1
|
D’Orsi G, Giacalone M, Calicchia A, Gagliano E, Vannucchi L, Vanni G, Buonomo OC, Cervelli V, Longo B. BIA-ALCL and BIA-SCC: Updates on Clinical Features and Genetic Mutations for Latest Recommendations. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:793. [PMID: 38792976 PMCID: PMC11122735 DOI: 10.3390/medicina60050793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
Breast Implant-Associated Anaplastic Large Cell Lymphoma (BIA-ALCL) and Breast Implant-Associated Squamous Cell Carcinoma (BIA-SCC) are emerging neoplastic complications related to breast implants. While BIA-ALCL is often linked to macrotextured implants, current evidence does not suggest an implant-type association for BIA-SCC. Chronic inflammation and genetics have been hypothesized as key pathogenetic players, although for both conditions, the exact mechanisms and specific risks related to breast implants are yet to be established. While the genetic alterations in BIA-SCC are still unknown, JAK-STAT pathway activation has been outlined as a dominant signature of BIA-ALCL. Recent genetic investigation has uncovered various molecular players, including MEK-ERK, PI3K/AKT, CDK4-6, and PDL1. The clinical presentation of BIA-ALCL and BIA-SCC overlaps, including most commonly late seroma and breast swelling, warranting ultrasound and cytological examinations, which are the first recommended steps as part of the diagnostic work-up. While the role of mammography is still limited, MRI and CT-PET are recommended according to the clinical presentation and for disease staging. To date, the mainstay of treatment for BIA-ALCL and BIA-SCC is implant removal with en-bloc capsulectomy. Chemotherapy and radiation therapy have also been used for advanced-stage BIA-ALCL and BIA-SCC. In-depth characterization of the tumor genetics is key for the development of novel therapeutic strategies, especially for advanced stage BIA-ALCL and BIA-SCC, which show a more aggressive course and poor prognosis.
Collapse
Affiliation(s)
- Gennaro D’Orsi
- PhD School of Applied Medical-Surgical Sciences, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Martina Giacalone
- Plastic and Reconstructive Surgery at Department of Surgical Science, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Alessio Calicchia
- Plastic and Reconstructive Surgery at Department of Surgical Science, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Elettra Gagliano
- Plastic and Reconstructive Surgery at Department of Surgical Science, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Lisa Vannucchi
- Plastic and Reconstructive Surgery at Department of Surgical Science, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Gianluca Vanni
- Division of Breast Unit, Department of Surgical Sciences, School of Medicine and Surgery, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Oreste Claudio Buonomo
- Division of Breast Unit, Department of Surgical Sciences, School of Medicine and Surgery, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Valerio Cervelli
- Plastic and Reconstructive Surgery at Department of Surgical Science, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Benedetto Longo
- Plastic and Reconstructive Surgery at Department of Surgical Science, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
2
|
Meshkin DH, Firriolo JM, Karp NS, Salibian AA. Management of complications following implant-based breast reconstruction: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:416. [PMID: 38213810 PMCID: PMC10777227 DOI: 10.21037/atm-23-1384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/15/2023] [Indexed: 01/13/2024]
Abstract
Background and Objective Complications associated with implant-based reconstruction have a spectrum of severity with sequelae ranging from mild aesthetic deformities to additional surgery, reconstructive failure and systemic illness. The purpose of this narrative review of the literature is to provide updated evidence-based information on the management of complications in implant-based reconstruction. Methods A systematic search of PubMed, OVID MEDLINE and the Cochrane Library databases was performed to identify common complications associated with implant-based breast reconstruction, incidences of occurrence as well as preventative and management strategies. Key Content and Findings Pertinent short and long-term complications of implant-based breast reconstruction include hematoma, implant infection, seroma, skin envelope necrosis, capsular contracture, rupture, malposition, animation and contour deformities, implant-associated anaplastic large cell lymphoma, and breast implant illness. Important preventative measures for short term complications include meticulous sterile technique and antibiotic irrigation, adequate drainage and critical evaluation of mastectomy flaps. Management of short-term complications requires early recognition and aggressive treatment to prevent reconstructive failure as well as long-term complications such as capsular contracture. Important technological advances include dual-port expanders for seroma drainage, indocyanine green angiography for mastectomy flap perfusion evaluation, cohesive form-stable implants for treatment of rippling, and various biologic and synthetic mesh products for pocket control and correction. Conclusions Important principles in management of short-term complications in implant-based reconstruction include aggressive and early intervention to maximize the chance of reconstructive salvage. Contemporary technological advances have played an important role in both prevention and treatment of complications. Over-arching principles in management of implant-based reconstruction complications focus on preventative techniques and preoperative patient counseling on potential risks, their likelihood, and necessary treatments to allow for informed and shared decision-making.
Collapse
Affiliation(s)
- Dean H. Meshkin
- Division of Plastic and Reconstructive Surgery, University of California, Davis School of Medicine, Sacramento, CA, USA
| | - Joseph M. Firriolo
- Division of Plastic and Reconstructive Surgery, University of California, Davis School of Medicine, Sacramento, CA, USA
| | - Nolan S. Karp
- Hansjörg Wyss Department of Plastic Surgery, New York University Langone Health, New York, NY, USA
| | - Ara A. Salibian
- Division of Plastic and Reconstructive Surgery, University of California, Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
3
|
Tomacinschii V, Mosquera Orgueira A, Santos CA, Robu M, Buruiana S, Fraga Rodriguez MF. The implication of next-generation sequencing in the diagnosis and clinical management of non-Hodgkin lymphomas. Front Oncol 2023; 13:1275327. [PMID: 38023160 PMCID: PMC10663367 DOI: 10.3389/fonc.2023.1275327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Next generation sequencing (NGS) is a technology that broadens the horizon of knowledge of several somatic pathologies, especially in oncological and oncohematological pathology. In the case of NHL, the understanding of the mechanisms of tumorigenesis, tumor proliferation and the identification of genetic markers specific to different lymphoma subtypes led to more accurate classification and diagnosis. Similarly, the data obtained through NGS allowed the identification of recurrent somatic mutations that can serve as therapeutic targets that can be inhibited and thus reducing the rate of resistant cases. The article's purpose is to offer a comprehensive overview of the best ways of integrating of next-generation sequencing technologies for diagnosis, prognosis, classification, and selection of optimal therapy from the perspective of tailor-made medicine.
Collapse
Affiliation(s)
- Victor Tomacinschii
- Department of Hematology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
- Department of Hematology, Public Medical Sanitary Institution (PMSI) Institute of Oncology, Chisinau, Moldova
| | - Adrian Mosquera Orgueira
- University Hospital of Santiago de Compostela, Servizo Galego de Saude (SERGAS), Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Carlos Aliste Santos
- University Hospital of Santiago de Compostela, Servizo Galego de Saude (SERGAS), Santiago de Compostela, Spain
| | - Maria Robu
- Department of Hematology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Sanda Buruiana
- Department of Hematology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Maximo Francisco Fraga Rodriguez
- University Hospital of Santiago de Compostela, Servizo Galego de Saude (SERGAS), Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Forensic Sciences, Pathology, Ginecology and Obstetrics and Pediatrics, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
4
|
de Moraes FCA, Dal Moro L, Pessoa FR, Passos ESDR, Campos RALS, de Souza DDSM, Feio D, Rodríguez Burbano RM, Fernandes MR, dos Santos NPC. Malignant Neoplasms Arising in the Cardiac Pacemaker Cavity: A Systematic Review. Cancers (Basel) 2023; 15:5206. [PMID: 37958380 PMCID: PMC10647525 DOI: 10.3390/cancers15215206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 11/15/2023] Open
Abstract
Cancer is the abnormal proliferation of physiologically inadequate cells. Studies have identified the cardiac pacemaker pocket as a site of rare neoplasms. To evaluate the clinical outcomes, treatment, prognosis, and individualized management of tumors originating in the cardiac pacemaker pocket, a systematic review was conducted using case reports and case series available in the PubMed/Medline, Science Direct, Cochrane Central, LILACS, and Scientific Electronic Library Online (Scielo) databases. Pacemaker pocket tumors affected patients with a mean age of 72.9 years, with a higher incidence in males (76.9%, n = 10). The average time for neoplasm development was 4.4 years (54.07 months). The most prevalent model was Medtronic (38.4%, n = 5), with titanium (83.3%) being the most common metal composition. Chemotherapy was the most performed procedure among patients (38.4%), followed by radiation therapy (38.4%) and surgical tumor resection (30.7%). Six analyzed cases (46.1%) resulted in death, and four patients (30.7%) achieved a cure. Patients with pacemakers should be routinely evaluated for the occurrence of malignant tumors at the site of device implantation.
Collapse
Affiliation(s)
- Francisco Cezar Aquino de Moraes
- Oncology Research Center, University Hospital João de Barros Barreto, Belém 66073-005, PA, Brazil; (D.F.); (M.R.F.); (N.P.C.d.S.)
| | - Lucca Dal Moro
- Department of Medicine, Federal University of Pará, Belém 66075-110, PA, Brazil; (L.D.M.); (F.R.P.); (E.S.d.R.P.); (R.A.L.S.C.); (D.d.S.M.d.S.)
| | - Fernando Rocha Pessoa
- Department of Medicine, Federal University of Pará, Belém 66075-110, PA, Brazil; (L.D.M.); (F.R.P.); (E.S.d.R.P.); (R.A.L.S.C.); (D.d.S.M.d.S.)
| | - Ellen Sabrinna dos Remédios Passos
- Department of Medicine, Federal University of Pará, Belém 66075-110, PA, Brazil; (L.D.M.); (F.R.P.); (E.S.d.R.P.); (R.A.L.S.C.); (D.d.S.M.d.S.)
| | - Raul Antônio Lopes Silva Campos
- Department of Medicine, Federal University of Pará, Belém 66075-110, PA, Brazil; (L.D.M.); (F.R.P.); (E.S.d.R.P.); (R.A.L.S.C.); (D.d.S.M.d.S.)
| | - Dilma do Socorro Moraes de Souza
- Department of Medicine, Federal University of Pará, Belém 66075-110, PA, Brazil; (L.D.M.); (F.R.P.); (E.S.d.R.P.); (R.A.L.S.C.); (D.d.S.M.d.S.)
- Gaspar Vianna State Public Hospital of Clinical Foundation, Belém 66083-106, PA, Brazil
| | - Danielle Feio
- Oncology Research Center, University Hospital João de Barros Barreto, Belém 66073-005, PA, Brazil; (D.F.); (M.R.F.); (N.P.C.d.S.)
| | | | - Marianne Rodrigues Fernandes
- Oncology Research Center, University Hospital João de Barros Barreto, Belém 66073-005, PA, Brazil; (D.F.); (M.R.F.); (N.P.C.d.S.)
| | - Ney Pereira Carneiro dos Santos
- Oncology Research Center, University Hospital João de Barros Barreto, Belém 66073-005, PA, Brazil; (D.F.); (M.R.F.); (N.P.C.d.S.)
| |
Collapse
|
5
|
Zeyl VG, Xu H, Khan I, Machan JT, Clemens MW, Hu H, Deva A, Glicksman C, McGuire P, Adams WP, Sieber D, Sinha M, Kadin ME. CD30 Lateral Flow and Enzyme-Linked Immunosorbent Assays for Detection of BIA-ALCL: A Pilot Study. Cancers (Basel) 2023; 15:5128. [PMID: 37958303 PMCID: PMC10649192 DOI: 10.3390/cancers15215128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
INTRODUCTION Breast Implant-Associated Anaplastic Large Cell Lymphoma (BIA-ALCL) commonly presents as a peri-implant effusion (seroma). CD30 (TNFRSF8) is a consistent marker of tumor cells but also can be expressed by activated lymphocytes in benign seromas. Diagnosis of BIA-ALCL currently includes cytology and detection of CD30 by immunohistochemistry or flow cytometry, but these studies require specialized equipment and pathologists' interpretation. We hypothesized that a CD30 lateral flow assay (LFA) could provide a less costly rapid test for soluble CD30 that eventually could be used by non-specialized personnel for point-of-care diagnosis of BIA-ALCL. METHODS We performed LFA for CD30 and enzyme-linked immunosorbent assay (ELISA) for 15 patients with pathologically confirmed BIA-ALCL and 10 patients with benign seromas. To determine the dynamic range of CD30 detection by LFA, we added recombinant CD30 protein to universal buffer at seven different concentrations ranging from 125 pg/mL to 10,000 pg/mL. We then performed LFA for CD30 on cryopreserved seromas of 10 patients with pathologically confirmed BIA-ALCL and 10 patients with benign seromas. RESULTS Recombinant CD30 protein added to universal buffer produced a distinct test line at concentrations higher than 1000 pg/mL and faint test lines at 250-500 pg/mL. LFA produced a positive test line for all BIA-ALCL seromas undiluted and for 8 of 10 malignant seromas at 1:10 dilution, whereas 3 of 10 benign seromas were positive undiluted but all were negative at 1:10 dilution. Undiluted CD30 LFA had a sensitivity of 100.00%, specificity of 70.00%, positive predictive value of 76.92%, and negative predictive value of 100.00% for BIA-ALCL. When specimens were diluted 1:10, sensitivity was reduced to 80.00% but specificity and positive predictive values increased to 100.00%, while negative predictive value was reduced to 88.33%. When measured by ELISA, CD30 was below 1200 pg/mL in each of six benign seromas, whereas seven BIA-ALCL seromas contained CD30 levels > 2300 pg/mL, in all but one case calculated from dilutions of 1:10 or 1:50. CONCLUSIONS BIA-ALCL seromas can be distinguished from benign seromas by CD30 ELISA and LFA, but LFA requires less time (<20 min) and can be performed without special equipment by non-specialized personnel, suggesting future point-of-care testing for BIA-ALCL may be feasible.
Collapse
Affiliation(s)
- Victoria G. Zeyl
- Division of Plastic Surgery, Department of Surgery, Brown Alpert School of Medicine, Providence, RI 02903, USA;
| | - Haiying Xu
- Department of Pathology and Laboratory Medicine, Brown Alpert School of Medicine, Providence, RI 02903, USA;
| | - Imran Khan
- Division of Plastic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (I.K.); (M.S.)
| | - Jason T. Machan
- Lifespan Biostatistics, Epidemiology, Research Design, and Informatics (BERDI) Lifespan Hospital System, Providence, RI 02903, USA;
| | - Mark W. Clemens
- Division of Plastic and Reconstructive Surgery, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA;
| | - Honghua Hu
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (H.H.); (A.D.)
- Plastic & Reconstructive Surgery, Faculty of Health and Medical Science, Macquarie University, Sydney, NSW 2109, Australia
| | - Anand Deva
- Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (H.H.); (A.D.)
- Plastic & Reconstructive Surgery, Faculty of Health and Medical Science, Macquarie University, Sydney, NSW 2109, Australia
| | | | | | - William P. Adams
- Department of Plastic Surgery, University of Texas Southwestern, Dallas, TX 75390, USA;
| | - David Sieber
- Sieber Plastic Surgery, San Francisco, CA 94108, USA;
| | - Mithun Sinha
- Division of Plastic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (I.K.); (M.S.)
| | - Marshall E. Kadin
- Division of Plastic Surgery, Department of Surgery, Brown Alpert School of Medicine, Providence, RI 02903, USA;
- Department of Pathology and Laboratory Medicine, Brown Alpert School of Medicine, Providence, RI 02903, USA;
| |
Collapse
|
6
|
Vittorietti M, Mazzola S, Costantino C, De Bella DD, Fruscione S, Bonaccorso N, Sciortino M, Costanza D, Belluzzo M, Savatteri A, Tramuto F, Contiero P, Tagliabue G, Immordino P, Vitale F, Di Napoli A, Mazzucco W. Implant replacement and anaplastic large cell lymphoma associated with breast implants: a quantitative analysis. Front Oncol 2023; 13:1202733. [PMID: 37927474 PMCID: PMC10622658 DOI: 10.3389/fonc.2023.1202733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction Breast implant-associated anaplastic large-cell lymphoma (BIA-ALCL) is a rare form of non-Hodgkin T-cell lymphoma associated with breast reconstruction post-mastectomy or cosmetic-additive mammoplasty. The increasing use of implants for cosmetic purposes is expected to lead to an increase in BIA-ALCL cases. This study investigated the main characteristics of the disease and the factors predicting BIA-ALCL onset in patients with and without an implant replacement. Methods A quantitative analysis was performed by two independent researchers on cases extracted from 52 primary studies (case report, case series, and systematic review) published until April 2022 and searched in PubMed, Scopus, and Google-Scholar databases using "Breast-Implant" AND/OR "Associated" AND/OR "Anaplastic-Large-Cell-Lymphoma". The statistical significance was verified by Student's t-test for continuous variables, while Fisher's exact test was applied for qualitative variables. Cox model with time-dependent covariates was used to estimate BIA-ALCL's onset time. The Kaplan-Meier model allowed the estimation of the probability of survival after therapy according to breast implant exposure time. Results Overall, 232 patients with BIA-ALCL were extracted. The mean age at diagnosis was 55 years old, with a mean time to disease onset from the first implant of 10.3 years. The hazard of developing BIA-ALCL in a shorter time resulted significantly higher for patients not having an implant replacement (hazard ratio = 0.03; 95%CI: 0.005-0.19; p-value < 0.01). Patients with implant replacement were significantly older than patients without previous replacement at diagnosis, having a median time to diagnosis since the first implant of 13 years (7 years in patients without replacement); anyway, the median time to BIA-ALCL occurrence since the last implantation was equal to 5 years. Discussion Our findings suggest that, in BIA-ALCL patients, the implant substitution and/or capsulectomy may delay the disease's onset. However, the risk of reoccurrence in an earlier time should be considered in these patients. Moreover, the time to BIA-ALCL onset slightly increased with age. Selection bias, lack of awareness, misdiagnosis, and limited data availability could be identified as limits of our study. An implant replacement should be considered according to a risk stratification approach to delay the BIA-ALCL occurrence in asymptomatic patients, although a stricter follow-up after the implant substitution should be recommended. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO, identifier: CRD42023446726.
Collapse
Affiliation(s)
| | - Sergio Mazzola
- U.O.C. of Clinical Epidemiology with Cancer Registry, Azienda Ospedaliera Universitaria Policlinico di Palermo, Palermo, Italy
| | - Claudio Costantino
- U.O.C. of Clinical Epidemiology with Cancer Registry, Azienda Ospedaliera Universitaria Policlinico di Palermo, Palermo, Italy
- PROMISE Department, University of Palermo, Palermo, Italy
| | | | | | | | | | | | | | | | - Fabio Tramuto
- U.O.C. of Clinical Epidemiology with Cancer Registry, Azienda Ospedaliera Universitaria Policlinico di Palermo, Palermo, Italy
- PROMISE Department, University of Palermo, Palermo, Italy
| | - Paolo Contiero
- Environmental Epidemiology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanna Tagliabue
- Cancer Registry Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Francesco Vitale
- U.O.C. of Clinical Epidemiology with Cancer Registry, Azienda Ospedaliera Universitaria Policlinico di Palermo, Palermo, Italy
- PROMISE Department, University of Palermo, Palermo, Italy
| | - Arianna Di Napoli
- Department of Clinical and Molecular Medicine, University of Rome “Sapienza”, Rome, Italy
| | - Walter Mazzucco
- U.O.C. of Clinical Epidemiology with Cancer Registry, Azienda Ospedaliera Universitaria Policlinico di Palermo, Palermo, Italy
- PROMISE Department, University of Palermo, Palermo, Italy
- College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
7
|
Wu R, Lim MS. Updates in pathobiological aspects of anaplastic large cell lymphoma. Front Oncol 2023; 13:1241532. [PMID: 37810974 PMCID: PMC10556522 DOI: 10.3389/fonc.2023.1241532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Anaplastic large cell lymphomas (ALCL) encompass several distinct subtypes of mature T-cell neoplasms that are unified by the expression of CD30 and anaplastic cytomorphology. Identification of the cytogenetic abnormality t(2;5)(p23;q35) led to the subclassification of ALCLs into ALK+ ALCL and ALK- ALCL. According to the most recent World Health Organization (WHO) Classification of Haematolymphoid Tumours as well as the International Consensus Classification (ICC) of Mature Lymphoid Neoplasms, ALCLs encompass ALK+ ALCL, ALK- ALCL, and breast implant-associated ALCL (BI-ALCL). Approximately 80% of systemic ALCLs harbor rearrangement of ALK, with NPM1 being the most common partner gene, although many other fusion partner genes have been identified to date. ALK- ALCLs represent a heterogeneous group of lymphomas with distinct clinical, immunophenotypic, and genetic features. A subset harbor recurrent rearrangement of genes, including TYK2, DUSP22, and TP63, with a proportion for which genetic aberrations have yet to be characterized. Although primary cutaneous ALCL (pc-ALCL) is currently classified as a subtype of primary cutaneous T-cell lymphoma, due to the large anaplastic and pleomorphic morphology together with CD30 expression in the malignant cells, this review also discusses the pathobiological features of this disease entity. Genomic and proteomic studies have contributed significant knowledge elucidating novel signaling pathways that are implicated in ALCL pathogenesis and represent candidate targets of therapeutic interventions. This review aims to offer perspectives on recent insights regarding the pathobiological and genetic features of ALCL.
Collapse
Affiliation(s)
| | - Megan S. Lim
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
8
|
de Paule CFP, Pedroso RB, de Barros Carvalho MD, Pelloso FC, Roma AM, da Silva Freitas R, Cavalcante JM, Fiats Ribeiro H, Pelloso SM. Anaplastic lymphoma associated with breast implants-Early diagnosis and treatment. Clin Case Rep 2023; 11:e7727. [PMID: 37529127 PMCID: PMC10387511 DOI: 10.1002/ccr3.7727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023] Open
Abstract
Anaplastic large cell lymphoma associated with breast implants is a relatively new disease that deserves attention from the academic community. Brazil figures as one of the protagonists in plastic surgery, however publications are insufficient and very few cases are reported in comparison to other countries. It is a disease with excellent prognosis when diagnosed early and treated effectively, but for this to happen, it is essential that health care professionals and the patient understand its pathology. We reported two cases in a small town during a short period of time. In both cases reported by this study, the patients presented late seroma, associated with pain as a clinical presentation, at 13 and 9 years after the placement of silicone implants with textured polyurethane surfaces. After the procedure, the patients were screened for cancer. Further research with more robust samples is still needed to fully determine the risks and benefits of using textured versus smooth implants.
Collapse
|
9
|
Xagoraris I, Stathopoulou K, Aulerio RD, He M, Ketscher A, Jatta K, de Flon FH, Barbany G, Rosenquist R, Westerberg LS, Rassidakis GZ. Establishment and characterization of a novel breast implant-associated anaplastic large cell lymphoma cell line and PDX model (BIA-XR1) with a unique KRAS mutation. Curr Res Transl Med 2023; 71:103401. [PMID: 37364351 DOI: 10.1016/j.retram.2023.103401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/25/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023]
Abstract
Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is an uncommon T-cell lymphoma type with distinct clinical, molecular and genetic features. Establishment of BIA-ALCL cell lines and patient-derived xenograft (PDX) models are essential experimental tools to investigate the molecular pathogenesis of the disease. We characterized a novel BIA-ALCL cell line and PDX model, named BIA-XR1, derived from a patient with textured breast implant who developed lymphoma. Next-generation sequencing revealed a STAT3 mutation, commonly detected in BIA-ALCL, and a unique KRAS mutation reported for the first time in this lymphoma type. Both JAK/STAT3 and RAS/MEK/ERK oncogenic pathways were activated in BIA-XR1, which are targetable with clinically available agents.
Collapse
Affiliation(s)
- Ioanna Xagoraris
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | | | - Roberta D' Aulerio
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Minghui He
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anett Ketscher
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Kenbugul Jatta
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Felix Haglund de Flon
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Gisela Barbany
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Richard Rosenquist
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Lisa S Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - George Z Rassidakis
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
10
|
Carbonaro R, Accardo G, Mazzocconi L, Pileri S, Derenzini E, Veronesi P, Caldarella P, De Lorenzi F. BIA-ALCL in patients with genetic predisposition for breast cancer: our experience and a review of the literature. Eur J Cancer Prev 2023; 32:370-376. [PMID: 37302016 DOI: 10.1097/cej.0000000000000809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is an emerging non-Hodgkin's lymphoma that occurs exclusively in patients with breast implants. The estimated risk of developing BIA-ALCL from exposure to breast implants is largely based on approximations about patients at risk. There is a growing body of evidence regarding the presence of specific germline mutations in patients developing BIA-ALCL, rising interest regarding possible markers of genetic predisposition to this type of lymphoma. The present paper focuses attention on BIA-ALCL in women with a genetic predisposition for breast cancer. We report our experience at the European Institute of Oncology, Milan, Italy, describing a case of BIA-ALCL in a BRCA1 mutation carrier who developed BIA-ALCL 5 years after implant-based post mastectomy reconstruction. She was treated successfully with an en-bloc capsulectomy. Additionally, we review the available literature on inherited genetic factors predisposing to the development of BIA-ALCL. In patients with genetic predisposition to breast cancer (mainly TP53 and BRCA1/2 germline mutations), BIA-ALCL prevalence seems to be higher and time to onset appears to be shorter in comparison to the general population. These high-risk patients are already included in close follow-up programs allowing the diagnosis of early-stage BIA-ALCL. For this reason, we do not believe that a different approach should be followed for postoperative surveillance.
Collapse
Affiliation(s)
- Riccardo Carbonaro
- Department of Plastic and Reconstructive Surgery, European Institute of Oncology, IRCCS
- University of Milan, Milan
| | - Giuseppe Accardo
- Breast Surgery Unit, USL Toscana centro, ospedale Santo Stefano, Prato
| | - Luca Mazzocconi
- Department of Plastic and Reconstructive Surgery, European Institute of Oncology, IRCCS
- University of Milan, Milan
| | - Stefano Pileri
- Division of Haematopathology, European Institute of Oncology, IRCCS, Milan
- Bologna University School of Medicine, Bologna
| | - Enrico Derenzini
- Onco-Hematology Division, European Institute of Oncology, IRCCS, Milan
- Department of Health Sciences, University of Milan, Milan and
| | - Paolo Veronesi
- University of Milan, Milan
- Division of Breast Surgery, European Institute of Oncology IRCCS, Milan, Italy
| | - Pietro Caldarella
- Division of Breast Surgery, European Institute of Oncology IRCCS, Milan, Italy
| | - Francesca De Lorenzi
- Department of Plastic and Reconstructive Surgery, European Institute of Oncology, IRCCS
| |
Collapse
|
11
|
Akkad N, Kodgule R, Duncavage EJ, Mehta-Shah N, Spencer DH, Watkins M, Shirai C, Myckatyn TM. Evaluation of Breast Implant-Associated Anaplastic Large Cell Lymphoma With Whole Exome and Genome Sequencing. Aesthet Surg J 2023; 43:318-328. [PMID: 36351182 DOI: 10.1093/asj/sjac282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is a rare malignancy originating from the periprosthetic capsule of a textured, most often macrotextured, breast implant. Identified in women whose indications for breast implants can be either aesthetic or reconstructive, the genomic underpinnings of this disease are only beginning to be elucidated. OBJECTIVES The aim of this study was to evaluate the exomes, and in some cases the entire genome, of patients with BIA-ALCL. Specific attention was paid to copy number alterations, chromosomal translocations, and other genomic abnormalities overrepresented in patients with BIA-ALCL. METHODS Whole-exome sequencing was performed on 6 patients, and whole-genome sequencing on 3 patients, with the Illumina NovaSeq 6000 sequencer. Data were analyzed with the Illumina DRAGEN Bio-IT Platform and the ChromoSeq pipeline. The Pathseq Genome Analysis Toolkit pipeline was used to detect the presence of microbial genomes in the sequenced samples. RESULTS Two cases with STAT3 mutations and 2 cases with NRAS mutations were noted. A critically deleted 7-Mb region was identified at the 11q22.3 region of chromosome 11, and multiple nonrecurrent chromosomal rearrangements were identified by whole-genome sequencing. Recurrent gene-level rearrangements, however, were not identified. None of the samples showed evidence of potential microbial pathogens. CONCLUSIONS Although no recurrent mutations were identified, this study identified mutations in genes not previously reported with BIA-ALCL or other forms of ALCL. Furthermore, not previously reported with BIA-ALCL, 11q22.3 deletions were consistent across whole-genome sequencing cases and present in some exomes. LEVEL OF EVIDENCE: 5
Collapse
Affiliation(s)
- Neha Akkad
- Resident of internal medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | | | | | | | | | - Marcus Watkins
- Research coordinator of medical oncology, Department of Medicine, Division of Hematology and Oncology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Cara Shirai
- Instructor of pathology and immunology, Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Terence M Myckatyn
- Professor of plastic and reconstructive surgery, Division of Plastic and Reconstruction Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
12
|
The Role of Microorganisms in the Development of Breast Implant-Associated Anaplastic Large Cell Lymphoma. Pathogens 2023; 12:pathogens12020313. [PMID: 36839585 PMCID: PMC9961223 DOI: 10.3390/pathogens12020313] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is a variant of anaplastic large cell lymphoma (ALCL) associated with textured-surface silicone breast implants. Since first being described in 1997, over 1100 cases have been currently reported worldwide. A causal relationship between BIA-ALCL and textured implants has been established in epidemiological studies, but a multifactorial process is likely to be involved in the pathogenesis of BIA-ALCL. However, pathophysiologic mechanisms remain unclear. One of the hypotheses that could explain the link between textured implants and BIA-ALCL consists in the greater tendency of bacterial biofilm in colonizing the surface of textured implants compared to smooth implants, and the resulting chronic inflammation which, in predisposed individuals, may lead to tumorigenesis. This review summarizes the existing evidence on the role of micro-organisms and rough surface implants in the development of BIA-ALCL. It also provides insights into the most updated clinical practice knowledge about BIA-ALCL, from clinical presentation and investigation to treatment and outcomes.
Collapse
|
13
|
Kadin ME, Morgan J, Wei W, Song Z, Yang Y. CD30 Regulation of IL-13-STAT6 Pathway in Breast Implant-Associated Anaplastic Large Cell Lymphoma. Aesthet Surg J 2023; 43:137-146. [PMID: 35999655 PMCID: PMC10208747 DOI: 10.1093/asj/sjac234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is a rare, usually indolent CD30+ T-cell lymphoma with tumor cells, often surrounded by eosinophils, expressing IL-13 and pSTAT6. OBJECTIVES The aim of this study was to understand the unique tumor pathology and growth regulation of BIA-ALCL, leading to potential targeted therapies. METHODS We silenced CD30 and analyzed its effect on IL-13 signaling and tumor cell viability. IL-13 signaling receptors of BIA-ALCL cell lines were evaluated by flow cytometry and pSTAT6 detected by immunohistochemistry. CD30 was deleted by CRISPR/Cas9 editing. Effects of CD30 deletion on transcription of IL-13 and IL-4, and phosphorylation of STAT6 were determined by real-time polymerase chain reaction and western blotting. The effect of CD30 deletion on p38 mitogen-activated protein kinase (MAPK) phosphorylation was determined. Suppression of IL-13 transcription by a p38 MAPK inhibitor was tested. Tumor cell viability following CD30 deletion and treatment with a pSTAT6 inhibitor were measured in cytotoxicity assays. RESULTS BIA-ALCL lines TLBR1 and TLBR2 displayed signaling receptors IL-4Rα, IL-13Rα1 and downstream pSTAT6. Deletion of CD30 by CRISPR/Cas9 editing significantly decreased transcription of IL-13, less so Th2 cytokine IL-4, and phosphorylation of STAT6. Mechanistically, we found CD30 expression is required for p38 MAPK phosphorylation and activation, and IL-13-STAT6 signaling was reduced by an inhibitor of p38 MAPK in BIA-ALCL tumor cells. Tumor cell viability was decreased by silencing of CD30, and a specific inhibitor of STAT6, indicating STAT6 inhibition is cytotoxic to BIA-ALCL tumor cells. CONCLUSIONS These findings suggest reagents targeting the IL-13 pathway, pSTAT6 and p38 MAPK, may become useful for treating BIA-ALCL patients.
Collapse
Affiliation(s)
- Marshall E Kadin
- Department of Pathology and Laboratory Medicine, Brown University Alpert
School of Medicine, Providence, RI. USA
| | | | - Wei Wei
- Fox Chase Cancer Center, Philadelphia,
PA, USA
| | - Zhihui Song
- Fox Chase Cancer Center, Philadelphia,
PA, USA
| | - Yibin Yang
- Blood Cell Development and Function Program, Fox Chase Cancer
Center, Philadelphia, PA, USA
| |
Collapse
|
14
|
Turner SD. Commentary on: CD30 Regulation of IL-13-STAT6 Pathway in Breast Implant-Associated Anaplastic Large Cell Lymphoma. Aesthet Surg J 2023; 43:147-149. [PMID: 36380464 DOI: 10.1093/asj/sjac297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
|
15
|
Lewis NE, Sardana R, Dogan A. Mature T-cell and NK-cell lymphomas: updates on molecular genetic features. Int J Hematol 2023; 117:475-491. [PMID: 36637656 DOI: 10.1007/s12185-023-03537-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/15/2022] [Accepted: 01/06/2023] [Indexed: 01/14/2023]
Abstract
Mature T-cell and NK-cell lymphomas are a heterogeneous group of rare and typically aggressive neoplasms. Diagnosis and subclassification have historically relied primarily on the integration of clinical, histologic, and immunophenotypic features, which often overlap. The widespread application of a variety of genomic techniques in recent years has provided extensive insight into the pathobiology of these diseases, allowing for more precise diagnostic classification, improved prognostication, and development of novel therapies. In this review, we summarize the genomic features of the most common types of mature T-cell and NK-cell lymphomas with a particular focus on the contribution of genomics to biologic insight, classification, risk stratification, and select therapies in the context of the recently published International Consensus and updated World Health Organization classification systems.
Collapse
Affiliation(s)
- Natasha E Lewis
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Rohan Sardana
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Ahmet Dogan
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
16
|
Xie W, Medeiros LJ, Li S, Tang G, Fan G, Xu J. PD-1/PD-L1 Pathway: A Therapeutic Target in CD30+ Large Cell Lymphomas. Biomedicines 2022; 10:biomedicines10071587. [PMID: 35884893 PMCID: PMC9313053 DOI: 10.3390/biomedicines10071587] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/17/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022] Open
Abstract
The programmed death-ligands, PD-L1 and PD-L2, reside on tumor cells and can bind with programmed death-1 protein (PD-1) on T-cells, resulting in tumor immune escape. PD-1 ligands are highly expressed in some CD30+ large cell lymphomas, including classic Hodgkin lymphoma (CHL), primary mediastinal large B-cell lymphoma (PMBL), Epstein–Barr virus (EBV)-positive diffuse large B-cell lymphoma (EBV+ DLBCL), and anaplastic large cell lymphoma (ALCL). The genetic alteration of the chromosome 9p24.1 locus, the location of PD-L1, PD-L2, and JAK2 are the main mechanisms leading to PD-L1 and PD-L2 overexpression and are frequently observed in these CD30+ large cell lymphomas. The JAK/STAT pathway is also commonly constitutively activated in these lymphomas, further contributing to the upregulated expression of PD-L1 and PD-L2. Other mechanisms underlying the overexpression of PD-L1 and PD-L2 in some cases include EBV infection and the activation of the mitogen-activated protein kinase (MAPK) pathway. These cellular and molecular mechanisms provide a scientific rationale for PD-1/PD-L1 blockade in treating patients with relapsed/refractory (R/R) disease and, possibly, in newly diagnosed patients. Given the high efficacy of PD-1 inhibitors in patients with R/R CHL and PMBL, these agents have become a standard treatment in these patient subgroups. Preliminary studies of PD-1 inhibitors in patients with R/R EBV+ DLBCL and R/R ALCL have also shown promising results. Future directions for these patients will likely include PD-1/PD-L1 blockade in combination with other therapeutic agents, such as brentuximab or traditional chemotherapy regimens.
Collapse
Affiliation(s)
- Wei Xie
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA; (W.X.); (G.F.)
| | - L. Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (L.J.M.); (S.L.); (G.T.)
| | - Shaoying Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (L.J.M.); (S.L.); (G.T.)
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (L.J.M.); (S.L.); (G.T.)
| | - Guang Fan
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA; (W.X.); (G.F.)
| | - Jie Xu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (L.J.M.); (S.L.); (G.T.)
- Correspondence: ; Tel.: +1-713-794-1220; Fax: +1-713-563-3166
| |
Collapse
|
17
|
Anaplastic Large Cell Lymphoma: Molecular Pathogenesis and Treatment. Cancers (Basel) 2022; 14:cancers14071650. [PMID: 35406421 PMCID: PMC8997054 DOI: 10.3390/cancers14071650] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Anaplastic large cell lymphoma is a rare type of disease that occurs throughout the world and has four subtypes. A summary and comparison of these subtypes can assist with advancing our knowledge of the mechanism and treatment of ALCL, which is helpful in making progress in this field. Abstract Anaplastic large cell lymphoma (ALCL) is an uncommon type of non-Hodgkin’s lymphoma (NHL), as well as one of the subtypes of T cell lymphoma, accounting for 1 to 3% of non-Hodgkin’s lymphomas and around 15% of T cell lymphomas. In 2016, the World Health Organization (WHO) classified anaplastic large cell lymphoma into four categories: ALK-positive ALCL (ALK+ALCL), ALK-negative ALCL (ALK−ALCL), primary cutaneous ALCL (pcALCL), and breast-implant-associated ALCL (BIA-ALCL), respectively. Clinical symptoms, gene changes, prognoses, and therapy differ among the four types. Large lymphoid cells with copious cytoplasm and pleomorphic characteristics with horseshoe-shaped or reniform nuclei, for example, are found in both ALK+ and ALK−ALCL. However, their epidemiology and pathogenetic origins are distinct. BIA-ALCL is currently recognized as a new provisional entity, which is a noninvasive disease with favorable results. In this review, we focus on molecular pathogenesis and management of anaplastic large cell lymphoma.
Collapse
|
18
|
Genetic profiling and biomarkers in peripheral T-cell lymphomas: current role in the diagnostic work-up. Mod Pathol 2022; 35:306-318. [PMID: 34584212 DOI: 10.1038/s41379-021-00937-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/08/2022]
Abstract
Peripheral T-cell lymphomas are a heterogeneous, and usually aggressive, group of mature T-cell neoplasms with overlapping clinical, morphologic and immunologic features. A large subset of these neoplasms remains unclassifiable with current diagnostic methods ("not otherwise specified"). Genetic profiling and other molecular tools have emerged as widely applied and transformative technologies for discerning the biology of lymphomas and other hematopoietic neoplasms. Although the application of these technologies to peripheral T-cell lymphomas has lagged behind B-cell lymphomas and other cancers, molecular profiling has provided novel prognostic and diagnostic markers as well as an opportunity to understand the biologic mechanisms involved in the pathogenesis of these neoplasms. Some biomarkers are more prevalent in specific T-cell lymphoma subsets and are being used currently in the diagnosis and/or risk stratification of patients with peripheral T-cell lymphomas. Other biomarkers, while promising, need to be validated in larger clinical studies. In this review, we present a summary of our current understanding of the molecular profiles of the major types of peripheral T-cell lymphoma. We particularly focus on the use of biomarkers, including those that can be detected by conventional immunohistochemical studies and those that contribute to the diagnosis, classification, or risk stratification of these neoplasms.
Collapse
|
19
|
Kadin ME, Xu H, Hunsicker LM, Guan Y. Nonmalignant CD30+ Cells in Contralateral Peri-Implant Capsule of Patient With BIA-ALCL: A Premalignant Step? Aesthet Surg J 2022; 42:NP125-NP129. [PMID: 33944901 DOI: 10.1093/asj/sjab215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
CD30 lymphocyte activation antigen and phosphorylated STAT3 (pSTAT3) are consistent markers of tumor cells in breast implant-associated anaplastic large cell lymphoma (BIA-ALCL). We present a case of BIA-ALCL in a breast implant capsule containing clustered tumor cells expressing CD30, pSTAT3, pSTAT6, interleukin 9, and granzyme B tumor cell biomarkers. Remarkably, the contralateral breast contained many scattered large, atypical CD30+ cells surrounded by inflammatory cells, raising a suspicion of bilateral BIA-ALCL, known to occur in some patients. To clarify the diagnosis, immunohistochemistry and multilabel immunofluorescence were performed. Unlike the tumor cells, the atypical CD30+ cells of the contralateral breast lacked pSTAT3, pSTAT6, interleukin 9, and granzyme B, eliminating a diagnosis of bilateral BIA-ALCL. This case highlights the importance of interpreting CD30 staining in the context of other tumor cell biomarkers and histopathology to avoid an incorrect diagnosis of BIA-ALCL. We believe the findings also suggest the possibility of CD30 expression as an early event in the multistep pathogenesis of BIA-ALCL. LEVEL OF EVIDENCE: 5
Collapse
Affiliation(s)
- Marshall E Kadin
- Department of Pathology and Laboratory Medicine, Brown University Alpert Medical School, Providence, RI, USA
| | - Haiying Xu
- Rhode Island Hospital, Providence, RI, USA
| | | | - Yingjie Guan
- Department of Medicine, Brown University Alpert Medical School, Providence, RI, USA
| |
Collapse
|
20
|
Wang Y, Zhang Q, Tan Y, Lv W, Zhao C, Xiong M, Hou K, Wu M, Ren Y, Zeng N, Wu Y. Current Progress in Breast Implant-Associated Anaplastic Large Cell Lymphoma. Front Oncol 2022; 11:785887. [PMID: 35070989 PMCID: PMC8770274 DOI: 10.3389/fonc.2021.785887] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Breast implant-associated anaplastic large-cell lymphoma (BIA-ALCL) is an uncommon type of T-cell lymphoma. Although with a low incidence, the epidemiological data raised the biosafety and health concerns of breast reconstruction and breast augmentation for BIA-ALCL. Emerging evidence confirms that genetic features, bacterial contamination, chronic inflammation, and textured breast implant are the relevant factors leading to the development of BIA-ALCL. Almost all reported cases with a medical history involve breast implants with a textured surface, which reflects the role of implant surface characteristics in BIA-ALCL. With this review, we expect to highlight the most significant features on etiology, pathogenesis, diagnosis, and therapy of BIA-ALCL, as well as we review the physical characteristics of breast implants and their potential pathogenic effect and hopefully provide a foundation for optimal choice of type of implant with minimal morbidity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Min Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuping Ren
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Zeng
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- *Correspondence: Yiping Wu, ; Min Wu, ; Yuping Ren, ; Ning Zeng,
| |
Collapse
|
21
|
Lajevardi SS, Rastogi P, Isacson D, Deva AK. What are the likely causes of Breast Implant Associated Anaplastic Large Cell Lymphoma (BIA-ALCL)? JPRAS Open 2022; 32:34-42. [PMID: 35242986 PMCID: PMC8867047 DOI: 10.1016/j.jpra.2021.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/18/2021] [Indexed: 11/30/2022] Open
Abstract
Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is a CD30-positive, anaplastic lymphoma kinase-negative T-cell lymphoma. Where implant history is known, all confirmed cases to date have occurred in patients with exposure to textured implants. The etiopathogenesis of BIA-ALCL is likely to be multifactorial, with current evidence-based theories recognising the combination of chronic infection in setting of textured implants, gram-negative biofilm formation, chronic inflammation, host genetics (e.g. JAK/STAT, p53) and time in tumorigenesis. Proposed triggers for the development of malignancy are mechanical friction, silicone implant shell particulates, silicone leachables and bacteria. Of these, the bacterial hypothesis has received significant attention, supported by a plausible biological model. In this model, bacteria form an adherent biofilm in the favourable environment of the textured implant surface, producing a bacterial load that elicits a chronic inflammatory response. Bacterial antigens, primarily of gram-negative origin, may trigger innate immunity and induce T-cell proliferation with subsequent malignant transformation in genetically susceptible individuals. Future research, investigating BIA-ALCL genetic mutations and immunological modulation with Gram-negative biofilm in BIA-ALCL models is warranted to establish a unifying theory for the aetiology of BIA-ALCL.
Collapse
Affiliation(s)
| | | | | | - Anand K. Deva
- Corresponding author at: Suite 301, 2 Technology Place, Macquarie University, NSW 2109 Australia.
| |
Collapse
|
22
|
Di Napoli A, Vacca D, Bertolazzi G, Lopez G, Piane M, Germani A, Rogges E, Pepe G, Santanelli Di Pompeo F, Salgarello M, Jobanputra V, Hsiao S, Wrzeszczynski KO, Berti E, Bhagat G. RNA Sequencing of Primary Cutaneous and Breast-Implant Associated Anaplastic Large Cell Lymphomas Reveals Infrequent Fusion Transcripts and Upregulation of PI3K/AKT Signaling via Neurotrophin Pathway Genes. Cancers (Basel) 2021; 13:cancers13246174. [PMID: 34944796 PMCID: PMC8699465 DOI: 10.3390/cancers13246174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Cutaneous and breast implant-associated anaplastic large-cell lymphomas are usually localized neoplasms with an indolent clinical course compared to systemic ALCL. However comparative analyses of the molecular features of these two entities have not yet been reported. We performed targeted RNA sequencing, which revealed that fusion transcripts, although infrequent, might represent additional pathogenetic events in both diseases. We also found that these entities display upregulation of the PI3K/Akt pathway and show enrichment in genes of the neurotrophin signaling pathway. These findings advance our knowledge regarding the pathobiology of cALCL and BI-ALCL and point to additional therapeutic targets. Abstract Cutaneous and breast implant-associated anaplastic large-cell lymphomas (cALCLs and BI-ALCLs) are two localized forms of peripheral T-cell lymphomas (PTCLs) that are recognized as distinct entities within the family of ALCL. JAK-STAT signaling is a common feature of all ALCL subtypes, whereas DUSP22/IRF4, TP63 and TYK gene rearrangements have been reported in a proportion of ALK-negative sALCLs and cALCLs. Both cALCLs and BI-ALCLs differ in their gene expression profiles compared to PTCLs; however, a direct comparison of the genomic alterations and transcriptomes of these two entities is lacking. By performing RNA sequencing of 1385 genes (TruSight RNA Pan-Cancer, Illumina) in 12 cALCLs, 10 BI-ALCLs and two anaplastic lymphoma kinase (ALK)-positive sALCLs, we identified the previously reported TYK2-NPM1 fusion in 1 cALCL (1/12, 8%), and four new intrachromosomal gene fusions in 2 BI-ALCLs (2/10, 20%) involving genes on chromosome 1 (EPS15-GNG12 and ARNT-GOLPH3L) and on chromosome 17 (MYO18A-GIT1 and NF1-GOSR1). One of the two BI-ALCL samples showed a complex karyotype, raising the possibility that genomic instability may be responsible for intra-chromosomal fusions in BI-ALCL. Moreover, transcriptional analysis revealed similar upregulation of the PI3K/Akt pathway, associated with enrichment in the expression of neurotrophin signaling genes, which was more conspicuous in BI-ALCL, as well as differences, i.e., over-expression of genes involved in the RNA polymerase II transcription program in BI-ALCL and of the RNA splicing/processing program in cALCL.
Collapse
Affiliation(s)
- Arianna Di Napoli
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
- Correspondence:
| | - Davide Vacca
- Department of Surgical, Oncological and Oral Sciences, Palermo University, 90134 Palermo, Italy;
| | - Giorgio Bertolazzi
- Tumour Immunology Unit, Human Pathology Section, Department of Health Science, Palermo University, 90134 Palermo, Italy;
| | - Gianluca Lopez
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
| | - Maria Piane
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
| | - Aldo Germani
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
| | - Evelina Rogges
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
| | - Giuseppina Pepe
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
| | | | - Marzia Salgarello
- Department of Plastic Surgery, Catholic University of Sacred Heart, University Hospital Agostino Gemelli, 00168 Roma, Italy;
| | - Vaidehi Jobanputra
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY 10032, USA; (V.J.); (S.H.); (G.B.)
- New York Genome Center, New York, NY 10013, USA;
| | - Susan Hsiao
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY 10032, USA; (V.J.); (S.H.); (G.B.)
| | | | - Emilio Berti
- Department of Dermatology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY 10032, USA; (V.J.); (S.H.); (G.B.)
| |
Collapse
|
23
|
Gram-Negative Bacterial Lipopolysaccharide Promotes Tumor Cell Proliferation in Breast Implant-Associated Anaplastic Large-Cell Lymphoma. Cancers (Basel) 2021; 13:cancers13215298. [PMID: 34771464 PMCID: PMC8582399 DOI: 10.3390/cancers13215298] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/02/2021] [Accepted: 10/11/2021] [Indexed: 01/04/2023] Open
Abstract
Breast implant-associated anaplastic large-cell lymphoma (BIA-ALCL) is a distinct malignancy associated with textured breast implants. We investigated whether bacteria could trigger the activation and multiplication of BIA-ALCL cells in vitro. BIA-ALCL patient-derived BIA-ALCL tumor cells, BIA-ALCL cell lines, cutaneous ALCL cell lines, an immortal T-cell line (MT-4), and peripheral blood mononuclear cells (PBMC) from BIA-ALCL, capsular contracture, and primary augmentation patients were studied. Cells were subjected to various mitogenic stimulation assays including plant phytohemagglutinin (PHA), Gram-negative bacterial lipopolysaccharide (LPS), Staphylococcal superantigens enterotoxin A (SEA), toxic shock syndrome toxin-1 (TSST-1), or sterilized implant shells. Patient-derived BIA-ALCL tumor cells and BIA-ALCL cell lines showed a unique response to LPS stimulation. This response was dampened significantly in the presence of a Toll-like receptor 4 (TLR4) inhibitor peptide. In contrast, cutaneous ALCL cells, MT-4, and PBMC cells from all patients responded significantly more to PHA, SEA, and TSST-1 than to LPS. Breast implant shells of all surface grades alone did not produce a proliferative response of BIA-ALCL cells, indicating the breast implant does not act as a pro-inflammatory stimulant. These findings indicate a possible novel pathway for LPS to promote BIA-ALCL cell proliferation via a TLR4 receptor-mediated bacterial transformation of T-cells into malignancy.
Collapse
|
24
|
An Update on the Current Genomic Landscape of Breast Implant-Associated Anaplastic Large Cell Lymphoma. Cancers (Basel) 2021; 13:cancers13194921. [PMID: 34638403 PMCID: PMC8508182 DOI: 10.3390/cancers13194921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Breast implant-associated lymphoma is a unique entity that arises in the setting of breast prostheses due to a complex interplay of external and internal factors. Understanding of the mechanisms of pathogenesis is yet to be fully elucidated but recurrent mutations in signalling pathways, tumour suppressors and epigenetic regulators have been reported. This article summarises the key studies to date that have described these genetic aberrancies, which have provided an insight into potential pathways to lymphogenesis. Abstract Breast implant-associated lymphoma (BIA-ALCL) is a rare subtype of anaplastic large-cell lymphoma associated with breast prostheses. Most patients present with a localised periprosthetic effusion and are managed with removal of the implant and surrounding capsule. Less commonly, the lymphoma can form a mass associated with the capsule and rarely can present with disseminated disease. Recent series characterising the genomic landscape of BIA-ALCL have led to insights into the mechanisms of lymphomagenesis. Constitutive JAK/STAT pathway activation has emerged as a likely key component while, more recently, aberrancies in epigenetic regulators have been reported. This review describes the genomic characterisation reported to date and the insight these findings have provided into this rare entity.
Collapse
|
25
|
ALK-Negative Anaplastic Large Cell Lymphoma: Current Concepts and Molecular Pathogenesis of a Heterogeneous Group of Large T-Cell Lymphomas. Cancers (Basel) 2021; 13:cancers13184667. [PMID: 34572893 PMCID: PMC8472588 DOI: 10.3390/cancers13184667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary ALK- anaplastic large cell lymphoma (ALK- ALCL) is a rare subtype of CD30+ large T-cell lymphoma that typically affects older adults and has a poor prognosis. Recognition of its histopathologic spectrum, subtypes, and of other tumors that can resemble ALK- ALCL is crucial to avoid making a wrong diagnosis that could result in inappropriate treatment for a patient. In recent years, several important studies have identified recurrent molecular alterations that have shed light on the pathogenesis of this lymphoma. However, on the other hand, putting all this vast information together into a concise form has become challenging. In this review, we present not only a more detailed view of the histopathologic findings of ALK- ALCL but also, we attempt to provide a more simplified perspective of the relevant genetic and molecular alterations of this type of lymphoma, that in our opinion, is not available to date. Abstract Anaplastic large cell lymphoma (ALCL) is a subtype of CD30+ large T-cell lymphoma (TCL) that comprises ~2% of all adult non-Hodgkin lymphomas. Based on the presence/absence of the rearrangement and expression of anaplastic lymphoma kinase (ALK), ALCL is divided into ALK+ and ALK-, and both differ clinically and prognostically. This review focuses on the historical points, clinical features, histopathology, differential diagnosis, and relevant cytogenetic and molecular alterations of ALK- ALCL and its subtypes: systemic, primary cutaneous (pc-ALCL), and breast implant-associated (BIA-ALCL). Recent studies have identified recurrent genetic alterations in this TCL. In systemic ALK- ALCL, rearrangements in DUSP22 and TP63 are detected in 30% and 8% of cases, respectively, while the remaining cases are negative for these rearrangements. A similar distribution of these rearrangements is seen in pc-ALCL, whereas none have been detected in BIA-ALCL. Additionally, systemic ALK- ALCL—apart from DUSP22-rearranged cases—harbors JAK1 and/or STAT3 mutations that result in the activation of the JAK/STAT signaling pathway. The JAK1/3 and STAT3 mutations have also been identified in BIA-ALCL but not in pc-ALCL. Although the pathogenesis of these alterations is not fully understood, most of them have prognostic value and open the door to the use of potential targeted therapies for this subtype of TCL.
Collapse
|
26
|
Mackay DR. Commentary on: Breast Implant-Associated Anaplastic Large Cell Lymphoma (BIA-ALCL): Review of Epidemiology and Prevalence Assessment in Europe. Aesthet Surg J 2021; 41:1026-1028. [PMID: 33724350 DOI: 10.1093/asj/sjab038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Donald R Mackay
- Department of Surgery, Penn State Hershey College of Medicine, Hershey, PA, USA
| |
Collapse
|
27
|
Yang B, Wang F, Zheng G. Transmembrane protein TMEM119 facilitates the stemness of breast cancer cells by activating Wnt/β-catenin pathway. Bioengineered 2021; 12:4856-4867. [PMID: 34334123 PMCID: PMC8806430 DOI: 10.1080/21655979.2021.1960464] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The effects of transmembrane protein 119 (TMEM119) on breast cancer progression have not been elucidated. This study aims to investigate the roles of TMEM119 in breast cancer progression. Clinical samples and online datasets were used to determine TMEM119 expression and its correlation between patients’ survival. Wound healing, transwell invasion, mammary spheroid formation, and ALDH activity were performed to detect the effects of TMEM119. RNA-sequencing, Luciferase report analysis, Co-IP, and ChIP analysis were constructed to reveal the underlying mechanisms. We found that TMEM119 was highly expressed in breast cancer tissues and cells compared to that in normal tissues and cells. Additionally, TMEM119 expression was negatively correlated with the survival of breast cancer patients. TMEM119 knockdown reduced the expression of stemness markers, mammary spheroid-formation ability and ALDH activity. RNA-sequencing analysis indicated that Wnt/β-catenin signaling was enriched in cells with TMEM119 overexpression. Further co-IP experiments indicated that TMEM119 interacted with β-catenin and maintained its protein stability. Conversely, β-catenin directly bound to TMEM119 gene promoter and thus increased TMEM119 transcriptional activity and its expression. Finally, we demonstrated that TMEM119-mediated effects depended on Wnt/β-catenin signaling. Thus, this work reveals a novel TMEM119-β-catenin positive feedback loop essential for breast cancer cell stemness.
Collapse
Affiliation(s)
- Ben Yang
- Department of Breast Surgery, Shandong Cancer Hospital, the Cancer Hospital Affiliated to Shandong First Medical University, Jinan City, Shandong Province, China
| | - Fengling Wang
- Department of Breast Surgery, Shandong Cancer Hospital, the Cancer Hospital Affiliated to Shandong First Medical University, Jinan City, Shandong Province, China
| | - Gang Zheng
- Department of Breast Surgery, Shandong Cancer Hospital, the Cancer Hospital Affiliated to Shandong First Medical University, Jinan City, Shandong Province, China
| |
Collapse
|
28
|
Zhu L, Xie S, Yang C, Hua N, Wu Y, Wang L, Ni W, Tong X, Fei M, Wang S. Current Progress in Investigating Mature T- and NK-Cell Lymphoma Gene Aberrations by Next-Generation Sequencing (NGS). Cancer Manag Res 2021; 13:5275-5286. [PMID: 34239326 PMCID: PMC8259727 DOI: 10.2147/cmar.s299505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/14/2021] [Indexed: 11/23/2022] Open
Abstract
Despite efforts to abrogate the severe threat to life posed by the profound malignancy of mature natural killer/T-cell lymphoma (NKTCL), therapeutic advances still require further investigation of its inherent regulatory biochemical processes. Next-generation sequencing (NGS) is an increasingly developing gene detection technique, which has been widely used in lymphoma genetic research in recent years. Targeted therapy based on the above studies has also generated a series of advances, making genetic mutation a new research hotspot in lymphoma. Advances in NKTCL-related gene mutations are reviewed in this paper.
Collapse
Affiliation(s)
- Lifen Zhu
- Molecular diagnosis laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Shufang Xie
- Molecular diagnosis laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Chen Yang
- Molecular diagnosis laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
- Department of Clinical Medicine, Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Nanni Hua
- Molecular diagnosis laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yi Wu
- Phase I clinical research center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Lei Wang
- Molecular diagnosis laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Wanmao Ni
- Molecular diagnosis laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiangmin Tong
- Molecular diagnosis laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Min Fei
- Center of Health Management, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Shibing Wang
- Molecular diagnosis laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
29
|
Oishi N, Hundal T, Phillips JL, Dasari S, Hu G, Viswanatha DS, He R, Mai M, Jacobs HK, Ahmed NH, Syrbu SI, Salama Y, Chapman JR, Vega F, Sidhu J, Bennani NN, Epstein AL, Medeiros JL, Clemens MW, Miranda RN, Feldman AL. Molecular profiling reveals a hypoxia signature in breast implant-associated anaplastic large cell lymphoma. Haematologica 2021; 106:1714-1724. [PMID: 32414854 PMCID: PMC8168507 DOI: 10.3324/haematol.2019.245860] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 01/17/2023] Open
Abstract
Breast implant-associated anaplastic large cell lymphoma (BIAALCL) is a recently characterized T-cell malignancy that has raised significant patient safety concerns and led to worldwide impact on the implants used and clinical management of patients undergoing reconstructive or cosmetic breast surgery. Molecular signatures distinguishing BIA-ALCL from other anaplastic large cell lymphomas have not been fully elucidated and classification of BIA-ALCL as a World Health Organization entity remains provisional. We performed RNA sequencing and gene set enrichment analysis comparing BIA-ALCL to non-BIAALCL and identified dramatic upregulation of hypoxia signaling genes including the hypoxia-associated biomarker CA9 (carbonic anyhydrase- 9). Immunohistochemistry validated CA9 expression in all BIA-ALCL, with only minimal expression in non-BIA-ALCL. Growth induction in BIA-ALCL-derived cell lines cultured under hypoxic conditions was proportional to upregulation of CA9 expression, and RNA sequencing demonstrated induction of the same gene signature observed in BIAALCL tissue samples compared to non-BIA-ALCL. CA9 silencing blocked hypoxia-induced BIA-ALCL cell growth and cell cycle-associated gene expression, whereas CA9 overexpression in BIA-ALCL cells promoted growth in a xenograft mouse model. Furthermore, CA9 was secreted into BIA-ALCL cell line supernatants and was markedly elevated in human BIA-ALCL seroma samples. Finally, serum CA9 concentrations in mice bearing BIA-ALCL xenografts were significantly elevated compared to those in control serum. Together, these findings characterize BIA-ALCL as a hypoxia-associated neoplasm, likely attributable to the unique microenvironment in which it arises. These data support classification of BIA-ALCL as a distinct entity and uncover opportunities for investigating hypoxia-related proteins such as CA9 as novel biomarkers and therapeutic targets in this disease.
Collapse
Affiliation(s)
- Naoki Oishi
- Department of Pathology, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Tanya Hundal
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Jessica L Phillips
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Surendra Dasari
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Guangzhen Hu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - David S Viswanatha
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Rong He
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ming Mai
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Hailey K Jacobs
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Nada H Ahmed
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Sergei I Syrbu
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Youssef Salama
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Francisco Vega
- Department of Pathology, University of Miami, Miami, FL, USA
| | - Jagmohan Sidhu
- Department of Pathology and Laboratory Medicine, United Health Services, Binghamton, NY, USA
| | | | - Alan L Epstein
- Dept of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Jeffrey L Medeiros
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Mark W Clemens
- Department of Plastic Surgery, MD Anderson Cancer Center, Houston, TX, USA
| | - Roberto N Miranda
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
30
|
Rotili A, Ferrari F, Nicosia L, Pesapane F, Tabanelli V, Fiori S, Vanazzi A, Meneghetti L, Abbate F, Latronico A, Cassano E. MRI features of breast implant-associated anaplastic large cell lymphoma. Br J Radiol 2021; 94:20210093. [PMID: 33989039 DOI: 10.1259/bjr.20210093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is a rare and newly recognized subtype of T cell Non-Hodgkin Lymphoma (NHLs) associated with breast implants.The mechanism involved in the development of this kind of lymphoma is still uncertain.BIA-ALCL is generally an indolent disease localized to the breast implant and its capsule and effectively treated with capsulectomy alone without chemotherapy.Clinically, BIA-ALCL may typically present a sudden-onset breast-swelling secondary to periimplant effusion. The minority of BIA-ALCL patients present a more aggressive mass-forming subtype, for which systemic therapy is mandatory.Despite the number of cases has recently increased, BIA-ALCL remains a rare disease described mainly in several case reports and small case series.Breast imaging, including mammography, ultrasound and breast MRI are routinely used in the screening of breast cancer; however, guidelines for the imaging and pathological diagnosis of this disease have only recently been proposed and included in the 2019 National Comprehensive Cancer Network (NCCN) consensus guidelines for BIA-ALCL.The main purpose of this pictorial is to illustrate the MRI signs of BIA-ALCL and correlate them with the corresponding pathology features in order to improve the knowledge of the principals MRI features of this type of lymphoma.
Collapse
Affiliation(s)
- Anna Rotili
- Division of Breast Radiology, IEO - European Institute of Oncology IRCCS, Milan, Italy
| | - Federica Ferrari
- Division of Breast Radiology, IEO - European Institute of Oncology IRCCS, Milan, Italy
| | - Luca Nicosia
- Division of Breast Radiology, IEO - European Institute of Oncology IRCCS, Milan, Italy
| | - Filippo Pesapane
- Division of Breast Radiology, IEO - European Institute of Oncology IRCCS, Milan, Italy
| | - Valentina Tabanelli
- Division of Diagnostic Hematopathology, IEO - European Institute of Oncology IRCCS, Milan, Italy
| | - Stefano Fiori
- Division of Diagnostic Hematopathology, IEO - European Institute of Oncology IRCCS, Milan, Italy
| | - Anna Vanazzi
- Division of Hemato-Oncology, IEO - European Institute of Oncology IRCCS, Milan, Italy
| | - Lorenza Meneghetti
- Division of Breast Radiology, IEO - European Institute of Oncology IRCCS, Milan, Italy
| | - Francesca Abbate
- Division of Breast Radiology, IEO - European Institute of Oncology IRCCS, Milan, Italy
| | - Antuono Latronico
- Division of Breast Radiology, IEO - European Institute of Oncology IRCCS, Milan, Italy
| | - Enrico Cassano
- Division of Breast Radiology, IEO - European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
31
|
Cuomo R. The State of the Art about Etiopathogenetic Models on Breast Implant Associated-Anaplastic Large Cell Lymphoma (BIA-ALCL): A Narrative Review. J Clin Med 2021; 10:2082. [PMID: 34066230 PMCID: PMC8151182 DOI: 10.3390/jcm10102082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Breast-implant-associated anaplastic large cell lymphoma is a rare malignancy linked to texturized breast implants. Although many researchers focus on its etiopathogenesis, this topic is affected by a lack of evidence. MATERIALS AND METHODS A literature review about BIA-ALCL was made. RESULTS AND CONCLUSIONS Although the incidence is reported between 1:355-1:30,000, there is great attention to BIA-ALCL. The incidence is uncertain due to many reasons. It may well be lower, due to inclusion in multiple databases as pointed out by the FDA and undiagnosed cases. The role of chronic inflammation, bacterial contamination, and mechanical forces was discussed. Clarification is needed to understand the mechanisms underlying the progression of alterations and mutations for BIA-ALCL; new molecular analysis and pathogenetic models should be investigated.
Collapse
Affiliation(s)
- Roberto Cuomo
- Plastic and Reconstructive Surgery Unit, Department of Medicine, Surgery and Neuroscience, S. Maria Alle Scotte Hospital, University of Siena, Mario Bracci Street, 53100 Siena, Italy
| |
Collapse
|
32
|
Cellular and Molecular Mechanisms of Breast Implant-Associated Anaplastic Large Cell Lymphoma. Plast Reconstr Surg 2021; 147:30e-41e. [PMID: 33370049 DOI: 10.1097/prs.0000000000007423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
SUMMARY Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is an emerging and highly treatable cancer of the immune system that can form around textured-surface breast implants. Although the underlying cause has yet to be elucidated, an emerging theme-linking pathogenesis to a chronic inflammatory state-continues to dominate the current literature. Specifically, the combination of increasing mutation burden and chronic inflammation leads to aberrant T-cell clonal expansion. However, the impetus remains largely unknown. Proposed mechanisms include a lipopolysaccharide endotoxin response, oncogenic transformation related to viral infection, associated trauma to the breast pocket, particulate matter digestion by capsular macrophages, chronic allergic inflammation, and genetic susceptibility. The Janus kinase-signal transducer and activator of transcription 3 (JAK-STAT3) pathway is a major signaling pathway that regulates a variety of intracellular growth and survival processes. Constitutive activation of JAK-STAT3 has been implicated in several malignancies, including lymphomas, and has recently been identified as a potential key mediator in BIA-ALCL. The purpose of this article is to review the cellular and molecular mechanisms of BIA-ALCL with a focus on the role of oncogenic JAK-STAT3 signaling in BIA-ALCL tumorigenesis and progression. Selected experimental work from the authors' group on aberrant JAK-STAT3 signaling in BIA-ALCL is also included. The authors discuss how an inflammatory microenvironment may facilitate malignant transformation through the JAK-STAT3 pathway-highlighting its potential mechanistic role. The authors' hope is that further investigation of this signaling pathway will reveal avenues for using JAK-STAT3 signaling as a prognostic indicator and novel therapeutic target in the case of advanced disease.
Collapse
|
33
|
Abstract
ABSTRACT Each year, hundreds of thousands of women undergo aesthetic or reconstructive breast implant surgery. Clinicians and patients must be aware of the benefits and risks of this surgery. Recently, the FDA suggested a recall of certain textured breast implants because of a link between these implants and a rare form of lymphoma, now referred to as breast implant-associated anaplastic large cell lymphoma (BIA-ALCL). This malignancy has an indolent course and an excellent prognosis when detected and treated early. This article reviews BIA-ALCL, addresses public safety advisories, and emphasizes protocol that all clinicians should follow when encountering a patient with textured breast implants.
Collapse
Affiliation(s)
- Cayla McKernan
- Cayla McKernan practices in plastic and reconstructive surgery at Memorial Sloan Kettering Cancer Center in New York, N.Y. The author has disclosed no potential conflicts of interest, financial or otherwise
| |
Collapse
|
34
|
DeCoster RC, Lynch EB, Bonaroti AR, Webster JM, Butterfield TA, Evers BM, Vasconez HC, Clemens MW. Breast Implant-associated Anaplastic Large Cell Lymphoma: An Evidence-based Systematic Review. Ann Surg 2021; 273:449-458. [PMID: 33234792 DOI: 10.1097/sla.0000000000004365] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This evidence-based systematic review synthesizes and critically appraises current clinical recommendations and advances in the diagnosis and treatment of BIA-ALCL. This review also aims to broaden physician awareness across diverse specialties, particularly among general practitioners, breast surgeons, surgical oncologists, and other clinicians who may encounter patients with breast implants in their practice. BACKGROUND BIA-ALCL is an emerging and treatable immune cell cancer definitively linked to textured-surface breast implants. Although the National Comprehensive Cancer Network (NCCN) consensus guidelines and other clinical recommendations have been established, the evidence supporting these guidelines has not been systematically studied. The purpose of this evidence-based systematic review is to synthesize and critically appraise current clinical guidelines and recommendations while highlighting advances in diagnosis and treatment and raising awareness for this emerging disease. METHODS This evidence-based systematic review evaluated primary research studies focusing on the diagnosis and treatment of BIA-ALCL that were published in PubMed, Google Scholar, and other scientific databases through March 2020. RESULTS AND CONCLUSIONS The clinical knowledge of BIA-ALCL has evolved rapidly over the last several years with major advances in diagnosis and treatment, including en bloc resection as the standard of care. Despite a limited number of high-quality clinical studies comprised mainly of Level III and Level V evidence, current evidence aligns with established NCCN consensus guidelines. When diagnosed and treated in accordance with NCCN guidelines, BIA-ALCL carries an excellent prognosis.
Collapse
Affiliation(s)
- Ryan C DeCoster
- Lucille P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky
- Division of Plastic and Reconstructive Surgery, University of Kentucky, Lexington, Kentucky
| | - Evan B Lynch
- Division of Plastic and Reconstructive Surgery, University of Kentucky, Lexington, Kentucky
| | - Alisha R Bonaroti
- Division of Plastic and Reconstructive Surgery, University of Kentucky, Lexington, Kentucky
| | | | | | - Bernard Mark Evers
- Lucille P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Henry C Vasconez
- Division of Plastic and Reconstructive Surgery, University of Kentucky, Lexington, Kentucky
| | - Mark W Clemens
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
35
|
Manso R, Rodríguez-Perales S, Torres-Ruiz R, Santonja C, Rodríguez-Pinilla SM. PD-L1 expression in peripheral T-cell lymphomas is not related to either PD-L1 gene amplification or rearrangements. Leuk Lymphoma 2021; 62:1648-1656. [PMID: 33550887 DOI: 10.1080/10428194.2021.1881511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nodal peripheral T-cell lymphomas (n-PTCL) are aggressive lymphomas with no specific treatment. Programmed death 1 (PD-1) inhibits T-cell activation and proliferation, and the expression of its ligand PD-L1 has been associated with worse prognosis in some tumors. We performed immunohistochemistry for PD-1, p-STAT3, and PD-L1 (Clones SP142/263/22C3/28.8) and FISH studies for PD-L1/2 genes in chromosome 9p in a series of 168 formalin-fixed, paraffin-embedded n-PTCL samples. PD-L1 (clone 263) was the most frequently detected in both tumor cells (especially in the ALCL subgroup) and the microenvironment (especially in the AITL subgroup). In five ALCL cases, 3-4 copies of the two loci of chromosome 9 were found, suggestive of polyploidy. PD-L1 correlated with p-STAT3 on tumor cells. PD-1 expression in tumor cells was related to expression of PD-L1 in microenvironment. The expression of PD-L1 on tumor cells or microenvironment suggests that some n-PTCL cases might benefit from immune check-point modulation therapy.
Collapse
Affiliation(s)
- Rebeca Manso
- Pathology Department, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Sandra Rodríguez-Perales
- Molecular Cytogenetics and Genome Engineering Group, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Raúl Torres-Ruiz
- Molecular Cytogenetics and Genome Engineering Group, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Carlos Santonja
- Pathology Department, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | | |
Collapse
|
36
|
Turton P, El‐Sharkawi D, Lyburn I, Sharma B, Mahalingam P, Turner SD, MacNeill F, Johnson L, Hamilton S, Burton C, Mercer N. UK Guidelines on the Diagnosis and Treatment of Breast Implant-Associated Anaplastic Large Cell Lymphoma on behalf of the Medicines and Healthcare products Regulatory Agency Plastic, Reconstructive and Aesthetic Surgery Expert Advisory Group. Br J Haematol 2021; 192:444-458. [PMID: 33222158 PMCID: PMC7894347 DOI: 10.1111/bjh.17194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/13/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is an uncommon T-cell non-Hodgkin Lymphoma (NHL) associated with breast implants. Raising awareness of the possibility of BIA-ALCL in anyone with breast implants and new breast symptoms is crucial to early diagnosis. The tumour begins on the inner aspect of the peri-implant capsule causing an effusion, or less commonly a tissue mass to form within the capsule, which may spread locally or to more distant sites in the body. Diagnosis is usually made by cytological, immunohistochemical and immunophenotypic evaluation of the aspirated peri-implant fluid: pleomorphic lymphocytes are characteristically anaplastic lymphoma kinase (ALK)-negative and strongly positive for CD30. BIA-ALCL is indolent in most patients but can progress rapidly. Surgical removal of the implant with the intact surrounding capsule (total en-bloc capsulectomy) is usually curative. Late diagnosis may require more radical surgery and systemic therapies and although these are usually successful, poor outcomes and deaths have been reported. By adopting a structured approach, as suggested in these guidelines, early diagnosis and successful treatment will minimise the need for systemic treatments, reduce morbidity and the risk of poor outcomes.
Collapse
Affiliation(s)
- Philip Turton
- St James's HospitalThe Leeds Teaching Hospitals NHS TrustLeedsUK
| | | | - Iain Lyburn
- Cobalt Medical CharityCheltenhamUK
- Gloucestershire Hospitals NHS Foundation TrustGloucesterUK
| | | | | | - Suzanne D. Turner
- Division of Cellular and Molecular PathologyDepartment of PathologyUniversity of CambridgeCambridgeUK
- CEITECMasaryk UniversityBrnoCzech Republic
| | | | | | | | - Cathy Burton
- St James's HospitalThe Leeds Teaching Hospitals NHS TrustLeedsUK
| | | |
Collapse
|
37
|
Turton P, El-Sharkawi D, Lyburn I, Sharma B, Mahalingam P, Turner SD, MacNeill F, Johnson L, Hamilton S, Burton C, Mercer N. UK Guidelines on the Diagnosis and Treatment of Breast Implant-Associated Anaplastic Large Cell Lymphoma (BIA-ALCL) on behalf of the Medicines and Healthcare products Regulatory Agency (MHRA) Plastic, Reconstructive and Aesthetic Surgery Expert Advisory Group (PRASEAG). Eur J Surg Oncol 2020; 47:199-210. [PMID: 33358076 DOI: 10.1016/j.ejso.2020.07.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 01/11/2023] Open
Abstract
Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is an uncommon T cell Non-Hodgkin Lymphoma (NHL) associated with breast implants. Raising awareness of the possibility of BIA-ALCL in anyone with breast implants and new breast symptoms is crucial to early diagnosis. The tumour begins on the inner aspect of the peri-implant capsule causing an effusion, or less commonly a tissue mass to form within the capsule, which may spread locally or to more distant sites in the body. Diagnosis is usually made by cytological, immunohistochemical and immunophenotypic evaluation of the aspirated peri-implant fluid: pleomorphic lymphocytes are characteristically anaplastic lymphoma kinase (ALK) negative and strongly positive for CD30. BIA-ALCL is indolent in most patients but can progress rapidly. Surgical removal of the implant with the intact surrounding capsule (total en-bloc capsulectomy) is usually curative. Late diagnosis may require more radical surgery and systemic therapies and although these are usually successful, poor outcomes and deaths have been reported. By adopting a structured approach, as suggested in these guidelines, early diagnosis and successful treatment will minimize the need for systemic treatments, reduce morbidity and the risk of poor outcomes.
Collapse
Affiliation(s)
- Philip Turton
- St James's Hospital, The Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| | | | - Iain Lyburn
- Cobalt Medical Charity, Cheltenham, UK; Gloucestershire Hospitals NHS Foundation Trust, UK
| | | | | | - Suzanne D Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, CB20QQ, UK; CEITEC, Masaryk University, Brno, Czech Republic
| | | | | | | | - Cathy Burton
- St James's Hospital, The Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Nigel Mercer
- Bristol Plastic Surgery, 58 Queen Square, Bristol, BS1 4LF, UK
| |
Collapse
|
38
|
Los-de Vries GT, de Boer M, van Dijk E, Stathi P, Hijmering NJ, Roemer MGM, Mendeville M, Miedema DM, de Boer JP, Rakhorst HA, van Leeuwen FE, van der Hulst RRWJ, Ylstra B, de Jong D. Chromosome 20 loss is characteristic of breast implant-associated anaplastic large cell lymphoma. Blood 2020; 136:2927-2932. [PMID: 33331925 DOI: 10.1182/blood.2020005372] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is a very rare type of T-cell lymphoma that is uniquely caused by a single environmental stimulus. Here, we present a comprehensive genetic analysis of a relatively large series of BIA-ALCL (n = 29), for which genome-wide chromosomal copy number aberrations (CNAs) and mutational profiles for a subset (n = 7) were determined. For comparison, CNAs for anaplastic lymphoma kinase (ALK)- nodal anaplastic large cell lymphomas (ALCLs; n = 24) were obtained. CNAs were detected in 94% of BIA-ALCLs, with losses at chromosome 20q13.13 in 66% of the samples. Loss of 20q13.13 is characteristic of BIA-ALCL compared with other classes of ALCL, such as primary cutaneous ALCL and systemic type ALK+ and ALK- ALCL. Mutational patterns confirm that the interleukin-6-JAK1-STAT3 pathway is deregulated. Although this is commonly observed across various types of T-cell lymphomas, the extent of deregulation is significantly higher in BIA-ALCL, as indicated by phosphorylated STAT3 immunohistochemistry. The characteristic loss of chromosome 20 in BIA-ALCL provides further justification to recognize BIA-ALCL as a separate disease entity. Moreover, CNA analysis may serve as a parameter for future diagnostic assays for women with breast implants to distinguish seroma caused by BIA-ALCL from other causes of seroma accumulation, such as infection or trauma.
Collapse
MESH Headings
- Breast Implants/adverse effects
- Breast Neoplasms/etiology
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Chromosome Deletion
- Chromosomes, Human, Pair 20/genetics
- Chromosomes, Human, Pair 20/metabolism
- Female
- Humans
- Lymphoma, Large-Cell, Anaplastic/etiology
- Lymphoma, Large-Cell, Anaplastic/genetics
- Lymphoma, Large-Cell, Anaplastic/metabolism
- Lymphoma, Large-Cell, Anaplastic/pathology
- Mutation
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Retrospective Studies
Collapse
Affiliation(s)
- G Tjitske Los-de Vries
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mintsje de Boer
- Plastic, Reconstructive, and Hand Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Erik van Dijk
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Phylicia Stathi
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nathalie J Hijmering
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Margaretha G M Roemer
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Matias Mendeville
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Daniel M Miedema
- LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan Paul de Boer
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hinne A Rakhorst
- Department of Plastic, Reconstructive, and Hand Surgery, Medisch Spectrum Twente, Enschede, The Netherlands; and
| | - Flora E van Leeuwen
- Department of Epidemiology and Biostatistics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - René R W J van der Hulst
- Plastic, Reconstructive, and Hand Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Bauke Ylstra
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Daphne de Jong
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Breast Implant-Associated CD30 Negative Peripheral T-Cell Lymphoma, NOS. Hemasphere 2020; 5:e507. [PMID: 33324953 PMCID: PMC7732339 DOI: 10.1097/hs9.0000000000000507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/22/2020] [Indexed: 11/26/2022] Open
|
40
|
Turton P, El-Sharkawi D, Lyburn I, Sharma B, Mahalingam P, Turner SD, MacNeill F, Johnson L, Hamilton S, Burton C, Mercer N. UK Guidelines on the Diagnosis and Treatment of Breast Implant-Associated Anaplastic Large Cell Lymphoma (BIA-ALCL) on behalf of the Medicines and Healthcare products Regulatory Agency (MHRA) Plastic, Reconstructive and Aesthetic Surgery Expert Advisory Group (PRASEAG). J Plast Reconstr Aesthet Surg 2020; 74:13-29. [PMID: 33483089 DOI: 10.1016/j.bjps.2020.10.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/20/2020] [Indexed: 12/30/2022]
Abstract
Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is an uncommon T cell Non-Hodgkin Lymphoma (NHL) associated with breast implants. Raising awareness of the possibility of BIA-ALCL in anyone with breast implants and new breast symptoms is crucial to early diagnosis. The tumour begins on the inner aspect of the peri-implant capsule causing an effusion, or less commonly a tissue mass to form within the capsule, which may spread locally or to more distant sites in the body. Diagnosis is usually made by cytological, immunohistochemical and immunophenotypic evaluation of the peri-implant fluid: pleomorphic lymphocytes are characteristically anaplastic lymphoma kinase (ALK) negative and strongly positive for CD30. BIA-ALCL is indolent in most patients but can progress rapidly. Surgical removal of the implant with the intact surrounding capsule (total en-bloc capsulectomy) is usually curative. Late diagnosis may require more radical surgery and systemic therapies and although these are usually successful, poor outcomes and deaths have been reported. By adopting a structured approach, as suggested in these guidelines, early diagnosis and successful treatment will minimize the need for systemic treatments, reduce morbidity and the risk of poor outcomes. These guidelines provide an evidence-based and systematic framework for the assessment and treatment of patients with suspected or proven BIA-ALCL and are aimed at all clinicians involved in the care of people with breast implants.
Collapse
Affiliation(s)
- Philip Turton
- St James's Hospital, The Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| | | | - Iain Lyburn
- Cobalt Medical Charity, Cheltenham, UK; Gloucestershire Hospitals NHS Foundation Trust, UK
| | | | | | - Suzanne D Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK; CEITEC, Masaryk University, Brno, Czech Republic
| | | | | | | | - Cathy Burton
- St James's Hospital, The Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Nigel Mercer
- Bristol Plastic Surgery, 58 Queen Square, Bristol BS1 4LF
| |
Collapse
|
41
|
Biological and genetic landscape of breast implant-associated anaplastic large cell lymphoma (BIA-ALCL). Eur J Surg Oncol 2020; 47:942-951. [PMID: 33158639 DOI: 10.1016/j.ejso.2020.10.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 12/30/2022] Open
Abstract
Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is an uncommon form of non-Hodgkin lymphoma (cancer of the immune system) that can develop around breast implants. Breast implants are among the most commonly used medical devices for cosmetic or reconstructive purposes. In the past few years, the number of women with breast implants diagnosed with anaplastic large cell lymphoma (ALCL) has increased, and several studies have suggested a direct association between breast implants and an increased risk of this disease. Although it has been hypothesized that chronic stimulation of the immune system caused by implant materials and biofilms as well as a possible genetic predisposition play an important role in this disease, the cellular and molecular causes of BIA-ALCL are not fully understood. This review aims to describe the current understanding around the environmental and molecular drivers of BIA-ALCL as well as the genetic and chromosomal abnormalities identified in this disease to date.
Collapse
|
42
|
Lymphome anaplasique à grandes cellules associé aux implants mammaires : qu’en savons-nous ? Partie I. IMAGERIE DE LA FEMME 2020. [DOI: 10.1016/j.femme.2020.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Gene alterations in epigenetic modifiers and JAK-STAT signaling are frequent in breast implant-associated ALCL. Blood 2020; 135:360-370. [PMID: 31774495 DOI: 10.1182/blood.2019001904] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
The oncogenic events involved in breast implant-associated anaplastic large cell lymphoma (BI-ALCL) remain elusive. To clarify this point, we have characterized the genomic landscape of 34 BI-ALCLs (15 tumor and 19 in situ subtypes) collected from 54 BI-ALCL patients diagnosed through the French Lymphopath network. Whole-exome sequencing (n = 22, with paired tumor/germline DNA) and/or targeted deep sequencing (n = 24) showed recurrent mutations of epigenetic modifiers in 74% of cases, involving notably KMT2C (26%), KMT2D (9%), CHD2 (15%), and CREBBP (15%). KMT2D and KMT2C mutations correlated with a loss of H3K4 mono- and trimethylation by immunohistochemistry. Twenty cases (59%) showed mutations in ≥1 member of the JAK/STAT pathway, including STAT3 (38%), JAK1 (18%), and STAT5B (3%), and in negative regulators, including SOCS3 (6%), SOCS1 (3%), and PTPN1 (3%). These mutations were more frequent in tumor-type samples than in situ samples (P = .038). All BI-ALCLs expressed pSTAT3, regardless of the mutational status of genes in the JAK/STAT pathway. Mutations in the EOMES gene (12%) involved in lymphocyte development, PI3K-AKT/mTOR (6%), and loss-of-function mutations in TP53 (12%) were also identified. Copy-number aberration (CNA) analysis identified recurrent alterations, including gains on chromosomes 2, 9p, 12p, and 21 and losses on 4q, 8p, 15, 16, and 20. Regions of CNA encompassed genes involved in the JAK/STAT pathway and epigenetic regulators. Our results show that the BI-ALCL genomic landscape is characterized by not only JAK/STAT activating mutations but also loss-of-function alterations of epigenetic modifiers.
Collapse
|
44
|
Jaffe ES, Feldman AL, Gaulard P, Miranda RN, Sohani AR. Reply to M. Romero et al. J Clin Oncol 2020; 38:2819-2820. [PMID: 32552469 DOI: 10.1200/jco.20.00931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Elaine S Jaffe
- Elaine S. Jaffe, MD, Hematopathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD; Andrew L. Feldman, MD, Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN; Philippe Gaulard, MD, PhD, Departement de Pathologie, Hôpital Henri Mondor, Inserm U955, Université Paris-Est, Créteil, France; Roberto N. Miranda, MD, Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX; and Aliyah R. Sohani, MD, Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Andrew L Feldman
- Elaine S. Jaffe, MD, Hematopathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD; Andrew L. Feldman, MD, Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN; Philippe Gaulard, MD, PhD, Departement de Pathologie, Hôpital Henri Mondor, Inserm U955, Université Paris-Est, Créteil, France; Roberto N. Miranda, MD, Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX; and Aliyah R. Sohani, MD, Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Philippe Gaulard
- Elaine S. Jaffe, MD, Hematopathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD; Andrew L. Feldman, MD, Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN; Philippe Gaulard, MD, PhD, Departement de Pathologie, Hôpital Henri Mondor, Inserm U955, Université Paris-Est, Créteil, France; Roberto N. Miranda, MD, Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX; and Aliyah R. Sohani, MD, Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Roberto N Miranda
- Elaine S. Jaffe, MD, Hematopathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD; Andrew L. Feldman, MD, Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN; Philippe Gaulard, MD, PhD, Departement de Pathologie, Hôpital Henri Mondor, Inserm U955, Université Paris-Est, Créteil, France; Roberto N. Miranda, MD, Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX; and Aliyah R. Sohani, MD, Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Aliyah R Sohani
- Elaine S. Jaffe, MD, Hematopathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD; Andrew L. Feldman, MD, Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN; Philippe Gaulard, MD, PhD, Departement de Pathologie, Hôpital Henri Mondor, Inserm U955, Université Paris-Est, Créteil, France; Roberto N. Miranda, MD, Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX; and Aliyah R. Sohani, MD, Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
45
|
Fiore D, Cappelli LV, Zumbo P, Phillips JM, Liu Z, Cheng S, Yoffe L, Ghione P, Di Maggio F, Dogan A, Khodos I, de Stanchina E, Casano J, Kayembe C, Tam W, Betel D, Foa’ R, Cerchietti L, Rabadan R, Horwitz S, Weinstock DM, Inghirami G. A Novel JAK1 Mutant Breast Implant-Associated Anaplastic Large Cell Lymphoma Patient-Derived Xenograft Fostering Pre-Clinical Discoveries. Cancers (Basel) 2020; 12:cancers12061603. [PMID: 32560455 PMCID: PMC7352499 DOI: 10.3390/cancers12061603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Breast implant-associated lymphoma (BIA-ALCL) has recently been recognized as an independent peripheral T-cell lymphoma (PTCL) entity. In this study, we generated the first BIA-ALCL patient-derived tumor xenograft (PDTX) model (IL89) and a matching continuous cell line (IL89_CL#3488) to discover potential vulnerabilities and druggable targets. We characterized IL89 and IL89_CL#3488, both phenotypically and genotypically, and demonstrated that they closely resemble the matching human primary lymphoma. The tumor content underwent significant enrichment along passages, as confirmed by the increased variant allele frequency (VAF) of mutations. Known aberrations (JAK1 and KMT2C) were identified, together with novel hits, including PDGFB, PDGFRA, and SETBP1. A deep sequencing approach allowed the detection of mutations below the Whole Exome Sequencing (WES) sensitivity threshold, including JAK1G1097D, in the primary sample. RNA sequencing confirmed the expression of a signature of differentially expressed genes in BIA-ALCL. Next, we tested IL89’s sensitivity to the JAK inhibitor ruxolitinib and observed a potent anti-tumor effect, both in vitro and in vivo. We also implemented a high-throughput drug screening approach to identify compounds associated with increased responses in the presence of ruxolitinib. In conclusion, these new IL89 BIA-ALCL models closely recapitulate the primary correspondent lymphoma and represent an informative platform for dissecting the molecular features of BIA-ALCL and performing pre-clinical drug discovery studies, fostering the development of new precision medicine approaches.
Collapse
Affiliation(s)
- Danilo Fiore
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; (D.F.); (L.V.C.); (S.C.); (L.Y.); (F.D.M.); (J.C.); (C.K.); (W.T.)
| | - Luca Vincenzo Cappelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; (D.F.); (L.V.C.); (S.C.); (L.Y.); (F.D.M.); (J.C.); (C.K.); (W.T.)
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Paul Zumbo
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Jude M. Phillips
- Department of Medicine, Hematology-Oncology, Weill Cornell Medicine and the New York Presbyterian Hospital, New York, NY 10065, USA; (J.M.P.); (L.C.)
| | - Zhaoqi Liu
- Department of Systems Biology and Biomedical Informatics, Columbia University, New York, NY 10032, USA; (Z.L.); (R.R.)
| | - Shuhua Cheng
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; (D.F.); (L.V.C.); (S.C.); (L.Y.); (F.D.M.); (J.C.); (C.K.); (W.T.)
| | - Liron Yoffe
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; (D.F.); (L.V.C.); (S.C.); (L.Y.); (F.D.M.); (J.C.); (C.K.); (W.T.)
| | - Paola Ghione
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (P.G.); (S.H.)
| | - Federica Di Maggio
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; (D.F.); (L.V.C.); (S.C.); (L.Y.); (F.D.M.); (J.C.); (C.K.); (W.T.)
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy
| | - Ahmet Dogan
- Departments of Pathology and Laboratory Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA;
| | - Inna Khodos
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (I.K.); (E.d.S.)
| | - Elisa de Stanchina
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (I.K.); (E.d.S.)
| | - Joseph Casano
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; (D.F.); (L.V.C.); (S.C.); (L.Y.); (F.D.M.); (J.C.); (C.K.); (W.T.)
| | - Clarisse Kayembe
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; (D.F.); (L.V.C.); (S.C.); (L.Y.); (F.D.M.); (J.C.); (C.K.); (W.T.)
| | - Wayne Tam
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; (D.F.); (L.V.C.); (S.C.); (L.Y.); (F.D.M.); (J.C.); (C.K.); (W.T.)
| | - Doron Betel
- Department of Medicine and Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Robin Foa’
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Leandro Cerchietti
- Department of Medicine, Hematology-Oncology, Weill Cornell Medicine and the New York Presbyterian Hospital, New York, NY 10065, USA; (J.M.P.); (L.C.)
| | - Raul Rabadan
- Department of Systems Biology and Biomedical Informatics, Columbia University, New York, NY 10032, USA; (Z.L.); (R.R.)
| | - Steven Horwitz
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (P.G.); (S.H.)
| | - David M. Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA;
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; (D.F.); (L.V.C.); (S.C.); (L.Y.); (F.D.M.); (J.C.); (C.K.); (W.T.)
- Correspondence: ; Tel.: +1-212-746-5616; Fax: +1-212-746-8173
| |
Collapse
|
46
|
Kadin ME, Morgan J, Kouttab N, Xu H, Adams WP, Glicksman C, McGuire P, Sieber D, Epstein AL, Miranda RN, Clemens MW. Comparative Analysis of Cytokines of Tumor Cell Lines, Malignant and Benign Effusions Around Breast Implants. Aesthet Surg J 2020; 40:630-637. [PMID: 31589747 DOI: 10.1093/asj/sjz243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND More than 700 women have developed an anaplastic large T cell lymphoma (ALCL) surrounding textured surface breast implants, termed breast implant-associated ALCL (BIA-ALCL). Most patients with BIA-ALCL present with an accumulation of fluid (delayed seroma) around the implant. However, benign seromas without malignant cells complicating scar contracture, implant rupture, trauma, infection, and other causes are more common. For proper patient management and to avoid unnecessary surgery, a simple diagnostic test to identify malignant seromas is desirable. OBJECTIVES The aim of this study was to develop an ancillary test for the diagnosis of malignant seromas and to gain insight into the nature of the malignant cells and their microenvironment. METHODS We employed an immunologic assay on only 50 µL of aspirated seroma fluid. The assay measures 13 cytokines simultaneously by flow cytometry. To establish a baseline for clinical studies we measured cytokines secreted by BIA-ALCL and cutaneous ALCL lines. RESULTS Our study of cell line culture supernatants, and 8 malignant compared with 9 benign seromas indicates that interleukin 9 (IL-9), IL-10, IL-13, IL-22, and/or interferon γ concentrations >1000 pg/mL distinguish malignant seromas from benign seromas. IL-6, known to be a driver of malignant cells, is also elevated in benign seromas and does not distinguish them from malignant seromas. CONCLUSIONS The cytokine assay introduced in this study can be used together with levels of soluble CD30 to identify malignant seromas. Validation of these findings in a larger prospective patient cohort is warranted. The unique pattern of cytokine expression in malignant effusions surrounding breast implants gives further insight into the pathogenesis and cells of origin of BIA-ALCL. Level of Evidence: 5.
Collapse
Affiliation(s)
- Marshall E Kadin
- Dr Kadin is a Professor of Dermatology, Boston University and Roger Williams Medical Center, Providence RI
| | | | | | - Haiying Xu
- Ms Xu is a Research Assistant, Roger Williams Medical Center, Providence, RI
| | - William P Adams
- Dr Adams is an Associate Professor, Department of Plastic Surgery, University of Texas Southwestern Medical School, Dallas TX
| | - Caroline Glicksman
- Dr Glicksman is a Clinical Assistant Professor, Hackensack Meridian School of Medicine at Seton Hall, Nutley, NJ
| | | | | | - Alan L Epstein
- Dr Epstein is a Professor of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Roberto N Miranda
- Dr Miranda is a Professor of Pathology, Department of Hematopathology, MD Anderson Cancer Center, Houston TX
| | - Mark W Clemens
- Dr Clemens is an Associate Professor, Department of Plastic Surgery, MD Anderson Cancer Center, Houston TX; and is Breast Surgery Section Co-editor for Aesthetic Surgery Journal
| |
Collapse
|
47
|
Jaffe ES, Ashar BS, Clemens MW, Feldman AL, Gaulard P, Miranda RN, Sohani AR, Stenzel T, Yoon SW. Best Practices Guideline for the Pathologic Diagnosis of Breast Implant-Associated Anaplastic Large-Cell Lymphoma. J Clin Oncol 2020; 38:1102-1111. [PMID: 32045544 PMCID: PMC7106983 DOI: 10.1200/jco.19.02778] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To provide guidelines for the accurate pathologic diagnosis of breast implant-associated anaplastic large cell lymphoma (BIA-ALCL), the preoperative evaluation of the patient with suspected BIA-ALCL, and the pathologic evaluation of the capsulectomy specimen. METHODS To better inform patients and healthcare providers about BIA-ALCL, we convened to review diagnostic procedures used in the evaluation of patients with suspected BIA-ALCL. We focused on the processing of the seroma fluid/effusion surrounding the implant, the handling of capsulectomy specimens following removal of implant(s), and the preoperative evaluation of the patient with suspected BIA-ALCL. Recommendations were based on the published literature and our experience to optimize procedures to obtain an accurate diagnosis and assess for tumor invasion and the extent of the disease. RECOMMENDATIONS Early diagnosis of BIA-ALCL is important as the disease can progress and deaths have been reported. Because the most common presentation of BIA-ALCL is swelling of the breast with fluid collection, an accurate diagnosis requires cytologic evaluation of the effusion fluid surrounding the affected implant. The first priority is cytocentrifugation and filtration of fresh, unfixed effusion fluid to produce air-dried smears that are stained with Wright-Giemsa or other Romanowsky-type stains. Preparation of a cell block is desirable to allow for hematoxylin and eosin staining and immunohistochemical analysis of formalin-fixed, paraffin-embedded histologic sections. Cell block sections can be used for polymerase chain reaction-based investigation of T-cell receptor gene rearrangement to detect clonality. Fixation and mapping of the capsulectomy specimen to select multiple representative sections are advised to assess for microscopic tumor involvement and capsular invasion. It is appropriate to assess lymph node involvement by excisional biopsy material rather than fine needle aspiration, due to propensity for focal involvement.
Collapse
Affiliation(s)
- Elaine S. Jaffe
- Hematopathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Binita S. Ashar
- Office of Surgical and Infection Control Devices, Office of Product Evaluation and Quality, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD
| | - Mark W. Clemens
- Department of Plastic Surgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Andrew L. Feldman
- Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Philippe Gaulard
- Department of Pathology, Hôpital Henri Mondor, Institut National de la Santé et de la Recherche Médicale U955, Université Paris-Est, Créteil, France
| | - Roberto N. Miranda
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Aliyah R. Sohani
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Timothy Stenzel
- Office of In Vitro Diagnostics and Radiological Health, Office of Product Evaluation and Quality, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD
| | - Sung W. Yoon
- Office of Surgical and Infection Control Devices, Office of Product Evaluation and Quality, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD
| |
Collapse
|
48
|
Breast implant-associated anaplastic large-cell lymphoma: first case detected in a Japanese breast cancer patient. Breast Cancer 2020; 27:499-504. [PMID: 32095988 PMCID: PMC7196092 DOI: 10.1007/s12282-020-01064-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
Abstract
This paper details the first breast implant-associated anaplastic large-cell lymphoma (BIA-ALCL) case detected in Japan. The patient, a 67-year-old Japanese woman, was diagnosed with left unilateral breast cancer 17 years ago. Induration and redness presented in the left breast, which had undergone immediate breast reconstructive surgery using a tissue expander, later replaced by a silicone breast implant (SBI). Breast ultrasound showed fluid collection around the SBI. Surgery was performed to remove the left breast implant and the fragmented capsule surrounding the implant. Postoperative pathological findings did not indicate malignancy. Nine months later, a contralateral axillary lymphadenopathy was observed, and an excisional biopsy of the axillary lymph node was performed. The patient was diagnosed with BIA-ALCL and successfully underwent adjuvant CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisolone) chemotherapy.
Collapse
|
49
|
K Groth A, Graf R. Breast Implant-Associated Anaplastic Large Cell Lymphoma (BIA-ALCL) and the Textured Breast Implant Crisis. Aesthetic Plast Surg 2020; 44:1-12. [PMID: 31624894 DOI: 10.1007/s00266-019-01521-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/05/2019] [Indexed: 12/26/2022]
Abstract
Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is an uncommon T-cell, CD-30+/ALK lymphoma. Late (9 years) periprosthetic fluid (seroma) is the most common presentation (90% of the cases). A combination of textured breast implant, bacterial contamination, and genetic predisposition seems to be necessary for BIA-ALCL to occur. There are 35 million patients with implants in the world, and at the present moment, 573 cases of BIA-ALCL have been reported. The risk of developing BIA-ALCL in Australia varies from 1:2832 to 1:86,029, with texture grades 3 and 4 seeming to pose a higher risk than grades 2 and 1. NCCN has established guidelines for diagnosis and treatment, and early diagnosis is the key to cure. At an early stage and for the vast majority of patients, the treatment consists of capsulectomy and implant removal. However, at stages II to IV, a systemic treatment is warranted, including chemotherapy, radiotherapy (residual disease), and brentuximab vedotin. The majority of patients can be cured, and complete capsular removal is the most important factor. So far, 33 patients have died from BIA-ALCL worldwide, with deaths related to delay in diagnosis and treatment. Textured implants have been in the midst of the current implant crisis, and Biocell was recalled worldwide after the latest FDA update on the disease. At the present moment, no medical society or regulatory agency has recommended implant removal. It is about time that we start robust breast implant registries to determine risks. Besides, based on scientific criteria, we must consider all the benefits and risks associated with the available breast devices.Level of Evidence III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Collapse
Affiliation(s)
- Anne K Groth
- Brazilian Society of Plastic Surgery, Curitiba, Brazil.
- Plastic Surgery and Microsurgery Department, Erasto Gaertner Hospital, Curitiba, PR, Brazil.
- Positivo University Medical School, Curitiba, Brazil.
- , Curitiba, Brazil.
| | - Ruth Graf
- Brazilian Society of Plastic Surgery, Curitiba, Brazil
- Federal University of Parana, Curitiba, Brazil
- Pieta Medical Center, Rua Solimões 1175, Curitiba, PR, Brazil
| |
Collapse
|
50
|
Breast implant-associated anaplastic large cell lymphoma: A comprehensive review. Cancer Treat Rev 2020; 84:101963. [PMID: 31958739 DOI: 10.1016/j.ctrv.2020.101963] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/28/2019] [Accepted: 01/05/2020] [Indexed: 12/12/2022]
Abstract
Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is a recently recognized non-Hodgkin lymphoma of T-cell origin. Despite the low incidence of this new disease, the increasing use of breast implants for cosmetic or post-mastectomy reconstruction purposes places BIA-ALC as an emerging and compelling medical challenge. The real BIA-ALCL pathogenesis has not been fully uncovered so far, while different putative causal factors have been proposed. Breast implants with textured surfaces seem to be associated with nearly all cases of BIA-ALCL, while the real the risk of disease development has not been well estimated so far. Late onset, persistent seroma around breast implant represents the classical clinical presentation. Most of the BIA-ALCL patients presents with localized disease, which confers an excellent prognosis. Unlike other non-Hodgkin lymphomas, surgical excision of the mass has a key role in the treatment. For patients with advanced and disseminated diseases, the treatment did not differ from other types of T-cell lymphoma. For these reasons, BIA-ALCL represents an emerging disease which requires multidisciplinary team approach to well define diagnostic workup and treatment for each patient. This review article aims to summarize available data on BIA-ALCL. First, we will outline available data on BIA-ALCL epidemiology, pathogenesis, diagnostic work-up, and treatment. Second, we will point out the potential psychological implications as well as the risk of perception distortion for women with breast implants, especially for those with previous breast cancer. Lastly, we will summarize the current national recommendations regarding textured breast implants and discuss the diagnostic-therapeutic algorithm for BIA-ALCL management.
Collapse
|