1
|
Park JM, Su YH, Fan CS, Chen HH, Qiu YK, Chen LL, Chen HA, Ramasamy TS, Chang JS, Huang SY, Chang WSW, Lee AYL, Huang TS, Kuo CC, Chiu CF. Crosstalk between FTH1 and PYCR1 dysregulates proline metabolism and mediates cell growth in KRAS-mutant pancreatic cancer cells. Exp Mol Med 2024; 56:2065-2081. [PMID: 39294443 PMCID: PMC11447051 DOI: 10.1038/s12276-024-01300-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 04/06/2024] [Accepted: 05/21/2024] [Indexed: 09/20/2024] Open
Abstract
Ferritin, comprising heavy (FTH1) and light (FTL) chains, is the main iron storage protein, and pancreatic cancer patients exhibit elevated serum ferritin levels. Specifically, higher ferritin levels are correlated with poorer pancreatic ductal adenocarcinoma (PDAC) prognosis; however, the underlying mechanism and metabolic programming of ferritin involved in KRAS-mutant PDAC progression remain unclear. Here, we observed a direct correlation between FTH1 expression and cell viability and clonogenicity in KRAS-mutant PDAC cell lines as well as with in vivo tumor growth through the control of proline metabolism. Our investigation highlights the intricate relationship between FTH1 and pyrroline-5-carboxylate reductase 1 (PYCR1), a crucial mitochondrial enzyme facilitating the glutamate-to-proline conversion, underscoring its impact on proline metabolic imbalance in KRAS-mutant PDAC. This regulation is further reversed by miR-5000-3p, whose dysregulation results in the disruption of proline metabolism, thereby accentuating the progression of KRAS-mutant PDAC. Additionally, our study demonstrated that deferasirox, an oral iron chelator, significantly diminishes cell viability and tumor growth in KRAS-mutant PDAC by targeting FTH1-mediated pathways and altering the PYCR1/PRODH expression ratio. These findings underscore the novel role of FTH1 in proline metabolism and its potential as a target for PDAC therapy development.
Collapse
Grants
- TMU106-AE1-B38 Taipei Medical University (TMU)
- DP2-109-21121-03-C-08-03, DP2-110-21121-03-C-08-02 and DP2-111-21121-01-C-08-03 Ministry of Education (Ministry of Education, Republic of China (Taiwan))
- the National Science and Technology Council (Ministry of Science and Technology),Taiwan [MOST107-2320-B-038-065, MOST108-2320-B-038-015, MOST109-2314-B-866-001-MY3, MOST110-2320-B-038-071, MOST111-2314-B-038-072, and NSTC112-2314-B-038-099-MY3] 2021;2022 SATU Joint Research Scheme (JRS) [UM 118, UM119, TMU01, and TMU02]
Collapse
Affiliation(s)
- Ji Min Park
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Yen-Hao Su
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Shuan Fan
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Hsin-Hua Chen
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan
| | - Yuan-Kai Qiu
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Li-Li Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Hsin-An Chen
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Thamil Selvee Ramasamy
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Jung-Su Chang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Shih-Yi Huang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Wun-Shaing Wayne Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Alan Yueh-Luen Lee
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Tze-Sing Huang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Cheng-Chin Kuo
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan.
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan.
| | - Ching-Feng Chiu
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
- Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
- Taipei Medical University and Affiliated Hospitals Pancreatic Cancer Groups, Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
2
|
Hatori M, Tsuji D, Suzuki K, Yokokawa T, Kawakami K, Moriyama R, Osada-Tsuchiya M, Otake A, Nakao M, Yano T, Arakawa Y, Matsuo K, Ohashi Y, Sakata Y, Kogure Y, Tamaki S, Wada A, Taki Y, Sasahira N, Ishii H, Yamaguchi M, Itoh K. Pharmacogenomic study of gemcitabine efficacy in patients with metastatic pancreatic cancer: A multicenter, prospective, observational cohort study (GENESECT study). Cancer 2024; 130:2988-2999. [PMID: 38682652 DOI: 10.1002/cncr.35343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/23/2024] [Accepted: 04/01/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Genetic polymorphisms of molecules are known to cause individual differences in the therapeutic efficacy of anticancer drugs. However, to date, germline mutations (but not somatic mutations) for anticancer drugs have not been adequately studied. The objective of this study was to investigate the association between germline polymorphisms of gemcitabine metabolic and transporter genes with carbohydrate antigen 19-9 (CA 19-9) response (decrease ≥50% from the pretreatment level at 8 weeks) and overall survival (OS) in patients with metastatic pancreatic cancer who receive gemcitabine-based chemotherapy. METHODS This multicenter, prospective, observational study enrolled patients with metastatic pancreatic cancer patients who were receiving gemcitabine monotherapy or gemcitabine plus nanoparticle albumin-bound paclitaxel combination chemotherapy. Thirteen polymorphisms that may be involved in gemcitabine responsiveness were genotyped, and univariate and multivariate logistic regression analyses were used to determine the association of these genotypes with CA 19-9 response and OS. The significance level was set at 5%. RESULTS In total, 180 patients from 11 hospitals in Japan were registered, and 159 patients whose CA 19-9 response could be assessed were included in the final analysis. Patients who had a CA 19-9 response had significantly longer OS (372 vs. 241 days; p = .007). RRM1 2464A>G and RRM2 175T>G polymorphisms suggested a weak association with CA 19-9 response and OS, but it was not statistically significant. COX-2 -765G>C polymorphism did not significantly correlate with CA 19-9 response but was significantly associated with OS (hazard ratio, 2.031; p = .019). CONCLUSIONS Genetic polymorphisms from the pharmacokinetics of gemcitabine did not indicate a significant association with efficacy, but COX-2 polymorphisms involved in tumor cell proliferation might affect OS.
Collapse
Affiliation(s)
- Masahiro Hatori
- Department of Pharmacy, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Clinical Pharmacology and Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Daiki Tsuji
- Department of Clinical Pharmacology and Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kenichi Suzuki
- Department of Clinical Pharmacology, School of Pharmacy Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Takashi Yokokawa
- Department of Pharmacy, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kazuyoshi Kawakami
- Department of Pharmacy, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ryo Moriyama
- Department of Clinical Pharmacology and Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Marika Osada-Tsuchiya
- Department of Clinical Pharmacology and Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Aki Otake
- Department of Clinical Pharmacology and Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Masahiko Nakao
- Department of Pharmacy and Clinical Research Center, Osaka City General Hospital, Osaka, Japan
| | - Takuya Yano
- Department of Pharmacy, Sumitomo Besshi Hospital, Niihama, Japan
| | - Yuichiro Arakawa
- Department of Pharmacy, Tochigi Cancer Center, Utsunomiya, Japan
| | - Keisuke Matsuo
- Department of Pharmacy, Beppu Medical Center, Beppu, Japan
| | - Yasukata Ohashi
- Department of Pharmacy, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yasuhiko Sakata
- Department of Pharmacy, Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Yuki Kogure
- Department of Pharmacy, National Center for Higashi-Hiroshima Medical Center, Higashi-Hiroshima, Japan
| | - Shinya Tamaki
- Department of Pharmacy, KKR Sapporo Medical Center, Sapporo, Japan
| | - Atsushi Wada
- Department of Pharmacy, Kobe Minimally Invasive Cancer Center, Kobe, Japan
| | - Yusuke Taki
- Department of Pharmacy, Kikugawa General Hospital, Kikugawa, Japan
| | - Naoki Sasahira
- Department of Gastroenterology, Cancer Institute Hospital, Tokyo, Japan
| | - Hiroshi Ishii
- Division of Gastroenterology, Chiba Cancer Center, Tokyo, Japan
| | - Masakazu Yamaguchi
- Department of Pharmacy, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kunihiko Itoh
- Department of Clinical Pharmacology and Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
3
|
Gupta P, Bermejo-Rodriguez C, Kocher H, Pérez-Mancera PA, Velliou EG. Chemotherapy Assessment in Advanced Multicellular 3D Models of Pancreatic Cancer: Unravelling the Importance of Spatiotemporal Mimicry of the Tumor Microenvironment. Adv Biol (Weinh) 2024; 8:e2300580. [PMID: 38327154 DOI: 10.1002/adbi.202300580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a challenge for global health with very low survival rate and high therapeutic resistance. Hence, advanced preclinical models for treatment screening are of paramount importance. Herein, chemotherapeutic (gemcitabine) assessment on novel (polyurethane) scaffold-based spatially advanced 3D multicellular PDAC models is carried out. Through comprehensive image-based analysis at the protein level, and expression analysis at the mRNA level, the importance of stromal cells is confirmed, primarily activated stellate cells in the chemoresistance of PDAC cells within the models. Furthermore, it is demonstrated that, in addition to the presence of activated stellate cells, the spatial architecture of the scaffolds, i.e., segregation/compartmentalization of the cancer and stromal zones, affect the cellular evolution and is necessary for the development of chemoresistance. These results highlight that, further to multicellularity, mapping the tumor structure/architecture and zonal complexity in 3D cancer models is important for better mimicry of the in vivo therapeutic response.
Collapse
Affiliation(s)
- Priyanka Gupta
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, London, W1W 7TY, UK
| | - Camino Bermejo-Rodriguez
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Hemant Kocher
- Centre for Tumour Biology and Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Pedro A Pérez-Mancera
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Eirini G Velliou
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, London, W1W 7TY, UK
| |
Collapse
|
4
|
Salimi Z, Afsharinasab M, Rostami M, Eshaghi Milasi Y, Mousavi Ezmareh SF, Sakhaei F, Mohammad-Sadeghipour M, Rasooli Manesh SM, Asemi Z. Iron chelators: as therapeutic agents in diseases. Ann Med Surg (Lond) 2024; 86:2759-2776. [PMID: 38694398 PMCID: PMC11060230 DOI: 10.1097/ms9.0000000000001717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/03/2024] [Indexed: 05/04/2024] Open
Abstract
The concentration of iron is tightly regulated, making it an essential element. Various cellular processes in the body rely on iron, such as oxygen sensing, oxygen transport, electron transfer, and DNA synthesis. Iron excess can be toxic because it participates in redox reactions that catalyze the production of reactive oxygen species and elevate oxidative stress. Iron chelators are chemically diverse; they can coordinate six ligands in an octagonal sequence. Because of the ability of chelators to trap essential metals, including iron, they may be involved in diseases caused by oxidative stress, such as infectious diseases, cardiovascular diseases, neurodegenerative diseases, and cancer. Iron-chelating agents, by tightly binding to iron, prohibit it from functioning as a catalyst in redox reactions and transfer iron and excrete it from the body. Thus, the use of iron chelators as therapeutic agents has received increasing attention. This review investigates the function of various iron chelators in treating iron overload in different clinical conditions.
Collapse
Affiliation(s)
- Zohreh Salimi
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Mehdi Afsharinasab
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran
| | - Mehdi Rostami
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Seyedeh Fatemeh Mousavi Ezmareh
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Fariba Sakhaei
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Maryam Mohammad-Sadeghipour
- Department of Clinical Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| |
Collapse
|
5
|
Rohilla A, Rohilla S. Drug Repositioning: A Monetary Stratagem to Discover a New Application of Drugs. Curr Drug Discov Technol 2024; 21:e101023222023. [PMID: 38629171 DOI: 10.2174/0115701638253929230922115127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/29/2023] [Accepted: 08/09/2023] [Indexed: 04/19/2024]
Abstract
Drug repurposing, also referred to as drug repositioning or drug reprofiling, is a scientific approach to the detection of any new application for an already approved or investigational drug. It is a useful policy for the invention and development of new pharmacological or therapeutic applications of different drugs. The strategy has been known to offer numerous advantages over developing a completely novel drug for certain problems. Drug repurposing has numerous methodologies that can be categorized as target-oriented, drug-oriented, and problem-oriented. The choice of the methodology of drug repurposing relies on the accessible information about the drug molecule and like pharmacokinetic, pharmacological, physicochemical, and toxicological profile of the drug. In addition, molecular docking studies and other computer-aided methods have been known to show application in drug repurposing. The variation in dosage for original target diseases and novel diseases presents a challenge for researchers of drug repurposing in present times. The present review critically discusses the drugs repurposed for cancer, covid-19, Alzheimer's, and other diseases, strategies, and challenges of drug repurposing. Moreover, regulatory perspectives related to different countries like the United States (US), Europe, and India have been delineated in the present review.
Collapse
Affiliation(s)
- Ankur Rohilla
- Department of Pharmacology, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, 140413, Mohali, India
| | - Seema Rohilla
- Department of Pharmacy, Panipat Institute of Engineering and Technology, Panipat, Haryana, India
| |
Collapse
|
6
|
Fujisawa K, Matsumoto T, Yamamoto N, Yamasaki T, Takami T. Metabolic Analysis of DFO-Resistant Huh7 Cells and Identification of Targets for Combination Therapy. Metabolites 2023; 13:1073. [PMID: 37887398 PMCID: PMC10609263 DOI: 10.3390/metabo13101073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most refractory cancers with a high rate of recurrence. Iron is an essential trace element, and iron chelation has garnered attention as a novel therapeutic strategy for cancer. Since intracellular metabolism is significantly altered by inhibiting various proteins by iron chelation, we investigated combination anticancer therapy targeting metabolic changes that are forcibly modified by iron chelator administration. The deferoxamine (DFO)-resistant cell lines were established by gradually increasing the DFO concentration. Metabolomic analysis was conducted to evaluate the metabolic alterations induced by DFO administration, aiming to elucidate the resistance mechanism in DFO-resistant strains and identify potential novel therapeutic targets. Metabolom analysis of the DFO-resistant Huh7 cells revealed enhanced glycolysis and salvage cycle, alternations in glutamine metabolism, and accumulation of dipeptides. Huh7 cultured in the absence of glutamine showed enhanced sensitivity to DFO, and glutaminase inhibitor (CB839) showed a synergistic effect with DFO. Furthermore, the effect of DFO was enhanced by an autophagy inhibitor (chloroquine) in vitro. DFO-induced metabolic changes are specific targets for the development of efficient anticancer combinatorial therapies using DFO. These findings will be useful for the development of new cancer therapeutics in refractory liver cancer.
Collapse
Affiliation(s)
- Koichi Fujisawa
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yamaguchi University, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan; (T.M.); (N.Y.); (T.T.)
| | - Toshihiko Matsumoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yamaguchi University, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan; (T.M.); (N.Y.); (T.T.)
| | - Naoki Yamamoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yamaguchi University, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan; (T.M.); (N.Y.); (T.T.)
- Amaguchi University Health Administration Center, 1677-1 Yoshida, Yamaguchi 753-8511, Japan
| | - Takahiro Yamasaki
- Department of Oncology and Laboratory Medicine, Graduate School of Medicine, Yamaguchi University, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan;
| | - Taro Takami
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Yamaguchi University, Minami Kogushi 1-1-1, Ube, Yamaguchi 755-8505, Japan; (T.M.); (N.Y.); (T.T.)
| |
Collapse
|
7
|
Araújo D, Ribeiro E, Amorim I, Vale N. Repurposed Drugs in Gastric Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010319. [PMID: 36615513 PMCID: PMC9822219 DOI: 10.3390/molecules28010319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023]
Abstract
Gastric cancer (GC) is one of the major causes of death worldwide, ranking as the fifth most incident cancer in 2020 and the fourth leading cause of cancer mortality. The majority of GC patients are in an advanced stage at the time of diagnosis, presenting a poor prognosis and outcome. Current GC treatment approaches involve endoscopic detection, gastrectomy and chemotherapy or chemoradiotherapy in an adjuvant or neoadjuvant setting. Drug development approaches demand extreme effort to identify molecular mechanisms of action of new drug candidates. Drug repurposing is based on the research of new therapeutic indications of drugs approved for other pathologies. In this review, we explore GC and the different drugs repurposed for this disease.
Collapse
Affiliation(s)
- Diana Araújo
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Eduarda Ribeiro
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Irina Amorim
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Correspondence: ; Tel.: +351-220426537
| |
Collapse
|
8
|
Xu Y, Wang Y, An J, Sedgwick AC, Li M, Xie J, Hu W, Kang J, Sen S, Steinbrueck A, Zhang B, Qiao L, Wageh S, Arambula JF, Liu L, Zhang H, Sessler JL, Kim JS. 2D-ultrathin MXene/DOXjade platform for iron chelation chemo-photothermal therapy. Bioact Mater 2022; 14:76-85. [PMID: 35310350 PMCID: PMC8892152 DOI: 10.1016/j.bioactmat.2021.12.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/26/2021] [Accepted: 12/13/2021] [Indexed: 12/22/2022] Open
Abstract
An increased demand for iron is a hallmark of cancer cells and is thought necessary to promote high cell proliferation, tumor progression and metastasis. This makes iron metabolism an attractive therapeutic target. Unfortunately, current iron-based therapeutic strategies often lack effectiveness and can elicit off-target toxicities. We report here a dual-therapeutic prodrug, DOXjade, that allows for iron chelation chemo-photothermal cancer therapy. This prodrug takes advantage of the clinically approved iron chelator deferasirox (ExJade®) and the topoisomerase 2 inhibitor, doxorubicin (DOX). Loading DOXjade onto ultrathin 2D Ti3C2 MXene nanosheets produces a construct, Ti3C2-PVP@DOXjade, that allows the iron chelation and chemotherapeutic functions of DOXjade to be photo-activated at the tumor sites, while potentiating a robust photothermal effect with photothermal conversion efficiencies of up to 40%. Antitumor mechanistic investigations reveal that upon activation, Ti3C2-PVP@DOXjade serves to promote apoptotic cell death and downregulate the iron depletion-induced iron transferrin receptor (TfR). A tumor pH-responsive iron chelation/photothermal/chemotherapy antitumor effect was achieved both in vitro and in vivo. The results of this study highlight what may constitute a promising iron chelation-based phototherapeutic approach to cancer therapy. A conceptually novel “dual-therapeutic prodrug nanomedicine” strategy was designed for synergistic cancer therapy. An innovative pH responsive dual-therapeutic conjugate DOXjade was synthesized based on deferasirox and doxorubicin. Ti3C2-PVP@DOXjade with photoirradiation showed pH-responsive iron chelation/PTT/chemotherapy antitumor effect. This study thus serves to demonstrate a promising step forward in the development of precise cancer therapies.
Collapse
|
9
|
Abedi M, Rahgozar S. Puzzling Out Iron Complications in Cancer Drug Resistance. Crit Rev Oncol Hematol 2022; 178:103772. [PMID: 35914667 DOI: 10.1016/j.critrevonc.2022.103772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 12/09/2022] Open
Abstract
Iron metabolism are frequently disrupted in cancer. Patients with cancer are prone to anemia and receive transfusions frequently; the condition which results in iron overload, contributing to serious therapeutic complications. Iron is introduced as a carcinogen that may increase tumor growth. However, investigations regarding its impact on response to chemotherapy, particularly the induction of drug resistance are still limited. Here, iron contribution to cell signaling and various molecular mechanisms underlying iron-mediated drug resistance are described. A dual role of this vital element in cancer treatment is also addressed. On one hand, the need to administer iron chelators to surmount iron overload and improve the sensitivity of tumor cells to chemotherapy is discussed. On the other hand, the necessary application of iron as a therapeutic option by iron-oxide nanoparticles or ferroptosis inducers is explained. Authors hope that this paper can help unravel the clinical complications related to iron in cancer therapy.
Collapse
Affiliation(s)
- Marjan Abedi
- Department of Cell and Molecular biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Soheila Rahgozar
- Department of Cell and Molecular biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
10
|
Jomen W, Ohtake T, Akita T, Suto D, Yagi H, Osawa Y, Kohgo Y. Iron chelator deferasirox inhibits NF-κB activity in hepatoma cells and changes sorafenib-induced programmed cell deaths. Biomed Pharmacother 2022; 153:113363. [PMID: 35834989 DOI: 10.1016/j.biopha.2022.113363] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/18/2022] [Accepted: 06/28/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE The improvements of antitumor effects and tolerability on chemotherapy for advanced hepatocellular carcinoma (HCC) are warranted. Here, we aimed to elucidate the mechanism of the combining effect of tyrosine kinase inhibitor sorafenib (SOR) and iron chelator deferasirox (DFX) in human hepatoma cell lines, HepG2 and Huh-7. METHODS The types of programmed cell deaths (PCDs); necrosis/necroptosis and apoptosis, were evaluated by flow cytometry and fluorescent microscopy. Human cleaved caspase-3 was analyzed by ELISA for apoptosis. GSH assay was used for ferroptosis. PCDs inhibition was analyzed by adding apoptosis inhibitor Z-VAD-FMK, ferroptosis inhibitor ferrostatin-1, necroptosis inhibitor necrosulfonamide, respectively. The expression of NF-κB was quantified by Western blotting. RESULTS In SOR monotherapy, cleaved caspase-3 expression was increased in all concentrations, confirming the result that SOR induces apoptosis. In SOR monotherapy, GSH/GSSG ratio was decreased on concentration-dependent, showing that SOR also induced ferroptosis. Lipid Peroxidation caused by SOR, corresponding to ferroptosis, was suppressed by DFX. In fluorescence microscopy of SOR monotherapy, apoptosis was observed at a constant rate on all concentrations, while necroptosis and ferroptosis were increased on high concentration. In sorafenib and deferasirox combinations, sub G1 phase increased additively. In SOR and DFX combinations, the cytotoxic effects were not suppressed by ferrostatin-1, but suppressed by Z-VAD-FMK and necrosulfonamide. In each monotherapy, and SOR + DFX combinations, the expression of NF-κB in nucleus was suppressed. Regarding PCD by SOR and DFX combination, ferroptosis was suppressed and both apoptosis and necroptosis became dominant. CONCLUSION Suppression of NF-κB is possibly involved in the effect of DFX. As a result, SOR and DFX combination showed additive antitumor effects for HCC through the mechanism of programed cell deaths and NF-kB signal modification.
Collapse
Affiliation(s)
- Wataru Jomen
- Department of Clinical Medical Sciences, International University of Health and Welfare Graduate School of Medicine, Tokyo, Japan
| | - Takaaki Ohtake
- Department of Gastroenterology, International University of Health and Welfare School of Medicine, Narita, Japan; Department of Gastroenterology and Hepatology, International University of Health and Welfare Hospital, Nasushiobara, Japan.
| | - Takayuki Akita
- Department of Clinical Medical Sciences, International University of Health and Welfare Graduate School of Medicine, Tokyo, Japan; Department of Gastroenterology and Hepatology, International University of Health and Welfare Hospital, Nasushiobara, Japan
| | - Daisuke Suto
- Department of Gastroenterology, International University of Health and Welfare School of Medicine, Narita, Japan; Department of Gastroenterology and Hepatology, International University of Health and Welfare Hospital, Nasushiobara, Japan
| | - Hideki Yagi
- Department of Pharmaceutical, Faculty of Pharmacy, International University of Health and Welfare, Otawara, Japan
| | - Yosuke Osawa
- Department of Clinical Medical Sciences, International University of Health and Welfare Graduate School of Medicine, Tokyo, Japan; Department of Gastroenterology, International University of Health and Welfare School of Medicine, Narita, Japan; Department of Gastroenterology and Hepatology, International University of Health and Welfare Hospital, Nasushiobara, Japan
| | - Yutaka Kohgo
- Department of Clinical Medical Sciences, International University of Health and Welfare Graduate School of Medicine, Tokyo, Japan; Department of Gastroenterology, International University of Health and Welfare School of Medicine, Narita, Japan; Department of Gastroenterology and Hepatology, International University of Health and Welfare Hospital, Nasushiobara, Japan
| |
Collapse
|
11
|
Zhou N, Cui Y, Zhu R, Kuang Y, Ma W, Hou J, Zhu Y, Chen S, Xu X, Tan K, Cao P, Duan X, Fan Y. Deferasirox shows inhibition activity against cervical cancer in vitro and in vivo. Gynecol Oncol 2022; 166:126-137. [DOI: 10.1016/j.ygyno.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 11/16/2022]
|
12
|
Fujisawa K, Takami T, Matsumoto T, Yamamoto N, Yamasaki T, Sakaida I. An iron chelation-based combinatorial anticancer therapy comprising deferoxamine and a lactate excretion inhibitor inhibits the proliferation of cancer cells. Cancer Metab 2022; 10:8. [PMID: 35550011 PMCID: PMC9103045 DOI: 10.1186/s40170-022-00284-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although iron chelation has garnered attention as a novel therapeutic strategy for cancer, higher levels of efficacy need to be achieved. In the present study, we examined the combinatorial effect of deferoxamine (DFO), an iron chelator, and α-cyano-4-hydroxy cinnamate (CHC), a suppressor of lactate excretion, on the proliferation of cancer cell lines. METHODS We established a deferoxamine (DFO)-resistant cell line by culturing HeLa cells in media containing increasing concentrations of DFO. Metabolome and gene expression analyses were performed on these cells. Synergistic effect of the drugs on the cells was determined using an in vitro proliferation assay, and the combination index was estimated. RESULTS DFO-resistant HeLa cells exhibited enhanced glycolysis, salvage cycle, and de novo nucleic acid synthesis and reduced mitochondrial metabolism. As DFO triggered a metabolic shift toward glycolysis and increased lactate production in cells, we treated the cancer cell lines with a combination of CHC and DFO. A synergistic effect of DFO and CHC was observed in HeLa cells; however, the same was not observed in the human liver cancer cell line Huh7. We hypothesized that the efficacy of the combination therapy in cancer cells depends on the degree of increase in lactate concentration upon DFO treatment. CONCLUSION Combination therapy involving administration of DFO and CHC is effective in cancer cells wherein DFO treatment results in an elevation in lactate levels. Our findings illustrate that the DFO-induced enhanced glycolysis provides specific targets for developing an efficient anticancer combinatorial therapy involving DFO. These findings will be beneficial for the development of novel cancer chemotherapeutics.
Collapse
Affiliation(s)
- Koichi Fujisawa
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Taro Takami
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan.
| | - Toshihiko Matsumoto
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
- Department of Oncology and Laboratory Medicine, Graduate School of Medicine, Yamaguchi University, Minami Kogushi 1-1-1, Ube, Yamaguchi, Japan
| | - Naoki Yamamoto
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
- Yamaguchi University Health Administration Center, Yamaguchi, Japan
| | - Takahiro Yamasaki
- Department of Oncology and Laboratory Medicine, Graduate School of Medicine, Yamaguchi University, Minami Kogushi 1-1-1, Ube, Yamaguchi, Japan
| | - Isao Sakaida
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Minami Kogushi 1-1-1, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
13
|
Guo Q, Li L, Hou S, Yuan Z, Li C, Zhang W, Zheng L, Li X. The Role of Iron in Cancer Progression. Front Oncol 2021; 11:778492. [PMID: 34858857 PMCID: PMC8631356 DOI: 10.3389/fonc.2021.778492] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/15/2021] [Indexed: 01/19/2023] Open
Abstract
Iron is an essential trace element for the human body, and its deficiency or excess can induce a variety of biological processes. Plenty of evidences have shown that iron metabolism is closely related to the occurrence and development of tumors. In addition, iron plays an important role in cell death, which is very important for the development of potential strategies for tumor treatment. Here, we reviewed the latest research about iron metabolism disorders in various types of tumors, the functions and properties of iron in ferroptosis and ferritinophagy, and new opportunities for iron-based on treatment methods for tumors, providing more information regarding the prevention and treatment of tumors.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Liwen Li
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shanshan Hou
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
| | - Ziqiao Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chenhui Li
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenzhou Zhang
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
14
|
Park JM, Mau CZ, Chen YC, Su YH, Chen HA, Huang SY, Chang JS, Chiu CF. A case-control study in Taiwanese cohort and meta-analysis of serum ferritin in pancreatic cancer. Sci Rep 2021; 11:21242. [PMID: 34711879 PMCID: PMC8553768 DOI: 10.1038/s41598-021-00650-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the most lethal diseases which lack an early diagnostic marker. We investigated whether serum ferritin (SF) reflects risk for pancreatic cancer and potential genes that may contribute ferritin and pancreatic cancer risks. We performed a meta-analysis of relevant studies on SF and pancreatic cancer risk by searching articles in PUBMED and EMBASE published up to 1 March 2020. We also collected serum samples from Taipei Medical University Joint Biobank and compared SF levels in 34 healthy controls and 34 pancreatic cancer patients. An Oncomine database was applied as a platform to explore a series of genes that exhibited strong associations between ferritin and pancreatic cancer. Herein, we show that high levels of SF can indicate risk of pancreatic cancer, suggesting SF as the new tumor marker that may be used to help pancreatic cancer diagnosis. We also found that expressions of iron homeostasis genes (MYC, FXN) and ferroptosis genes (ALOX15, CBS, FDFT1, LPCAT3, RPL8, TP53, TTC35) are significantly altered with pancreatic tumor grades, which may contribute to differential expression of ferritin related to pancreatic cancer prognosis.
Collapse
Affiliation(s)
- Ji Min Park
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan.,Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chen-Zou Mau
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yang-Ching Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan.,Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yen-Hao Su
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11301, Taiwan.,Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan.,Department of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11301, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hsin-An Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11301, Taiwan.,Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan.,Department of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11301, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan.,Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan.,Nutrition Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| | - Jung-Su Chang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan. .,Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan. .,Nutrition Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan.
| | - Ching-Feng Chiu
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan. .,Nutrition Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
15
|
Zhao Y, Zheng Y, Zhu Y, Zhang Y, Zhu H, Liu T. M1 Macrophage-Derived Exosomes Loaded with Gemcitabine and Deferasirox against Chemoresistant Pancreatic Cancer. Pharmaceutics 2021; 13:pharmaceutics13091493. [PMID: 34575569 PMCID: PMC8472397 DOI: 10.3390/pharmaceutics13091493] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Pancreatic cancer is a malignant disease with high mortality and poor prognosis due to lack of early diagnosis and low treatment efficiency after diagnosis. Although Gemcitabine (GEM) is used as the first-line chemotherapeutic drug, chemoresistance is still the major problem that limits its therapeutic efficacy. Here in this study, we developed a specific M1 macrophage-derived exosome (M1Exo)-based drug delivery system against GEM resistance in pancreatic cancer. In addition to GEM, Deferasirox (DFX) was also loaded into drug carrier, M1Exo, in order to inhibit ribonucleotide reductase regulatory subunit M2 (RRM2) expression via depleting iron, and thus increase chemosensitivity of GEM. The M1Exo nanoformulations combining both GEM and DFX significantly enhanced the therapeutic efficacy on the GEM-resistant PANC-1/GEM cells and 3D tumor spheroids by inhibiting cancer cell proliferation, cell attachment and migration, and chemoresistance to GEM. These data demonstrated that M1Exo loaded with GEM and DFX offered an efficient therapeutic strategy for drug-resistant pancreatic cancer.
Collapse
Affiliation(s)
- Yongmei Zhao
- School of Pharmacy, Nantong University, Nantong 226019, China; (Y.Z.); (Y.Z.); (Y.Z.); (H.Z.)
| | - Yuanlin Zheng
- School of Pharmacy, Nantong University, Nantong 226019, China; (Y.Z.); (Y.Z.); (Y.Z.); (H.Z.)
| | - Yan Zhu
- School of Pharmacy, Nantong University, Nantong 226019, China; (Y.Z.); (Y.Z.); (Y.Z.); (H.Z.)
| | - Yi Zhang
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Hongyan Zhu
- School of Pharmacy, Nantong University, Nantong 226019, China; (Y.Z.); (Y.Z.); (Y.Z.); (H.Z.)
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Sydney, NSW 2145, Australia
- Correspondence:
| |
Collapse
|
16
|
Iron Dysregulation in Human Cancer: Altered Metabolism, Biomarkers for Diagnosis, Prognosis, Monitoring and Rationale for Therapy. Cancers (Basel) 2020; 12:cancers12123524. [PMID: 33255972 PMCID: PMC7761132 DOI: 10.3390/cancers12123524] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Iron is the more abundant metal ion in humans. It is essential for life as it has a role in various cellular processes involved, for instance, in cell metabolism and DNA synthesis. These functions are crucial for cell proliferation, and it is therefore not surprising that iron is accumulated in tumors. In this review, we describe normal and altered iron homeostasis mechanisms. We also provide a vision of iron-related proteins with altered expression in cancers and discuss their potential as diagnostic and/or prognostic biomarkers. Finally, we give an overview of therapeutic strategies acting on iron metabolism to fight against cancers. Abstract Iron (Fe) is a trace element that plays essential roles in various biological processes such as DNA synthesis and repair, as well as cellular energy production and oxygen transport, and it is currently widely recognized that iron homeostasis is dysregulated in many cancers. Indeed, several iron homeostasis proteins may be responsible for malignant tumor initiation, proliferation, and for the metastatic spread of tumors. A large number of studies demonstrated the potential clinical value of utilizing these deregulated proteins as prognostic and/or predictive biomarkers of malignancy and/or response to anticancer treatments. Additionally, the iron present in cancer cells and the importance of iron in ferroptosis cell death signaling pathways prompted the development of therapeutic strategies against advanced stage or resistant cancers. In this review, we select relevant and promising studies in the field of iron metabolism in cancer research and clinical oncology. Besides this, we discuss some co-existing discrepant findings. We also present and discuss the latest lines of research related to targeting iron, or its regulatory pathways, as potential promising anticancer strategies for human therapy. Iron chelators, such as deferoxamine or iron-oxide-based nanoparticles, which are already tested in clinical trials, alone or in combination with chemotherapy, are also reported.
Collapse
|
17
|
Inhibiting RRM2 to enhance the anticancer activity of chemotherapy. Biomed Pharmacother 2020; 133:110996. [PMID: 33227712 DOI: 10.1016/j.biopha.2020.110996] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022] Open
Abstract
RRM2, the small subunit of ribonucleotide reductase, is identified as a tumor promotor and therapeutic target. It is common to see the overexpression of RRM2 in chemo-resistant cancer cells and patients. RRM2 mediates the resistance of many chemotherapeutic drugs and could become the predictor for chemosensitivity and prognosis. Therefore, inhibition of RRM2 may be an effective means to enhance the anticancer activity of chemotherapy. This review tries to discuss the mechanisms of RRM2 overexpression and the role of RRM2 in resistance to chemotherapy. Additionally, we compile the studies on small interfering RNA targets RRM2, RRM2 inhibitors, kinase inhibitors, and other ways that could overcome the resistance of chemotherapy or exert synergistic anticancer activity with chemotherapy through the expression inhibition or the enzyme inactivation of RRM2.
Collapse
|
18
|
Özbolat G, Alizadeh Yegani A. Synthesis, characterization, biological activity and electrochemistry studies of iron(III) complex with curcumin-oxime ligand. Clin Exp Pharmacol Physiol 2020; 47:1834-1842. [PMID: 32497256 DOI: 10.1111/1440-1681.13359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/17/2022]
Abstract
Iron overload is a key target in drug development. This study aimed to investigate the coordination of Fe(III) ions with a curcumin-oxime ligand that may be used in the treatment of iron overload. The synthesis of the curcumin-oxime ligand and curcumin-oxime-Fe(III) complex was successfully made and characterized in its solid-state and solution-state using FT-IR, UV-Vis, elemental analysis, and 1 H-NMR. However, in this study, we investigated the apoptotic effects of the curcumin-oxime Fe (III) complex on SW480. SW480 cells were exposed to 99.2% medium for 48 hours. After 48 hours, the incubation period, cells were harvested by centrifugation and washed in phosphate-buffered saline (PBS) and lysed in radio-immunoprecipitation assay (RIPA) buffer for 20 minutes and supernatants were taken and pellets were discarded. ELISA test was used to examine the expression, and activity of cleaved caspase-3, Bax, and Bcl-2 proteins in SW480 cells. ELISA test results indicated that the activities of apoptotic proteins Bax, caspase 3 and Bcl-2 in human SW480 cell lines significantly increased in 48 hours treatment. Also, the activity of Bcl-2 was observed to decrease significantly. Catalase activities of the complex were investigated. The findings showed that the complex has a catalase activity. The findings suggest that this type of complex may constitute a new and interesting basis for the future search of new and more potent drugs. The SOD activity of the result showed that the complexes possessed a considerable SOD activity with an IC50 value of 7.685 µM. Also, when compared with the control, a complex increased the SOD levels (P < .05). Electrochemistry studies in the literature have shown that the Fe3+ /Fe2+ couple redox process occurs in low potential. This value is within the range of compounds that are expected to show superoxide dismutase activity. The Ipc /Ipa shows that one electron transport takes place in the complex. Our results suggest that curcumin-oxime may represent a new approach in the treatment of iron overload.
Collapse
Affiliation(s)
| | - Arash Alizadeh Yegani
- Department of Pharmacology, Faculty of Veterinary, Mustafa Kemal University, Hatay, Turkey
| |
Collapse
|
19
|
Qin J, Zhou C, Zhu M, Shi S, Zhang L, Zhao Y, Li C, Wang Y, Wang Y. Iron chelation promotes 5-aminolaevulinic acid-based photodynamic therapy against oral tongue squamous cell carcinoma. Photodiagnosis Photodyn Ther 2020; 31:101907. [DOI: 10.1016/j.pdpdt.2020.101907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023]
|
20
|
Abstract
Iron chelators have long been a target of interest as anticancer agents. Iron is an important cellular resource involved in cell replication, metabolism and growth. Iron metabolism is modulated in cancer cells reflecting their increased replicative demands. Originally, iron chelators were first developed for use in iron overload disorders, however, their potential as anticancer agents has been gaining increasing interest. This is due, in part, to the downstream effects of iron depletion such as the inhibition of proliferation through ribonucleotide reductase activity. Additionally, some chelators form redox active metal complexes with iron resulting in the production of reactive oxygen species and oxidative stress. Newer synthetic iron chelators such as Deferasirox, Triapine and di-2-pyridylketone-4,4,-dimethyl-3-thiosemicrbazone (Dp44mt) have improved pharmacokinetic properties over the older chelator Deferoxamine. This review examines and discusses the various iron chelators that have been trialled for cancer therapy including both preclinical and clinical studies. The successes and shortcomings of each of the chelators and their use in combination therapies are highlighted and future potential in the cancer therapy world is considered.
Collapse
|
21
|
Amano S, Kaino S, Shinoda S, Harima H, Matsumoto T, Fujisawa K, Takami T, Yamamoto N, Yamasaki T, Sakaida I. Invasion inhibition in pancreatic cancer using the oral iron chelating agent deferasirox. BMC Cancer 2020; 20:681. [PMID: 32698792 PMCID: PMC7374870 DOI: 10.1186/s12885-020-07167-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 07/12/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Iron is required for cellular metabolism, and rapidly proliferating cancer cells require more of this essential nutrient. Therefore, iron regulation may well represent a new avenue for cancer therapy. We have reported, through in vitro and in vivo research involving pancreatic cancer cell lines, that the internal-use, next-generation iron chelator deferasirox (DFX) exhibits concentration-dependent tumour-suppressive effects, among other effects. After performing a microarray analysis on the tumour grafts used in that research, we found that DFX may be able to suppress the cellular movement pathways of pancreatic cancer cells. In this study, we conducted in vitro analyses to evaluate the effects of DFX on the invasive and migratory abilities of pancreatic cancer cells. METHODS We used pancreatic cancer cell lines (BxPC-3, Panc-1, and HPAF II) to examine the efficacy of DFX in preventing invasion in vitro, evaluated using scratch assays and Boyden chamber assays. In an effort to understand the mechanism of action whereby DFX suppresses tumour invasion and migration, we performed G-LISA to examine the activation of Cdc42 and Rac1 which are known for their involvement in cellular movement pathways. RESULTS In our scratch assays, we observed that DFX-treated cells had significantly reduced invasive ability compared with that of control cells. Similarly, in our Boyden chamber assays, we observed that DFX-treated cells had significantly reduced migratory ability. After analysis of the Rho family of proteins, we observed a significant reduction in the activation of Cdc42 and Rac1 in DFX-treated cells. CONCLUSIONS DFX can suppress the motility of cancer cells by reducing Cdc42 and Rac1 activation. Pancreatic cancers often have metastatic lesions, which means that use of DFX will suppress not only tumour proliferation but also tumour invasion, and we expect that this will lead to improved prognoses.
Collapse
Affiliation(s)
- Shogo Amano
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Seiji Kaino
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shuhei Shinoda
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hirofumi Harima
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Toshihiko Matsumoto
- Department of Oncology and Laboratory Medicine, Yamaguchi University, Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Koichi Fujisawa
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Taro Takami
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Naoki Yamamoto
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Takahiro Yamasaki
- Department of Oncology and Laboratory Medicine, Yamaguchi University, Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Isao Sakaida
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
22
|
Ding F, Zhang L, Chen H, Song H, Chen S, Xiao H. Enhancing the chemotherapeutic efficacy of platinum prodrug nanoparticles and inhibiting cancer metastasis by targeting iron homeostasis. NANOSCALE HORIZONS 2020; 5:999-1015. [PMID: 32364553 DOI: 10.1039/d0nh00148a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Iron plays important roles in tumor growth and metastasis, and iron depletion has become a new therapeutic strategy for iron overload cancers. Cisplatin is widely applied in the clinical therapy of various malignancies, but it has no inhibitory effect on cancer metastasis. In the present study, we found that the combination of cisplatin and iron chelator Dp44mT resulted in enhanced cell apoptosis as well as attenuated cell mobility and migration in vitro. Next, we developed a nano-carrier system to promote intracellular drug accumulation and reduce the side effects in cancer cells. Results showed that the as-synthesized nanoparticles (NPs) exhibited excellent antitumor efficiency when combined with Dp44mT. In breast tumor-bearing mice, the combination of the NPs and Dp44mT dramatically prevented orthotopic mammary tumor growth and inhibited metastasis via downregulation of VEGFα, MMP2 and Vimentin. In conclusion, as a versatile nano-platform for the combination of chemotherapy and iron chelators, the current design holds great potential for metastasis-inhibited cancer therapy.
Collapse
Affiliation(s)
- Fang Ding
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China. and Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingpu Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hao Chen
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Haiqin Song
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China and Shanghai Minimally Invasive Surgery Center, Shanghai, 200025, P. R. China.
| | - Shiguo Chen
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Gupta P, Pérez-Mancera PA, Kocher H, Nisbet A, Schettino G, Velliou EG. A Novel Scaffold-Based Hybrid Multicellular Model for Pancreatic Ductal Adenocarcinoma-Toward a Better Mimicry of the in vivo Tumor Microenvironment. Front Bioeng Biotechnol 2020; 8:290. [PMID: 32391339 PMCID: PMC7193232 DOI: 10.3389/fbioe.2020.00290] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
With a very low survival rate, pancreatic ductal adenocarcinoma (PDAC) is a deadly disease. This has been primarily attributed to (i) its late diagnosis and (ii) its high resistance to current treatment methods. The latter specifically requires the development of robust, realistic in vitro models of PDAC, capable of accurately mimicking the in vivo tumor niche. Advancements in the field of tissue engineering (TE) have helped the development of such models for PDAC. Herein, we report for the first time a novel hybrid, polyurethane (PU) scaffold-based, long-term, multicellular (tri-culture) model of pancreatic cancer involving cancer cells, endothelial cells, and stellate cells. Recognizing the importance of ECM proteins for optimal growth of different cell types, the model consists of two different zones/compartments: an inner tumor compartment consisting of cancer cells [fibronectin (FN)-coated] and a surrounding stromal compartment consisting of stellate and endothelial cells [collagen I (COL)-coated]. Our developed novel hybrid, tri-culture model supports the proliferation of all different cell types for 35 days (5 weeks), which is the longest reported timeframe in vitro. Furthermore, the hybrid model showed extensive COL production by the cells, mimicking desmoplasia, one of PDAC's hallmark features. Fibril alignment of the stellate cells was observed, which attested to their activated state. All three cell types expressed various cell-specific markers within the scaffolds, throughout the culture period and showed cellular migration between the two zones of the hybrid scaffold. Our novel model has great potential as a low-cost tool for in vitro studies of PDAC, as well as for treatment screening.
Collapse
Affiliation(s)
- Priyanka Gupta
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, United Kingdom
| | - Pedro A. Pérez-Mancera
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Hemant Kocher
- Centre for Tumour Biology and Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Andrew Nisbet
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Giuseppe Schettino
- Department of Physics, University of Surrey, Guildford, United Kingdom
- Medical Radiation Science Group, The National Physical Laboratory, Teddington, United Kingdom
| | - Eirini G. Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
24
|
Cheng G, Zielonka J, Hardy M, Ouari O, Chitambar CR, Dwinell MB, Kalyanaraman B. Synergistic inhibition of tumor cell proliferation by metformin and mito-metformin in the presence of iron chelators. Oncotarget 2019; 10:3518-3532. [PMID: 31191823 PMCID: PMC6544408 DOI: 10.18632/oncotarget.26943] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/02/2019] [Indexed: 12/15/2022] Open
Abstract
We demonstrate that combined treatment with metformin (Met) or its mitochondria-targeted analog, mito-metformin (Mito-Met), and various iron chelators synergistically inhibits proliferation of pancreatic and triple-negative breast cancer cells. Previously, we reported that Met (at millimolar levels) and Mito-Met (at micromolar levels) inhibited pancreatic cancer cell proliferation. Inhibition of mitochondrial complex I and mitochondrial oxidative phosphorylation (OXPHOS) through stimulation of mitochondrial redox signaling was proposed as a key mechanism for decreased cancer cell proliferation. Because of its poor bioavailability, the use of Met as a "stand-alone" antitumor drug has been questioned. Iron chelators such as deferasirox (DFX) and dexrazoxane (DXR) exhibit antiproliferative effects in cancer cells. The potency of Met and Mito-Met was synergistically enhanced in the presence of iron chelators, DFX, N,N'-bis(2-hydroxyphenyl)ethylendiamine-N,N'-diacetic acid (HBED), and deferoxamine (DFO). Met, DXR (also ICRF-187), and DFO are FDA-approved drugs for treating diabetes, decreasing the incidence and severity of cardiotoxicity following chemotherapy, and mitigating iron toxicity, respectively. Thus, the synergistic antiproliferative effects of Met and Met analogs and iron chelators may have significant clinical relevance in cancer treatment. These findings may have implications in other OXPHOS-mediated cancer therapies.
Collapse
Affiliation(s)
- Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Micael Hardy
- Aix Marseille University, CNRS, ICR, UMR 7273, Marseille 13013, France
| | - Olivier Ouari
- Aix Marseille University, CNRS, ICR, UMR 7273, Marseille 13013, France
| | - Christopher R Chitambar
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael B Dwinell
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
25
|
Tian N, Zhou L, Yang D, Wu H, Ma Y, Lü L, Wu S. [Silencing RRM1 gene reverses paclitaxel resistance in human breast cancer cell line MCF- 7/R by inducing cell apoptosis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:304-312. [PMID: 31068300 DOI: 10.12122/j.issn.1673-4254.2019.03.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effects of ribonucleotide reductase catalytic subunit M1 (RRM1) gene silencing on drug resistance of human breast cancer cell line MCF-7/R. METHODS We established a paclitaxel-resistant breast cancer MCF-7 cell line (MCF-7/R) by exposing the cells to high-concentration paclitaxel in a short time. Small interfering RNAs (siRNAs) targeting RRM1 were designed to silence RRM1 expression in human breast cancer MCF-7/R cells. MTT assay was used to detect the IC50 values and the sensitivity to paclitaxel in the cells with or without siRNA transfection. The changes in the proliferative activity of MCF7 and MCF-7/R cells following RRM1 gene silencing were evaluated using EdU assay. Flow cytometry was used to analyze the cell apoptosis and cell cycle changes. We assessed the effect of RRM1 gene silencing and paclitaxel on the tumor growth in a nude mouse model bearing subcutaneous xenografts with or without siRNA transfection. RESULTS We detected significantly higher expressions of RRM1 at both the mRNA and protein levels in the drug-resistant MCF- 7/R cells than in the parental MCF-7 cells (P < 0.01). Transfection with the specific siRNAs significantly reduced the expression of RRM1 in MCF-7/R cells (P < 0.05), which showed a significantly lower IC50 value of paclitaxel than the cells transfected with the negative control siRNA (P < 0.05). RRM1 silencing significantly inhibited the proliferation (P < 0.01) and enhanced the apoptosis-inducing effect of paclitaxel in MCF-7/R cells (P < 0.001); RRM1 silencing also resulted in obviously reduced Akt phosphorylation, suppressed Bcl-2 expression and promoted the expression of p53 protein in MCF-7/R cells. In the tumor-bearing nude mice, the volume of subcutaneously transplanted tumors was significantly smaller in MCF-7/R/siRNA+ PTX group than in the other groups (P < 0.001). CONCLUSIONS RRM1 gene silencing can reverse paclitaxel resistance in human breast cancer cell line MCF-7/R by promoting cell apoptosis.
Collapse
Affiliation(s)
- Nannan Tian
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lei Zhou
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Danni Yang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huanxian Wu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yunci Ma
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lin Lü
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shaoyu Wu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
26
|
Greene CJ, Sharma NJ, Fiorica PN, Forrester E, Smith GJ, Gross KW, Kauffman EC. Suppressive effects of iron chelation in clear cell renal cell carcinoma and their dependency on VHL inactivation. Free Radic Biol Med 2019; 133:295-309. [PMID: 30553971 PMCID: PMC10038186 DOI: 10.1016/j.freeradbiomed.2018.12.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023]
Abstract
Increasing data implicate iron accumulation in tumorigenesis of the kidney, particularly the clear cell renal cell carcinoma (ccRCC) subtype. The von Hippel Lindau (VHL)/hypoxia inducible factor-α (HIF-α) axis is uniquely dysregulated in ccRCC and is a major regulator and regulatory target of iron metabolism, yet the role of iron in ccRCC tumorigenesis and its potential interplay with VHL inactivation remains unclear. We investigated whether ccRCC iron accumulation occurs due to increased cell dependency on iron for growth and survival as a result of VHL inactivation. Free iron levels were compared between four VHL-mutant ccRCC cell lines (786-0, A704, 769-P, RCC4) and two benign renal tubule epithelial cell lines (RPTEC, HRCEp) using the Phen Green SK fluorescent iron stain. Intracellular iron deprivation was achieved using two clinical iron chelator drugs, deferasirox (DFX) and deferoxamine (DFO), and chelator effects were measured on cell line growth, cell cycle phase, apoptosis, HIF-1α and HIF-2α protein levels and HIF-α transcriptional activity based on expression of target genes CA9, OCT4/POU5F1 and PDGFβ/PDGFB. Similar assays were performed in VHL-mutant ccRCC cells with and without ectopic wild-type VHL expression. Baseline free iron levels were significantly higher in ccRCC cell lines than benign renal cell lines. DFX depleted cellular free iron more rapidly than DFO and led to greater growth suppression of ccRCC cell lines (>90% at ~30-150 µM) than benign renal cell lines (~10-50% at up to 250 µM). Similar growth responses were observed using DFO, with the exception that a prolonged treatment duration was necessary to deplete cellular iron adequately for differential growth suppression of the less susceptible A704 ccRCC cell line relative to benign renal cell lines. Apoptosis and G1-phase cell cycle arrest were identified as potential mechanisms of chelator growth suppression based on their induction in ccRCC cell lines but not benign renal cell lines. Iron chelation in ccRCC cells but not benign renal cells suppressed HIF-1α and HIF-2α protein levels and transcriptional activity, and the degree and timing of HIF-2α suppression correlated with the onset of apoptosis. Restoration of wild-type VHL function in ccRCC cells was sufficient to prevent chelator-induced apoptosis and G1 cell cycle arrest, indicating that ccRCC susceptibility to iron deprivation is VHL inactivation-dependent. In conclusion, ccRCC cells are characterized by high free iron levels and a cancer-specific dependency on iron for HIF-α overexpression, cell cycle progression and apoptotic escape. This iron dependency is introduced by VHL inactivation, revealing a novel interplay between VHL/HIF-α dysregulation and ccRCC iron metabolism. Future study is warranted to determine if iron deprivation using chelator drugs provides an effective therapeutic strategy for targeting HIF-2α and suppressing tumor progression in ccRCC patients.
Collapse
Affiliation(s)
- Christopher J Greene
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Nitika J Sharma
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Peter N Fiorica
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Emily Forrester
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Gary J Smith
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Kenneth W Gross
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States
| | - Eric C Kauffman
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States; Department of Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, United States; Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, United States.
| |
Collapse
|
27
|
Wang Y, Yu L, Ding J, Chen Y. Iron Metabolism in Cancer. Int J Mol Sci 2018; 20:ijms20010095. [PMID: 30591630 PMCID: PMC6337236 DOI: 10.3390/ijms20010095] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 12/11/2022] Open
Abstract
Demanded as an essential trace element that supports cell growth and basic functions, iron can be harmful and cancerogenic though. By exchanging between its different oxidized forms, iron overload induces free radical formation, lipid peroxidation, DNA, and protein damages, leading to carcinogenesis or ferroptosis. Iron also plays profound roles in modulating tumor microenvironment and metastasis, maintaining genomic stability and controlling epigenetics. in order to meet the high requirement of iron, neoplastic cells have remodeled iron metabolism pathways, including acquisition, storage, and efflux, which makes manipulating iron homeostasis a considerable approach for cancer therapy. Several iron chelators and iron oxide nanoparticles (IONPs) has recently been developed for cancer intervention and presented considerable effects. This review summarizes some latest findings about iron metabolism function and regulation mechanism in cancer and the application of iron chelators and IONPs in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Yafang Wang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Lei Yu
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian Ding
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Yi Chen
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|