathology. One exception to this trend was the canonical isomiR of hsa-miR-93-5p acquiring cancer-specific targets. Further analysis showed that cancer aggressiveness simultaneously increased with the expression level of this isomiR in both TCGA primary tumor samples and 153 blood plasma samples of P. Hertsen Moscow Oncology Research Institute patients' cohort analyzed by miRNA microarrays. AVAILABILITY AND IMPLEMENTATION Source code and documentation of DCoNA are available at https://github.com/zhiyanov/DCoNA. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Anton Zhiyanov
- Faculty of Biology and Biotechnology, HSE University, Moscow 101000, Russia
| | - Narek Engibaryan
- Faculty of Biology and Biotechnology, HSE University, Moscow 101000, Russia
| | - Stepan Nersisyan
- Institute of Molecular Biology, The National Academy of Sciences of the Republic of Armenia, Yerevan 0014, Armenia.,Armenian Bioinformatics Institute (ABI), Yerevan, Armenia
| | - Maxim Shkurnikov
- Faculty of Biology and Biotechnology, HSE University, Moscow 101000, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia.,P. Hertsen Moscow Oncology Research Institute, National Center of Medical Radiological Research, Moscow 125284, Russia
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, HSE University, Moscow 101000, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia.,Art Photonics GmbH, Berlin 12489, Germany
| |
Collapse
|
13
|
Li X, Michels BE, Tosun OE, Jung J, Kappes J, Ibing S, Nataraj NB, Sahay S, Schneider M, Wörner A, Becki C, Ishaque N, Feuerbach L, Heßling B, Helm D, Will R, Yarden Y, Müller-Decker K, Wiemann S, Körner C. 5’isomiR-183-5p|+2 elicits tumor suppressor activity in a negative feedback loop with E2F1. J Exp Clin Cancer Res 2022; 41:190. [PMID: 35655310 PMCID: PMC9161486 DOI: 10.1186/s13046-022-02380-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/04/2022] [Indexed: 12/24/2022] Open
Abstract
Background MicroRNAs (miRNAs) and isomiRs play important roles in tumorigenesis as essential regulators of gene expression. 5’isomiRs exhibit a shifted seed sequence compared to the canonical miRNA, resulting in different target spectra and thereby extending the phenotypic impact of the respective common pre-miRNA. However, for most miRNAs, expression and function of 5’isomiRs have not been studied in detail yet. Therefore, this study aims to investigate the functions of miRNAs and their 5’isomiRs. Methods The expression of 5’isomiRs was assessed in The Cancer Genome Atlas (TCGA) breast cancer patient dataset. Phenotypic effects of miR-183 overexpression in triple-negative breast cancer (TNBC) cell lines were investigated in vitro and in vivo by quantifying migration, proliferation, tumor growth and metastasis. Direct targeting of E2F1 by miR-183-5p|+2 was validated with a 3’UTR luciferase assay and linked to the phenotypes of isomiR overexpression. Results TCGA breast cancer patient data indicated that three variants of miR-183-5p are highly expressed and upregulated, namely miR-183-5p|0, miR-183-5p|+1 and miR-183-5p|+2. However, TNBC cell lines displayed reduced proliferation and invasion upon overexpression of pre-miR-183. While invasion was reduced individually by all three isomiRs, proliferation and cell cycle progression were specifically inhibited by overexpression of miR-183-5p|+2. Proteomic analysis revealed reduced expression of E2F target genes upon overexpression of this isomiR, which could be attributed to direct targeting of E2F1, specifically by miR-183-5p|+2. Knockdown of E2F1 partially phenocopied the effect of miR-183-5p|+2 overexpression on cell proliferation and cell cycle. Gene set enrichment analysis of TCGA and METABRIC patient data indicated that the activity of E2F strongly correlated with the expression of miR-183-5p, suggesting transcriptional regulation of the miRNA by a factor of the E2F family. Indeed, in vitro, expression of miR-183-5p was regulated by E2F1. Hence, miR-183-5p|+2 directly targeting E2F1 appears to be part of a negative feedback loop potentially fine-tuning its activity. Conclusions This study demonstrates that 5’isomiRs originating from the same arm of the same pre-miRNA (i.e. pre-miR-183-5p) may exhibit different functions and thereby collectively contribute to the same phenotype. Here, one of three isomiRs was shown to counteract expression of the pre-miRNA by negatively regulating a transcriptional activator (i.e. E2F1). We speculate that this might be part of a regulatory mechanism to prevent uncontrolled cell proliferation, which is disabled during cancer progression. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02380-8.
Collapse
|
14
|
Distefano R, Tomasello L, Rampioni Vinciguerra GL, Gasparini P, Xiang Y, Bagnoli M, Marceca GP, Fadda P, Laganà A, Acunzo M, Ma Q, Nigita G, Croce CM. Pan-Cancer Analysis of Canonical and Modified miRNAs Enhances the Resolution of the Functional miRNAome in Cancer. Cancer Res 2022; 82:3687-3700. [PMID: 36040379 PMCID: PMC9574374 DOI: 10.1158/0008-5472.can-22-0240] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/24/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022]
Abstract
Epitranscriptomic studies of miRNAs have added a new layer of complexity to the cancer field. Although there is fast-growing interest in adenosine-to-inosine (A-to-I) miRNA editing and alternative cleavage that shifts miRNA isoforms, simultaneous evaluation of both modifications in cancer is still missing. Here, we concurrently profiled multiple miRNA modification types, including A-to-I miRNA editing and shifted miRNA isoforms, in >13,000 adult and pediatric tumor samples across 38 distinct cancer cohorts from The Cancer Genome Atlas and The Therapeutically Applicable Research to Generate Effective Treatments data sets. The differences between canonical miRNAs and the wider miRNAome in terms of expression, clustering, dysregulation, and prognostic standpoint were investigated. The combination of canonical miRNAs and modified miRNAs boosted the quality of clustering results, outlining unique clinicopathologic features among cohorts. Certain modified miRNAs showed opposite expression from their canonical counterparts in cancer, potentially impacting their targets and function. Finally, a shifted and edited miRNA isoform was experimentally validated to directly bind and suppress a unique target. These findings outline the importance of going beyond the well-established paradigm of one mature miRNA per miRNA arm to elucidate novel mechanisms related to cancer progression. SIGNIFICANCE Modified miRNAs may act as cancer biomarkers and function as allies or antagonists of their canonical counterparts in gene regulation, suggesting the concurrent consideration of canonical and modified miRNAs can boost patient stratification.
Collapse
Affiliation(s)
- Rosario Distefano
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Luisa Tomasello
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Gian Luca Rampioni Vinciguerra
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Faculty of Medicine and Psychology, Department of Clinical and Molecular Medicine, University of Rome “Sapienza,” Santo Andrea Hospital, Rome, Italy
| | - Pierluigi Gasparini
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Yujia Xiang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Marina Bagnoli
- Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Gioacchino P. Marceca
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Paolo Fadda
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Alessandro Laganà
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mario Acunzo
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Carlo M. Croce
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
15
|
Freedman AN, Eaves LA, Rager JE, Gavino-Lopez N, Smeester L, Bangma J, Santos HP, Joseph RM, Kuban KC, O'Shea TM, Fry RC. The placenta epigenome-brain axis: placental epigenomic and transcriptomic responses that preprogram cognitive impairment. Epigenomics 2022; 14:897-911. [PMID: 36073148 PMCID: PMC9475498 DOI: 10.2217/epi-2022-0061] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: The placenta-brain axis reflects a developmental linkage where disrupted placental function is associated with impaired neurodevelopment later in life. Placental gene expression and the expression of epigenetic modifiers such as miRNAs may be tied to these impairments and are understudied. Materials & methods: The expression levels of mRNAs (n = 37,268) and their targeting miRNAs (n = 2083) were assessed within placentas collected from the ELGAN study cohort (n = 386). The ELGAN adolescents were assessed for neurocognitive function at age 10 and the association with placental mRNA/miRNAs was determined. Results: Placental mRNAs related to inflammatory and apoptotic processes are under miRNA control and associated with cognitive impairment at age 10. Conclusion: Findings highlight key placenta epigenome-brain relationships that support the developmental origins of health and disease hypothesis.
Collapse
Affiliation(s)
- Anastasia N Freedman
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Lauren A Eaves
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA.,Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Julia E Rager
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA.,Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.,Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Noemi Gavino-Lopez
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Lisa Smeester
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA.,Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jacqueline Bangma
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA.,Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Hudson P Santos
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, NC 27599, USA.,School of Nursing and Health Studies, University of Miami, Coral Gables, FL 33124, USA
| | - Robert M Joseph
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Karl Ck Kuban
- Department of Pediatrics, Division of Child Neurology, Boston Medical Center, Boston, MA 02118, USA
| | - Thomas Michael O'Shea
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rebecca C Fry
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA.,Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.,Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
16
|
Talukder A, Zhang W, Li X, Hu H. A deep learning method for miRNA/isomiR target detection. Sci Rep 2022; 12:10618. [PMID: 35739186 PMCID: PMC9226005 DOI: 10.1038/s41598-022-14890-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
Accurate identification of microRNA (miRNA) targets at base-pair resolution has been an open problem for over a decade. The recent discovery of miRNA isoforms (isomiRs) adds more complexity to this problem. Despite the existence of many methods, none considers isomiRs, and their performance is still suboptimal. We hypothesize that by taking the isomiR-mRNA interactions into account and applying a deep learning model to study miRNA-mRNA interaction features, we may improve the accuracy of miRNA target predictions. We developed a deep learning tool called DMISO to capture the intricate features of miRNA/isomiR-mRNA interactions. Based on tenfold cross-validation, DMISO showed high precision (95%) and recall (90%). Evaluated on three independent datasets, DMISO had superior performance to five tools, including three popular conventional tools and two recently developed deep learning-based tools. By applying two popular feature interpretation strategies, we demonstrated the importance of the miRNA regions other than their seeds and the potential contribution of the RNA-binding motifs within miRNAs/isomiRs and mRNAs to the miRNA/isomiR-mRNA interactions.
Collapse
Affiliation(s)
- Amlan Talukder
- Department of Computer Science, University of Central Florida, Orlando, FL, 32816, USA
| | - Wencai Zhang
- Burnett School of Biomedical Science, University of Central Florida, Orlando, FL, 32816, USA
| | - Xiaoman Li
- Burnett School of Biomedical Science, University of Central Florida, Orlando, FL, 32816, USA.
| | - Haiyan Hu
- Department of Computer Science, University of Central Florida, Orlando, FL, 32816, USA.
- Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, 32816, USA.
| |
Collapse
|
17
|
Toden S, Goel A. Non-coding RNAs as liquid biopsy biomarkers in cancer. Br J Cancer 2022; 126:351-360. [PMID: 35013579 PMCID: PMC8810986 DOI: 10.1038/s41416-021-01672-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/17/2021] [Accepted: 12/07/2021] [Indexed: 01/12/2023] Open
Abstract
Although non-coding RNAs have long been considered as non-functional "junk" RNAs, accumulating evidence in the past decade indicates that they play a critical role in pathogenesis of various cancers. In addition to their biological significance, the recognition that their expression levels are frequently dysregulated in multiple cancers have fueled the interest for exploiting their clinical potential as cancer biomarkers. In particular, microRNAs (miRNAs), a subclass of small non-coding RNAs that epigenetically modulate gene-transcription, have become one of the most well-studied substrates for the development of liquid biopsy biomarkers for cancer patients. The emergence of high-throughput sequencing technologies has enabled comprehensive molecular characterisation of various non-coding RNA expression profiles in multiple cancers. Furthermore, technological advances for quantifying lowly expressed RNAs in the circulation have facilitated robust identification of previously unrecognised and undetectable biomarkers in cancer patients. Here we summarise the latest progress on the utilisation of non-coding RNAs as non-invasive cancer biomarkers. We evaluated the suitability of multiple non-coding RNA types as blood-based cancer biomarkers and examined the impact of recent technological breakthroughs on the development of non-invasive molecular biomarkers in cancer.
Collapse
Affiliation(s)
- Shusuke Toden
- Molecular Stethoscope Inc., South San Francisco, CA 94080 USA
| | - Ajay Goel
- grid.410425.60000 0004 0421 8357Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA 91016 USA ,grid.410425.60000 0004 0421 8357City of Hope Comprehensive Cancer Center, Duarte, CA 91010 USA
| |
Collapse
|
18
|
Coupling miR/isomiR and mRNA Expression Signatures Unveils New Molecular Layers of Endometrial Receptivity. Life (Basel) 2021; 11:life11121391. [PMID: 34947922 PMCID: PMC8705090 DOI: 10.3390/life11121391] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/27/2022] Open
Abstract
Embryo implantation depends on endometrial receptivity (ER). To achieve ER, the preparation of the uterine lining requires controlled priming by ovarian hormones and the expression of numerous genes in the endometrial tissue. microRNAs (miRs) have emerged as critical genetic regulators of ER in fertility and of the diseases that are associated with infertility. With the rapid development of next-generation sequencing technologies, it has become clear that miR genes can produce canonical miRs and variants—isomiRs. Here, we describe miR/isomiR expression dynamics across the four time points of natural chorionic gonadotropin (hCG)-administered cycles. Sequencing of the small RNAs (sRNA-seq) revealed that the most significant expression changes during the transition from the pre-receptive to the receptive phase occurred in the isomiR families of miR-125a, miR-125b, miR-10a, miR-10b, miR-449c, miR-92a, miR-92b, and miR-99a. Pairing the analysis of the differentially expressed (DE) miRs/isomiRs and their predicted DE mRNA targets uncovered 280 negatively correlating pairs. In the receptive endometrium, the 5′3′-isomiRs of miR-449c, which were among the most highly up-regulated isomiRs, showed a negative correlation with their target, transcription factor (TF) MYCN, which was down-regulated. Joint analysis of the miR/isomiR and TF expression identified several regulatory interactions. Based on these data, a regulatory TF-miR/isomiR gene-target circuit including let7g-5p and miR-345; the isomiR families of miR-10a, miR-10b, miR-92a, and miR-449c; and MYCN and TWIST1 was proposed to play a key role in the establishment of ER. Our work uncovers the complexity and dynamics of the endometrial isomiRs that can act cooperatively with miRs to control the functionally important genes that are critical to ER. Further studies of miR/isomiR expression patterns that are paired with those of their target mRNAs may provide a more in-depth picture of the endometrial pathologies that are associated with implantation failure.
Collapse
|
19
|
Nersisyan S, Novosad V, Engibaryan N, Ushkaryov Y, Nikulin S, Tonevitsky A. ECM-Receptor Regulatory Network and Its Prognostic Role in Colorectal Cancer. Front Genet 2021; 12:782699. [PMID: 34938324 PMCID: PMC8685507 DOI: 10.3389/fgene.2021.782699] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Interactions of the extracellular matrix (ECM) and cellular receptors constitute one of the crucial pathways involved in colorectal cancer progression and metastasis. With the use of bioinformatics analysis, we comprehensively evaluated the prognostic information concentrated in the genes from this pathway. First, we constructed a ECM-receptor regulatory network by integrating the transcription factor (TF) and 5'-isomiR interaction databases with mRNA/miRNA-seq data from The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD). Notably, one-third of interactions mediated by 5'-isomiRs was represented by noncanonical isomiRs (isomiRs, whose 5'-end sequence did not match with the canonical miRBase version). Then, exhaustive search-based feature selection was used to fit prognostic signatures composed of nodes from the network for overall survival prediction. Two reliable prognostic signatures were identified and validated on the independent The Cancer Genome Atlas Rectum Adenocarcinoma (TCGA-READ) cohort. The first signature was made up by six genes, directly involved in ECM-receptor interaction: AGRN, DAG1, FN1, ITGA5, THBS3, and TNC (concordance index 0.61, logrank test p = 0.0164, 3-years ROC AUC = 0.68). The second hybrid signature was composed of three regulators: hsa-miR-32-5p, NR1H2, and SNAI1 (concordance index 0.64, logrank test p = 0.0229, 3-years ROC AUC = 0.71). While hsa-miR-32-5p exclusively regulated ECM-related genes (COL1A2 and ITGA5), NR1H2 and SNAI1 also targeted other pathways (adhesion, cell cycle, and cell division). Concordant distributions of the respective risk scores across four stages of colorectal cancer and adjacent normal mucosa additionally confirmed reliability of the models.
Collapse
Affiliation(s)
- Stepan Nersisyan
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Victor Novosad
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Narek Engibaryan
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Yuri Ushkaryov
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Medway School of Pharmacy, University of Kent, Chatham, United Kingdom
| | - Sergey Nikulin
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- P. Hertsen Moscow Oncology Research Institute—Branch, National Medical Research Radiological Centre, Ministry of Health of Russian Federation, Moscow, Russia
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- SRC Bioclinicum, Moscow, Russia
| |
Collapse
|
20
|
Sellem E, Jammes H, Schibler L. Sperm-borne sncRNAs: potential biomarkers for semen fertility? Reprod Fertil Dev 2021; 34:160-173. [PMID: 35231268 DOI: 10.1071/rd21276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Semen infertility or sub-fertility, whether in humans or livestock species, remains a major concern for clinicians and technicians involved in reproduction. Indeed, they can cause tragedies in human relationships or have a dramatic overall negative impact on the sustainability of livestock breeding. Understanding and predicting semen fertility issues is therefore crucial and quality control procedures as well as biomarkers have been proposed to ensure sperm fertility. However, their predictive values appeared to be too limited and additional relevant biomarkers are still required to diagnose sub-fertility efficiently. During the last decade, the study of molecular mechanisms involved in spermatogenesis and sperm maturation highlighted the regulatory role of a variety of small non-coding RNAs (sncRNAs) and led to the discovery that sperm sncRNAs comprise both remnants from spermatogenesis and post-testicular sncRNAs acquired through interactions with extracellular vesicles along epididymis. This has led to the hypothesis that sncRNAs may be a source of relevant biomarkers, associated either with sperm functionality or embryo development. This review aims at providing a synthetic overview of the current state of knowledge regarding implication of sncRNA in spermatogenesis defects and their putative roles in sperm maturation and embryo development, as well as exploring their use as fertility biomarkers.
Collapse
Affiliation(s)
- Eli Sellem
- R&D Department, ALLICE, 149 rue de Bercy, 75012 Paris, France
| | - Hélène Jammes
- Université Paris Saclay, UVSQ, INRAE, BREED, 78350 Jouy en Josas, France; and Ecole Nationale Vétérinaire d'Alfort, BREED, 94700 Maisons-Alfort, France
| | | |
Collapse
|
21
|
Hsieh FM, Lai ST, Wu MF, Lin CC. Identification and Elucidation of the Protective isomiRs in Lung Cancer Patient Prognosis. Front Genet 2021; 12:702695. [PMID: 34589114 PMCID: PMC8474875 DOI: 10.3389/fgene.2021.702695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/16/2021] [Indexed: 11/24/2022] Open
Abstract
MicroRNAs (miRNAs) are approximately 20–22 nucleotides in length, which are well known to participate in the post-transcriptional modification. The mature miRNAs were observed to be varied on 5′ or 3′ that raise another term—the isoforms of mature miRNAs (isomiRs), which have been proven not the artifacts and discussed widely recently. In our research, we focused on studying the 5′ isomiRs in lung adenocarcinoma (LUAD) in The Cancer Genome Atlas (TCGA). We characterized 75 isomiRs significantly associated with better prognosis and 43 isomiRs with poor prognosis. The 75 protective isomiRs can successfully distinguish tumors from normal samples and are expressed differently between patients of early and late stages. We also found that most of the protective isomiRs tend to be with downstream shift and upregulated compared with those with upstream shift, implying that a possible selection occurs during cancer development. Among these protective isomiRs, we observed a highly positive and significant correlation, as well as in harmful isomiRs, suggesting cooperation within the group. However, between protective and harmful, there is no such a concordance but conversely more negative correlation, suggesting the possible antagonistic effect between protective and harmful isomiRs. We also identified that two isomiRs miR-181a-3p|-3 and miR-181a-3p|2, respectively, belong to the harmful and protective groups, suggesting a bidirectional regulation of their originated archetype—miR-181a-3p. Additionally, we found that the protective isomiRs of miR-21-5p, which is an oncomiR, may be evolved as the tumor suppressors through producing isomiRs to hinder metastasis. In summary, these results displayed the characteristics of the protective isomiRs and their potential for developing the treatment of lung cancer.
Collapse
Affiliation(s)
- Fu-Mei Hsieh
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Su-Ting Lai
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Fong Wu
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chen-Ching Lin
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
22
|
MicroRNA Isoforms Contribution to Melanoma Pathogenesis. Noncoding RNA 2021; 7:ncrna7040063. [PMID: 34698264 PMCID: PMC8544706 DOI: 10.3390/ncrna7040063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 12/28/2022] Open
Abstract
Cutaneous melanoma (CM) is the most lethal tumor among skin cancers, and its incidence is constantly increasing. A deeper understanding of the molecular processes guiding melanoma pathogenesis could improve diagnosis, treatment and prognosis. MicroRNAs play a key role in melanoma biology. Recently, next generation sequencing (NGS) experiments, designed to assess small-RNA expression, revealed the existence of microRNA variants with different length and sequence. These microRNA isoforms are known as isomiRs and provide an additional layer to the complex non-coding RNA world. Here, we collected data from NGS experiments to provide a comprehensive characterization of miRNA and isomiR dysregulation in benign nevi (BN) and early-stage melanomas. We observed that melanoma and BN express different and specific isomiRs and have a different isomiR abundance distribution. Moreover, isomiRs from the same microRNA can have opposite expression trends between groups. Using The Cancer Genome Atlas (TCGA) dataset of skin cancers, we analyzed isomiR expression in primary melanoma and melanoma metastasis and tested their association with NF1, BRAF and NRAS mutations. IsomiRs differentially expressed were identified and catalogued with reference to the canonical form. The reported non-random dysregulation of specific isomiRs contributes to the understanding of the complex melanoma pathogenesis and serves as the basis for further functional studies.
Collapse
|
23
|
Zingone A, Sinha S, Ante M, Nguyen C, Daujotyte D, Bowman ED, Sinha N, Mitchell KA, Chen Q, Yan C, Loher P, Meerzaman D, Ruppin E, Ryan BM. A comprehensive map of alternative polyadenylation in African American and European American lung cancer patients. Nat Commun 2021; 12:5605. [PMID: 34556645 PMCID: PMC8460807 DOI: 10.1038/s41467-021-25763-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 07/22/2021] [Indexed: 11/09/2022] Open
Abstract
Deciphering the post-transcriptional mechanisms (PTM) regulating gene expression is critical to understand the dynamics underlying transcriptomic regulation in cancer. Alternative polyadenylation (APA)-regulation of mRNA 3'UTR length by alternating poly(A) site usage-is a key PTM mechanism whose comprehensive analysis in cancer remains an important open challenge. Here we use a method and analysis pipeline that sequences 3'end-enriched RNA directly to overcome the saturation limitation of traditional 5'-3' based sequencing. We comprehensively map the APA landscape in lung cancer in a cohort of 98 tumor/non-involved tissues derived from European American and African American patients. We identify a global shortening of 3'UTR transcripts in lung cancer, with notable functional implications on the expression of both coding and noncoding genes. We find that APA of non-coding RNA transcripts (long non-coding RNAs and microRNAs) is a recurrent event in lung cancer and discover that the selection of alternative polyA sites is a form of non-coding RNA expression control. Our results indicate that mRNA transcripts from EAs are two times more likely than AAs to undergo APA in lung cancer. Taken together, our findings comprehensively map and identify the important functional role of alternative polyadenylation in determining transcriptomic heterogeneity in lung cancer.
Collapse
Affiliation(s)
- Adriana Zingone
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, US
| | - Sanju Sinha
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, US
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, US
| | - Michael Ante
- Lexogen GmbH, Campus Vienna Biocenter 5, 1030, Vienna, Austria
- Ares Genetics GmbH, Karl-Farkas-Gasse 18, 1030, Vienna, Austria
| | - Cu Nguyen
- Computational Genomics Research, Center for Biomedical Informatics and Information Technology (CBIIT), National Cancer Institute, 9609 Medical Center Drive, Rockville, MD, 20850, US
| | - Dalia Daujotyte
- Lexogen GmbH, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Elise D Bowman
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, US
| | - Neelam Sinha
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, US
| | - Khadijah A Mitchell
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, US
| | - Qingrong Chen
- Computational Genomics Research, Center for Biomedical Informatics and Information Technology (CBIIT), National Cancer Institute, 9609 Medical Center Drive, Rockville, MD, 20850, US
| | - Chunhua Yan
- Computational Genomics Research, Center for Biomedical Informatics and Information Technology (CBIIT), National Cancer Institute, 9609 Medical Center Drive, Rockville, MD, 20850, US
| | - Phillipe Loher
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19017, US
| | - Daoud Meerzaman
- Computational Genomics Research, Center for Biomedical Informatics and Information Technology (CBIIT), National Cancer Institute, 9609 Medical Center Drive, Rockville, MD, 20850, US
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, US
| | - Bríd M Ryan
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, US.
| |
Collapse
|
24
|
Zelli V, Compagnoni C, Capelli R, Corrente A, Cornice J, Vecchiotti D, Di Padova M, Zazzeroni F, Alesse E, Tessitore A. Emerging Role of isomiRs in Cancer: State of the Art and Recent Advances. Genes (Basel) 2021; 12:genes12091447. [PMID: 34573429 PMCID: PMC8469436 DOI: 10.3390/genes12091447] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
The advent of Next Generation Sequencing technologies brought with it the discovery of several microRNA (miRNA) variants of heterogeneous lengths and/or sequences. Initially ascribed to sequencing errors/artifacts, these isoforms, named isomiRs, are now considered non-canonical variants that originate from physiological processes affecting the canonical miRNA biogenesis. To date, accurate IsomiRs abundance, biological activity, and functions are not completely understood; however, the study of isomiR biology is an area of great interest due to their high frequency in the human miRNome, their putative functions in cooperating with the canonical miRNAs, and potential for exhibiting novel functional roles. The discovery of isomiRs highlighted the complexity of the small RNA transcriptional landscape in several diseases, including cancer. In this field, the study of isomiRs could provide further insights into the miRNA biology and its implication in oncogenesis, possibly providing putative new cancer diagnostic, prognostic, and predictive biomarkers as well. In this review, a comprehensive overview of the state of research on isomiRs in different cancer types, including the most common tumors such as breast cancer, colorectal cancer, melanoma, and prostate cancer, as well as in the less frequent tumors, as for example brain tumors and hematological malignancies, will be summarized and discussed.
Collapse
Affiliation(s)
- Veronica Zelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
- Center for Molecular Diagnostics and Advanced Therapies, University of L’Aquila, Via Petrini, 67100 L’Aquila, Italy
| | - Chiara Compagnoni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Roberta Capelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Alessandra Corrente
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Jessica Cornice
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Monica Di Padova
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Alessandra Tessitore
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
- Center for Molecular Diagnostics and Advanced Therapies, University of L’Aquila, Via Petrini, 67100 L’Aquila, Italy
- Correspondence: ; Tel.: +39-0862433518; Fax: +39-0862433131
| |
Collapse
|
25
|
Olivieri F, Prattichizzo F, Giuliani A, Matacchione G, Rippo MR, Sabbatinelli J, Bonafè M. miR-21 and miR-146a: The microRNAs of inflammaging and age-related diseases. Ageing Res Rev 2021; 70:101374. [PMID: 34082077 DOI: 10.1016/j.arr.2021.101374] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
The first paper on "inflammaging" published in 2001 paved the way for a unifying theory on how and why aging turns out to be the main risk factor for the development of the most common age-related diseases (ARDs). The most exciting challenge on this topic was explaining how systemic inflammation steeps up with age and why it shows different rates among individuals of the same chronological age. The "epigenetic revolution" in the past twenty years conveyed that the assessment of the individual genetic make-up is not enough to depict the trajectories of age-related inflammation. Accordingly, others and we have been focusing on the role of non-coding RNA, i.e. microRNAs (miRNAs), in inflammaging. The results obtained in the latest 10 years underpinned the key role of a miRNA subset that we have called inflammamiRs, owing to their ability to master (NF-κB)-driven inflammatory pathways. In this review, we will focus on two inflammamiRs, i.e. miR-21-5p and miR-146a-5p, which target a variety of molecules belonging to the NF-κB/NLRP3 pathways. The interplay between miR-146a-5p and IL-6 in the context of aging and ARDs will also be highlighted. We will also provide the most relevant evidence suggesting that circulating inflammamiRs, along with IL-6, can measure the degree of inflammaging.
Collapse
|
26
|
Sindhu KJ, Venkatesan N, Karunagaran D. MicroRNA Interactome Multiomics Characterization for Cancer Research and Personalized Medicine: An Expert Review. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:545-566. [PMID: 34448651 DOI: 10.1089/omi.2021.0087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) that are mutually modulated by their interacting partners (interactome) are being increasingly noted for their significant role in pathogenesis and treatment of various human cancers. Recently, miRNA interactome dissected with multiomics approaches has been the subject of focus since individual tools or methods failed to provide the necessary comprehensive clues on the complete interactome. Even though single-omics technologies such as proteomics can uncover part of the interactome, the biological and clinical understanding still remain incomplete. In this study, we present an expert review of studies involving multiomics approaches to identification of miRNA interactome and its application in mechanistic characterization, classification, and therapeutic target identification in a variety of cancers, and with a focus on proteomics. We also discuss individual or multiple miRNA-based interactome identification in various pathological conditions of relevance to clinical medicine. Various new single-omics methods that can be integrated into multiomics cancer research and the computational approaches to analyze and predict miRNA interactome are also highlighted in this review. In all, we contextulize the power of multiomics approaches and the importance of the miRNA interactome to achieve the vision and practice of predictive, preventive, and personalized medicine in cancer research and clinical oncology.
Collapse
Affiliation(s)
- K J Sindhu
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Nalini Venkatesan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Devarajan Karunagaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
27
|
Loher P, Karathanasis N, Londin E, F. Bray P, Pliatsika V, Telonis AG, Rigoutsos I. IsoMiRmap: fast, deterministic and exhaustive mining of isomiRs from short RNA-seq datasets. Bioinformatics 2021; 37:1828-1838. [PMID: 33471076 PMCID: PMC8317110 DOI: 10.1093/bioinformatics/btab016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/30/2020] [Accepted: 01/10/2021] [Indexed: 01/21/2023] Open
Abstract
MOTIVATION MicroRNA (miRNA) precursor arms give rise to multiple isoforms simultaneously called 'isomiRs.' IsomiRs from the same arm typically differ by a few nucleotides at either their 5' or 3' termini or both. In humans, the identities and abundances of isomiRs depend on a person's sex and genetic ancestry as well as on tissue type, tissue state and disease type/subtype. Moreover, nearly half of the time the most abundant isomiR differs from the miRNA sequence found in public databases. Accurate mining of isomiRs from deep sequencing data is thus important. RESULTS We developed isoMiRmap, a fast, standalone, user-friendly mining tool that identifies and quantifies all isomiRs by directly processing short RNA-seq datasets. IsoMiRmap is a portable 'plug-and-play' tool, requires minimal setup, has modest computing and storage requirements, and can process an RNA-seq dataset with 50 million reads in just a few minutes on an average laptop. IsoMiRmap deterministically and exhaustively reports all isomiRs in a given deep sequencing dataset and quantifies them accurately (no double-counting). IsoMiRmap comprehensively reports all miRNA precursor locations from which an isomiR may be transcribed, tags as 'ambiguous' isomiRs whose sequences exist both inside and outside of the space of known miRNA sequences and reports the public identifiers of common single-nucleotide polymorphisms and documented somatic mutations that may be present in an isomiR. IsoMiRmap also identifies isomiRs with 3' non-templated post-transcriptional additions. Compared to similar tools, isoMiRmap is the fastest, reports more bona fide isomiRs, and provides the most comprehensive information related to an isomiR's transcriptional origin. AVAILABILITY AND IMPLEMENTATION The codes for isoMiRmap are freely available at https://cm.jefferson.edu/isoMiRmap/ and https://github.com/TJU-CMC-Org/isoMiRmap/. IsomiR profiles for the datasets of the 1000 Genomes Project, spanning five population groups, and The Cancer Genome Atlas (TCGA), spanning 33 cancer studies, are also available at https://cm.jefferson.edu/isoMiRmap/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Phillipe Loher
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Nestoras Karathanasis
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Eric Londin
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Paul F. Bray
- Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Venetia Pliatsika
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Aristeidis G. Telonis
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
28
|
Zhiyanov A, Nersisyan S, Tonevitsky A. Hairpin sequence and structure is associated with features of isomiR biogenesis. RNA Biol 2021; 18:430-438. [PMID: 34286662 DOI: 10.1080/15476286.2021.1952759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
MiRNA isoforms (isomiRs) are single stranded small RNAs originating from the same pri-miRNA hairpin as a result of cleavage by Drosha and Dicer enzymes. Variations at the 5'-end of a miRNA alter the seed region of the molecule, thus affecting the targetome of the miRNA. In this manuscript, we analysed the distribution of miRNA cleavage positions across 31 different cancers using miRNA sequencing data of TCGA project. As a result, we found that the processing positions are not tissue specific and that all miRNAs could be correctly classified as ones exhibiting homogeneous or heterogeneous cleavage at one of the four cleavage sites. In 42% of cases (42 out of 100 miRNAs), we observed imprecise 5'-end Dicer cleavage, while this fraction was only 14% for Drosha (14 out of 99). To the contrary, almost all cleavage sites of 3'-ends (either Drosha or Dicer) were heterogeneous. With the use of only four nucleotides surrounding a 5'-end Dicer cleavage position we built a model which allowed us to distinguish between homogeneous and heterogeneous cleavage with the reliable quality (ROC AUC = 0.68). Finally, we showed the possible applications of the study by the analysis of two 5'-end isoforms originating from the same exogeneous shRNA hairpin. It turned out that the less expressed shRNA variant was functionally active, which led to the increased off-targeting. Thus, the obtained results could be applied to the design of shRNAs whose processing will result in a single 5'-variant.
Collapse
Affiliation(s)
- Anton Zhiyanov
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Stepan Nersisyan
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | | |
Collapse
|
29
|
Dika E, Broseghini E, Porcellini E, Lambertini M, Riefolo M, Durante G, Loher P, Roncarati R, Bassi C, Misciali C, Negrini M, Rigoutsos I, Londin E, Patrizi A, Ferracin M. Unraveling the role of microRNA/isomiR network in multiple primary melanoma pathogenesis. Cell Death Dis 2021; 12:473. [PMID: 33980826 PMCID: PMC8115306 DOI: 10.1038/s41419-021-03764-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022]
Abstract
Malignant cutaneous melanoma (CM) is a potentially lethal form of skin cancer whose worldwide incidence has been constantly increasing over the past decades. During their lifetime, about 8% of CM patients will develop multiple primary melanomas (MPMs), usually at a young age and within 3 years from the first tumor/diagnosis. With the aim of improving our knowledge on MPM biology and pathogenesis, we explored the miRNome of 24 single and multiple primary melanomas, including multiple tumors from the same patient, using a small RNA-sequencing approach. From a supervised analysis, 22 miRNAs were differentially expressed in MPM compared to single CM, including key miRNAs involved in epithelial-mesenchymal transition. The first and second melanoma from the same patient presented a different miRNA profile. Ten miRNAs, including miR-25-3p, 149-5p, 92b-3p, 211-5p, 125a-5p, 125b-5p, 205-5p, 200b-3p, 21-5p, and 146a-5p, were further validated in 47 single and multiple melanoma samples. Pathway enrichment analysis of miRNA target genes revealed a more differentiated and less invasive status of MPMs compared to CMs. Bioinformatic analyses at the miRNA isoform (isomiR) level detected a panel of highly expressed isomiRs belonging to miRNA families implicated in human tumorigenesis, including miR-200, miR-30, and miR-10 family. Moreover, we identified hsa-miR-125a-5p|0|-2 isoform as tenfold over-represented in melanoma than the canonical form and differentially expressed in MPMs arising in the same patient. Target prediction analysis revealed that the miRNA shortening could change the pattern of target gene regulation, specifically in genes implicated in cell adhesion and neuronal differentiation. Overall, we provided a putative and comprehensive characterization of the miRNA/isomiR regulatory network of MPMs, highlighting mechanisms of tumor development and molecular features differentiating this subtype from single melanomas.
Collapse
Affiliation(s)
- Emi Dika
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Elisabetta Broseghini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Elisa Porcellini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Martina Lambertini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Mattia Riefolo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Giorgio Durante
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Phillipe Loher
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Roberta Roncarati
- Department of Translational Medicine and for Romagna, and "Laboratorio per le Tecnologie delle Terapie Avanzate" (LTTA), University of Ferrara, Ferrara, Italy
- CNR, Institute of Genetics and Biomedical Research, National Research Council of Italy, Milan, Italy
| | - Cristian Bassi
- Department of Translational Medicine and for Romagna, and "Laboratorio per le Tecnologie delle Terapie Avanzate" (LTTA), University of Ferrara, Ferrara, Italy
| | - Cosimo Misciali
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Massimo Negrini
- Department of Translational Medicine and for Romagna, and "Laboratorio per le Tecnologie delle Terapie Avanzate" (LTTA), University of Ferrara, Ferrara, Italy
| | - Isidore Rigoutsos
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Eric Londin
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Annalisa Patrizi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.
| |
Collapse
|
30
|
Sanchez Herrero JF, Pluvinet R, Luna de Haro A, Sumoy L. Paired-end small RNA sequencing reveals a possible overestimation in the isomiR sequence repertoire previously reported from conventional single read data analysis. BMC Bioinformatics 2021; 22:215. [PMID: 33902448 PMCID: PMC8077951 DOI: 10.1186/s12859-021-04128-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Next generation sequencing has allowed the discovery of miRNA isoforms, termed isomiRs. Some isomiRs are derived from imprecise processing of pre-miRNA precursors, leading to length variants. Additional variability is introduced by non-templated addition of bases at the ends or editing of internal bases, resulting in base differences relative to the template DNA sequence. We hypothesized that some component of the isomiR variation reported so far could be due to systematic technical noise and not real. RESULTS We have developed the XICRA pipeline to analyze small RNA sequencing data at the isomiR level. We exploited its ability to use single or merged reads to compare isomiR results derived from paired-end (PE) reads with those from single reads (SR) to address whether detectable sequence differences relative to canonical miRNAs found in isomiRs are true biological variations or the result of errors in sequencing. We have detected non-negligible systematic differences between SR and PE data which primarily affect putative internally edited isomiRs, and at a much smaller frequency terminal length changing isomiRs. This is relevant for the identification of true isomiRs in small RNA sequencing datasets. CONCLUSIONS We conclude that potential artifacts derived from sequencing errors and/or data processing could result in an overestimation of abundance and diversity of miRNA isoforms. Efforts in annotating the isomiRnome should take this into account.
Collapse
Affiliation(s)
| | | | | | - Lauro Sumoy
- Institut Germans Trias i Pujol (IGTP), Badalona, Spain.
| |
Collapse
|
31
|
Ibing S, Michels BE, Mosdzien M, Meyer HR, Feuerbach L, Körner C. On the impact of batch effect correction in TCGA isomiR expression data. NAR Cancer 2021; 3:zcab007. [PMID: 34316700 PMCID: PMC8210273 DOI: 10.1093/narcan/zcab007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/30/2021] [Accepted: 02/18/2021] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs with diverse functions in post-transcriptional regulation of gene expression. Sequence and length variants of miRNAs are called isomiRs and can exert different functions compared to their canonical counterparts. The Cancer Genome Atlas (TCGA) provides isomiR-level expression data for patients of various cancer entities collected in a multi-center approach over several years. However, the impact of batch effects within individual cohorts has not been systematically investigated and corrected for before. Therefore, the aim of this study was to identify relevant cohort-specific batch variables and generate batch-corrected isomiR expression data for 16 TCGA cohorts. The main batch variables included sequencing platform, plate, sample purity and sequencing depth. Platform bias was related to certain length and sequence features of individual recurrently affected isomiRs. Furthermore, significant downregulation of reported tumor suppressive isomiRs in lung tumor tissue compared to normal samples was only observed after batch correction, highlighting the importance of working with corrected data. Batch-corrected datasets for all cohorts including quality control are provided as supplement. In summary, this study reveals that batch effects present in the TCGA dataset might mask biologically relevant effects and provides a valuable resource for research on isomiRs in cancer (accessible through GEO: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE164767).
Collapse
Affiliation(s)
- Susanne Ibing
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Berliner Straße 41, 69120 Heidelberg, Germany
| | - Birgitta E Michels
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Moritz Mosdzien
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Helen R Meyer
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Lars Feuerbach
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Berliner Straße 41, 69120 Heidelberg, Germany
| | - Cindy Körner
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| |
Collapse
|
32
|
Heydarzadeh S, Ranjbar M, Karimi F, Seif F, Alivand MR. Overview of host miRNA properties and their association with epigenetics, long non-coding RNAs, and Xeno-infectious factors. Cell Biosci 2021; 11:43. [PMID: 33632341 PMCID: PMC7905430 DOI: 10.1186/s13578-021-00552-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/06/2021] [Indexed: 12/19/2022] Open
Abstract
MicroRNA-derived structures play impressive roles in various biological processes. So dysregulation of miRNAs can lead to different human diseases. Recent studies have extended our comprehension of the control of miRNA function and features. Here, we overview some remarkable miRNA properties that have potential implications for the miRNA functions, including different variants of a miRNA called isomiRs, miRNA arm selection/arm switching, and the effect of these factors on miRNA target selection. Besides, we review some aspects of miRNA interactions such as the interaction between epigenetics and miRNA (different miRNAs and their related processing enzymes are epigenetically regulated by multiple DNA methylation enzymes. moreover, DNA methylation could be controlled by diverse mechanisms related to miRNAs), direct and indirect crosstalk between miRNA and lnc (Long Non-Coding) RNAs as a further approach to conduct intercellular regulation called "competing endogenous RNA" (ceRNA) that is involved in the pathogenesis of different diseases, and the interaction of miRNA activities and some Xeno-infectious (virus/bacteria/parasite) factors, which result in modulation of the pathogenesis of infections. This review provides some related studies to a better understanding of miRNA involvement mechanisms and overcoming the complexity of related diseases that may be applicable and useful to prognostic, diagnostic, therapeutic purposes and personalized medicine in the future.
Collapse
Affiliation(s)
- Samaneh Heydarzadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Ranjbar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farokh Karimi
- Department of Biotechnology, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Farhad Seif
- Department of Immunology and Allergy, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
33
|
The Role of miRNAs, miRNA Clusters, and isomiRs in Development of Cancer Stem Cell Populations in Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22031424. [PMID: 33572600 PMCID: PMC7867000 DOI: 10.3390/ijms22031424] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/17/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs or miRs) have a critical role in regulating stem cells (SCs) during development and altered expression can cause developmental defects and/or disease. Indeed, aberrant miRNA expression leads to wide-spread transcriptional dysregulation which has been linked to many cancers. Mounting evidence also indicates a role for miRNAs in the development of the cancer SC (CSC) phenotype. Our goal herein is to provide a review of: (i) current research on miRNAs and their targets in colorectal cancer (CRC), and (ii) miRNAs that are differentially expressed in colon CSCs. MicroRNAs can work in clusters or alone when targeting different SC genes to influence CSC phenotype. Accordingly, we discuss the specific miRNA cluster classifications and isomiRs that are predicted to target the ALDH1, CD166, BMI1, LRIG1, and LGR5 SC genes. miR-23b and miR-92A are of particular interest because our previously reported studies on miRNA expression in isolated normal versus malignant human colonic SCs showed that miR-23b and miR-92a are regulators of the LGR5 and LRIG1 SC genes, respectively. We also identify additional miRNAs whose expression inversely correlated with mRNA levels of their target genes and associated with CRC patient survival. Altogether, our deliberation on miRNAs, their clusters, and isomiRs in regulation of SC genes could provide insight into how dysregulation of miRNAs leads to the emergence of different CSC populations and SC overpopulation in CRC.
Collapse
|
34
|
isomiRs-Hidden Soldiers in the miRNA Regulatory Army, and How to Find Them? Biomolecules 2020; 11:biom11010041. [PMID: 33396892 PMCID: PMC7823672 DOI: 10.3390/biom11010041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/22/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023] Open
Abstract
Numerous studies on microRNAs (miRNA) in cancer and other diseases have been accompanied by diverse computational approaches and experimental methods to predict and validate miRNA biological and clinical significance as easily accessible disease biomarkers. In recent years, the application of the next-generation deep sequencing for the analysis and discovery of novel RNA biomarkers has clearly shown an expanding repertoire of diverse sequence variants of mature miRNAs, or isomiRs, resulting from alternative post-transcriptional processing events, and affected by (patho)physiological changes, population origin, individual's gender, and age. Here, we provide an in-depth overview of currently available bioinformatics approaches for the detection and visualization of both mature miRNA and cognate isomiR sequences. An attempt has been made to present in a systematic way the advantages and downsides of in silico approaches in terms of their sensitivity and accuracy performance, as well as used methods, workflows, and processing steps, and end output dataset overlapping issues. The focus is given to the challenges and pitfalls of isomiR expression analysis. Specifically, we address the availability of tools enabling research without extensive bioinformatics background to explore this fascinating corner of the small RNAome universe that may facilitate the discovery of new and more reliable disease biomarkers.
Collapse
|
35
|
Giuliani A, Londin E, Ferracin M, Mensà E, Prattichizzo F, Ramini D, Marcheselli F, Recchioni R, Rippo MR, Bonafè M, Rigoutsos I, Olivieri F, Sabbatinelli J. Long-term exposure of human endothelial cells to metformin modulates miRNAs and isomiRs. Sci Rep 2020; 10:21782. [PMID: 33311640 PMCID: PMC7732983 DOI: 10.1038/s41598-020-78871-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence suggest that the glucose-lowering drug metformin exerts a valuable anti-senescence role. The ability of metformin to affect the biogenesis of selected microRNAs (miRNAs) was recently suggested. MicroRNA isoforms (isomiRs) are distinct variations of miRNA sequences, harboring addition or deletion of one or more nucleotides at the 5′ and/or 3′ ends of the canonical miRNA sequence. We performed a comprehensive analysis of miRNA and isomiR profile in human endothelial cells undergoing replicative senescence in presence of metformin. Metformin treatment was associated with the differential expression of 27 miRNAs (including miR-100-5p, -125b-5p, -654-3p, -217 and -216a-3p/5p). IsomiR analysis revealed that almost 40% of the total miRNA pool was composed by non-canonical sequences. Metformin significantly affects the relative abundance of 133 isomiRs, including the non-canonical forms of the aforementioned miRNAs. Pathway enrichment analysis suggested that pathways associated with proliferation and nutrient sensing are modulated by metformin-regulated miRNAs and that some of the regulated isomiRs (e.g. the 5′ miR-217 isomiR) are endowed with alternative seed sequences and share less than half of the predicted targets with the canonical form. Our results show that metformin reshapes the senescence-associated miRNA/isomiR patterns of endothelial cells, thus expanding our insight into the cell senescence molecular machinery.
Collapse
Affiliation(s)
- Angelica Giuliani
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Via Tronto 10/A, 60126, Ancona, Italy
| | - Eric Londin
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Manuela Ferracin
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Emanuela Mensà
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Via Tronto 10/A, 60126, Ancona, Italy
| | | | - Deborah Ramini
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Via Tronto 10/A, 60126, Ancona, Italy
| | | | - Rina Recchioni
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Via Tronto 10/A, 60126, Ancona, Italy
| | - Massimiliano Bonafè
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Isidore Rigoutsos
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Via Tronto 10/A, 60126, Ancona, Italy. .,Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy.
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Via Tronto 10/A, 60126, Ancona, Italy
| |
Collapse
|
36
|
Magee R, Rigoutsos I. On the expanding roles of tRNA fragments in modulating cell behavior. Nucleic Acids Res 2020; 48:9433-9448. [PMID: 32890397 PMCID: PMC7515703 DOI: 10.1093/nar/gkaa657] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022] Open
Abstract
The fragments that derive from transfer RNAs (tRNAs) are an emerging category of regulatory RNAs. Known as tRFs, these fragments were reported for the first time only a decade ago, making them a relatively recent addition to the ever-expanding pantheon of non-coding RNAs. tRFs are short, 16-35 nucleotides (nts) in length, and produced through cleavage of mature and precursor tRNAs at various positions. Both cleavage positions and relative tRF abundance depend strongly on context, including the tissue type, tissue state, and disease, as well as the sex, population of origin, and race/ethnicity of an individual. These dependencies increase the urgency to understand the regulatory roles of tRFs. Such efforts are gaining momentum, and comprise experimental and computational approaches. System-level studies across many tissues and thousands of samples have produced strong evidence that tRFs have important and multi-faceted roles. Here, we review the relevant literature on tRF biology in higher organisms, single cell eukaryotes, and prokaryotes.
Collapse
Affiliation(s)
- Rogan Magee
- Computational Medicine Center, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Isidore Rigoutsos
- To whom correspondence should be addressed. Tel: +1 215 503 4219; Fax: +1 215 503 0466;
| |
Collapse
|
37
|
Abstract
We report a systematic unbiased analysis of small RNA molecule expression in 11 different tissues of the model organism mouse. We discovered uncharacterized noncoding RNA molecules and identified that ∼30% of total noncoding small RNA transcriptome are distributed across the body in a tissue-specific manner with some also being sexually dimorphic. Distinct distribution patterns of small RNA across the body suggest the existence of tissue-specific mechanisms involved in noncoding RNA processing. Small noncoding RNAs (ncRNAs) play a vital role in a broad range of biological processes both in health and disease. A comprehensive quantitative reference of small ncRNA expression would significantly advance our understanding of ncRNA roles in shaping tissue functions. Here, we systematically profiled the levels of five ncRNA classes (microRNA [miRNA], small nucleolar RNA [snoRNA], small nuclear RNA [snRNA], small Cajal body-specific RNA [scaRNA], and transfer RNA [tRNA] fragments) across 11 mouse tissues by deep sequencing. Using 14 biological replicates spanning both sexes, we identified that ∼30% of small ncRNAs are distributed across the body in a tissue-specific manner with some also being sexually dimorphic. We found that some miRNAs are subject to “arm switching” between healthy tissues and that tRNA fragments are retained within tissues in both a gene- and a tissue-specific manner. Out of 11 profiled tissues, we confirmed that brain contains the largest number of unique small ncRNA transcripts, some of which were previously annotated while others are identified in this study. Furthermore, by combining these findings with single-cell chromatin accessibility (scATAC-seq) data, we were able to connect identified brain-specific ncRNAs with their cell types of origin. These results yield the most comprehensive characterization of specific and ubiquitous small RNAs in individual murine tissues to date, and we expect that these data will be a resource for the further identification of ncRNAs involved in tissue function in health and dysfunction in disease.
Collapse
|
38
|
Desvignes T, Loher P, Eilbeck K, Ma J, Urgese G, Fromm B, Sydes J, Aparicio-Puerta E, Barrera V, Espín R, Thibord F, Bofill-De Ros X, Londin E, Telonis AG, Ficarra E, Friedländer MR, Postlethwait JH, Rigoutsos I, Hackenberg M, Vlachos IS, Halushka MK, Pantano L. Unification of miRNA and isomiR research: the mirGFF3 format and the mirtop API. Bioinformatics 2020; 36:698-703. [PMID: 31504201 DOI: 10.1093/bioinformatics/btz675] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/17/2019] [Accepted: 08/28/2019] [Indexed: 02/07/2023] Open
Abstract
MOTIVATION MicroRNAs (miRNAs) are small RNA molecules (∼22 nucleotide long) involved in post-transcriptional gene regulation. Advances in high-throughput sequencing technologies led to the discovery of isomiRs, which are miRNA sequence variants. While many miRNA-seq analysis tools exist, the diversity of output formats hinders accurate comparisons between tools and precludes data sharing and the development of common downstream analysis methods. RESULTS To overcome this situation, we present here a community-based project, miRNA Transcriptomic Open Project (miRTOP) working towards the optimization of miRNA analyses. The aim of miRTOP is to promote the development of downstream isomiR analysis tools that are compatible with existing detection and quantification tools. Based on the existing GFF3 format, we first created a new standard format, mirGFF3, for the output of miRNA/isomiR detection and quantification results from small RNA-seq data. Additionally, we developed a command line Python tool, mirtop, to create and manage the mirGFF3 format. Currently, mirtop can convert into mirGFF3 the outputs of commonly used pipelines, such as seqbuster, isomiR-SEA, sRNAbench, Prost! as well as BAM files. Some tools have also incorporated the mirGFF3 format directly into their code, such as, miRge2.0, IsoMIRmap and OptimiR. Its open architecture enables any tool or pipeline to output or convert results into mirGFF3. Collectively, this isomiR categorization system, along with the accompanying mirGFF3 and mirtop API, provide a comprehensive solution for the standardization of miRNA and isomiR annotation, enabling data sharing, reporting, comparative analyses and benchmarking, while promoting the development of common miRNA methods focusing on downstream steps of miRNA detection, annotation and quantification. AVAILABILITY AND IMPLEMENTATION https://github.com/miRTop/mirGFF3/ and https://github.com/miRTop/mirtop. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Phillipe Loher
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | - Karen Eilbeck
- University of Utah, Biomedical Informatics, Salt Lake City, UT 84108, USA
| | - Jeffery Ma
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | - Gianvito Urgese
- Department of Control and Computer Engineering, Politecnico di Torino, Torino 10129, Italy
| | - Bastian Fromm
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm 114 18, Sweden
| | - Jason Sydes
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Ernesto Aparicio-Puerta
- Computational Epigenomics Laboratory, Genetics Department and Biotechnology Institute and Biosanitary Institute, University of Granada, Granada 18002, Spain
| | - Victor Barrera
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Roderic Espín
- Universitat Oberta de Catalunya, Barcelona 08018, Spain
| | - Florian Thibord
- Sorbonne Université, Pierre Louis Doctoral School of Public Health, Paris 75006, France.,Institut National pour la Santé et la Recherche Médicale (INSERM) Unité Mixte de Recherche en Santé (UMR_S), University of Bordeaux, Bordeaux 33076, France
| | - Xavier Bofill-De Ros
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Eric Londin
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | - Aristeidis G Telonis
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | - Elisa Ficarra
- Department of Control and Computer Engineering, Politecnico di Torino, Torino 10129, Italy
| | - Marc R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm 114 18, Sweden
| | | | - Isidore Rigoutsos
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | - Michael Hackenberg
- Computational Epigenomics Laboratory, Genetics Department and Biotechnology Institute and Biosanitary Institute, University of Granada, Granada 18002, Spain
| | - Ioannis S Vlachos
- Non-coding Research Lab, Department of Pathology, Cancer Research Institute, Harvard Medical School Initiative for RNA Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lorena Pantano
- Bioinformatics Core, The Picower Institute for Learning and Memory, Cambridge, MA 02139, USA
| |
Collapse
|
39
|
Shkurnikov MY, Nersisyan SA, Osepyan AS, Maltseva DV, Knyazev EN. Differences in the Drosha and Dicer Cleavage Profiles in Colorectal Cancer and Normal Colon Tissue Samples. DOKL BIOCHEM BIOPHYS 2020; 493:208-210. [PMID: 32894467 DOI: 10.1134/s1607672920040122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/22/2022]
Abstract
Human colorectal adenocarcinoma cell line Caco-2 is often used as a model of healthy intestinal epithelium, in particular, in miRNA studies. The work of the enzymes Drosha and Dicer is an integral part of the process of miRNA formation. Inaccuracies in the work of these enzymes lead to a change in the nucleotide sequences of miRNAs with the formation of new isoforms, which, in turn, can change intracellular regulatory mechanisms. In the framework of this study, it was shown that the quantitative estimates of inaccuracies in Drosha and Dicer activity significantly differ between the specimens of normal colon tissue and malignant colorectal tumors.
Collapse
Affiliation(s)
- M Yu Shkurnikov
- Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - S A Nersisyan
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow, Russia.,Faculty of Mechanics and Mathematics, Moscow State University, Moscow, Russia
| | - A Sh Osepyan
- Faculty of Mechanics and Mathematics, Moscow State University, Moscow, Russia
| | - D V Maltseva
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - E N Knyazev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
40
|
Avendaño-Vázquez SE, Flores-Jasso CF. Stumbling on elusive cargo: how isomiRs challenge microRNA detection and quantification, the case of extracellular vesicles. J Extracell Vesicles 2020; 9:1784617. [PMID: 32944171 PMCID: PMC7480573 DOI: 10.1080/20013078.2020.1784617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- S Eréndira Avendaño-Vázquez
- Consorcio de Metabolismo de RNA y Vesículas Extracelulares, Instituto Nacional de Medicina Genómica, INMEGEN, Ciudad de México, México
| | - C Fabián Flores-Jasso
- Consorcio de Metabolismo de RNA y Vesículas Extracelulares, Instituto Nacional de Medicina Genómica, INMEGEN, Ciudad de México, México
| |
Collapse
|
41
|
Liang T, Han L, Guo L. Rewired functional regulatory networks among miRNA isoforms (isomiRs) from let-7 and miR-10 gene families in cancer. Comput Struct Biotechnol J 2020; 18:1238-1248. [PMID: 32542110 PMCID: PMC7280754 DOI: 10.1016/j.csbj.2020.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 01/05/2023] Open
Abstract
Classical microRNA (miRNA) has been so far believed as a single sequence, but it indeed contains multiple miRNA isoforms (isomiR) with various sequences and expression patterns. It is not clear whether these diverse isomiRs have potential relationships and whether they contribute to miRNA:mRNA interactions. Here, we aimed to reveal the potential evolutionary and functional relationships of multiple isomiRs based on let-7 and miR-10 gene families that are prone to clustering together on chromosomes. Multiple isomiRs within gene families showed similar functions to their canonical miRNAs, indicating selection of the predominant sequence. IsomiRs containing novel seed regions showed increased/decreased biological function depending on whether they had more/less specific target mRNAs than their annotated seed. Few gene ontology(GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were shared among the target genes of the annotated seeds and the novel seeds. Various let-7 isomiRs with novel seed regions may cause opposing drug responses despite the fact that they are generated from the same miRNA locus and have highly similar sequences. IsomiRs, especially the dominant isomiRs with shifted seeds, may disturb the coding-non-coding RNA regulatory network. These findings provide insight into the multiple isomiRs and isomiR-mediated control of gene expression in the pathogenesis of cancer.
Collapse
Key Words
- ACC, adrenocortical carcinoma
- BLCA, bladder urothelial carcinoma
- BRCA, breast invasive carcinoma
- CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma
- CHOL, cholangiocarcinoma
- COAD, colon adenocarcinoma
- ESCA, esophageal carcinoma
- Function
- GBM, glioblastoma multiforme
- HNSC, head and neck squamous cell carcinoma
- IsomiR
- KICH, kidney chromophobe
- KIRC, kidney renal clear cell carcinoma
- KIRP, kidney renal papillary cell carcinoma
- LAML, acute myeloid leukemia
- LGG, brain Lower grade glioma
- LIHC, liver hepatocellular carcinoma
- LUAD, lung adenocarcinoma
- LUSC, lung squamous cell carcinoma
- Let-7
- MESO, mesothelioma
- MicroRNA (miRNA)
- Network
- OV, ovarian serous cystadenocarcinoma
- PAAD, pancreatic adenocarcinoma
- PCPG, pheochromocytoma and paraganglioma
- PRAD, prostate adenocarcinoma
- READ, rectum adenocarcinoma
- SARC, sarcoma
- SKCM, skin cutaneous melanoma
- STAD, stomach adenocarcinoma
- TGCT, testicular germ cell tumors
- THCA, thyroid carcinoma
- THYM, thymoma
- TSG, tumor suppressor gene
- UCEC, uterine corpus endometrial carcinoma
- UCS, uterine carcinosarcoma
- UVM, uveal melanoma
- miR-10
Collapse
Affiliation(s)
- Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Leng Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Li Guo
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, China
| |
Collapse
|
42
|
Nersisyan SA, Shkurnikov MY, Osipyants AI, Vechorko VI. Role of ACE2/TMPRSS2 genes regulation by intestinal microRNA isoforms in the COVID-19 pathogenesis. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2020. [DOI: 10.24075/brsmu.2020.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Coronavirus SARS-CoV-2, the cause of the COVID-19 pandemic, enters the cell by binding the cell surface proteins: angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). The expression of these proteins varies significantly in individual organs and tissues of the human body. One of the proteins’ expression regulation mechanisms is based on the activity of the microRNA (miRNA) molecules, small non-coding RNAs, the most important function of which is the post-transcriptional negative regulation of gene expression. The study was aimed to investigate the mechanisms of the interactions between miRNA isoforms and ACE2/TMPRSS2 genes in the colon tissues known for the high level of expression of the described enzymes. The search for interactions was performed using the correlation analysis applied to the publicly available paired mRNA/miRNA sequencing data of colon tissues. Among the others, such miRNAs as miR-30c and miR-200c were identified known for their involvement in the coronavirus infection and acute respiratory distress syndrome pathogenesis. Thus, new potential mechanisms for the ACE2 and TMPRSS2 enzymes regulation were ascertained, as well as their possible functional activity in a cell infected with coronavirus.
Collapse
Affiliation(s)
- SA Nersisyan
- National Research University Higher School of Economics, Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia
| | - MYu Shkurnikov
- P. A. Hertsen Moscow Oncology Research Center, branch of the National Medical Research Radiology Center, Moscow, Russia
| | - AI Osipyants
- P. A. Hertsen Moscow Oncology Research Center, branch of the National Medical Research Radiology Center, Moscow, Russia; Far Eastern Federal University, Vladivostok, Russia
| | - VI Vechorko
- City Clinical Hospital #15 named after O. M. Filatov, Moscow, Russia
| |
Collapse
|
43
|
Cherlin T, Magee R, Jing Y, Pliatsika V, Loher P, Rigoutsos I. Ribosomal RNA fragmentation into short RNAs (rRFs) is modulated in a sex- and population of origin-specific manner. BMC Biol 2020; 18:38. [PMID: 32279660 PMCID: PMC7153239 DOI: 10.1186/s12915-020-0763-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/03/2020] [Indexed: 01/02/2023] Open
Abstract
Background The advent of next generation sequencing (NGS) has allowed the discovery of short and long non-coding RNAs (ncRNAs) in an unbiased manner using reverse genetics approaches, enabling the discovery of multiple categories of ncRNAs and characterization of the way their expression is regulated. We previously showed that the identities and abundances of microRNA isoforms (isomiRs) and transfer RNA-derived fragments (tRFs) are tightly regulated, and that they depend on a person’s sex and population origin, as well as on tissue type, tissue state, and disease type. Here, we characterize the regulation and distribution of fragments derived from ribosomal RNAs (rRNAs). rRNAs form a group that includes four (5S, 5.8S, 18S, 28S) rRNAs encoded by the human nuclear genome and two (12S, 16S) by the mitochondrial genome. rRNAs constitute the most abundant RNA type in eukaryotic cells. Results We analyzed rRNA-derived fragments (rRFs) across 434 transcriptomic datasets obtained from lymphoblastoid cell lines (LCLs) derived from healthy participants of the 1000 Genomes Project. The 434 datasets represent five human populations and both sexes. We examined each of the six rRNAs and their respective rRFs, and did so separately for each population and sex. Our analysis shows that all six rRNAs produce rRFs with unique identities, normalized abundances, and lengths. The rRFs arise from the 5′-end (5′-rRFs), the interior (i-rRFs), and the 3′-end (3′-rRFs) or straddle the 5′ or 3′ terminus of the parental rRNA (x-rRFs). Notably, a large number of rRFs are produced in a population-specific or sex-specific manner. Preliminary evidence suggests that rRF production is also tissue-dependent. Of note, we find that rRF production is not affected by the identity of the processing laboratory or the library preparation kit. Conclusions Our findings suggest that rRFs are produced in a regimented manner by currently unknown processes that are influenced by both ubiquitous as well as population-specific and sex-specific factors. The properties of rRFs mirror the previously reported properties of isomiRs and tRFs and have implications for the study of homeostasis and disease.
Collapse
Affiliation(s)
- Tess Cherlin
- Computational Medicine Center, Jefferson Alumni Hall #M81, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Rogan Magee
- Computational Medicine Center, Jefferson Alumni Hall #M81, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Yi Jing
- Computational Medicine Center, Jefferson Alumni Hall #M81, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Venetia Pliatsika
- Computational Medicine Center, Jefferson Alumni Hall #M81, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Phillipe Loher
- Computational Medicine Center, Jefferson Alumni Hall #M81, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Jefferson Alumni Hall #M81, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA.
| |
Collapse
|
44
|
van der Kwast RV, Quax PH, Nossent AY. An Emerging Role for isomiRs and the microRNA Epitranscriptome in Neovascularization. Cells 2019; 9:cells9010061. [PMID: 31881725 PMCID: PMC7017316 DOI: 10.3390/cells9010061] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 02/06/2023] Open
Abstract
Therapeutic neovascularization can facilitate blood flow recovery in patients with ischemic cardiovascular disease, the leading cause of death worldwide. Neovascularization encompasses both angiogenesis, the sprouting of new capillaries from existing vessels, and arteriogenesis, the maturation of preexisting collateral arterioles into fully functional arteries. Both angiogenesis and arteriogenesis are highly multifactorial processes that require a multifactorial regulator to be stimulated simultaneously. MicroRNAs can regulate both angiogenesis and arteriogenesis due to their ability to modulate expression of many genes simultaneously. Recent studies have revealed that many microRNAs have variants with altered terminal sequences, known as isomiRs. Additionally, endogenous microRNAs have been identified that carry biochemically modified nucleotides, revealing a dynamic microRNA epitranscriptome. Both types of microRNA alterations were shown to be dynamically regulated in response to ischemia and are able to influence neovascularization by affecting the microRNA’s biogenesis, or even its silencing activity. Therefore, these novel regulatory layers influence microRNA functioning and could provide new opportunities to stimulate neovascularization. In this review we will highlight the formation and function of isomiRs and various forms of microRNA modifications, and discuss recent findings that demonstrate that both isomiRs and microRNA modifications directly affect neovascularization and vascular remodeling.
Collapse
Affiliation(s)
- Reginald V.C.T. van der Kwast
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Paul H.A. Quax
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - A. Yaël Nossent
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Laboratory Medicine and Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence:
| |
Collapse
|
45
|
The Butterfly Effect of RNA Alterations on Transcriptomic Equilibrium. Cells 2019; 8:cells8121634. [PMID: 31847302 PMCID: PMC6953095 DOI: 10.3390/cells8121634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 12/17/2022] Open
Abstract
: Post-transcriptional regulation plays a key role in modulating gene expression, and the perturbation of transcriptomic equilibrium has been shown to drive the development of multiple diseases including cancer. Recent studies have revealed the existence of multiple post-transcriptional processes that coordinatively regulate the expression and function of each RNA transcript. In this review, we summarize the latest research describing various mechanisms by which small alterations in RNA processing or function can potentially reshape the transcriptomic landscape, and the impact that this may have on cancer development.
Collapse
|
46
|
Ma M, Yin Z, Zhong H, Liang T, Guo L. Analysis of the expression, function, and evolution of miR-27 isoforms and their responses in metabolic processes. Genomics 2019; 111:1249-1257. [DOI: 10.1016/j.ygeno.2018.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/31/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022]
|
47
|
van der Kwast RVCT, Woudenberg T, Quax PHA, Nossent AY. MicroRNA-411 and Its 5'-IsomiR Have Distinct Targets and Functions and Are Differentially Regulated in the Vasculature under Ischemia. Mol Ther 2019; 28:157-170. [PMID: 31636041 DOI: 10.1016/j.ymthe.2019.10.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/24/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are posttranscriptional regulators of gene expression. As microRNAs can target many genes simultaneously, microRNAs can regulate complex multifactorial processes, including post-ischemic neovascularization, a major recovery pathway in cardiovascular disease. MicroRNAs select their target mRNAs via full complementary binding with their seed sequence, i.e., nucleotides 2-8 from the 5' end of a microRNA. The exact sequence of a mature microRNA, and thus of its 5' and 3' ends, is determined by two sequential cleavage steps of microRNA precursors, Drosha/DGCR8 and Dicer. When these cleavage steps result in nucleotide switches at the 5' end, forming a so-called 5'-isomiR, this results in a shift in the mature microRNA's seed sequence. The role of 5'-isomiRs in cardiovascular diseases is still unknown. Here, we characterize the expression and function of the 5'-isomiR of miR-411 (ISO-miR-411). ISO-miR-411 is abundantly expressed in human primary vascular cells. ISO-miR-411 has a different "targetome" from WT-miR-411, with only minor overlap. The ISO-miR-411/WT-miR-411 ratio is downregulated under acute ischemia, both in cells and a murine ischemia model, but is upregulated instead in chronically ischemic human blood vessels. ISO-miR-411 negatively influences vascular cell migration, whereas WT-miR-411 does not. Our data demonstrate that isomiR formation is a functional pathway that is actively regulated during ischemia.
Collapse
Affiliation(s)
- Reginald V C T van der Kwast
- Department of Surgery, Leiden University Medical Center, Leiden 2333ZA, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Tamar Woudenberg
- Department of Surgery, Leiden University Medical Center, Leiden 2333ZA, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Paul H A Quax
- Department of Surgery, Leiden University Medical Center, Leiden 2333ZA, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - A Yaël Nossent
- Department of Surgery, Leiden University Medical Center, Leiden 2333ZA, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden 2333ZA, the Netherlands; Department of Laboratory Medicine, Medical University of Vienna, Vienna 1090, Austria; Department of Internal Medicine II, Medical University of Vienna, Vienna 1090, Austria.
| |
Collapse
|
48
|
Londin E, Magee R, Shields CL, Lally SE, Sato T, Rigoutsos I. IsomiRs and tRNA-derived fragments are associated with metastasis and patient survival in uveal melanoma. Pigment Cell Melanoma Res 2019; 33:52-62. [PMID: 31283110 DOI: 10.1111/pcmr.12810] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/22/2019] [Accepted: 06/10/2019] [Indexed: 01/03/2023]
Abstract
Uveal melanoma (UVM) is the most common primary intraocular malignancy in adults. With over 50% of patients developing metastatic disease, there is an unmet need for improved diagnostic and therapeutic options. Efforts to understand the molecular biology of the disease have revealed several markers that correlate with patient prognosis, including the copy number of chromosome 3, genetic alterations in the BAP1, EIF1AX and SF3B1 genes, and other transcriptional features. Here, we expand upon previous reports by comprehensively characterizing the short RNA-ome in 80 primary UVM tumor samples. In particular, we describe a previously unseen complex network involving numerous regulatory molecules that comprise microRNA (miRNAs), novel UVM-specific miRNA loci, miRNA isoforms (isomiRs), and tRNA-derived fragments (tRFs). Importantly, we show that the abundance profiles of isomiRs and tRFs associate with various molecular phenotypes, metastatic disease, and patient survival. Our findings suggest deep involvement of isomiRs and tRFs in the disease etiology of UVM. We posit that further study and characterization of these novel molecules will improve understanding of the mechanisms underlying UVM, and lead to the development of new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Eric Londin
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Rogan Magee
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Carol L Shields
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sara E Lally
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Takami Sato
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Isidore Rigoutsos
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
49
|
Rigoutsos I, Londin E, Kirino Y. Short RNA regulators: the past, the present, the future, and implications for precision medicine and health disparities. Curr Opin Biotechnol 2019; 58:202-210. [PMID: 31323485 DOI: 10.1016/j.copbio.2019.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/09/2019] [Accepted: 05/27/2019] [Indexed: 01/03/2023]
Abstract
We herein provide a brief review of the trajectory that the field of short RNA research followed in the last 25 years. We place emphasis on the unexpected discoveries and the ramifications of these discoveries for the field, as well as offer some thoughts about what the next 25 years may bring. Arguably, the uncovered dependence of different types of short RNAs on individual attributes such as a person's sex, population origin, race, and on tissue type, tissue state, and disease was most unexpected. This dependence has important ramifications in that it will provide a boost to our understanding of the molecular mechanisms of health disparities as well as pave the way for novel approaches to designing improved and personalized diagnostics and therapeutics.
Collapse
Affiliation(s)
- Isidore Rigoutsos
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, United States.
| | - Eric Londin
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, United States.
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, United States.
| |
Collapse
|
50
|
Kresoja-Rakic J, Szpechcinski A, Kirschner MB, Ronner M, Minatel B, Martinez VD, Lam WL, Weder W, Stahel R, Früh M, Cerciello F, Felley-Bosco E. miR-625-3p and lncRNA GAS5 in Liquid Biopsies for Predicting the Outcome of Malignant Pleural Mesothelioma Patients Treated with Neo-Adjuvant Chemotherapy and Surgery. Noncoding RNA 2019; 5:E41. [PMID: 31212997 PMCID: PMC6631473 DOI: 10.3390/ncrna5020041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 02/07/2023] Open
Abstract
Combining neo-adjuvant chemotherapy and surgery is part of multimodality treatment of malignant pleural mesothelioma (MPM), but not all patients benefit from this approach. In this exploratory analysis, we investigated the prognostic value of circulating miR-625-3p and lncRNA GAS5 after neo-adjuvant chemotherapy. 36 MPM patients from the SAKK 17/04 trial (NCT00334594), whose blood was available before and after chemotherapy were investigated. RNA was isolated from plasma and reverse transcribed into cDNA. miR-16-5p and β-actin were used as a reference gene for miR-625-3p and GAS5, respectively. After exclusion of samples due to hemolysis or RNA degradation, paired plasma samples from 32 patients before and after chemotherapy were further analyzed. Quantification of miR-625-3p levels in all 64 samples revealed a bimodal distribution and cloning and sequencing of miR-625-3p qPCR product revealed the presence of miR-625-3p isomiRs. Relative change of the circulating miR-625-3p and GAS5 levels after chemotherapy showed that increased circulating miR-625-3p and decreased GAS5 was significantly associated with disease progression (Fisher's test, p = 0.0393). In addition, decreased levels of circulating GAS5 were significantly associated with shorter overall and progression-free survival. Our exploratory analysis revealed a potential value of circulating non-coding RNA for selection of patients likely to benefit from surgery after platinum-based adjuvant chemotherapy.
Collapse
Affiliation(s)
- Jelena Kresoja-Rakic
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, University Hospital Zürich, 8091 Zürich, Switzerland.
| | - Adam Szpechcinski
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, University Hospital Zürich, 8091 Zürich, Switzerland.
| | - Michaela B Kirschner
- Department of Thoracic Surgery, University Hospital Zürich, 8091 Zürich, Switzerland.
| | - Manuel Ronner
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, University Hospital Zürich, 8091 Zürich, Switzerland.
| | - Brenda Minatel
- BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.
| | - Victor D Martinez
- BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.
- IWK Health Centre, Halifax, NS B3K 6R8, Canada.
| | - Wan L Lam
- BC Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.
| | - Walter Weder
- Department of Thoracic Surgery, University Hospital Zürich, 8091 Zürich, Switzerland.
| | - Rolf Stahel
- Comprehensive Cancer Center Zürich, University Hospital Zürich, 8091 Zürich, Switzerland.
| | - Martin Früh
- Cantonal Hospital of St. Gallen, 9007 St. Gallen, Switzerland.
- Department of Medical Oncology/Hematology, University of Bern, CH-3000 Bern, Switzerland.
| | | | - Emanuela Felley-Bosco
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, University Hospital Zürich, 8091 Zürich, Switzerland.
| |
Collapse
|