1
|
He K, Cheng H, McClements DJ, Xu Z, Meng M, Zou Y, Chen G, Chen L. Utilization of diverse probiotics to create human health promoting fatty acids: A review. Food Chem 2024; 458:140180. [PMID: 38964111 DOI: 10.1016/j.foodchem.2024.140180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/09/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024]
Abstract
Many probiotics produce functional lipids with health-promoting properties, such as short-chain fatty acids, linoleic acid and omega-3 fatty acids. They have been shown to maintain gut health, strengthen the intestinal barrier, and have anti-inflammatory and antioxidant effects. In this article, we provide an up-to-date review of the various functional lipids produced by probiotics. These probiotics can be incorporated into foods, supplements, or pharmaceuticals to produce these functional lipids in the human colon, or they can be used in industrial biotechnology processes to generate functional lipids, which are then isolated and used as ingredients. We then highlight the different physiological functions for which they may be beneficial to human health, in addition to discussing some of the challenges of incorporating probiotics into commercial products and some potential solutions to address these challenges. Finally, we highlight the importance of testing the efficacy and safety of the new generation of probiotic-enhanced products, as well as the great potential for the marketization of related products.
Collapse
Affiliation(s)
- Kuang He
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Hao Cheng
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | | | - Zhenlin Xu
- School of Food Science and Technology, South China Agricultural University, Guangzhou 510642, China
| | - Man Meng
- Licheng Detection & Certification Group Co., Ltd., Zhongshan 528400, China
| | - Yidong Zou
- Skystone Feed Co., Ltd., Wuxi 214258, China
| | | | - Long Chen
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; State Key Lab of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Kalyanaraman B, Cheng G, Hardy M. The role of short-chain fatty acids in cancer prevention and cancer treatment. Arch Biochem Biophys 2024; 761:110172. [PMID: 39369836 DOI: 10.1016/j.abb.2024.110172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Short-chain fatty acids (SCFAs) are microbial metabolites in the gut that may play a role in cancer prevention and treatment. They affect the metabolism of both normal and cancer cells, regulating various cellular energetic processes. SCFAs also inhibit histone deacetylases, which are targets for cancer therapy. The three main SCFAs are acetate, propionate, and butyrate, which are transported into cells through specific transporters. SCFAs may enhance the efficacy of chemotherapeutic agents and modulate immune cell metabolism, potentially reprogramming the tumor microenvironment. Although SCFAs and SCFA-generating microbes enhance therapeutic efficacy of several forms of cancer therapy, published data also support the opposing viewpoint that SCFAs mitigate the efficacy of some cancer therapies. Therefore, the relationship between SCFAs and cancer is more complex, and this review discusses some of these aspects. Clearly, further research is needed to understand the role of SCFAs, their mechanisms and applications in cancer prevention and treatment.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States.
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Micael Hardy
- Aix-Marseille Univ, CNRS, ICR, UMR 7273, Marseille 13013, France
| |
Collapse
|
3
|
Song H, Lu J, Chu Q, Deng R, Shen X. Structural characterization of a novel polysaccharide from Tremella fuciformis and its interaction with gut microbiota. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6553-6562. [PMID: 38520258 DOI: 10.1002/jsfa.13479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/23/2024] [Accepted: 03/23/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Because of their diverse biological activities, polysaccharides derived from Tremella fuciformis have received growing attention. This study aimed to investigate the structural characterization of a purified polysaccharide (designated as PTP-3a) derived from T. fuciformis and explore its interaction with gut microbiota in vitro. RESULTS The findings revealed that PTP-3a had a molecular weight of 1.22 × 103 kDa and consisted of fucose, glucose, xylose, mannose and glucuronic acid in a molar ratio of 0.271:0.016:0.275:0.400:0.038. The primary linkage types identified in PTP-3a were 1,3-linked-manp, 1,4-linked-xylp and 1,2,3-linked-fucp, with corresponding ratios of 0.215:0.161:0.15. In addition, PTP-3a demonstrated notable thermal stability and exhibited a triple-helical structure. Moreover, following in vitro fermentation for 48 h, PTP-3a was efficiently utilized, resulting in a reduction in carbohydrate levels, the production of short-chain fatty acids (SCFAs) and pH adjustment. Furthermore, during in vitro fecal microbial fermentation, PTP-3a decreased the relative abundance of Firmicutes while increasing the proportions of Bacteroidetes and Proteobacteria, resulting in a significantly reduced Firmicutes/Bacteroidetes ratio. Additionally, PTP-3a stimulated the growth of beneficial bacteria such as Parabacteroides merdae, Gordonibacter pamelaeae, Bifidobacterium pseudolongum and Parabacteroides distasonis. Importantly, a strong correlation was observed between the production of SCFAs and specific microorganisms. CONCLUSION These findings suggested that PTP-3a has potential as a prebiotic for modulating the gut microbiota. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Jing Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Qiang Chu
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Rou Deng
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Xinchun Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| |
Collapse
|
4
|
Wu Q, Zhu F, Yao Y, Chen L, Ding Y, Su Y, Ge C. Sini san regulates intestinal flora and short-chain fatty acids to ameliorate hepatocyte apoptosis and relieve CCl 4-induced liver fibrosis in mice. Front Pharmacol 2024; 15:1408459. [PMID: 39281277 PMCID: PMC11392872 DOI: 10.3389/fphar.2024.1408459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction Si-Ni-San (SNS), a traditional Chinese medicine, is effective in treating liver fibrosis with an unclear mechanism. Although disturbance of intestinal flora and the subsequent secretion of short-chain fatty acids (SCFAs) is suggested to be involved in the progression of liver fibrosis, whether SNS produces the anti-fibrosis effect through the regulation of intestinal flora and SCFAs remains unclear. Methods In the current study, carbon tetrachloride (CCl4)-treated mice were dosed with SNS to examine the anti-fibrotic effects and the involved mechanism. Biochemical parameters, histological staining, and analyses of fibrotic gene expression were used to evaluate the anti-fibrotic effect of SNS, while intestinal flora and SCFA content were determined by 16S rRNA and LC-MS to evaluate the mechanism. Results In vivo results showed that SNS improved liver function, reduced hepatocyte apoptosis and FFAR2/3 expression, and restored intestinal dysbiosis and reduced PA, BA, and IsA levels. In vitro experiments showed that PA, BA, and IsA exacerbated TNF-α-induced HepG2 apoptosis. Notably, the protective effects of SNS were compromised in pseudo-sterile mice. Discussion In conclusion, our experimental results suggest that the disturbance in intestinal flora results in elevated SCFA levels, which further exacerbates hepatocyte apoptosis in liver fibrosis, while SNS suppresses CCl4-induced liver fibrosis at least partially by reinstating intestinal flora homeostasis and reducing SCFA levels.
Collapse
Affiliation(s)
- Qiong Wu
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Fangsi Zhu
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Yu Yao
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Department of Pharmacy, Anhui No. 2 Provincial People's Hospital, Hefei, Anhui, China
| | - Luyun Chen
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Yijie Ding
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Yong Su
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chaoliang Ge
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
5
|
Ha S, Wong VWS, Zhang X, Yu J. Interplay between gut microbiome, host genetic and epigenetic modifications in MASLD and MASLD-related hepatocellular carcinoma. Gut 2024:gutjnl-2024-332398. [PMID: 38950910 DOI: 10.1136/gutjnl-2024-332398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/08/2024] [Indexed: 07/03/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses a wide spectrum of liver injuries, ranging from hepatic steatosis, metabolic dysfunction-associated steatohepatitis (MASH), fibrosis, cirrhosis to MASLD-associated hepatocellular carcinoma (MASLD-HCC). Recent studies have highlighted the bidirectional impacts between host genetics/epigenetics and the gut microbial community. Host genetics influence the composition of gut microbiome, while the gut microbiota and their derived metabolites can induce host epigenetic modifications to affect the development of MASLD. The exploration of the intricate relationship between the gut microbiome and the genetic/epigenetic makeup of the host is anticipated to yield promising avenues for therapeutic interventions targeting MASLD and its associated conditions. In this review, we summarise the effects of gut microbiome, host genetics and epigenetic alterations in MASLD and MASLD-HCC. We further discuss research findings demonstrating the bidirectional impacts between gut microbiome and host genetics/epigenetics, emphasising the significance of this interconnection in MASLD prevention and treatment.
Collapse
Affiliation(s)
- Suki Ha
- 1Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Vincent Wai-Sun Wong
- 1Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiang Zhang
- 1Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Yu
- 1Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
6
|
Marroncini G, Naldi L, Martinelli S, Amedei A. Gut-Liver-Pancreas Axis Crosstalk in Health and Disease: From the Role of Microbial Metabolites to Innovative Microbiota Manipulating Strategies. Biomedicines 2024; 12:1398. [PMID: 39061972 PMCID: PMC11273695 DOI: 10.3390/biomedicines12071398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The functions of the gut are closely related to those of many other organs in the human body. Indeed, the gut microbiota (GM) metabolize several nutrients and compounds that, once released in the bloodstream, can reach distant organs, thus influencing the metabolic and inflammatory tone of the host. The main microbiota-derived metabolites responsible for the modulation of endocrine responses are short-chain fatty acids (SCFAs), bile acids and glucagon-like peptide 1 (GLP-1). These molecules can (i) regulate the pancreatic hormones (insulin and glucagon), (ii) increase glycogen synthesis in the liver, and (iii) boost energy expenditure, especially in skeletal muscles and brown adipose tissue. In other words, they are critical in maintaining glucose and lipid homeostasis. In GM dysbiosis, the imbalance of microbiota-related products can affect the proper endocrine and metabolic functions, including those related to the gut-liver-pancreas axis (GLPA). In addition, the dysbiosis can contribute to the onset of some diseases such as non-alcoholic steatohepatitis (NASH)/non-alcoholic fatty liver disease (NAFLD), hepatocellular carcinoma (HCC), and type 2 diabetes (T2D). In this review, we explored the roles of the gut microbiota-derived metabolites and their involvement in onset and progression of these diseases. In addition, we detailed the main microbiota-modulating strategies that could improve the diseases' development by restoring the healthy balance of the GLPA.
Collapse
Affiliation(s)
- Giada Marroncini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.M.); (L.N.)
| | - Laura Naldi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.M.); (L.N.)
| | - Serena Martinelli
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50139 Florence, Italy
| |
Collapse
|
7
|
Bukavina L, Ginwala R, Eltoukhi M, Sindhani M, Prunty M, Geynisman DM, Ghatalia P, Valentine H, Calaway A, Correa AF, Brown JR, Mishra K, Plimack ER, Kutikov A, Ghannoum M, Elshaer M, Retuerto M, Ponsky L, Uzzo RG, Abbosh PH. Role of Gut Microbiome in Neoadjuvant Chemotherapy Response in Urothelial Carcinoma: A Multi-institutional Prospective Cohort Evaluation. CANCER RESEARCH COMMUNICATIONS 2024; 4:1505-1516. [PMID: 38747616 PMCID: PMC11181990 DOI: 10.1158/2767-9764.crc-23-0479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/21/2024] [Accepted: 05/09/2024] [Indexed: 05/28/2024]
Abstract
Neoadjuvant chemotherapy (NAC) is linked with clinical advantages in urothelial carcinoma for patients with muscle-invasive bladder cancer (MIBC). Despite comprehensive research into the influence of tumor mutation expression profiles and clinicopathologic factors on chemotherapy response, the role of the gut microbiome (GM) in bladder cancer chemotherapy response remains poorly understood. This study examines the variance in the GM of patients with bladder cancer compared with healthy adults, and investigates GM compositional differences between patients who respond to chemotherapy versus those who exhibit residual disease.Our study reveals distinct clustering, effectively separating the bladder cancer and healthy cohorts. However, no significant differences were observed between chemotherapy responders and nonresponders within community subgroups. Machine learning models based on responder status outperformed clinical variables in predicting complete response (AUC 0.88 vs. AUC 0.50), although no single microbial species emerged as a fully reliable biomarker.The evaluation of short chain fatty acid (SCFA) concentration in blood and stool revealed no correlation with responder status. Still, SCFA analysis showed a higher abundance of Akkermansia (rs = 0.51, P = 0.017) and Clostridia (rs = 0.52, P = 0.018), which correlated with increased levels of detectable fecal isobutyric acid. Higher levels of fecal Lactobacillus (rs = 0.49, P = 0.02) and Enterobacteriaceae (rs = 0.52, P < 0.03) correlated with increased fecal propionic acid.In conclusion, our study constitutes the first large-scale, multicenter assessment of GM composition, suggesting the potential for a complex microbial signature to predict patients more likely to respond to NAC based on multiple taxa. SIGNIFICANCE Our study highlights results that link the composition of the GM to the efficacy of NAC in MIBC. We discovered that patients with higher levels of Bacteroides experienced a worse response to NAC. This microbial signature shows promise as a superior predictor of treatment response over traditional clinical variables. Although preliminary, our findings advocate for larger, more detailed studies to validate these associations.
Collapse
Affiliation(s)
- Laura Bukavina
- Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cleveland Clinic Glickman Urologic Institute, Cleveland, Ohio
- Case Western Reserve School of Medicine, Cleveland, Ohio
| | | | | | | | - Megan Prunty
- University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | | | | | | | - Adam Calaway
- University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | | | - Jason R. Brown
- University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Kirtishri Mishra
- Case Western Reserve School of Medicine, Cleveland, Ohio
- University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | | | | | | | | | | | - Lee Ponsky
- Case Western Reserve School of Medicine, Cleveland, Ohio
- University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | | | - Philip H. Abbosh
- Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Albert Einstein Medical Center, Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Yadav A, Kaushik M, Tiwari P, Dada R. From microbes to medicine: harnessing the gut microbiota to combat prostate cancer. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:187-197. [PMID: 38803512 PMCID: PMC11129862 DOI: 10.15698/mic2024.05.824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 05/29/2024]
Abstract
The gut microbiome (GM) has been identified as a crucial factor in the development and progression of various diseases, including cancer. In the case of prostate cancer, commensal bacteria and other microbes are found to be associated with its development. Recent studies have demonstrated that the human GM, including Bacteroides, Streptococcus, Bacteroides massiliensis, Faecalibacterium prausnitzii, Eubacterium rectale, and Mycoplasma genitalium, are involved in prostate cancer development through both direct and indirect interactions. However, the pathogenic mechanisms of these interactions are yet to be fully understood. Moreover, the microbiota influences systemic hormone levels and contributes to prostate cancer pathogenesis. Currently, it has been shown that supplementation of prebiotics or probiotics can modify the composition of GM and prevent the onset of prostate cancer. The microbiota can also affect drug metabolism and toxicity, which may improve the response to cancer treatment. The composition of the microbiome is crucial for therapeutic efficacy and a potential target for modulating treatment response. However, their clinical application is still limited. Additionally, GM-based cancer therapies face limitations due to the complexity and diversity of microbial composition, and the lack of standardized protocols for manipulating gut microbiota, such as optimal probiotic selection, treatment duration, and administration timing, hindering widespread use. Therefore, this review provides a comprehensive exploration of the GM's involvement in prostate cancer pathogenesis. We delve into the underlying mechanisms and discuss their potential implications for both therapeutic and diagnostic approaches in managing prostate cancer. Through this analysis, we offer valuable insights into the pivotal role of the microbiome in prostate cancer and its promising application in future clinical settings.
Collapse
Affiliation(s)
- Anjali Yadav
- Department of Anatomy, Institute of Medical Sciences (AIIMS)India.
| | | | - Prabhakar Tiwari
- Department of Anatomy, Institute of Medical Sciences (AIIMS)India.
| | - Rima Dada
- Department of Anatomy, Institute of Medical Sciences (AIIMS)India.
| |
Collapse
|
9
|
Al-Khazaleh AK, Chang D, Münch GW, Bhuyan DJ. The Gut Connection: Exploring the Possibility of Implementing Gut Microbial Metabolites in Lymphoma Treatment. Cancers (Basel) 2024; 16:1464. [PMID: 38672546 PMCID: PMC11048693 DOI: 10.3390/cancers16081464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Recent research has implicated the gut microbiota in the development of lymphoma. Dysbiosis of the gut microbial community can disrupt the production of gut microbial metabolites, thereby impacting host physiology and potentially contributing to lymphoma. Dysbiosis-driven release of gut microbial metabolites such as lipopolysaccharides can promote chronic inflammation, potentially elevating the risk of lymphoma. In contrast, gut microbial metabolites, such as short-chain fatty acids, have shown promise in preclinical studies by promoting regulatory T-cell function, suppressing inflammation, and potentially preventing lymphoma. Another metabolite, urolithin A, exhibited immunomodulatory and antiproliferative properties against lymphoma cell lines in vitro. While research on the role of gut microbial metabolites in lymphoma is limited, this article emphasizes the need to comprehend their significance, including therapeutic applications, molecular mechanisms of action, and interactions with standard chemotherapies. The article also suggests promising directions for future research in this emerging field of connection between lymphoma and gut microbiome.
Collapse
Affiliation(s)
- Ahmad K. Al-Khazaleh
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
| | - Gerald W. Münch
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia;
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
10
|
Eladwy RA, Alsherbiny MA, Chang D, Fares M, Li CG, Bhuyan DJ. The postbiotic sodium butyrate synergizes the antiproliferative effects of dexamethasone against the AGS gastric adenocarcinoma cells. Front Nutr 2024; 11:1372982. [PMID: 38533461 PMCID: PMC10963608 DOI: 10.3389/fnut.2024.1372982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
A growing body of literature underlines the fundamental role of gut microbiota in the occurrence, treatment, and prognosis of cancer. In particular, the activity of gut microbial metabolites (also known as postbiotics) against different cancer types has been recently reported in several studies. However, their in-depth molecular mechanisms of action and potential interactions with standard chemotherapeutic drugs remain to be fully understood. This research investigates the antiproliferative activities of postbiotics- short-chain fatty acid (SCFA) salts, specifically magnesium acetate (MgA), sodium propionate (NaP), and sodium butyrate (NaB), against the AGS gastric adenocarcinoma cells. Furthermore, the potential synergistic interactions between the most active SCFA salt-NaB and the standard drug dexamethasone (Dex) were explored using the combination index model. The molecular mechanisms of the synergy were investigated using reactive oxygen species (ROS), flow cytometry and biochemometric and liquid chromatography-mass spectrometry (LC-MS)-driven proteomics analyses. NaB exhibited the most significant inhibitory effect (p < 0.05) among the tested SCFA salts against the AGS gastric cancer cells. Additionally, Dex and NaB exhibited strong synergy at a 2:8 ratio (40 μg/mL Dex + 2,400 μg/mL NaB) with significantly greater inhibitory activity (p < 0.05) compared to the mono treatments against the AGS gastric cancer cells. MgA and NaP reduced ROS production, while NaB exhibited pro-oxidative properties. Dex displayed antioxidative effects, and the combination of Dex and NaB (2,8) demonstrated a unique pattern, potentially counteracting the pro-oxidative effects of NaB, highlighting an interaction. Dex and NaB individually and in combination (Dex:NaB 40:2400 μg/mL) induced significant changes in cell populations, suggesting a shift toward apoptosis (p < 0.0001). Analysis of dysregulated proteins in the AGS cells treated with the synergistic combination revealed notable downregulation of the oncogene TNS4, suggesting a potential mechanism for the observed antiproliferative effects. These findings propose the potential implementation of NaB as an adjuvant therapy with Dex. Further investigations into additional combination therapies, in-depth studies of the molecular mechanisms, and in vivo research will provide deeper insights into the use of these postbiotics in cancer, particularly in gastric malignancies.
Collapse
Affiliation(s)
- Radwa A Eladwy
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- Department of Pharmacology, Faculty of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | | | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Mohamed Fares
- School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Chun-Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- School of Science, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
11
|
Fuller-Shavel N, Krell J. Integrative Oncology Approaches to Supporting Immune Checkpoint Inhibitor Treatment of Solid Tumours. Curr Oncol Rep 2024; 26:164-174. [PMID: 38194216 PMCID: PMC10890979 DOI: 10.1007/s11912-023-01492-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE OF REVIEW The goal of this review was to examine the role and practical applications of integrative oncology strategies in supporting immune checkpoint inhibitor (ICI) treatment of adult solid tumours. RECENT FINDINGS Beyond tumour-intrinsic factors, several patient-associated factors affect ICI response, including germline genetics, systemic inflammation, the gut microbiota, and diet. Current promising supportive interventions include a Mediterranean-style diet with over 20 g of fibre, regular exercise, use of live biotherapeutics, minimisation of PPI and antibiotic use, and ensuring vitamin D repletion, with many other integrative oncology approaches under study. Caution around medical cannabis use in patients on ICIs is advised due to previously documented adverse impact on overall survival, while VAE (Viscum album extract) therapy studies have not highlighted any safety concerns so far. With expanding ICI use, it is important to investigate and apply low-cost integrative oncology strategies to support better treatment outcomes and minimise adverse events. Further research may lead to pre-treatment assessment of both tumour and patient-associated biomarkers and personalised multimodal prehabilitation care plans, as well as on-treatment support with targeted nutrition, physical activity, and supplementation regimes, including both systemic inflammation and gut microbiome modulating strategies. Given the emerging understanding of chronic stress impact on ICI treatment outcomes, mind-body approaches require further investigation.
Collapse
Affiliation(s)
- Nina Fuller-Shavel
- Synthesis Clinic, Winchester, UK.
- British Society for Integrative Oncology (BSIO), Midhurst, UK.
- Oncio CIC, Stockbridge, UK.
| | | |
Collapse
|
12
|
Ramesh V, Gollavilli PN, Pinna L, Siddiqui MA, Turtos AM, Napoli F, Antonelli Y, Leal‐Egaña A, Havelund JF, Jakobsen ST, Boiteux EL, Volante M, Færgeman NJ, Jensen ON, Siersbæk R, Somyajit K, Ceppi P. Propionate reinforces epithelial identity and reduces aggressiveness of lung carcinoma. EMBO Mol Med 2023; 15:e17836. [PMID: 37766669 PMCID: PMC10701619 DOI: 10.15252/emmm.202317836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) plays a central role in the development of cancer metastasis and resistance to chemotherapy. However, its pharmacological treatment remains challenging. Here, we used an EMT-focused integrative functional genomic approach and identified an inverse association between short-chain fatty acids (propionate and butanoate) and EMT in non-small cell lung cancer (NSCLC) patients. Remarkably, treatment with propionate in vitro reinforced the epithelial transcriptional program promoting cell-to-cell contact and cell adhesion, while reducing the aggressive and chemo-resistant EMT phenotype in lung cancer cell lines. Propionate treatment also decreased the metastatic potential and limited lymph node spread in both nude mice and a genetic NSCLC mouse model. Further analysis revealed that chromatin remodeling through H3K27 acetylation (mediated by p300) is the mechanism underlying the shift toward an epithelial state upon propionate treatment. The results suggest that propionate administration has therapeutic potential in reducing NSCLC aggressiveness and warrants further clinical testing.
Collapse
Affiliation(s)
- Vignesh Ramesh
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
- Interdisciplinary Centre for Clinical ResearchUniversity Hospital Erlangen, FAU‐Erlangen‐NurembergErlangenGermany
| | - Paradesi Naidu Gollavilli
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
- Interdisciplinary Centre for Clinical ResearchUniversity Hospital Erlangen, FAU‐Erlangen‐NurembergErlangenGermany
| | - Luisa Pinna
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
| | | | | | - Francesca Napoli
- Department of Oncology at San Luigi HospitalUniversity of TurinTurinItaly
| | - Yasmin Antonelli
- Institute for Molecular Systems Engineering and Advanced MaterialsHeidelberg UniversityHeidelbergGermany
| | - Aldo Leal‐Egaña
- Institute for Molecular Systems Engineering and Advanced MaterialsHeidelberg UniversityHeidelbergGermany
| | - Jesper Foged Havelund
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
| | | | - Elisa Le Boiteux
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
| | - Marco Volante
- Department of Oncology at San Luigi HospitalUniversity of TurinTurinItaly
| | - Nils Joakim Færgeman
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
| | - Ole N Jensen
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
| | - Rasmus Siersbæk
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
| | - Kumar Somyajit
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
| | - Paolo Ceppi
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
- Interdisciplinary Centre for Clinical ResearchUniversity Hospital Erlangen, FAU‐Erlangen‐NurembergErlangenGermany
| |
Collapse
|
13
|
Om H, Chand U, Kushawaha PK. Human anaerobic microbiome: a promising and innovative tool in cancer prevention and treatment by targeting pyruvate metabolism. Cancer Immunol Immunother 2023; 72:3919-3930. [PMID: 37882845 PMCID: PMC10992366 DOI: 10.1007/s00262-023-03551-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023]
Abstract
INTRODUCTION Even in present-day times, cancer is one of the most fatal diseases. People are overwhelmed by pricey chemotherapy, immunotherapy, and other costly cancer therapies in poor and middle-income countries. Cancer cells grow under anaerobic and hypoxic conditions. Pyruvate is the final product of the anaerobic glycolysis pathway, and many cancer cells utilize pyruvate for their growth and development. The anaerobic microbiome produces many anti-cancer substances that can act as anti-tumor agents and are both feasible and of low cost. There are different mechanisms of action of the anaerobic microbiome, such as the production of short-chain fatty acids (SCFAs), and competition for the anaerobic environment includes the metabolic product pyruvate to form lactic acid for energy. KEY FINDINGS In this review, we have summarized the role of the metabolic approach of the anaerobic human microbiome in cancer prevention and treatment by interfering with cancer metabolite pyruvate. SCFAs possess decisive outcomes in condoning almost all the hallmarks of cancer and helping the spread of cancer to other body parts. Studies have demonstrated the impact and significance of using SCFA, which results from anaerobic bacteria, as an anti-cancer agent. Anaerobic bacteria-based cancer therapy has become a promising approach to treat cancer using obligate and facultative anaerobic bacteria because of their ability to penetrate and increase in an acidic hypoxic environment. SIGNIFICANCE This review attempts to provide the interconnection of cancer metabolism and anaerobic microbiome metabolism with a focus on pyruvate metabolism to understand and design unique anaerobic microbiota-based therapy for cancer patients.
Collapse
Affiliation(s)
- Hari Om
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, Punjab, 151401, India
| | - Umesh Chand
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, Punjab, 151401, India
| | - Pramod Kumar Kushawaha
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, Punjab, 151401, India.
| |
Collapse
|
14
|
He J, Li H, Jia J, Liu Y, Zhang N, Wang R, Qu W, Liu Y, Jia L. Mechanisms by which the intestinal microbiota affects gastrointestinal tumours and therapeutic effects. MOLECULAR BIOMEDICINE 2023; 4:45. [PMID: 38032415 PMCID: PMC10689341 DOI: 10.1186/s43556-023-00157-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
The intestinal microbiota is considered to be a forgotten organ in human health and disease. It maintains intestinal homeostasis through various complex mechanisms. A significant body of research has demonstrated notable differences in the gut microbiota of patients with gastrointestinal tumours compared to healthy individuals. Furthermore, the dysregulation of gut microbiota, metabolites produced by gut bacteria, and related signal pathways can partially explain the mechanisms underlying the occurrence and development of gastrointestinal tumours. Therefore, this article summarizes the latest research progress on the gut microbiota and gastrointestinal tumours. Firstly, we provide an overview of the composition and function of the intestinal microbiota and discuss the mechanisms by which the intestinal flora directly or indirectly affects the occurrence and development of gastrointestinal tumours by regulating the immune system, producing bacterial toxins, secreting metabolites. Secondly, we present a detailed analysis of the differences of intestinal microbiota and its pathogenic mechanisms in colorectal cancer, gastric cancer, hepatocellular carcinoma, etc. Lastly, in terms of treatment strategies, we discuss the effects of the intestinal microbiota on the efficacy and toxic side effects of chemotherapy and immunotherapy and address the role of probiotics, prebiotics, FMT and antibiotic in the treatment of gastrointestinal tumours. In summary, this article provides a comprehensive review of the pathogenic mechanisms of and treatment strategies pertaining to the intestinal microbiota in patients with gastrointestinal tumours. And provide a more comprehensive and precise scientific basis for the development of microbiota-based treatments for gastrointestinal tumours and the prevention of such tumours.
Collapse
Affiliation(s)
- Jikai He
- Central Laboratory, Bayannur Hospital, Bayannur, 015000, Inner Mongolia, China
| | - Haijun Li
- Department of Gastrointestinal Surgery, Inner Mongolia Autonomous Region People's Hospital, Hohhot, 010017, Inner Mongolia, China
| | - Jiaqi Jia
- Graduate School of Youjiang Medical University for Nationalities, No. 98 Chengcheng Road, Youjiang District, Baise City, 533000, China
| | - Yang Liu
- Central Laboratory, Bayannur Hospital, Bayannur, 015000, Inner Mongolia, China
| | - Ning Zhang
- Central Laboratory, Bayannur Hospital, Bayannur, 015000, Inner Mongolia, China
| | - Rumeng Wang
- Central Laboratory, Bayannur Hospital, Bayannur, 015000, Inner Mongolia, China
| | - Wenhao Qu
- Graduate School of Youjiang Medical University for Nationalities, No. 98 Chengcheng Road, Youjiang District, Baise City, 533000, China
| | - Yanqi Liu
- Department of Gastroenterology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, 010050, Inner Mongolia, China.
| | - Lizhou Jia
- Central Laboratory, Bayannur Hospital, Bayannur, 015000, Inner Mongolia, China.
| |
Collapse
|
15
|
Duizer C, de Zoete MR. The Role of Microbiota-Derived Metabolites in Colorectal Cancer. Int J Mol Sci 2023; 24:8024. [PMID: 37175726 PMCID: PMC10178193 DOI: 10.3390/ijms24098024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The impact of bacterial members of the microbiota on the development of colorectal cancer (CRC) has become clear in recent years. However, exactly how bacteria contribute to the development of cancer is often still up for debate. The impact of bacteria-derived metabolites, which can influence the development of CRC either in a promoting or inhibiting manner, is undeniable. Here, we discuss the effects of the most well-studied bacteria-derived metabolites associated with CRC, including secondary bile acids, short-chain fatty acids, trimethylamine-N-oxide and indoles. We show that the effects of individual metabolites on CRC development are often nuanced and dose- and location-dependent. In the coming years, the array of metabolites involved in CRC development will undoubtedly increase further, which will emphasize the need to focus on causation and mechanisms and the clearly defined roles of bacterial species within the microbiota.
Collapse
Affiliation(s)
| | - Marcel R. de Zoete
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
16
|
Zhao H, Li D, Liu J, Zhou X, Han J, Wang L, Fan Z, Feng L, Zuo J, Wang Y. Bifidobacterium breve predicts the efficacy of anti-PD-1 immunotherapy combined with chemotherapy in Chinese NSCLC patients. Cancer Med 2023; 12:6325-6336. [PMID: 36205311 PMCID: PMC10028067 DOI: 10.1002/cam4.5312] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/17/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND AND PURPOSE Gut microbes play an important role in the occurrence of lung cancer, immunotherapy, and chemotherapy. In this study, we analyzed the characteristics of gut microbes in patients with lung cancer and investigated the effect of gut microbes on anti-PD-1 therapy combined with chemotherapy. METHODS Fecal samples from 21 non-small cell lung cancer (NSCLC) patients and 22 healthy volunteers who were treated in the Fourth Hospital of Hebei Medical University from 2019 to 2021 were collected. DNA was extracted from all samples, and the V3-V4 region of the bacterial 16S rRNA gene was PCR-amplified using the Illumina sequencing platform, and R language was used for data analysis. RESULTS There were significant differences in the Beta diversity and metabolic pathways of gut microbes between NSCLC patients and healthy individuals (p < 0.05). Bifidobacterium, Escherichia, and Sarterella were significantly enriched in patients with clinical benefit response (p < 0.05), and these three bacteria had certain predictive value for clinical benefit. Patients with Bifidobacterium breve had significantly longer median progression-free survival (mPFS) compared with patients with no detectable Bifidobacterium breve feces at baseline (106 days vs. NR, p < 0.001). Multivariate COX analysis showed that the presence of B.breve was an independent good prognostic factor affecting the PFS of patients receiving combination therapy (p < 0.05). CONCLUSION The clinical efficacy of anti-PD-1 therapy combined with chemotherapy in Chinese advanced NSCLC patients is closely related to the gut microbiota, and Bifidobacterium breve may be a potential biomarker to predict the efficacy of immune-combined chemotherapy.
Collapse
Affiliation(s)
- Honghui Zhao
- Department of Medical OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Dan Li
- Department of Medical OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Jiayin Liu
- Department of Medical OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Xinliang Zhou
- Department of Medical OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Jing Han
- Department of Medical OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Long Wang
- Department of Medical OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Zhisong Fan
- Department of Medical OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Li Feng
- Department of Medical OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Jing Zuo
- Department of Medical OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Yudong Wang
- Department of Medical OncologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
| |
Collapse
|
17
|
Fock E, Parnova R. Mechanisms of Blood-Brain Barrier Protection by Microbiota-Derived Short-Chain Fatty Acids. Cells 2023; 12:cells12040657. [PMID: 36831324 PMCID: PMC9954192 DOI: 10.3390/cells12040657] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Impairment of the blood-brain barrier (BBB) integrity is implicated in the numerous neurological disorders associated with neuroinflammation, neurodegeneration and aging. It is now evident that short-chain fatty acids (SCFAs), mainly acetate, butyrate and propionate, produced by anaerobic bacterial fermentation of the dietary fiber in the intestine, have a key role in the communication between the gastrointestinal tract and nervous system and are critically important for the preservation of the BBB integrity under different pathological conditions. The effect of SCFAs on the improvement of the compromised BBB is mainly based on the decrease in paracellular permeability via restoration of junctional complex proteins affecting their transcription, intercellular localization or proteolytic degradation. This review is focused on the revealed and putative underlying mechanisms of the direct and indirect effects of SCFAs on the improvement of the barrier function of brain endothelial cells. We consider G-protein-coupled receptor-mediated effects of SCFAs, SCFAs-stimulated acetylation of histone and non-histone proteins via inhibition of histone deacetylases, and crosstalk of these signaling pathways with transcriptional factors NF-κB and Nrf2 as mainstream mechanisms of SCFA's effect on the preservation of the BBB integrity.
Collapse
Affiliation(s)
| | - Rimma Parnova
- Correspondence: ; Tel.: +7-812-552-79-01; Fax: +7-812-552-30-12
| |
Collapse
|
18
|
Propionate exerts neuroprotective and neuroregenerative effects in the peripheral nervous system. Proc Natl Acad Sci U S A 2023; 120:e2216941120. [PMID: 36669102 PMCID: PMC9942889 DOI: 10.1073/pnas.2216941120] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In inflammatory neuropathies, oxidative stress results in neuronal and Schwann cell (SC) death promoting early neurodegeneration and clinical disability. Treatment with the short-chain fatty acid propionate showed a significant immunoregulatory and neuroprotective effect in multiple sclerosis patients. Similar effects have been described for patients with chronic inflammatory demyelinating polyneuropathy (CIDP). Therefore, Schwann cell's survival and dorsal root ganglia (DRG) outgrowth were evaluated in vitro after propionate treatment and application of H2O2 or S-nitroso-N-acetyl-D-L-penicillamine (SNAP) to evaluate neuroprotection. In addition, DRG resistance was evaluated by the application of oxidative stress by SNAP ex vivo after in vivo propionate treatment. Propionate treatment secondary to SNAP application on DRG served as a neuroregeneration model. Histone acetylation as well as expression of the free fatty acid receptor (FFAR) 2 and 3, histone deacetylases, neuroregeneration markers, and antioxidative mediators were investigated. β-hydroxybutyrate was used as a second FFAR3 ligand, and pertussis toxin was used as an FFAR3 antagonist. FFAR3, but not FFAR2, expression was evident on SC and DRG. Propionate-mediated activation of FFAR3 and histone 3 hyperacetylation resulted in increased catalase expression and increased resistance to oxidative stress. In addition, propionate treatment resulted in enhanced neuroregeneration with concomitant growth-associated protein 43 expression. We were able to demonstrate an antioxidative and neuroregenerative effect of propionate on SC and DRG mediated by FFAR3-induced histone acetylases expression. Our results describe a pathway to achieve neuroprotection/neuroregeneration relevant for patients with immune-mediated neuropathies.
Collapse
|
19
|
Sodium acetate ameliorates cisplatin-induced kidney injury in vitro and in vivo. Chem Biol Interact 2023; 369:110258. [PMID: 36372261 DOI: 10.1016/j.cbi.2022.110258] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Cisplatin is an effective chemotherapeutic drug against tumors. Studies often report on the improvement of kidney injury by probiotics or short-chain fatty acids (SCFAs); however, the effects of SCFAs on cisplatin-induced kidney injury are rarely studied. The aim of this study is to evaluate the function of sodium acetate on preventing cisplatin-induced kidney injury. Cell viability was detected by MTT assay. SA-β-gal staining was performed to investigate premature senescence. Reactive oxygen species (ROS) production was analyzed by H2DCFDA staining. Propidium iodide (PI) staining was analyzed by cell cycle. Protein expression was determined by Western blot assay. Annexin Ⅴ/PI staining was used to investigate cisplatin-induced apoptosis. Tumor growth and kidney injury were evaluated in C57BL/6 mice. Sodium acetate ameliorated cisplatin-induced premature senescence and ROS production in SV40 MES-13 glomerular cells, NRK-52E renal tubular cells, and NRK-49F renal fibroblast cells. Cisplatin-induced cell cycle arrest was inhibited by sodium acetate in SV40 MES-13 and NRK-49F cells. Sodium acetate alleviated cisplatin-induced apoptosis in vivo and in vitro but not cisplatin-induced fibrosis. Our study demonstrated that sodium acetate inhibited cisplatin-induced premature senescence, cell cycle arrest, and apoptosis by attenuating ROS production. This strategy may be useful in the treatment of cisplatin-induced kidney injury.
Collapse
|
20
|
Dong Y, Zhang K, Wei J, Ding Y, Wang X, Hou H, Wu J, Liu T, Wang B, Cao H. Gut microbiota-derived short-chain fatty acids regulate gastrointestinal tumor immunity: a novel therapeutic strategy? Front Immunol 2023; 14:1158200. [PMID: 37122756 PMCID: PMC10140337 DOI: 10.3389/fimmu.2023.1158200] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/17/2023] [Indexed: 05/02/2023] Open
Abstract
Tumor immune microenvironment (TIME), a tumor-derived immune component, is proven to be closely related to the development, metastasis, and recurrence of tumors. Gut microbiota and its fermented-metabolites short-chain fatty acids (SCFAs) play a critical role in maintaining the immune homeostasis of gastrointestinal tumors. Consisting mainly of acetate, propionate, and butyrate, SCFAs can interact with G protein-coupled receptors 43 of T helper 1 cell or restrain histone deacetylases (HDACs) of cytotoxic T lymphocytes to exert immunotherapy effects. Studies have shed light on SCFAs can mediate the differentiation and function of regulatory T cells, as well as cytokine production in TIME. Additionally, SCFAs can alter epigenetic modification of CD8+ T cells by inhibiting HDACs to participate in the immune response process. In gastrointestinal tumors, the abundance of SCFAs and their producing bacteria is significantly reduced. Direct supplementation of dietary fiber and probiotics, or fecal microbiota transplantation to change the structure of gut microbiota can both increase the level of SCFAs and inhibit tumor development. The mechanism by which SCFAs modulate the progression of gastrointestinal tumors has been elucidated in this review, aiming to provide prospects for the development of novel immunotherapeutic strategies.
Collapse
|
21
|
Alasiri GA. Effect of gut microbiota on colorectal cancer progression and treatment. Saudi Med J 2022; 43:1289-1299. [PMID: 36517053 PMCID: PMC9994512 DOI: 10.15537/smj.2022.43.12.20220367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/25/2022] [Indexed: 12/17/2023] Open
Abstract
Microbiota is a collection of bacteria, archaea, eukaryotes, bacteriophages, viruses, and fungi that cover human body surfaces and cavities. They characterize inside the body due to several factors such as diet, nutrition, xenobiotic substances, and microbial infections. Several studies have shown that gut microbiota can induce resistance against pathogens and regulate the immune system. In addition, their disruption is associated with several physiological and biochemical disorders, including inflammatory bowel disease (IBD), obesity, autoimmune diseases such as diabetes, hypertension, colon cancer, and cardiovascular disease. Colorectal cancer (CRC) is the third-deadliest cancer worldwide, accounting for approximately 900,000 deaths per year globally. Gut microbiota has been heavily linked to CRC incidence and prevention via bacterial metabolites, invasion, translocation, host's defense modulations, and bacterial-immune system interactions. In addition, it can influence the metabolism of chemical compounds such as drugs and xenobiotics to manipulate the treatment response in CRC patients.
Collapse
Affiliation(s)
- Glowi A. Alasiri
- From the Department of Biochemistry, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University, Riyadh, Kingdom of Saudi Arabia.
| |
Collapse
|
22
|
Rekha K, Venkidasamy B, Samynathan R, Nagella P, Rebezov M, Khayrullin M, Ponomarev E, Bouyahya A, Sarkar T, Shariati MA, Thiruvengadam M, Simal-Gandara J. Short-chain fatty acid: An updated review on signaling, metabolism, and therapeutic effects. Crit Rev Food Sci Nutr 2022; 64:2461-2489. [PMID: 36154353 DOI: 10.1080/10408398.2022.2124231] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fatty acids are good energy sources (9 kcal per gram) that aerobic tissues can use except for the brain (glucose is an alternative source). Apart from the energy source, fatty acids are necessary for cell signaling, learning-related memory, modulating gene expression, and functioning as cytokine precursors. Short-chain fatty acids (SCFAs) are saturated fatty acids arranged as a straight chain consisting minimum of 6 carbon atoms. SCFAs possess various beneficial effects like improving metabolic function, inhibiting insulin resistance, and ameliorating immune dysfunction. In this review, we discussed the biogenesis, absorption, and transport of SCFA. SCFAs can act as signaling molecules by stimulating G protein-coupled receptors (GPCRs) and suppressing histone deacetylases (HDACs). The role of SCFA on glucose metabolism, fatty acid metabolism, and its effect on the immune system is also reviewed with updated details. SCFA possess anticancer, anti-diabetic, and hepatoprotective effects. Additionally, the association of protective effects of SCFA against brain-related diseases, kidney diseases, cardiovascular damage, and inflammatory bowel diseases were also reviewed. Nanotherapy is a branch of nanotechnology that employs nanoparticles at the nanoscale level to treat various ailments with enhanced drug stability, solubility, and minimal side effects. The SCFA functions as drug carriers, and nanoparticles were also discussed. Still, much research was not focused on this area. SCFA functions in host gene expression through inhibition of HDAC inhibition. However, the study has to be focused on the molecular mechanism of SCFA against various diseases that still need to be investigated.
Collapse
Affiliation(s)
- Kaliaperumal Rekha
- Department of Environmental and Herbal Science, Tamil University, Thanjavur, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | | | - Praveen Nagella
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, India
| | - Maksim Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
- Department of Scientific Research, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow, Russia
- Department of Scientific Research, K. G. Razumovsky Moscow State University of technologies and management (The First Cossack University), Moscow, Russia
| | - Mars Khayrullin
- Department of Scientific Research, K. G. Razumovsky Moscow State University of technologies and management (The First Cossack University), Moscow, Russia
| | - Evgeny Ponomarev
- Department of Scientific Research, K. G. Razumovsky Moscow State University of technologies and management (The First Cossack University), Moscow, Russia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, West Bengal, India
| | - Mohammad Ali Shariati
- Department of Scientific Research, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow, Russia
- Department of Scientific Research, K. G. Razumovsky Moscow State University of technologies and management (The First Cossack University), Moscow, Russia
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Sciences, Konkuk University, Seoul, South Korea
| | - Jesus Simal-Gandara
- Analytical Chemistry and Food Science Department, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| |
Collapse
|
23
|
Qin H, Yuan B, Huang W, Wang Y. Utilizing Gut Microbiota to Improve Hepatobiliary Tumor Treatments: Recent Advances. Front Oncol 2022; 12:924696. [PMID: 35924173 PMCID: PMC9339707 DOI: 10.3389/fonc.2022.924696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatobiliary tumors, which include cholangiocarcinoma, hepatocellular carcinoma (HCC), and gallbladder cancer, are common cancers that have high morbidity and mortality rates and poor survival outcomes. In humans, the microbiota is comprised of symbiotic microbial cells (10-100 trillion) that belong to the bacterial ecosystem mainly residing in the gut. The gut microbiota is a complicated group that can largely be found in the intestine and has a dual role in cancer occurrence and progression. Previous research has focused on the crucial functions of the intestinal microflora as the main pathophysiological mechanism in HCC development. Intestinal bacteria produce a broad range of metabolites that exhibit a variety of pro- and anticarcinogenic effects on HCC. Therefore, probiotic alteration of the gut microflora could promote gut flora balance and help prevent the occurrence of HCC. Recent evidence from clinical and translational studies suggests that fecal microbiota transplant is one of the most successful therapies to correct intestinal bacterial imbalance. We review the literature describing the effects and mechanisms of the microbiome in the gut in the context of HCC, including gut bacterial metabolites, probiotics, antibiotics, and the transplantation of fecal microbiota, and discuss the potential influence of the microbiome environment on cholangiocarcinoma and gallbladder cancer. Our findings are expected to reveal therapeutic targets for the prevention of hepatobiliary tumors, and the development of clinical treatment strategies, by emphasizing the function of the gut microbiota.
Collapse
Affiliation(s)
- Hao Qin
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baowen Yuan
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Wei Huang, ; Yan Wang,
| | - Yan Wang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Wei Huang, ; Yan Wang,
| |
Collapse
|
24
|
Li CR, Peng MJ, Tan ZJ. Progress in research of intestinal microbiota related short chain fatty acids. Shijie Huaren Xiaohua Zazhi 2022; 30:562-570. [DOI: 10.11569/wcjd.v30.i13.562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Short chain fatty acids (SCFAs) are the end products of the fermentation of difficult-to-digest carbohydrates in the small intestine by gut microbes. Dietary fiber, resistant starch, and oligosaccharides are the main substrates for SCFAs production, while undigested proteins or peptides may also be substrates for intestinal microbe SCFAs. Acetic acid, propionic acid, and butyric acid are the most abundant SCFAs in the intestinal tract, while the contents of formic acid, pentanoic acid, and hexanoic acid are significantly lower. As one of the main metabolites of intestinal flora, SCFAs play an important role in maintaining water and electrolyte balance, regulating intestinal flora balance, improving intestinal function, exerting anti-inflammatory and anti-tumor effects, and regulating gene expression. In this paper, we briefly introduce the generation, action mechanism, absorption, and metabolism of SCFAs, and summarize the related substrates producing SCFAs and the main effects of SCFAs on the intestinal tract, as well as the effects of SCFAs on various organs of the body, with an aim to provide theoretical guidance for clinical application of SCFAs in the intervention of various diseases.
Collapse
Affiliation(s)
- Cui-Ru Li
- School of Medicine, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Mai-Jiao Peng
- School of Medicine, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Zhou-Jin Tan
- School of Medicine, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| |
Collapse
|
25
|
Shelkey E, Oommen D, Stirling ER, Soto-Pantoja DR, Cook KL, Lu Y, Votanopoulos KI, Soker S. Immuno-reactive cancer organoid model to assess effects of the microbiome on cancer immunotherapy. Sci Rep 2022; 12:9983. [PMID: 35705580 PMCID: PMC9200712 DOI: 10.1038/s41598-022-13930-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/30/2022] [Indexed: 11/09/2022] Open
Abstract
Immune checkpoint blockade (ICB) therapy has demonstrated good efficacy in many cancer types. In cancers such as non-resectable advanced or metastatic triple-negative breast cancer (TNBC), it has recently been approved as a promising treatment. However, clinical data shows overall response rates (ORRs) from ~ 3-40% in breast cancer patients, depending on subtype, previous treatments, and mutation status. Composition of the host-microbiome has a significant role in cancer development and therapeutic responsiveness. Some bacterial families are conducive to oncogenesis and progression, while others aid innate and therapeutically induced anti-tumor immunity. Modeling microbiome effects on anti-tumor immunity in ex vivo systems is challenging, forcing the use of in vivo models, making it difficult to dissect direct effects on immune cells from combined effects on tumor and immune cells. We developed a novel immune-enhanced tumor organoid (iTO) system to study factors affecting ICB response. Using the 4T1 TNBC murine cell line and matched splenocytes, we demonstrated ICB-induced response. Further administration of bacterial-derived metabolites from species found in the immunomodulatory host-microbiome significantly increased ICB-induced apoptosis of tumor cells and altered immune cell receptor expression. These outcomes represent a method to isolate individual factors that alter ICB response and streamline the study of microbiome effects on ICB efficacy.
Collapse
Affiliation(s)
- Ethan Shelkey
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, 27101, USA
- Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - David Oommen
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, 27101, USA
- Current Address: Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | | | | | | | - Yong Lu
- Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
- Current Address: Houston Methodist Research Institute, Houston, TX, 77030, USA
| | | | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, 27101, USA.
- Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
- Wake Forest Baptist Medical Center, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
26
|
Cancer immunotherapy resistance: The impact of microbiome-derived short-chain fatty acids and other emerging metabolites. Life Sci 2022; 300:120573. [DOI: 10.1016/j.lfs.2022.120573] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/10/2022] [Accepted: 04/18/2022] [Indexed: 12/12/2022]
|
27
|
Pant K, Richard S, Gradilone SA. Short-Chain Fatty Acid Butyrate Induces Cilia Formation and Potentiates the Effects of HDAC6 Inhibitors in Cholangiocarcinoma Cells. Front Cell Dev Biol 2022; 9:809382. [PMID: 35096835 PMCID: PMC8793355 DOI: 10.3389/fcell.2021.809382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/09/2021] [Indexed: 12/19/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a deadly form of liver cancer with limited therapeutic approaches. The pathogenesis of CCA involves the loss of primary cilia in cholangiocytes, an important organelle that regulates several key cellular functions including the regulation of cell polarity, growth, and differentiation, by a mechanism involving increased expression of deacetylases like HDAC6 and SIRT1. Therefore, cilia restoration may represent an alternative and novel therapeutic approach against CCA. Butyrate is produced by bacterial fermentation of fibers in the intestine and has been shown to inhibit SIRT1, showing antitumor effects on various cancers. Herein, we investigated the role of butyrate on CCA cell proliferation, migration, and EMT and evaluated the synergistic effects with specific HDAC6 inhibition. When CCA cells, including HuCCT1 and KMCH, were treated with butyrate, the cilia formation and acetylated-tubulin levels were increased, while no significant effects were observed in normal human cholangiocytes. Butyrate treatment also depicted reduced cell proliferation in HuCCT1 and KMCH cells, but on the other hand, it affected cell growth of the normal cholangiocytes only at high concentrations. In HuCCT1 cells, spheroid formation and cell migration were also halted by butyrate treatment. Furthermore, we found that butyrate augmented the previously described effects of HDAC6 inhibitors on CCA cell proliferation and migration by reducing the expression of CD44, cyclin D1, PCNA, Zeb1, and Vimentin. In summary, butyrate targets cancer cell growth and migration and enhances the anti-cancer effects of HDAC6 inhibitors in CCA cells, suggesting that butyrate may have therapeutic effects in CCA and other ciliopathies.
Collapse
Affiliation(s)
- Kishor Pant
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Seth Richard
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Sergio A. Gradilone
- The Hormel Institute, University of Minnesota, Austin, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
28
|
Bi C, Xiao G, Liu C, Yan J, Chen J, Si W, Zhang J, Liu Z. Molecular Immune Mechanism of Intestinal Microbiota and Their Metabolites in the Occurrence and Development of Liver Cancer. Front Cell Dev Biol 2021; 9:702414. [PMID: 34957088 PMCID: PMC8693382 DOI: 10.3389/fcell.2021.702414] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Intestinal microorganisms are closely associated with immunity, metabolism, and inflammation, and play an important role in health and diseases such as inflammatory bowel disease, diabetes, cardiovascular disease, Parkinson’s disease, and cancer. Liver cancer is one of the most fatal cancers in humans. Most of liver cancers are slowly transformed from viral hepatitis, alcoholic liver disease, and non-alcoholic fatty liver disease. However, the relationship between intestinal microbiota and their metabolites, including short-chain fatty acids, bile acids, indoles, and ethanol, and liver cancer remains unclear. Here, we summarize the molecular immune mechanism of intestinal microbiota and their metabolites in the occurrence and development of liver cancer and reveal the important role of the microbiota-gut-liver axis in liver cancer. In addition, we describe how the intestinal flora can be balanced by antibiotics, probiotics, postbiotics, and fecal bacteria transplantation to improve the treatment of liver cancer. This review describes the immunomolecular mechanism of intestinal microbiota and their metabolites in the occurrence and development of hepatic cancer and provides theoretical evidence support for future clinical practice.
Collapse
Affiliation(s)
- Chenchen Bi
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, China
| | - Geqiong Xiao
- Department of Oncology, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Chunyan Liu
- Department of Clinical Medicine, Shaoxing People's Hospital, Shaoxing, China
| | - Junwei Yan
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, China
| | - Jiaqi Chen
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, China
| | - Wenzhang Si
- Department of General Surgery, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Jian Zhang
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, China
| | - Zheng Liu
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, China
| |
Collapse
|
29
|
Effect of high proportion concentrate dietary on Ashdan Yak jejunal barrier and microbial function in cold season. Res Vet Sci 2021; 140:259-267. [PMID: 34537552 DOI: 10.1016/j.rvsc.2021.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/20/2021] [Accepted: 09/07/2021] [Indexed: 11/23/2022]
Abstract
The intestinal health of ruminants plays a vital role in absorbing and metabolizing nutrients. In order to explore the jejunal barrier and microbiota dysfunction of Ashdan yaks, animals were fed with a high proportion of concentrated feeds in cold season. In present study, twelve Ashdan male yaks were arbitrarily separated into two categories, namely FF and CF. Compositional and functional differences in their jejunum barrier and microbiota between the FF and CF yaks were compared using metagenomics and proteomics methods. The results showed that the activity of jejunum digestive protease and microbe metabolite of forage-fed yaks were more conducive to healthy cultivation than the concentrate-fed yaks. 57 differentially expressed proteins (DEPs) were recognized using label-free MS, those could conclude to 2 principal classes: structural proteins and inflammatory factors, and 14 proteins were relatively active in those principal classes. Firmicutes were the dominant bacterial phylum in the jejunum microbiota of both the forage-fed group (24.33%) and concentrate-fed group (23.16%). As compared to forage-fed group, the concentrate-fed group showed enhanced alpha diversity and reduced beta diversity of the jejunal microbiota. The long-term high-proportion concentrate feeding inhibited the growth of Actinobacteria, Proteo-bacteria, Ascomycota, Bacteroidetes and stimulated the growth of Streptophyta, Cyanobacteria, Fusobacteria and Chlamydiae. The concentrate-fed group showed increase in the abundance of immune system process, along with decrease in the metabolic process, especially the binding process. Interestingly, the proteomics and metagenomics results were both inclined to the enrichment of jejunum mechanical barrier and inflammatory response. Overall, the study suggested that the long-term high-proportion concentrate feeding affected the expressions of specific jejunum proteins and composition of microbiota, which damaged the jejunum barrier and the function of microbiota in yaks.
Collapse
|
30
|
Ma G, Du H, Hu Q, Yang W, Pei F, Xiao H. Health benefits of edible mushroom polysaccharides and associated gut microbiota regulation. Crit Rev Food Sci Nutr 2021; 62:6646-6663. [PMID: 33792430 DOI: 10.1080/10408398.2021.1903385] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Edible mushrooms have been an important part of the human diet for thousands of years, and over 100 varieties have been cultivated for their potential human health benefits. In recent years, edible mushroom polysaccharides (EMPs) have been studied for their activities against obesity, inflammatory bowel disease (IBD), and cancer. Particularly, accumulating evidence on the exact causality between these health risks and specific gut microbiota species has been revealed and characterized, and most of the beneficial health effects of EMPs have been associated with its reversal impacts on gut microbiota dysbiosis. This demonstrates the key role of EMPs in decreasing health risks through gut microbiota modulation effects. This review article compiles and summarizes the latest studies that focus on the health benefits and underlying functional mechanisms of gut microbiota regulation via EMPs. We conclude that EMPs can be considered a dietary source for the improvement and prevention of several health risks, and this review provides the theoretical basis and technical guidance for the development of novel functional foods with the utilization of edible mushrooms.
Collapse
Affiliation(s)
- Gaoxing Ma
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China.,Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Qiuhui Hu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Wenjian Yang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Fei Pei
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
31
|
Effect of high proportion concentrate dietary on Yak jejunal structure, physiological function and protein composition during cold season. Sci Rep 2021; 11:5502. [PMID: 33750879 PMCID: PMC7970894 DOI: 10.1038/s41598-021-84991-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 02/22/2021] [Indexed: 11/09/2022] Open
Abstract
The current study aimed to investigate the damage of long-term high concentrate diet feeding pattern on Yak jejunal structure, physiological function and protein composition during cold season. Twelve Datong male Yak (Bos grunniens) with the same age from cold season were randomly selected and slaughtered to determine Yak jejunal digestive enzyme activity, morphology and protein composition on different feeding patterns in Tibetan Plateau. The results showed that Yak jejunum digestive enzyme activity and morphology of grazing reared group were better than those in the intensively reared group. A total of 96 differentially expressed proteins were identified by label-free Mass Spectrometry (MS), which could be concluded to two predominant themes: protein structure and inflammatory response. Nine differentially expressed proteins were correlated in Yak jejunum damage in different feeding patterns. According to this research, we found that feeding pattern resulted the differences in Yak jejunum physiological function, morphology and protein composition. This fact was confirmed long-term high dietary concentrate feeding could damage the jejunum epithelial morphology and function.
Collapse
|
32
|
Kurtz R, Anderman MF, Shepard BD. GPCRs get fatty: the role of G protein-coupled receptor signaling in the development and progression of nonalcoholic fatty liver disease. Am J Physiol Gastrointest Liver Physiol 2021; 320:G304-G318. [PMID: 33205999 PMCID: PMC8202238 DOI: 10.1152/ajpgi.00275.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), characterized by the abnormal deposition of lipids within the liver not due to alcohol consumption, is a growing epidemic affecting over 30% of the United States population. Both simple fatty liver and its more severe counterpart, nonalcoholic steatohepatitis, represent one of the most common forms of liver disease. Recently, several G protein-coupled receptors have emerged as targets for therapeutic intervention for these disorders. These include those with known hepatic function as well as those involved in global metabolic regulation. In this review, we highlight these emerging therapeutic targets, focusing on several common themes including their activation by microbial metabolites, stimulatory effect on insulin and incretin secretion, and contribution to glucose tolerance. The overlap in ligands, localization, and downstream effects of activation indicate the interdependent nature of these receptors and highlight the importance of this signaling family in the development and prevention of NAFLD.
Collapse
Affiliation(s)
- Ryan Kurtz
- Department of Human Science, Georgetown University, Washington, District of Columbia
| | - Meghan F. Anderman
- Department of Human Science, Georgetown University, Washington, District of Columbia
| | - Blythe D. Shepard
- Department of Human Science, Georgetown University, Washington, District of Columbia
| |
Collapse
|
33
|
Dai X, Hakizimana O, Zhang X, Kaushik AC, Zhang J. Orchestrated efforts on host network hijacking: Processes governing virus replication. Virulence 2021; 11:183-198. [PMID: 32050846 PMCID: PMC7051146 DOI: 10.1080/21505594.2020.1726594] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
With the high pervasiveness of viral diseases, the battle against viruses has never ceased. Here we discuss five cellular processes, namely "autophagy", "programmed cell death", "immune response", "cell cycle alteration", and "lipid metabolic reprogramming", that considerably guide viral replication after host infection in an orchestrated manner. On viral infection, "autophagy" and "programmed cell death" are two dynamically synchronized cell survival programs; "immune response" is a cell defense program typically suppressed by viruses; "cell cycle alteration" and "lipid metabolic reprogramming" are two altered cell housekeeping programs tunable in both directions. We emphasize on their functionalities in modulating viral replication, strategies viruses have evolved to tune these processes for their benefit, and how these processes orchestrate and govern cell fate upon viral infection. Understanding how viruses hijack host networks has both academic and industrial values in providing insights toward therapeutic strategy design for viral disease control, offering useful information in applications that aim to use viral vectors to improve human health such as gene therapy, and providing guidelines to maximize viral particle yield for improved vaccine production at a reduced cost.
Collapse
Affiliation(s)
- Xiaofeng Dai
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | | | - Xuanhao Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Aman Chandra Kaushik
- School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, China
| | - Jianying Zhang
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Department of Biological Sciences, University of Texas at El Paso, EI Paso, TX, USA
| |
Collapse
|
34
|
López-Méndez I, Méndez-Maldonado K, Manzo-Francisco LA, Juárez-Hernández E, Uribe M, Barbero-Becerra VJ. G protein-coupled receptors: Key molecules in metabolic associated fatty liver disease development. Nutr Res 2020; 87:70-79. [PMID: 33601216 DOI: 10.1016/j.nutres.2020.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/07/2020] [Accepted: 12/20/2020] [Indexed: 02/08/2023]
Abstract
Metabolic associated fatty liver disease (MAFLD) is a range of hepatic disorders with progression to steatohepatitis with risk of development of fibrosis, cirrhosis, and hepatocellular carcinoma. MAFLD is strongly related to metabolic disorders of active fatty acids, which seem to be selective according to their specific ligand of G protein-coupled receptors (GPRs) located in immune response cells. An approach to study the pathophysiological mechanisms of MAFLD could be through the expression of active fatty acids ligands. The expression of GPRs is associated with obesity, microbiota environment, and dietary characteristics in patients with MAFLD. More specifically, GPR41, GPR43, GPR20, and GPR120 have been associated with alteration of lipid metabolism in hepatic and intestinal cells, and consequently they have a key role in metabolic diseases. We observed that GPR120 is not expressed in nonoverweight/obese patients, regardless of the presence of MAFLD; meanwhile the expression of GPR41 is increased in patients with lean MAFLD. GPRs role in liver disease is intriguing and a field of research opportunity. More studies are necessary to define the role of active fatty acids in the development of metabolic diseases.
Collapse
Affiliation(s)
- Iván López-Méndez
- Transplants and Hepatology Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Karla Méndez-Maldonado
- Cellular Physiology Institute, Neurosciences Division & Physiology and Pharmacology Department, Veterinary and Zootechnics Faculty, UNAM, Mexico City, Mexico
| | | | - Eva Juárez-Hernández
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Misael Uribe
- Gastrointestinal and Obesity Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | | |
Collapse
|
35
|
Cosín-Roger J, Ortiz-Masia D, Barrachina MD, Calatayud S. Metabolite Sensing GPCRs: Promising Therapeutic Targets for Cancer Treatment? Cells 2020; 9:cells9112345. [PMID: 33113952 PMCID: PMC7690732 DOI: 10.3390/cells9112345] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
G-protein-coupled receptors constitute the most diverse and largest receptor family in the human genome, with approximately 800 different members identified. Given the well-known metabolic alterations in cancer development, we will focus specifically in the 19 G-protein-coupled receptors (GPCRs), which can be selectively activated by metabolites. These metabolite sensing GPCRs control crucial processes, such as cell proliferation, differentiation, migration, and survival after their activation. In the present review, we will describe the main functions of these metabolite sensing GPCRs and shed light on the benefits of their potential use as possible pharmacological targets for cancer treatment.
Collapse
Affiliation(s)
- Jesús Cosín-Roger
- Hospital Dr. Peset, Fundación para la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, FISABIO, 46017 Valencia, Spain
- Correspondence: ; Tel.: +34-963851234
| | - Dolores Ortiz-Masia
- Departament of Medicine, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Maria Dolores Barrachina
- Departament of Pharmacology and CIBER, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (M.D.B.); (S.C.)
| | - Sara Calatayud
- Departament of Pharmacology and CIBER, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (M.D.B.); (S.C.)
| |
Collapse
|
36
|
Magrin GL, Strauss FJ, Benfatti CAM, Maia LC, Gruber R. Effects of Short-Chain Fatty Acids on Human Oral Epithelial Cells and the Potential Impact on Periodontal Disease: A Systematic Review of In Vitro Studies. Int J Mol Sci 2020; 21:ijms21144895. [PMID: 32664466 PMCID: PMC7402343 DOI: 10.3390/ijms21144895] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022] Open
Abstract
Short-chain fatty acids (SCFA), bacterial metabolites released from dental biofilm, are supposed to target the oral epithelium. There is, however, no consensus on how SCFA affect the oral epithelial cells. The objective of the present study was to systematically review the available in vitro evidence of the impact of SCFA on human oral epithelial cells in the context of periodontal disease. A comprehensive electronic search using five databases along with a grey literature search was performed. In vitro studies that evaluated the effects of SCFA on human oral epithelial cells were eligible for inclusion. Risk of bias was assessed by the University of Bristol's tool for assessing risk of bias in cell culture studies. Certainty in cumulative evidence was evaluated using GRADE criteria (grading of recommendations assessment, development, and evaluation). Of 3591 records identified, 10 were eligible for inclusion. A meta-analysis was not possible due to the heterogeneity between the studies. The risk of bias across the studies was considered "serious" due to the presence of methodological biases. Despite these limitations, this review showed that SCFA negatively affect the viability of oral epithelial cells by activating a series of cellular events that includes apoptosis, autophagy, and pyroptosis. SCFA impair the integrity and presumably the transmigration of leucocytes through the epithelial layer by changing junctional and adhesion protein expression, respectively. SCFA also affect the expression of chemokines and cytokines in oral epithelial cells. Future research needs to identify the underlying signaling cascades and to translate the in vitro findings into preclinical models.
Collapse
Affiliation(s)
- Gabriel Leonardo Magrin
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (G.L.M.); (F.J.S.)
- Department of Dentistry, Center for Education and Research on Dental Implants, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima s/n, Florianopolis 88040-900, Brazil;
| | - Franz Josef Strauss
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (G.L.M.); (F.J.S.)
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Av. Sergio Livingstone 943, Santiago 7500566, Chile
| | - Cesar Augusto Magalhães Benfatti
- Department of Dentistry, Center for Education and Research on Dental Implants, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima s/n, Florianopolis 88040-900, Brazil;
| | - Lucianne Cople Maia
- Department of Pediatric Dentistry and Orthodontics, Federal University of Rio de Janeiro, Rua Prof. Rodolpho Paulo Rocco 325, Rio de Janeiro 21941-617, Brazil;
| | - Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (G.L.M.); (F.J.S.)
- Correspondence:
| |
Collapse
|
37
|
Free Fatty Acid Receptors 2 and 3 as Microbial Metabolite Sensors to Shape Host Health: Pharmacophysiological View. Biomedicines 2020; 8:biomedicines8060154. [PMID: 32521775 PMCID: PMC7344995 DOI: 10.3390/biomedicines8060154] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
The role of the gut microbiome in human health is becoming apparent. The major functional impact of the gut microbiome is transmitted through the microbial metabolites that are produced in the gut and interact with host cells either in the local gut environment or are absorbed into circulation to impact distant cells/organs. Short-chain fatty acids (SCFAs) are the major microbial metabolites that are produced in the gut through the fermentation of non-digestible fibers. SCFAs are known to function through various mechanisms, however, their signaling through free fatty acid receptors 2 and 3 (FFAR2/3; type of G-coupled protein receptors) is a new therapeutic approach. FFAR2/3 are widely expressed in diverse cell types in human and mice, and function as sensors of SCFAs to change several physiological and cellular functions. FFAR2/3 modulate neurological signaling, energy metabolism, intestinal cellular homeostasis, immune response, and hormone synthesis. FFAR2/3 function through Gi and/or Gq signaling, that is mediated through specific structural features of SCFAs-FFAR2/3 bindings and modulating specific signaling pathway. In this review, we discuss the wide-spread expression and structural homologies between human and mice FFAR2/3, and their role in different human health conditions. This information can unlock opportunities to weigh the potential of FFAR2/3 as a drug target to prevent human diseases.
Collapse
|
38
|
Mikami D, Kobayashi M, Uwada J, Yazawa T, Kamiyama K, Nishimori K, Nishikawa Y, Nishikawa S, Yokoi S, Taniguchi T, Iwano M. AR420626, a selective agonist of GPR41/FFA3, suppresses growth of hepatocellular carcinoma cells by inducing apoptosis via HDAC inhibition. Ther Adv Med Oncol 2020; 12:1758835920913432. [PMID: 33014144 PMCID: PMC7517987 DOI: 10.1177/1758835920913432] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/17/2020] [Indexed: 12/11/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a major cause of cancer death worldwide and establishment of new chemotherapies for HCC is urgently needed. GPR41 [free fatty acid receptor 3 (FFA3)] is a G protein-coupled receptor for short chain fatty acids, including acetate, propionate, and butyrate. In our previous study, we showed that propionate enhances the cytotoxic effect of cisplatin in HCC cells and that this mechanism is dependent on inhibition of histone deacetylases (HDACs) via GPR41/FFA3. However, the antitumor action of GPR41/FFA3 has not been elucidated. Methods In this study, we examined AR420626 as a GPR41-selective agonist in HepG2 and HLE cells. Nude mice were used for HepG2 xenograft studies. The apoptotic effect of AR420626 was evaluated using flow cytometry analysis. Expression of apoptosis-related proteins and HDACs was evaluated by Western immunoblot. Gene silencing of HDAC 3/5/7 and GPR41 was performed using small interfering RNA. Expression of TNF-α mRNA was evaluated by TaqMan real-time polymerase chain reaction. Results We found that AR420626, a selective GPR41/FFA3 agonist, suppressed growth of HepG2 xenografts and inhibited proliferation of HCC cells by inducing apoptosis. AR420626 induced proteasome activation through mTOR phosphorylation, which reduced HDAC proteins, and then increased expression of TNF-α. Conclusion AR420626, a selective GPR41/FFA3 agonist, may be a candidate as a therapeutic agent for HCC.
Collapse
Affiliation(s)
- Daisuke Mikami
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-shimoaizuki, Eiheiji, Yoshida, Fukui 910-1193 Japan
| | - Mamiko Kobayashi
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Junsuke Uwada
- Department of Biochemistry, Division of Cellular Signal Transduction, Asahikawa Medical University, Asahikawa, Japan
| | - Takashi Yazawa
- Department of Biochemistry, Division of Cellular Signal Transduction, Asahikawa Medical University, Asahikawa, Japan
| | - Kazuko Kamiyama
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Kazuhisa Nishimori
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Yudai Nishikawa
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Sho Nishikawa
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Seiji Yokoi
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Takanobu Taniguchi
- Department of Biochemistry, Division of Cellular Signal Transduction, Asahikawa Medical University, Asahikawa, Japan
| | - Masayuki Iwano
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
39
|
Mikami D, Kobayashi M, Uwada J, Yazawa T, Kamiyama K, Nishimori K, Nishikawa Y, Nishikawa S, Yokoi S, Taniguchi T, Iwano M. β-Hydroxybutyrate enhances the cytotoxic effect of cisplatin via the inhibition of HDAC/survivin axis in human hepatocellular carcinoma cells. J Pharmacol Sci 2019; 142:1-8. [PMID: 31757742 DOI: 10.1016/j.jphs.2019.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/04/2019] [Accepted: 10/28/2019] [Indexed: 02/06/2023] Open
Abstract
Ketone bodies, including acetoacetate and β-hydroxybutyrate (βOHB), are produced from acetyl coenzyme A in the liver and then secreted into the blood. These molecules are a source of energy for peripheral tissues during exercise or fasting. βOHB has been reported to inhibit histone deacetylases (HDACs) 1, 3, and 4 in human embryonic kidney 293 cells. Thus, βOHB may regulate epigenetics by modulating HDACs. There have been several reports that the administration of βOHB or induction of a physiological state of ketosis has an antitumor effect; however, the mechanism remains unclear. The aim of this study was to investigate whether βOHB enhances cisplatin-induced apoptosis in hepatocellular carcinoma (HCC) cells by modulating activity and/or expression of HDACs. We found that βOHB significantly enhanced cisplatin-induced apoptosis and cleavage of caspase-3 and -8 in HCC cells. Further, βOHB significantly decreased the expression of HDCA 3/5/6 and survivin in liver hepatocellular (HepG2) cells. In HDAC3/6 gene silencing, survivin expression was significantly decreased, and cisplatin-induced cleavage of caspase-3 was significantly enhanced compared with control in HepG2 cells. In conclusion, βOHB enhanced cisplatin-induced apoptosis via HDAC3/6 inhibition/survivin axis in HepG2 cells, which suggests that βOHB could be a new adjuvant agent for cisplatin chemotherapy.
Collapse
Affiliation(s)
- Daisuke Mikami
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.
| | - Mamiko Kobayashi
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Junsuke Uwada
- Division of Cellular Signal Transduction, Department of Biochemistry, Asahikawa Medical University, Asahikawa, Japan
| | - Takashi Yazawa
- Division of Cellular Signal Transduction, Department of Biochemistry, Asahikawa Medical University, Asahikawa, Japan
| | - Kazuko Kamiyama
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Kazuhisa Nishimori
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Yudai Nishikawa
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Sho Nishikawa
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Seiji Yokoi
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Takanobu Taniguchi
- Division of Cellular Signal Transduction, Department of Biochemistry, Asahikawa Medical University, Asahikawa, Japan
| | - Masayuki Iwano
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
40
|
Effects of Intestinal Microbial⁻Elaborated Butyrate on Oncogenic Signaling Pathways. Nutrients 2019; 11:nu11051026. [PMID: 31067776 PMCID: PMC6566851 DOI: 10.3390/nu11051026] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/29/2019] [Accepted: 05/05/2019] [Indexed: 12/12/2022] Open
Abstract
The intestinal microbiota is well known to have multiple benefits on human health, including cancer prevention and treatment. The effects are partially mediated by microbiota-produced short chain fatty acids (SCFAs) such as butyrate, propionate and acetate. The anti-cancer effect of butyrate has been demonstrated in cancer cell cultures and animal models of cancer. Butyrate, as a signaling molecule, has effects on multiple signaling pathways. The most studied effect is its inhibition on histone deacetylase (HDAC), which leads to alterations of several important oncogenic signaling pathways such as JAK2/STAT3, VEGF. Butyrate can interfere with both mitochondrial apoptotic and extrinsic apoptotic pathways. In addition, butyrate also reduces gut inflammation by promoting T-regulatory cell differentiation with decreased activities of the NF-κB and STAT3 pathways. Through PKC and Wnt pathways, butyrate increases cancer cell differentiation. Furthermore, butyrate regulates oncogenic signaling molecules through microRNAs and methylation. Therefore, butyrate has the potential to be incorporated into cancer prevention and treatment regimens. In this review we summarize recent progress in butyrate research and discuss the future development of butyrate as an anti-cancer agent with emphasis on its effects on oncogenic signaling pathways. The low bioavailability of butyrate is a problem, which precludes clinical application. The disadvantage of butyrate for medicinal applications may be overcome by several approaches including nano-delivery, analogue development and combination use with other anti-cancer agents or phytochemicals.
Collapse
|