1
|
Hsieh CL, Do AD, Hsueh CY, Raboshakga MO, Thanh TN, Tai TT, Kung HJ, Sung SY. L1CAM mediates neuroendocrine phenotype acquisition in prostate cancer cells. Prostate 2024; 84:1434-1447. [PMID: 39154281 DOI: 10.1002/pros.24782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/20/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND A specific type of prostate cancer (PC) that exhibits neuroendocrine (NE) differentiation is known as NEPC. NEPC has little to no response to androgen deprivation therapy and is associated with the development of metastatic castration-resistant PC (CRPC), which has an extremely poor prognosis. Our understanding of genetic drivers and activated pathways in NEPC is limited, which hinders precision medicine approaches. L1 cell adhesion molecule (L1CAM) is known to play an oncogenic role in metastatic cancers, including CRPC. However, the impact of L1CAM on NEPC progression remains elusive. METHODS L1CAM expression level was investigated using public gene expression databases of PC cohorts and patient-derived xenograft models. L1CAM knockdown was performed in different PC cells to study in vitro cell functions. A subline of CRPC cell line CWR22Rv1 was established after long-term exposure to abiraterone to induce NE differentiation. The androgen receptor-negative cell line PC3 was cultured under the tumor sphere-forming condition to enrich cancer stemness features. Several oxidative stress inducers were tested on PC cells to observe L1CAM-mediated gene expression and cell death. RESULTS L1CAM expression was remarkably high in NEPC compared to CRPC or adenocarcinoma tumors. L1CAM was also correlated with NE marker expressions and associated with the adenocarcinoma-to-NEPC progression in gene expression databases and CRPC cells with NE differentiation. L1CAM also promoted cancer stemness and NE phenotypes in PC3 cells under cancer stemness enrichment. L1CAM was also identified as a reactive oxygen species-induced gene, by which L1CAM counteracted CRPC cell death triggered by ionizing radiation. CONCLUSIONS Our results unveiled a new role of L1CAM in the acquisition of the NE phenotype in PC, contributing to the NE differentiation-related therapeutic resistance of CRPC.
Collapse
Affiliation(s)
- Chia-Ling Hsieh
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- General Clinical Research Center, Chung Shan Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Clinical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Anh Duy Do
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Department of Physiology, Pathophysiology and Immunology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Chia-Yen Hsueh
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Mafewu Olga Raboshakga
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Department of Pre-Clinical Sciences, University of Limpopo, Sovenga, South Africa
| | - Tran Ngoc Thanh
- Department of Physiology, Pathophysiology and Immunology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Tran Tien Tai
- Department of Physiology, Pathophysiology and Immunology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Hsing-Jien Kung
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, University of California Davis Cancer Centre, Sacramento, California, USA
- Taipei Medical University, Taipei, Taiwan
| | - Shian-Ying Sung
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
2
|
Li WJ, Wang Y, Liu X, Wu S, Wang M, Turowski SG, Spernyak JA, Tracz A, Abdelaal AM, Sudarshan K, Puzanov I, Chatta G, Kasinski AL, Tang DG. Developing folate-conjugated miR-34a therapeutic for prostate cancer treatment: Challenges and promises. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.25.568612. [PMID: 38045265 PMCID: PMC10690264 DOI: 10.1101/2023.11.25.568612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Prostate cancer (PCa) remains a common cancer with high mortality in men due to its heterogeneity and the emergence of drug resistance. A critical factor contributing to its lethality is the presence of prostate cancer stem cells (PCSCs), which can self-renew, long-term propagate tumors and mediate treatment resistance. MicroRNA-34a (miR-34a) has shown promise as an anti-PCSC therapeutic by targeting critical molecules involved in cancer stem cell (CSC) survival and functions. Despite extensive efforts, the development of miR-34a therapeutics still faces challenges, including non-specific delivery and delivery-associated toxicity. One emerging delivery approach is ligand-mediated conjugation, aiming to achieve specific delivery of miR-34a to cancer cells, thereby enhancing efficacy while minimizing toxicity. Folate-conjugated miR-34a (folate-miR-34a) has demonstrated promising anti-tumor efficacy in breast and lung cancers by targeting folate receptor α (FOLR1). Here, we first show that miR-34a, a TP53 transcriptional target, is reduced in PCa that harbors TP53 loss or mutations and that miR-34a mimic, when transfected into PCa cells, downregulated multiple miR-34a targets and inhibited cell growth. When exploring the therapeutic potential of folate-miR-34a, we found that folate-miR-34a exhibited impressive inhibitory effects on breast, ovarian and cervical cancer cells but showed minimal effects on and targeted delivery to PCa cells due to a lack of appreciable expression of FOLR1 in PCa cells. Folate-miR-34a also did not display any apparent effect on PCa cells expressing prostate-specific membrane antigen (PMSA) despite the reported folate's binding capability to PSMA. These results highlight challenges in specific delivery of folate-miR-34a to PCa due to lack of target (receptor) expression. Our study offers novel insights on the challenges and promises within the field and cast light on the development of ligand-conjugated miR-34a therapeutics for PCa.
Collapse
|
3
|
MicroRNA-34a, Prostate Cancer Stem Cells, and Therapeutic Development. Cancers (Basel) 2022; 14:cancers14184538. [PMID: 36139695 PMCID: PMC9497236 DOI: 10.3390/cancers14184538] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer (PCa) is a highly heterogeneous disease and typically presents with multiple distinct cancer foci. Heterogeneity in androgen receptor (AR) expression levels in PCa has been observed for decades, from untreated tumors to castration-resistant prostate cancer (CRPC) to disseminated metastases. Current standard-of-care therapies for metastatic CRPC can only extend life by a few months. Cancer stem cells (CSCs) are defined as a subpopulation of cancer cells that exists in almost all treatment-naive tumors. Additionally, non-CSCs may undergo cellular plasticity to be reprogrammed to prostate cancer stem cells (PCSCs) during spontaneous tumor progression or upon therapeutic treatments. Consequently, PCSCs may become the predominant population in treatment-resistant tumors, and the "root cause" for drug resistance. microRNA-34a (miR-34a) is a bona fide tumor-suppressive miRNA, and its expression is dysregulated in PCa. Importantly, miR-34a functions as a potent CSC suppressor by targeting many molecules essential for CSC survival and functions, which makes it a promising anti-PCSC therapeutic. Here, we conducted a comprehensive literature survey of miR-34a in the context of PCa and especially PCSCs. We provided an updated overview on the mechanisms of miR-34a regulation followed by discussing its tumor suppressive functions in PCa. Finally, based on current advances in miR-34a preclinical studies in PCa, we offered potential delivery strategies for miR-34a-based therapeutics for treating advanced PCa.
Collapse
|
4
|
Liu X, Li WJ, Puzanov I, Goodrich DW, Chatta G, Tang DG. Prostate cancer as a dedifferentiated organ: androgen receptor, cancer stem cells, and cancer stemness. Essays Biochem 2022; 66:291-303. [PMID: 35866337 PMCID: PMC9484140 DOI: 10.1042/ebc20220003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 12/11/2022]
Abstract
Cancer progression is characterized and driven by gradual loss of a differentiated phenotype and gain of stem cell-like features. In prostate cancer (PCa), androgen receptor (AR) signaling is important for cancer growth, progression, and emergence of therapy resistance. Targeting the AR signaling axis has been, over the decades, the mainstay of PCa therapy. However, AR signaling at the transcription level is reduced in high-grade cancer relative to low-grade PCa and loss of AR expression promotes a stem cell-like phenotype, suggesting that emergence of resistance to AR-targeted therapy may be associated with loss of AR signaling and gain of stemness. In the present mini-review, we first discuss PCa from the perspective of an abnormal organ with increasingly deregulated differentiation, and discuss the role of AR signaling during PCa progression. We then focus on the relationship between prostate cancer stem cells (PCSCs) and AR signaling. We further elaborate on the current methods of using transcriptome-based stemness-enriched signature to evaluate the degree of oncogenic dedifferentiation (cancer stemness) in pan-cancer datasets, and present the clinical significance of scoring transcriptome-based stemness across the spectrum of PCa development. Our discussions highlight the importance to evaluate the dynamic changes in both stem cell-like features (stemness score) and AR signaling activity across the PCa spectrum.
Collapse
Affiliation(s)
- Xiaozhuo Liu
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, U.S.A
| | - Wen Jess Li
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, U.S.A
- Experimental Therapeutics (ET) Graduate Program, Roswell Park Comprehensive Cancer Center and the University at Buffalo, Buffalo, NY 14263, U.S.A
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, U.S.A
| | - David W Goodrich
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, U.S.A
- Experimental Therapeutics (ET) Graduate Program, Roswell Park Comprehensive Cancer Center and the University at Buffalo, Buffalo, NY 14263, U.S.A
| | - Gurkamal Chatta
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, U.S.A
| | - Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, U.S.A
- Experimental Therapeutics (ET) Graduate Program, Roswell Park Comprehensive Cancer Center and the University at Buffalo, Buffalo, NY 14263, U.S.A
| |
Collapse
|
5
|
Tang DG. Understanding and targeting prostate cancer cell heterogeneity and plasticity. Semin Cancer Biol 2022; 82:68-93. [PMID: 34844845 PMCID: PMC9106849 DOI: 10.1016/j.semcancer.2021.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022]
Abstract
Prostate cancer (PCa) is a prevalent malignancy that occurs primarily in old males. Prostate tumors in different patients manifest significant inter-patient heterogeneity with respect to histo-morphological presentations and molecular architecture. An individual patient tumor also harbors genetically distinct clones in which PCa cells display intra-tumor heterogeneity in molecular features and phenotypic marker expression. This inherent PCa cell heterogeneity, e.g., in the expression of androgen receptor (AR), constitutes a barrier to the long-term therapeutic efficacy of AR-targeting therapies. Furthermore, tumor progression as well as therapeutic treatments induce PCa cell plasticity such that AR-positive PCa cells may turn into AR-negative cells and prostate tumors may switch lineage identity from adenocarcinomas to neuroendocrine-like tumors. This induced PCa cell plasticity similarly confers resistance to AR-targeting and other therapies. In this review, I first discuss PCa from the perspective of an abnormal organ development and deregulated cellular differentiation, and discuss the luminal progenitor cells as the likely cells of origin for PCa. I then focus on intrinsic PCa cell heterogeneity in treatment-naïve tumors with the presence of prostate cancer stem cells (PCSCs). I further elaborate on PCa cell plasticity induced by genetic alterations and therapeutic interventions, and present potential strategies to therapeutically tackle PCa cell heterogeneity and plasticity. My discussions will make it clear that, to achieve enduring clinical efficacy, both intrinsic PCa cell heterogeneity and induced PCa cell plasticity need to be targeted with novel combinatorial approaches.
Collapse
Affiliation(s)
- Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Experimental Therapeutics (ET) Graduate Program, The University at Buffalo & Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
6
|
Cheng Q, Zheng H, Li M, Wang H, Guo X, Zheng Z, Chen C, Liu J, Zhan T, Li Z, Wu H, Han J, Liu L, Tang T, Chen Q, Du L. LGR4 cooperates with PrPc to endow the stemness of colorectal cancer stem cells contributing to tumorigenesis and liver metastasis. Cancer Lett 2022; 540:215725. [PMID: 35561877 DOI: 10.1016/j.canlet.2022.215725] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 01/02/2023]
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer cells that drive tumour progression and metastasis. Anti-CSC strategies represent new targets for cancer therapies. However, CSCs are highly plastic and heterogeneous, making validation and targeting difficult without bona fide markers that define their identity, especially in a clinical setting. Here, we report that a leucine-rich repeat containing G protein-coupled receptor 4 (LGR4) cooperates with CD44 and PrPc; the latter contributes significantly to metastatic capacity and defines the stemness characteristics of colorectal CSCs. CD44+PrPc+LGR4+ cells effectively developed into organoids and, when transplanted, generated orthotopic and metastatic tumours. Importantly, targeting LGR4 and PrPc with lentiviral shRNAs inhibited organoid development and the growth of orthotopic tumours by inhibiting Wnt/β-catenin signalling. Thus, our study offers a novel therapeutic strategy that simultaneously targets CSC stemness and metastatic properties.
Collapse
Affiliation(s)
- Qi Cheng
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences. Beijing, 100101, China; University of Chinese Academy of Sciences. Beijing, 100049, China
| | - Hao Zheng
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University. Tianjin, 300071, China; CNBG-Nankai University Joint Research and Development Center, Tianjin, 300071, China
| | - Ming Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute. Beijing, 100142, China
| | - Hongyi Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute. Beijing, 100142, China
| | - Xiaoxiao Guo
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology, Peking University. Beijing, 100871, China
| | - Zhibo Zheng
- Department of International Medical Services, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences. Beijing, 100730, China
| | - Chuyan Chen
- Department of International Medical Services, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences. Beijing, 100730, China
| | - Jinming Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University. Tianjin, 300071, China; CNBG-Nankai University Joint Research and Development Center, Tianjin, 300071, China
| | - Tiancheng Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute. Beijing, 100142, China
| | - Zhaowei Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute. Beijing, 100142, China
| | - Hao Wu
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences. Beijing, 100101, China
| | - Jingdong Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology, Peking University. Beijing, 100871, China
| | - Lei Liu
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences. Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine. Beijing, 100101, China
| | - Tieshan Tang
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences. Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine. Beijing, 100101, China
| | - Quan Chen
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University. Tianjin, 300071, China.
| | - Lei Du
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences. Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine. Beijing, 100101, China.
| |
Collapse
|
7
|
Singh D, Khan MA, Siddique HR. Specific targeting of cancer stem cells by immunotherapy: A possible stratagem to restrain cancer recurrence and metastasis. Biochem Pharmacol 2022; 198:114955. [PMID: 35181312 DOI: 10.1016/j.bcp.2022.114955] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSCs), the tumor-initiating cells playing a crucial role in cancer progression, recurrence, and metastasis, have the intrinsic property of self-renewal and therapy resistance. The tumorigenic properties of these cells include generation of cellular heterogeneity and immuno-suppressive tumor microenvironment (TME), conferring them the capability to resist a variety of anti-cancer therapeutics. Further, CSCs possess several unique immunological properties that help them escape recognition by the innate and adaptive immune system and shape a TME into a pro-tumorigenic and immunosuppressive landscape. In this context, immunotherapy is considered one of the best therapeutic options for eliminating CSCs to halt cancer recurrence and metastasis. In this review, we discuss the various immunomodulatory properties of CSCs and the interaction of CSCs with the immune system enabling immune evasion. In addition, we also highlight the present research update on immunotherapeutic targeting of CSCs and the possible further scope of research on this topic. We believe that a deeper understanding of CSCs' immunological properties and the crosstalk between CSCs and the immune system can develop better innovative immune-therapeutics and enhance the efficacy of current therapy-resistant cancer treatments.
Collapse
Affiliation(s)
- Deepti Singh
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Afsar Khan
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
8
|
Fu X, He Q, Tao Y, Wang M, Wang W, Wang Y, Yu QC, Zhang F, Zhang X, Chen YG, Gao D, Hu P, Hui L, Wang X, Zeng YA. Recent advances in tissue stem cells. SCIENCE CHINA. LIFE SCIENCES 2021; 64:1998-2029. [PMID: 34865207 DOI: 10.1007/s11427-021-2007-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Stem cells are undifferentiated cells capable of self-renewal and differentiation, giving rise to specialized functional cells. Stem cells are of pivotal importance for organ and tissue development, homeostasis, and injury and disease repair. Tissue-specific stem cells are a rare population residing in specific tissues and present powerful potential for regeneration when required. They are usually named based on the resident tissue, such as hematopoietic stem cells and germline stem cells. This review discusses the recent advances in stem cells of various tissues, including neural stem cells, muscle stem cells, liver progenitors, pancreatic islet stem/progenitor cells, intestinal stem cells, and prostate stem cells, and the future perspectives for tissue stem cell research.
Collapse
Affiliation(s)
- Xin Fu
- Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200233, China
| | - Qiang He
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Tao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengdi Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yalong Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qing Cissy Yu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fang Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaoyu Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Max-Planck Center for Tissue Stem Cell Research and Regenerative Medicine, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510530, China.
| | - Dong Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ping Hu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200233, China.
- Max-Planck Center for Tissue Stem Cell Research and Regenerative Medicine, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510530, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, 215121, China.
| | - Lijian Hui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, 215121, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| | - Yi Arial Zeng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Suzhou, 215121, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
9
|
Püschel J, Dubrovska A, Gorodetska I. The Multifaceted Role of Aldehyde Dehydrogenases in Prostate Cancer Stem Cells. Cancers (Basel) 2021; 13:4703. [PMID: 34572930 PMCID: PMC8472046 DOI: 10.3390/cancers13184703] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) are the only tumor cells possessing self-renewal and differentiation properties, making them an engine of tumor progression and a source of tumor regrowth after treatment. Conventional therapies eliminate most non-CSCs, while CSCs often remain radiation and drug resistant, leading to tumor relapse and metastases. Thus, targeting CSCs might be a powerful tool to overcome tumor resistance and increase the efficiency of current cancer treatment strategies. The identification and isolation of the CSC population based on its high aldehyde dehydrogenase activity (ALDH) is widely accepted for prostate cancer (PCa) and many other solid tumors. In PCa, several ALDH genes contribute to the ALDH activity, which can be measured in the enzymatic assay by converting 4, 4-difluoro-4-bora-3a, 4a-diaza-s-indacene (BODIPY) aminoacetaldehyde (BAAA) into the fluorescent product BODIPY-aminoacetate (BAA). Although each ALDH isoform plays an individual role in PCa biology, their mutual functional interplay also contributes to PCa progression. Thus, ALDH proteins are markers and functional regulators of CSC properties, representing an attractive target for cancer treatment. In this review, we discuss the current state of research regarding the role of individual ALDH isoforms in PCa development and progression, their possible therapeutic targeting, and provide an outlook for the future advances in this field.
Collapse
Affiliation(s)
- Jakob Püschel
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany;
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany;
- National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ielizaveta Gorodetska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany;
| |
Collapse
|
10
|
Pellegrino F, Coghi A, Lavorgna G, Cazzaniga W, Guazzoni E, Locatelli I, Villa I, Bolamperti S, Finocchio N, Alfano M, Lucianò R, Briganti A, Montorsi F, Salonia A, Cavarretta I. A mechanistic insight into the anti-metastatic role of the prostate specific antigen. Transl Oncol 2021; 14:101211. [PMID: 34455373 PMCID: PMC8403584 DOI: 10.1016/j.tranon.2021.101211] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/14/2021] [Accepted: 08/21/2021] [Indexed: 12/02/2022] Open
Abstract
Prostate specific antigen is the standard circulating biomarker for prostate cancer. We provide novel evidence that collagen 1 is an additional substrate for PSA. PSA hampers first steps of cancer invasion. Tissue-related PSA content/activity is inversely correlated to tumor progression. Tissue-related PSA levels improve prediction of prostate cancer specific mortality.
Aim Since its discovery Prostate Specific Antigen (PSA), also referred to as kallikrein-3 (KLK3), has been used as standard circulating biomarker for prostate cancer (PCa). However, its specificity remains not adequate and its mechanism of action still elusive. Therefore, deciphering PSA role throughout PCa-pathobiology would be relevant in improving both cancer diagnosis and outcome prediction. We investigated the possible role played by PSA on/in the tumor microenvironment and over the first steps of cancer invasion. Methods Fresh PCa-specimens and cell lines were used for ex-vivo/in-vitro invasion assays and assessment of prostate tissue-PSA (tPSA), type 1 collagen (COL1A1) and ß1-integrin expression. Tissue Cancer Genome Atlas (TCGA) and Decipher® datasets were considered to estimate tPSA clinical relevance. Results A more precise, inverse, correspondence between tPSA and clinical/pathological parameters was found than for circulating PSA. KLK3 combined with Gleason grade and pathologic stage, better predicted cancer-related mortality. Consistently, we demonstrated that PSA inhibits prostate extracellular-matrix (ECM) invasion by PCa cells. As for the mechanism of action, we provided novel information that PSA is able to cleave COL1A1, a main component of the ECM. Finally, ß1-integrin, a crucial COL1A1 transducing-receptor involved in tumor adhesion/invasion, resulted to be downregulated in PCa specimens with higher levels of tPSA. Conclusions By interfering with type 1 collagen and its downstream targets, PSA may hamper adhesion and path of the cancer cells through ECM and their migration ability, thus explaining the inverse correlation highlighted between prostate tPSA levels and clinically significant disease.
Collapse
Affiliation(s)
- Francesco Pellegrino
- Department of Urology, IRCCS San Raffaele Hospital, Milan, Italy; Division of Experimental Oncology/Unit of Urology, IRCCS San Raffaele Hospital, Urological Research Institute, Via Olgettina, 60, Milan 20132, Italy
| | - Arianna Coghi
- Division of Experimental Oncology/Unit of Urology, IRCCS San Raffaele Hospital, Urological Research Institute, Via Olgettina, 60, Milan 20132, Italy
| | - Giovanni Lavorgna
- Division of Experimental Oncology/Unit of Urology, IRCCS San Raffaele Hospital, Urological Research Institute, Via Olgettina, 60, Milan 20132, Italy
| | - Walter Cazzaniga
- Department of Urology, IRCCS San Raffaele Hospital, Milan, Italy
| | - Edoardo Guazzoni
- Operative Unit of Orthopedics and Traumatology, Department of Clinical-Surgical Sciences, Diagnostics and Pediatrics, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Irene Locatelli
- Division of Experimental Oncology/Unit of Urology, IRCCS San Raffaele Hospital, Urological Research Institute, Via Olgettina, 60, Milan 20132, Italy
| | - Isabella Villa
- Bone Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Simona Bolamperti
- Bone Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nadia Finocchio
- Division of Experimental Oncology/Unit of Urology, IRCCS San Raffaele Hospital, Urological Research Institute, Via Olgettina, 60, Milan 20132, Italy
| | - Massimo Alfano
- Division of Experimental Oncology/Unit of Urology, IRCCS San Raffaele Hospital, Urological Research Institute, Via Olgettina, 60, Milan 20132, Italy
| | | | - Alberto Briganti
- Department of Urology, IRCCS San Raffaele Hospital, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco Montorsi
- Department of Urology, IRCCS San Raffaele Hospital, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Salonia
- Department of Urology, IRCCS San Raffaele Hospital, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Ilaria Cavarretta
- Division of Experimental Oncology/Unit of Urology, IRCCS San Raffaele Hospital, Urological Research Institute, Via Olgettina, 60, Milan 20132, Italy.
| |
Collapse
|
11
|
Jamroze A, Chatta G, Tang DG. Androgen receptor (AR) heterogeneity in prostate cancer and therapy resistance. Cancer Lett 2021; 518:1-9. [PMID: 34118355 DOI: 10.1016/j.canlet.2021.06.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/16/2021] [Accepted: 06/06/2021] [Indexed: 12/30/2022]
Abstract
Androgen receptor (AR), a ligand-dependent nuclear transcription factor and a member of steroid hormone receptor family, plays an important role in prostate organogenesis by regulating epithelial differentiation and restricting cell proliferation. Although rarely mutated or amplified in treatment-naïve prostate cancer (PCa), AR signaling drives tumor growth and as a result, therapies that aim to inhibit AR signaling, called ARSIs (AR signaling inhibitors), have been in clinical use for >70 years. Unfortunately, the clinical efficacy of ARSIs is short-lived and the majority of treated patients develop castration-resistant PCa (CRPC). Numerous molecular mechanisms have been proposed for castration resistance; however, the cellular basis for CRPC emergence has remained obscure. One under-appreciated cellular mechanism for CRPC development is the AR heterogeneity that pre-exists in treatment-naive primary tumors, i.e., although most PCa cells express AR (i.e., AR+), there is always a population of PCa cells that express no/low AR (i.e., AR-/lo). Importantly, this AR heterogeneity becomes accentuated during ARSI treatment and highly prominent in established CRPC. Here, we provide a succinct summary of AR heterogeneity across the PCa continuum and discuss its impact on PCa response to treatments. While AR+ PCa cells/clones exhibit exquisite sensitivities to ARSIs, AR-/lo PCa cells/clones, which are greatly enriched in stem cell signaling pathways, display de novo resistance to ARSIs. Finally, we offer several potential combinatorial strategies, e.g., ARSIs with stem cell targeting therapeutics, to co-target both AR+ and AR-/lo PCa cells and metastatic clones.
Collapse
Affiliation(s)
- Anmbreen Jamroze
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| | - Gurkamal Chatta
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA; Experimental Therapeutics (ET) Graduate Program, University at Buffalo & Roswell Park Comprehensive Cancer Center, NY, 14263, USA.
| |
Collapse
|
12
|
Slow-cycling (dormant) cancer cells in therapy resistance, cancer relapse and metastasis. Semin Cancer Biol 2021; 78:90-103. [PMID: 33979674 DOI: 10.1016/j.semcancer.2021.04.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
It is increasingly appreciated that cancer cell heterogeneity and plasticity constitute major barriers to effective clinical treatments and long-term therapeutic efficacy. Research in the past two decades suggest that virtually all treatment-naive human cancers harbor subsets of cancer cells that possess many of the cardinal features of normal stem cells. Such stem-like cancer cells, operationally defined as cancer stem cells (CSCs), are frequently quiescent and dynamically change and evolve during tumor progression and therapeutic interventions. Intrinsic tumor cell heterogeneity is reflected in a different aspect in that tumors also harbor a population of slow-cycling cells (SCCs) that are not in the proliferative cell cycle and thus are intrinsically refractory to anti-mitotic drugs. In this Perspective, we focus our discussions on SCCs in cancer and on various methodologies that can be employed to enrich and purify SCCs, compare the similarities and differences between SCCs, CSCs and cancer cells undergoing EMT, and present evidence for the involvement of SCCs in surviving anti-neoplastic treatments, mediating tumor relapse, maintaining tumor dormancy and mediating metastatic dissemination. Our discussions make it clear that an in-depth understanding of the biological properties of SCCs in cancer will be instrumental to developing new therapeutic strategies to prevent tumor relapse and distant metastasis.
Collapse
|
13
|
Liu C, Liao Z, Duan X, Yu P, Kong P, Tao Z, Liu W. The MYH9 Cytoskeletal Protein Is a Novel Corepressor of Androgen Receptors. Front Oncol 2021; 11:641496. [PMID: 33959503 PMCID: PMC8093144 DOI: 10.3389/fonc.2021.641496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/11/2021] [Indexed: 11/13/2022] Open
Abstract
In the progression of castration-resistant prostate cancer (CRPC), the androgen receptor (AR) that serves as a transcription factor becomes the most remarkable molecule. The transcriptional activity of AR is regulated by various coregulators. As a result, altered expression levels, an aberrant location or activities of coregulators promote the development of prostate cancer. We describe herein results showing that compared with androgen-dependent prostate cancer (ADPC) cells, AR nuclear translocation capability is enhanced in androgen-independent prostate cancer (AIPC) cells. To gain insight into whether AR coregulators are responsible for AR translocation capability, we performed coimmunoprecipitation (CO-IP) coupled with LC-MS/MS to screen 27 previously reported AR cofactors and 46 candidate AR cofactors. Furthermore, one candidate, myosin heavy chain 9 (MYH9), was identified and verified as a novel AR cofactor. Interestingly, the distribution of MYH9 was in both the cytoplasmic and nuclear compartments yet was enriched in the nucleus when AR was knocked down by AR shRNA, suggesting that the nuclear translocation of MYH9 was negatively regulated by AR. In addition, we found that blebbistatin, an inhibitor of MYH9, not only promoted AR nuclear translocation but also enhanced the expression of the AR target gene PSA, which indicates that MYH9 represses nuclear AR signaling. Taken together, our findings reveal that MYH9 appears to be a novel corepressor of AR plays a pivotal role in the progression of CRPC.
Collapse
Affiliation(s)
- Chunhua Liu
- Department of Blood Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhaoping Liao
- Department of Blood Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuzhi Duan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Pan Yu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Piaoping Kong
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihua Tao
- Department of Blood Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Weiwei Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Park S, Lee HY, Kim J, Park H, Ju YS, Kim EG, Kim J. Cerebral Cavernous Malformation 1 Determines YAP/TAZ Signaling-Dependent Metastatic Hallmarks of Prostate Cancer Cells. Cancers (Basel) 2021; 13:cancers13051125. [PMID: 33807895 PMCID: PMC7961486 DOI: 10.3390/cancers13051125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/16/2022] Open
Abstract
Enhanced Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) signaling is correlated with the extraprostatic extension of prostate cancer. However, the mechanism by which YAP/TAZ signaling becomes hyperactive and drives prostate cancer progression is currently unclear. In this study, we revealed that higher expression of CCM1, which is uniquely found in advanced prostate cancer, is inversely correlated with metastasis-free and overall survival in patients with prostate cancer. We also demonstrated that CCM1 induces the metastasis of multiple types of prostate cancer cells by regulating YAP/TAZ signaling. Mechanistically, CCM1, a gene mutated in cerebral cavernous malformation, suppresses DDX5, which regulates the suppression of YAP/TAZ signaling, indicating that CCM1 and DDX5 are novel upstream regulators of YAP/TAZ signaling. Our findings highlight the importance of CCM1-DDX5-YAP/TAZ signaling in the metastasis of prostate cancer cells.
Collapse
Affiliation(s)
- Sangryong Park
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Korea; (S.P.); (H.-Y.L.)
| | - Ho-Young Lee
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Korea; (S.P.); (H.-Y.L.)
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Science and Technology, Gachon University, Incheon 21999, Korea
| | - Jayoung Kim
- Division of Cancer Biology and Therapeutics, Departments of Surgery & Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Hansol Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (H.P.); (Y.S.J.)
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (H.P.); (Y.S.J.)
| | - Eung-Gook Kim
- Department of Biochemistry, Chungbuk National University College of Medicine, Cheongju 28644, Korea;
| | - Jaehong Kim
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Korea; (S.P.); (H.-Y.L.)
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Science and Technology, Gachon University, Incheon 21999, Korea
- Correspondence: ; Tel.: +82-32-899-6441
| |
Collapse
|
15
|
The Chemokine Receptor CCR3 Is Potentially Involved in the Homing of Prostate Cancer Cells to Bone: Implication of Bone-Marrow Adipocytes. Int J Mol Sci 2021; 22:ijms22041994. [PMID: 33671469 PMCID: PMC7922974 DOI: 10.3390/ijms22041994] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 12/26/2022] Open
Abstract
Bone metastasis remains the most frequent and the deadliest complication of prostate cancer (PCa). Mechanisms leading to the homing of tumor cells to bone remain poorly characterized. Role of chemokines in providing navigational cues to migrating cancer cells bearing specific receptors is well established. Bone is an adipocyte-rich organ since 50 to 70% of the adult bone marrow (BM) volume comprise bone marrow adipocytes (BM-Ads), which are likely to produce chemokines within the bone microenvironment. Using in vitro migration assays, we demonstrated that soluble factors released by human primary BM-Ads are able to support the directed migration of PCa cells in a CCR3-dependent manner. In addition, we showed that CCL7, a chemokine previously involved in the CCR3-dependent migration of PCa cells outside of the prostate gland, is released by human BM-Ads. These effects are amplified by obesity and ageing, two clinical conditions known to promote aggressive and metastatic PCa. In human tumors, we found an enrichment of CCR3 in bone metastasis vs. primary tumors at mRNA levels using Oncomine microarray database. In addition, immunohistochemistry experiments demonstrated overexpression of CCR3 in bone versus visceral metastases. These results underline the potential importance of BM-Ads in the bone metastatic process and imply a CCR3/CCL7 axis whose pharmacological interest needs to be evaluated.
Collapse
|
16
|
Men1 disruption in Nkx3.1-deficient mice results in AR low/CD44 + microinvasive carcinoma development with the dysregulated AR pathway. Oncogene 2020; 40:1118-1127. [PMID: 33323967 DOI: 10.1038/s41388-020-01589-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/17/2020] [Accepted: 11/26/2020] [Indexed: 11/08/2022]
Abstract
Dysregulated androgen receptor (AR) plays a crucial role in prostate cancer (PCa) development, though further factors involved in its regulation remain to be identified. Recently, paradoxical results were reported on the implication of the MEN1 gene in PCa. To dissect its role in prostate luminal cells, we generated a mouse model with inducible Men1 disruption in Nkx3.1-deficient mice in which mouse prostatic intraepithelial neoplasia (mPIN) occur. Prostate glands from mutant and control mice were analyzed pathologically and molecularly; cellular and molecular analyses were carried out in PCa cell lines after MEN1 knockdown (KD) by siRNA. Double-mutant mice developed accelerated mPIN and later displayed microinvasive adenocarcinoma. Markedly, early-stage lesions exhibited a decreased expression of AR and its target genes, accompanied by reduced CK18 and E-cadherin expression, suggesting a shift from a luminal to a dedifferentiated epithelial phenotype. Intriguingly, over 60% of menin-deficient cells expressed CD44 at a later stage. Furthermore, MEN1 KD led to the increase in CD44 expression in PC3 cells re-expressing AR. Menin bound to the proximal AR promoter and regulated AR transcription via the H3K4me3 histone mark. Interestingly, the cell proliferation of AR-dependent cells (LNCaP, 22Rv1, and VCaP), but not of AR-independent cells (DU145, PC3), responded strongly to MEN1 silencing. Finally, menin expression was found reduced in some human PCa. These findings highlight the regulation of the AR promoter by menin and the crosstalk between menin and the AR pathway. Our data could be useful for better understanding the increasingly reported AR-negative/NE-negative subtype of PCa and the mechanisms underlying its development.
Collapse
|
17
|
RNA-binding protein DDX3 mediates posttranscriptional regulation of androgen receptor: A mechanism of castration resistance. Proc Natl Acad Sci U S A 2020; 117:28092-28101. [PMID: 33106406 DOI: 10.1073/pnas.2008479117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Prostate cancer (CaP) driven by androgen receptor (AR) is treated with androgen deprivation; however, therapy failure results in lethal castration-resistant prostate cancer (CRPC). AR-low/negative (ARL/-) CRPC subtypes have recently been characterized and cannot be targeted by hormonal therapies, resulting in poor prognosis. RNA-binding protein (RBP)/helicase DDX3 (DEAD-box helicase 3 X-linked) is a key component of stress granules (SG) and is postulated to affect protein translation. Here, we investigated DDX3-mediated posttranscriptional regulation of AR mRNA (messenger RNA) in CRPC. Using patient samples and preclinical models, we objectively quantified DDX3 and AR expression in ARL/- CRPC. We utilized CRPC models to identify DDX3:AR mRNA complexes by RNA immunoprecipitation, assess the effects of DDX3 gain/loss-of-function on AR expression and signaling, and address clinical implications of targeting DDX3 by assessing sensitivity to AR-signaling inhibitors (ARSI) in CRPC xenografts in vivo. ARL/- CRPC expressed abundant AR mRNA despite diminished levels of AR protein. DDX3 protein was highly expressed in ARL/- CRPC, where it bound to AR mRNA. Consistent with a repressive regulatory role, DDX3 localized to cytoplasmic puncta with SG marker PABP1 in CRPC. While induction of DDX3-nucleated SGs resulted in decreased AR protein expression, inhibiting DDX3 was sufficient to restore 1) AR protein expression, 2) AR signaling, and 3) sensitivity to ARSI in vitro and in vivo. Our findings implicate the RBP protein DDX3 as a mechanism of posttranscriptional regulation for AR in CRPC. Clinically, DDX3 may be targetable for sensitizing ARL/- CRPC to AR-directed therapies.
Collapse
|
18
|
Vellky JE, Ricke WA. Development and prevalence of castration-resistant prostate cancer subtypes. Neoplasia 2020; 22:566-575. [PMID: 32980775 PMCID: PMC7522286 DOI: 10.1016/j.neo.2020.09.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Castration-resistant prostate cancer (CRPC) occurs when prostate cancer (CaP) progresses under therapy-induced castrate conditions. Several mechanisms have been proposed to explain this acquired resistance, many of which are driven by androgen receptor (AR). Recent findings, however, sub-classified CRPC by downregulation/absence of AR in certain subtypes that consequently do not respond to anti-androgen therapies. To highlight the significance of CRPC sub-classification, we reviewed the development and treatment of CRPC, AR downregulation in CRPC, and summarized recent reports on the prevalence of CRPC subtypes. METHODS Using a medline-based literature search, we reviewed mechanisms of CRPC development, current treatment schemes, and assessed the prevalence of AR low/negative subtypes of CRPC. Additionally, we performed immunohistochemical staining on human CRPC specimens to quantify AR expression across CRPC subtypes. RESULTS In the majority of cases, CRPC continues to rely on AR signaling, which can be augmented in castrate-conditions through a variety of mechanisms. However, recently low/negative AR expression patterns were identified in a significant proportion of patient samples from a multitude of independent studies. In these AR low/negative cases, we postulated that AR protein may be downregulated by (1) promoter methylation, (2) transcriptional regulation, (3) post-transcriptional regulation by microRNA or RNA-binding-proteins, or (4) post-translational ubiquitination-mediated degradation. CONCLUSIONS Here, we discussed mechanisms of CRPC development and summarized the overall prevalence of CRPC subtypes; interestingly, AR low/negative CRPC represented a considerable proportion of diagnoses. Because these subtypes cannot be effectively treated with AR-targeted therapeutics, a better understanding of AR low/negative subtypes could lead to better treatment strategies and increased survival.
Collapse
Affiliation(s)
- Jordan E Vellky
- Department of Urology, University of Wisconsin School of Medicine and Public Health, 1685 Highland Ave., Madison, WI 53705, USA; Cancer Biology Graduate Program, University of Wisconsin-Madison, Wisconsin Institute for Medical Research, 1111 Highland Ave., Madison, WI 53705, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI 53705, USA
| | - William A Ricke
- Department of Urology, University of Wisconsin School of Medicine and Public Health, 1685 Highland Ave., Madison, WI 53705, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave., Madison, WI 53705, USA; George M. O'Brien Research Center of Excellence, University of Wisconsin School of Medicine and Public Health, 1685 Highland Ave., Madison, WI 53705, USA.
| |
Collapse
|
19
|
Dzobo K, Senthebane DA, Ganz C, Thomford NE, Wonkam A, Dandara C. Advances in Therapeutic Targeting of Cancer Stem Cells within the Tumor Microenvironment: An Updated Review. Cells 2020; 9:E1896. [PMID: 32823711 PMCID: PMC7464860 DOI: 10.3390/cells9081896] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 12/24/2022] Open
Abstract
Despite great strides being achieved in improving cancer patients' outcomes through better therapies and combinatorial treatment, several hurdles still remain due to therapy resistance, cancer recurrence and metastasis. Drug resistance culminating in relapse continues to be associated with fatal disease. The cancer stem cell theory posits that tumors are driven by specialized cancer cells called cancer stem cells (CSCs). CSCs are a subpopulation of cancer cells known to be resistant to therapy and cause metastasis. Whilst the debate on whether CSCs are the origins of the primary tumor rages on, CSCs have been further characterized in many cancers with data illustrating that CSCs display great abilities to self-renew, resist therapies due to enhanced epithelial to mesenchymal (EMT) properties, enhanced expression of ATP-binding cassette (ABC) membrane transporters, activation of several survival signaling pathways and increased immune evasion as well as DNA repair mechanisms. CSCs also display great heterogeneity with the consequential lack of specific CSC markers presenting a great challenge to their targeting. In this updated review we revisit CSCs within the tumor microenvironment (TME) and present novel treatment strategies targeting CSCs. These promising strategies include targeting CSCs-specific properties using small molecule inhibitors, immunotherapy, microRNA mediated inhibitors, epigenetic methods as well as targeting CSC niche-microenvironmental factors and differentiation. Lastly, we present recent clinical trials undertaken to try to turn the tide against cancer by targeting CSC-associated drug resistance and metastasis.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa; (D.A.S.); (C.G.)
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Dimakatso Alice Senthebane
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa; (D.A.S.); (C.G.)
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Chelene Ganz
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa; (D.A.S.); (C.G.)
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Nicholas Ekow Thomford
- Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa; (N.E.T.); (A.W.); (C.D.)
- Department of Medical Biochemistry, School of Medical Sciences, College of Health Sciences, University of Cape Coast, PMB, Cape Coast, Ghana
| | - Ambroise Wonkam
- Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa; (N.E.T.); (A.W.); (C.D.)
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa; (N.E.T.); (A.W.); (C.D.)
| |
Collapse
|
20
|
Prostate cancer-derived holoclones: a novel and effective model for evaluating cancer stemness. Sci Rep 2020; 10:11329. [PMID: 32647229 PMCID: PMC7347552 DOI: 10.1038/s41598-020-68187-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer accounts for approximately 13.5% of all newly diagnosed male cancer cases. Significant clinical burdens remain in terms of ineffective prognostication, with overtreatment of insignificant disease. Additionally, the pathobiology underlying disease heterogeneity remains poorly understood. As the role of cancer stem cells in the perpetuation of aggressive carcinoma is being substantiated by experimental evidence, it is crucially important to understand the molecular mechanisms, which regulate key features of cancer stem cells. We investigated two methods for in vitro cultivation of putative prostate cancer stem cells based on ‘high-salt agar’ and ‘monoclonal cultivation’. Data demonstrated ‘monoclonal cultivation’ as the superior method. We demonstrated that ‘holoclones’ expressed canonical stem markers, retained the exclusive ability to generate poorly differentiated tumours in NOD/SCID mice and possessed a unique mRNA-miRNA gene signature. miRNA:Target interactions analysis visualised potentially critical regulatory networks, which are dysregulated in prostate cancer holoclones. The characterisation of this tumorigenic population lays the groundwork for this model to be used in the identification of proteomic or small non-coding RNA therapeutic targets for the eradication of this critical cellular population. This is significant, as it provides a potential route to limit development of aggressive disease and thus improve survival rates.
Collapse
|
21
|
Immunotherapy: Newer Therapeutic Armamentarium against Cancer Stem Cells. JOURNAL OF ONCOLOGY 2020; 2020:3963561. [PMID: 32211043 PMCID: PMC7085385 DOI: 10.1155/2020/3963561] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 02/04/2020] [Indexed: 12/15/2022]
Abstract
Mounting evidence from the literature suggests the existence of a subpopulation of cancer stem cells (CSCs) in almost all types of human cancers. These CSCs possessing a self-renewal capacity inhabit primary tumors and are more defiant to standard antimitotic and molecularly targeted therapies which are used for eliminating actively proliferating and differentiated cancer cells. Clinical relevance of CSCs emerges from the fact that they are the root cause of therapy resistance, relapse, and metastasis. Earlier, surgery, chemotherapy, and radiotherapy were established as cancer treatment modalities, but recently, immunotherapy is also gaining importance in the management of various cancer patients, mostly those of the advanced stage. This review abridges potential off-target effects of inhibiting CSC self-renewal pathways on immune cells and some recent immunological studies specifically targeting CSCs on the basis of their antigen expression profile, even though molecular markers or antigens that have been described till date as expressed by cancer stem cells are not specifically expressed by these cells which is a major limitation to target CSCs. We propose that owing to CSC stemness property to mediate immunotherapy response, we can apply a combination therapy approach by targeting CSCs and tumor microenvironment (TME) along with conventional treatment strategies as an effective means to eradicate cancer cells.
Collapse
|
22
|
Li S, Goncalves KA, Lyu B, Yuan L, Hu GF. Chemosensitization of prostate cancer stem cells in mice by angiogenin and plexin-B2 inhibitors. Commun Biol 2020; 3:26. [PMID: 31942000 PMCID: PMC6962460 DOI: 10.1038/s42003-020-0750-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 12/20/2019] [Indexed: 12/28/2022] Open
Abstract
Cancer stem cells (CSCs) are an obstacle in cancer therapy and are a major cause of drug resistance, cancer recurrence, and metastasis. Available treatments, targeting proliferating cancer cells, are not effective in eliminating quiescent CSCs. Identification of CSC regulators will help design therapeutic strategies to sensitize drug-resistant CSCs for chemo-eradication. Here, we show that angiogenin and plexin-B2 regulate the stemness of prostate CSCs, and that inhibitors of angiogenin/plexin-B2 sensitize prostate CSCs to chemotherapy. Prostate CSCs capable of self-renewal, differentiation, and tumor initiation with a single cell inoculation were identified and shown to be regulated by angiogenin/plexin-B2 that promotes quiescence and self-renewal through 5S ribosomal RNA processing and generation of the bioactive 3′-end fragments of 5S ribosomal RNA, which suppress protein translation and restrict cell cycling. Monoclonal antibodies of angiogenin and plexin-B2 decrease the stemness of prostate CSCs and sensitize them to chemotherapeutic agents in vitro and in vivo. Shuping Li et al. show that angiogenin and its receptor plexin-B2 regulate the stemness of prostate cancer stem cells. Monoclonal antibodies of angiogenin and plexin-B2 sensitize prostate cancer stem cells to chemotherapy, highlighting the targeting potential of this regulation.
Collapse
Affiliation(s)
- Shuping Li
- Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Kevin A Goncalves
- Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Graduate Program in Cellular and Molecular Physiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Baiqing Lyu
- Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Liang Yuan
- Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Program in Cellular, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Guo-Fu Hu
- Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA. .,Graduate Program in Cellular and Molecular Physiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA. .,Program in Cellular, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.
| |
Collapse
|
23
|
Li Q, Liu B, Chao HP, Ji Y, Lu Y, Mehmood R, Jeter C, Chen T, Moore JR, Li W, Liu C, Rycaj K, Tracz A, Kirk J, Calhoun-Davis T, Xiong J, Deng Q, Huang J, Foster BA, Gokhale A, Chen X, Tang DG. LRIG1 is a pleiotropic androgen receptor-regulated feedback tumor suppressor in prostate cancer. Nat Commun 2019; 10:5494. [PMID: 31792211 PMCID: PMC6889295 DOI: 10.1038/s41467-019-13532-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
LRIG1 has been reported to be a tumor suppressor in gastrointestinal tract and epidermis. However, little is known about the expression, regulation and biological functions of LRIG1 in prostate cancer (PCa). We find that LRIG1 is overexpressed in PCa, but its expression correlates with better patient survival. Functional studies reveal strong tumor-suppressive functions of LRIG1 in both AR+ and AR- xenograft models, and transgenic expression of LRIG1 inhibits tumor development in Hi-Myc and TRAMP models. LRIG1 also inhibits castration-resistant PCa and exhibits therapeutic efficacy in pre-established tumors. We further show that 1) AR directly transactivates LRIG1 through binding to several AR-binding sites in LRIG1 locus, and 2) LRIG1 dampens ERBB expression in a cell type-dependent manner and inhibits ERBB2-driven tumor growth. Collectively, our study indicates that LRIG1 represents a pleiotropic AR-regulated feedback tumor suppressor that functions to restrict oncogenic signaling from AR, Myc, ERBBs, and, likely, other oncogenic drivers.
Collapse
Affiliation(s)
- Qiuhui Li
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, China
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Bigang Liu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Hsueh-Ping Chao
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Yibing Ji
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Rashid Mehmood
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Collene Jeter
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - John R Moore
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Wenqian Li
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Can Liu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Kiera Rycaj
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Amanda Tracz
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Jason Kirk
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Tammy Calhoun-Davis
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Jie Xiong
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Qu Deng
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University of School of Medicine, Durham, NC, 27710, USA
| | - Barbara A Foster
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Abhiram Gokhale
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Xin Chen
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA.
- Department of Oncology, Tongji Hospital, Tongji Medical School, Huazhong University of Science and Technology (HUST), 430030, Wuhan, China.
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA.
- Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, 200120, Shanghai, China.
| |
Collapse
|
24
|
O'Reilly D, Johnson P, Buchanan PJ. Hypoxia induced cancer stem cell enrichment promotes resistance to androgen deprivation therapy in prostate cancer. Steroids 2019; 152:108497. [PMID: 31521707 DOI: 10.1016/j.steroids.2019.108497] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 09/03/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023]
Abstract
Androgen deprivation therapy (ADT) is the main treatment to prolong survival in advance stage prostate cancer (PCa) but associated resistance leads to the development of terminal castrate resistant PCa (CRPC). Current research demonstrates that prostate cancer stem cells (PCSC) play a critical role in the development of treatment resistance and subsequent disease progression. Despite uncertainty surrounding the origin of these cells, studies clearly show they are associated with poorer outcomes and that ADT significantly enhances their numbers. Here in we highlight how activation of HIF signalling, in response to hypoxic conditions within the tumour microenvironment, results in the expression of genes associated with stemness and EMT promoting PCSC emergence which ultimately drives tumour relapse to CRPC. Hypoxic conditions are not only enhanced by ADT but the associated decrease in AR activation also promotes PI3K/AKT signalling which actively enhances HIF and its effects on PCSC's. Furthermore, emerging evidence now indicates that HIF-2α, rather than the commonly considered HIF-1α, is the main family member that drives PCSC emergence. Taken together this clearly identifies HIF and associated pathways as key targets for new therapeutic strategies that could potentially prevent or slow PCSC promoted resistance to ADT, thus holding potential to prolong patient survival.
Collapse
Affiliation(s)
- Debbie O'Reilly
- School of Nursing & Human Sciences, Dublin City University, Dublin, Ireland; National Institute of Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Patricia Johnson
- School of Nursing & Human Sciences, Dublin City University, Dublin, Ireland
| | - Paul J Buchanan
- School of Nursing & Human Sciences, Dublin City University, Dublin, Ireland; National Institute of Cellular Biotechnology, Dublin City University, Dublin, Ireland.
| |
Collapse
|
25
|
Davis JE, Kirk J, Ji Y, Tang DG. Tumor Dormancy and Slow-Cycling Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1164:199-206. [PMID: 31576550 DOI: 10.1007/978-3-030-22254-3_15] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cancer cell heterogeneity is a universal feature of human tumors and represents a significant barrier to the efficacy and duration of anticancer therapies, especially targeted therapeutics. Among the heterogeneous cancer cell populations is a subpopulation of relatively quiescent cancer cells, which are in the G0/G1 cell-cycle phase and refractory to anti-mitotic drugs that target proliferative cells. These slow-cycling cells (SCCs) preexist in untreated tumors and frequently become enriched in treatment-failed tumors, raising the possibility that these cells may mediate therapy resistance and tumor relapse. Here we review several general concepts on tumor cell heterogeneity, quiescence, and tumor dormancy. We discuss the potential relationship between SCCs and cancer stem cells (CSCs). We also present our current understanding of how SCCs and cancer dormancy might be regulated. Increasing knowledge of SCCs and tumor dormancy should lead to identification of novel molecular regulators and therapeutic targets of tumor relapse, residual diseases, and metastasis.
Collapse
Affiliation(s)
- John E Davis
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jason Kirk
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Yibing Ji
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
26
|
Testa U, Castelli G, Pelosi E. Cellular and Molecular Mechanisms Underlying Prostate Cancer Development: Therapeutic Implications. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E82. [PMID: 31366128 PMCID: PMC6789661 DOI: 10.3390/medicines6030082] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022]
Abstract
Prostate cancer is the most frequent nonskin cancer and second most common cause of cancer-related deaths in man. Prostate cancer is a clinically heterogeneous disease with many patients exhibiting an aggressive disease with progression, metastasis, and other patients showing an indolent disease with low tendency to progression. Three stages of development of human prostate tumors have been identified: intraepithelial neoplasia, adenocarcinoma androgen-dependent, and adenocarcinoma androgen-independent or castration-resistant. Advances in molecular technologies have provided a very rapid progress in our understanding of the genomic events responsible for the initial development and progression of prostate cancer. These studies have shown that prostate cancer genome displays a relatively low mutation rate compared with other cancers and few chromosomal loss or gains. The ensemble of these molecular studies has led to suggest the existence of two main molecular groups of prostate cancers: one characterized by the presence of ERG rearrangements (~50% of prostate cancers harbor recurrent gene fusions involving ETS transcription factors, fusing the 5' untranslated region of the androgen-regulated gene TMPRSS2 to nearly the coding sequence of the ETS family transcription factor ERG) and features of chemoplexy (complex gene rearrangements developing from a coordinated and simultaneous molecular event), and a second one characterized by the absence of ERG rearrangements and by the frequent mutations in the E3 ubiquitin ligase adapter SPOP and/or deletion of CDH1, a chromatin remodeling factor, and interchromosomal rearrangements and SPOP mutations are early events during prostate cancer development. During disease progression, genomic and epigenomic abnormalities accrued and converged on prostate cancer pathways, leading to a highly heterogeneous transcriptomic landscape, characterized by a hyperactive androgen receptor signaling axis.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
27
|
Abstract
Since the introduction of the cancer stem cell (CSC) hypothesis, accumulating evidence shows that most cancers present stem-like niches. However, therapies aimed at targeting this niche have not been as successful as expected. New evidence regarding CSCs hierarchy, similarities with normal tissue stem cells and cell plasticity might be key in understanding their role in cancer biology and how to efficiently eliminate them. In this Chapter, we discuss what is known in breast and prostate CSCs from their initial discoveries to the current therapeutic efforts in the field. Future challenges towards better CSC identification and isolation strategies will be key to shed light into how CSCs could accurately be targeted in combination to traditional therapies to ultimately prolong patient survival.
Collapse
Affiliation(s)
- Rocío G Sampayo
- Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, CA, United States
| | - Mina J Bissell
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
28
|
Hooker SE, Woods-Burnham L, Bathina M, Lloyd S, Gorjala P, Mitra R, Nonn L, Kimbro KS, Kittles RA. Genetic Ancestry Analysis Reveals Misclassification of Commonly Used Cancer Cell Lines. Cancer Epidemiol Biomarkers Prev 2019; 28:1003-1009. [PMID: 30787054 PMCID: PMC6548687 DOI: 10.1158/1055-9965.epi-18-1132] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/20/2018] [Accepted: 02/14/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Given the scarcity of cell lines from underrepresented populations, it is imperative that genetic ancestry for these cell lines is characterized. Consequences of cell line mischaracterization include squandered resources and publication retractions. METHODS We calculated genetic ancestry proportions for 15 cell lines to assess the accuracy of previous race/ethnicity classification and determine previously unknown estimates. DNA was extracted from cell lines and genotyped for ancestry informative markers representing West African (WA), Native American (NA), and European (EUR) ancestry. RESULTS Of the cell lines tested, all previously classified as White/Caucasian were accurately described with mean EUR ancestry proportions of 97%. Cell lines previously classified as Black/African American were not always accurately described. For instance, the 22Rv1 prostate cancer cell line was recently found to carry mixed genetic ancestry using a much smaller panel of markers. However, our more comprehensive analysis determined the 22Rv1 cell line carries 99% EUR ancestry. Most notably, the E006AA-hT prostate cancer cell line, classified as African American, was found to carry 92% EUR ancestry. We also determined the MDA-MB-468 breast cancer cell line carries 23% NA ancestry, suggesting possible Afro-Hispanic/Latina ancestry. CONCLUSIONS Our results suggest predominantly EUR ancestry for the White/Caucasian-designated cell lines, yet high variance in ancestry for the Black/African American-designated cell lines. In addition, we revealed an extreme misclassification of the E006AA-hT cell line. IMPACT Genetic ancestry estimates offer more sophisticated characterization leading to better contextualization of findings. Ancestry estimates should be provided for all cell lines to avoid erroneous conclusions in disparities literature.
Collapse
Affiliation(s)
- Stanley E Hooker
- Division of Health Equities, Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Leanne Woods-Burnham
- Division of Health Equities, Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Madhavi Bathina
- Division of Health Equities, Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Stacy Lloyd
- Department of Molecular and Cellular Biology and Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas
| | - Priyatham Gorjala
- College of Medicine, Roseman University of Health Sciences, Las Vegas, Nevada
| | - Ranjana Mitra
- College of Medicine, Roseman University of Health Sciences, Las Vegas, Nevada
| | - Larisa Nonn
- The Department of Pathology, University of Illinois, Chicago, Illinois
| | - K Sean Kimbro
- Biomedical/Biotechnology Research Institute (BBRI), North Carolina Central University, Durham, North Carolina
| | - Rick A Kittles
- Division of Health Equities, Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, California.
| |
Collapse
|
29
|
Gorodetska I, Kozeretska I, Dubrovska A. BRCA Genes: The Role in Genome Stability, Cancer Stemness and Therapy Resistance. J Cancer 2019; 10:2109-2127. [PMID: 31205572 PMCID: PMC6548160 DOI: 10.7150/jca.30410] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
Carcinogenesis is a multistep process, and tumors frequently harbor multiple mutations regulating genome integrity, cell division and death. The integrity of cellular genome is closely controlled by the mechanisms of DNA damage signaling and DNA repair. The association of breast cancer susceptibility genes BRCA1 and BRCA2 with breast and ovarian cancer development was first demonstrated over 20 years ago. Since then the germline mutations within these genes were linked to genomic instability and increased risk of many other cancer types. Genomic instability is an engine of the oncogenic transformation of non-tumorigenic cells into tumor-initiating cells and further tumor evolution. In this review we discuss the biological functions of BRCA1 and BRCA2 genes and the role of BRCA mutations in tumor initiation, regulation of cancer stemness, therapy resistance and tumor progression.
Collapse
Affiliation(s)
- Ielizaveta Gorodetska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Iryna Kozeretska
- Department of General and Medical Genetics, ESC "The Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Anna Dubrovska
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; German Cancer Consortium (DKTK), Partner site Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
30
|
Erdogan S, Turkekul K, Dibirdik I, Doganlar ZB, Doganlar O, Bilir A. Midkine silencing enhances the anti–prostate cancer stem cell activity of the flavone apigenin: cooperation on signaling pathways regulated by ERK, p38, PTEN, PARP, and NF-κB. Invest New Drugs 2019; 38:246-263. [DOI: 10.1007/s10637-019-00774-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/01/2019] [Indexed: 12/18/2022]
|
31
|
Zhang D, Zhao S, Li X, Kirk JS, Tang DG. Prostate Luminal Progenitor Cells in Development and Cancer. Trends Cancer 2018; 4:769-783. [PMID: 30352679 PMCID: PMC6212301 DOI: 10.1016/j.trecan.2018.09.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/28/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022]
Abstract
Prostate cancer (PCa) has a predominantly luminal phenotype. Basal cells were previously identified as a cell of origin for PCa, but increasing evidence implicates luminal cells as a preferred cell of origin for PCa, as well as key drivers of tumor development and progression. Prostate luminal cells are understudied compared with basal cells. In this review, we describe the contribution of prostate luminal progenitor (LP) cells to luminal cell development and their role in prostate development, androgen-mediated regeneration of castrated prostate, and tumorigenesis. We also discuss the potential value of LP transcriptomics to identify new targets and therapies to treat aggressive PCa. Finally, we propose future research directions focusing on molecular mechanisms underlying LP cell biology and heterogeneity in normal and diseased prostate.
Collapse
Affiliation(s)
- Dingxiao Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Jason S Kirk
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
32
|
Li S, Zhou J, Wang Y, Zhang K, Yang J, Zhang X, Wang C, Ma H, Zhou J, He E, Skog S. Serum thymidine kinase 1 is associated with Gleason score of patients with prostate carcinoma. Oncol Lett 2018; 16:6171-6180. [PMID: 30333882 DOI: 10.3892/ol.2018.9345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 07/03/2018] [Indexed: 12/29/2022] Open
Abstract
The aim of the present was to assess whether serum thymidine kinase 1 (STK1) concentration is a useful biomarker for the screening of benign prostatic hyperplasia (BPH) or prostate malignancy. Serum samples were collected from 123 patients with prostate carcinoma prior to surgery, biopsy or androgen deprivation therapy and at 3, 6 and 10 months following the procedure. A total of 205 patients with BPH and 266 healthy controls were also utilized. STK1 concentration and total prostate-specific antigen (PSA) were measured in patient serum by use of commercial assays. The pathological specimens (obtained from surgery or biopsy) were assessed according to Gleason scores (GS). STK1 concentration and total PSA were significantly higher in patients with prostate carcinoma compared with patients with BPH and healthy individuals. Furthermore, STK1 concentration was associated with Gleason score, while total PSA was not. However, no association was identified between STK1 concentration and total serum PSA. A receiver operating characteristic analysis was performed on STK1 concentrations among patients with prostate carcinoma. The results demonstrated that the sensitivity and specificity were high, with an area under the curve (AUC) of 0.97. Although the sensitivity and specificity of total PSA were also high, the AUC value was relatively low (0.74). The results indicated that STK1 concentration is a more reliable prognostic biomarker than total PSA in respect to the GS system. Additionally, since STK1 concentration is associated with Gleason score, the use of biopsies to determine Gleason score may be replaced to some extent by the STK1 concentration test, thus reducing the discomfort of patients from which biopsies are obtained.
Collapse
Affiliation(s)
- Shujing Li
- Department of Nephrology, Southwest Hospital, Third Military Medical University, Chongqing 400030, P.R. China
| | - Jianping Zhou
- Radioimmunity Center, Shaanxi Provincial People's Hospital, Xian, Shaanxi 710068, P.R. China
| | - Yu Wang
- Health Management Center, People's Liberation Army 180 Hospital, Quanzhou, Fujian 362000, P.R. China
| | - Keqin Zhang
- Department of Nephrology, Southwest Hospital, Third Military Medical University, Chongqing 400030, P.R. China
| | - Junjie Yang
- Department of Urology, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Xinling Zhang
- Radioimmunity Center, Shaanxi Provincial People's Hospital, Xian, Shaanxi 710068, P.R. China
| | - Chunmei Wang
- Radioimmunity Center, Shaanxi Provincial People's Hospital, Xian, Shaanxi 710068, P.R. China
| | - Hongbo Ma
- Department of Medicine, Sino-Swed Molecular Bio-Medicine Research Institute, Shenzhen, Guangdong 518057, P.R. China
| | - Ji Zhou
- Department of Medicine, Sino-Swed Molecular Bio-Medicine Research Institute, Shenzhen, Guangdong 518057, P.R. China
| | - Ellen He
- Department of Medicine, Sino-Swed Molecular Bio-Medicine Research Institute, Shenzhen, Guangdong 518057, P.R. China
| | - Sven Skog
- Department of Medicine, Sino-Swed Molecular Bio-Medicine Research Institute, Shenzhen, Guangdong 518057, P.R. China
| |
Collapse
|
33
|
Li Q, Deng Q, Chao HP, Liu X, Lu Y, Lin K, Liu B, Tang GW, Zhang D, Tracz A, Jeter C, Rycaj K, Calhoun-Davis T, Huang J, Rubin MA, Beltran H, Shen J, Chatta G, Puzanov I, Mohler JL, Wang J, Zhao R, Kirk J, Chen X, Tang DG. Linking prostate cancer cell AR heterogeneity to distinct castration and enzalutamide responses. Nat Commun 2018; 9:3600. [PMID: 30190514 PMCID: PMC6127155 DOI: 10.1038/s41467-018-06067-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/02/2018] [Indexed: 12/31/2022] Open
Abstract
Expression of androgen receptor (AR) in prostate cancer (PCa) is heterogeneous but the functional significance of AR heterogeneity remains unclear. Screening ~200 castration-resistant PCa (CRPC) cores and whole-mount sections (from 89 patients) reveals 3 AR expression patterns: nuclear (nuc-AR), mixed nuclear/cytoplasmic (nuc/cyto-AR), and low/no expression (AR-/lo). Xenograft modeling demonstrates that AR+ CRPC is enzalutamide-sensitive but AR-/lo CRPC is resistant. Genome editing-derived AR+ and AR-knockout LNCaP cell clones exhibit distinct biological and tumorigenic properties and contrasting responses to enzalutamide. RNA-Seq and biochemical analyses, coupled with experimental combinatorial therapy, identify BCL-2 as a critical therapeutic target and provide proof-of-concept therapeutic regimens for both AR+/hi and AR-/lo CRPC. Our study links AR expression heterogeneity to distinct castration/enzalutamide responses and has important implications in understanding the cellular basis of prostate tumor responses to AR-targeting therapies and in facilitating development of novel therapeutics to target AR-/lo PCa cells/clones.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Benzamides
- Cell Line, Tumor
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Mice, Inbred NOD
- Mice, Knockout
- Molecular Targeted Therapy
- Nitriles
- Phenylthiohydantoin/analogs & derivatives
- Phenylthiohydantoin/pharmacology
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/pathology
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Signal Transduction
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Qiuhui Li
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology,, Wuhan University, 430079, Wuhan, China
| | - Qu Deng
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
- Program in Molecular Carcinogenesis, University of Texas Graduate School for Biomedical Sciences (GSBS), Houston, TX, 77030, USA
| | - Hsueh-Ping Chao
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
- Program in Molecular Carcinogenesis, University of Texas Graduate School for Biomedical Sciences (GSBS), Houston, TX, 77030, USA
| | - Xin Liu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Bigang Liu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Gregory W Tang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Dingxiao Zhang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Amanda Tracz
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Collene Jeter
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Kiera Rycaj
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Tammy Calhoun-Davis
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University of School of Medicine, Durham, NC, 27710, USA
| | - Mark A Rubin
- Caryl and Israel Englander Institute for Precision Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY, 10065, USA
- Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, 10021, USA
| | - Himisha Beltran
- Caryl and Israel Englander Institute for Precision Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY, 10065, USA
- Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA
| | - Gurkamal Chatta
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - James L Mohler
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Ruizhe Zhao
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Jason Kirk
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Xin Chen
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA.
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, TX, 78957, USA.
- Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, 200120, Shanghai, China.
| |
Collapse
|
34
|
Inhibiting Multiple Deubiquitinases to Reduce Androgen Receptor Expression in Prostate Cancer Cells. Sci Rep 2018; 8:13146. [PMID: 30177856 PMCID: PMC6120934 DOI: 10.1038/s41598-018-31567-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 08/20/2018] [Indexed: 01/27/2023] Open
Abstract
Prostate cancer (PCa), a leading cause of cancer-related death in men, becomes resistant to androgen deprivation therapy by inducing androgen receptor (AR) activity, which is known as castration-resistant PCa (CRPC). Enzalutamide is an approved drug that inhibits AR activity and increases overall survival. However, resistance to enzalutamide develops rapidly often by increasing AR activity, suggesting that new therapies are required for CRPC. We investigated whether betulinic acid (BA), a small molecule from plants that inhibits multiple deubiquitinases (DUBs), reduces AR, and selectively kills PCa cells, can provide an adjuvant strategy for CRPC. Our data indicated that BA reduced AR protein stability and mRNA expression, making it an attractive agent for CRPC. BA decreased AR mRNA possibly by inhibiting a histone 2A DUB thereby increasing ubiquitinated histone 2A, a transcriptional repressor. We identified multiple and specific DUBs inhibited by BA either in PCa cells or using recombinant DUBs. Similar results were obtained using another multi-DUB inhibitor WP1130, suggesting that these DUB inhibitors can decrease AR expression and increase PCa-specific death. Our results also suggest that combining multi-DUB inhibitors BA or WP1130 with enzalutamide may provide a novel strategy for CRPC by further decreasing AR expression and increasing apoptotic cell death.
Collapse
|
35
|
Cattrini C, Rubagotti A, Nuzzo PV, Zinoli L, Salvi S, Boccardo S, Perachino M, Cerbone L, Vallome G, Latocca MM, Zanardi E, Boccardo F. Overexpression of Periostin in Tumor Biopsy Samples Is Associated With Prostate Cancer Phenotype and Clinical Outcome. Clin Genitourin Cancer 2018; 16:e1257-e1265. [PMID: 30170989 DOI: 10.1016/j.clgc.2018.07.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Overexpression of periostin (POSTN) is associated with prostate cancer (PCa) aggressiveness. We investigated the prognostic significance of POSTN expression in tumor biopsy samples of patients with PCa. METHODS We scored POSTN expression by immunohistochemistry analysis on 215 PCa biopsy samples using an anti-POSTN-specific antibody. A total immunoreactive score (T-IRS) was calculated by adding the POSTN staining scores of stromal and epithelial tumor cells. Prostate-specific antigen (PSA) progression/recurrence-free survival (PFS), radiographic progression/recurrence-free survival (rPFS), and overall survival (OS) were the study end points. RESULTS A total of 143 patients received therapy with radical attempt, whereas 72 had locally advanced or metastatic disease and received hormone therapy alone. Median T-IRS was 9 and 12 (range, 0-20), respectively (P = .001). Overall, we found a weak positive correlation of T-IRS with prebiopsy PSA levels (r = 0.166, P = .016) and Gleason score (r = 0.266, P < .000). T-IRS ≥ 8 independently predicted for shorter PSA-PFS and OS (hazard ratio [HR] [95% confidence interval (CI)] ≥ 8 versus < 8: 1.50 [1.06-2.14], P = .024 and 1.92 [1.20-3.07], P = .007, respectively). In the subgroup analysis, the association between T-IRS and patient outcome was retained in patients who received therapy with radical attempt (HR [95% CI] ≥ 8 vs. < 8: rPFS: 2.06 [1.18-3.58], P = .01; OS: 2.36 [1.24-4.50], P = .009) and in those with low to intermediate Gleason scores (HR [95% CI] ≥ 8 vs. < 8: PSA-PFS: 1.65 [1.06-2.59], P = .028; rPFS: 2.09 [1.14-3.87], P = .018; OS: 2.57 [1.31-5.04], P = .006). CONCLUSION POSTN T-IRS on PCa biopsy samples independently predicted the risk of recurrence, progression, and death in patients with localized disease and in those with low to intermediate Gleason scores.
Collapse
Affiliation(s)
- Carlo Cattrini
- Academic Unit of Medical Oncology, IRCCS San Martino Polyclinic Hospital, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, Genoa, Italy
| | - Alessandra Rubagotti
- Academic Unit of Medical Oncology, IRCCS San Martino Polyclinic Hospital, Genoa, Italy; Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Pier Vitale Nuzzo
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, Genoa, Italy
| | - Linda Zinoli
- Academic Unit of Medical Oncology, IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| | - Sandra Salvi
- Pathology Unit, IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| | - Simona Boccardo
- Pathology Unit, IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| | - Marta Perachino
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, Genoa, Italy
| | - Luigi Cerbone
- Academic Unit of Medical Oncology, IRCCS San Martino Polyclinic Hospital, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, Genoa, Italy
| | - Giacomo Vallome
- Academic Unit of Medical Oncology, IRCCS San Martino Polyclinic Hospital, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, Genoa, Italy
| | - Maria Maddalena Latocca
- Academic Unit of Medical Oncology, IRCCS San Martino Polyclinic Hospital, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, Genoa, Italy
| | - Elisa Zanardi
- Academic Unit of Medical Oncology, IRCCS San Martino Polyclinic Hospital, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, Genoa, Italy
| | - Francesco Boccardo
- Academic Unit of Medical Oncology, IRCCS San Martino Polyclinic Hospital, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, Genoa, Italy.
| |
Collapse
|
36
|
Stem-like and highly invasive prostate cancer cells expressing CD44v8-10 marker originate from CD44-negative cells. Oncotarget 2018; 9:30905-30918. [PMID: 30112117 PMCID: PMC6089404 DOI: 10.18632/oncotarget.25773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/22/2018] [Indexed: 12/28/2022] Open
Abstract
In human prostate cancer (PCa), the neuroendocrine cells, expressing the prostate cancer stem cell (CSC) marker CD44, may be resistant to androgen ablation and promote tumor recurrence. During the study of heterogeneity of the highly aggressive neuroendocrine PCa cell lines PC3 and DU-145, we isolated and expanded in vitro a minor subpopulation of very small cells lacking CD44 (CD44neg). Unexpectedly, these sorted CD44neg cells rapidly and spontaneously converted to a stable CD44high phenotype specifically expressing the CD44v8-10 isoform which the sorted CD44high subpopulation failed to express. Surprisingly and potentially interesting, in these cells expression of CD44v8-10 was found to be induced in stem cell medium. CD44 variant isoforms are known to be more expressed in CSC and metastatic cells than CD44 standard isoform. In agreement, functional analysis of the two sorted and cultured subpopulations has shown that the CD44v8-10pos PC3 cells, resulting from the conversion of the CD44neg subpopulation, were more invasive in vitro and had a higher clonogenic potential than the sorted CD44high cells, in that they produced mainly holoclones, known to be enriched in stem-like cells. Of interest, the CD44v8-10 is more expressed in human PCa biopsies than in normal gland. The discovery of CD44v8-10pos cells with stem-like and invasive features, derived from a minoritarian CD44neg cell population in PCa, alerts on the high plasticity of stem-like markers and urges for prudency on the approaches to targeting the putative CSC.
Collapse
|
37
|
Voelkel-Johnson C, Norris JS, White-Gilbertson S. Interdiction of Sphingolipid Metabolism Revisited: Focus on Prostate Cancer. Adv Cancer Res 2018; 140:265-293. [PMID: 30060812 PMCID: PMC6460930 DOI: 10.1016/bs.acr.2018.04.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sphingolipid metabolism is known to play a role in cell death, survival, and therapy resistance in cancer. Sphingolipids, particularly dihydroceramide and ceramide, are associated with antiproliferative or cell death responses, respectively, and are central to effective cancer therapy. Within the last decade, strides have been made in elucidating many intricacies of sphingolipid metabolism. New information has emerged on the mechanisms by which sphingolipid metabolism is dysregulated during malignancy and how cancer cells survive and/or escape therapeutic interventions. This chapter focuses on three main themes: (1) sphingolipid enzymes that are dysregulated in cancer, particularly in prostate cancer; (2) inhibitors of sphingolipid metabolism that antagonize prosurvival responses; and (3) sphingolipid-driven escape mechanisms that allow cancer cells to evade therapies. We explore clinical and preclinical approaches to interdict sphingolipid metabolism and provide a rationale for combining strategies to drive the generation of antiproliferative ceramides with prevention of ceramide clearance.
Collapse
Affiliation(s)
- Christina Voelkel-Johnson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - James S. Norris
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Shai White-Gilbertson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
38
|
Zhang D, Tang DG, Rycaj K. Cancer stem cells: Regulation programs, immunological properties and immunotherapy. Semin Cancer Biol 2018; 52:94-106. [PMID: 29752993 DOI: 10.1016/j.semcancer.2018.05.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023]
Abstract
It is becoming increasingly clear that virtually all types of human cancers harbor a small population of stem-like cancer cells (i.e., cancer stem cells, CSCs). These CSCs preexist in primary tumors, can self-renew and are more tolerant of standard treatments, such as antimitotic and molecularly targeted agents, most of which preferentially eliminate differentiated and proliferating cancer cells. CSCs are therefore postulated as the root of therapy resistance, relapse and metastasis. Aside from surgery, radiation, and chemotherapy, immunotherapy is now established as the fourth pillar in the therapeutic armamentarium for patients with cancer, especially late-stage and advanced cancers. A better understanding of CSC immunological properties should lead to development of novel immunologic approaches targeting CSCs, which, in turn, may help prevent tumor recurrence and eliminate residual diseases. Here, with a focus on CSCs in solid tumors, we review CSC regulation programs and recent transcriptomics-based immunological profiling data specific to CSCs. By highlighting CSC antigens that could potentially be immunogenic, we further discuss how CSCs can be targeted immunologically.
Collapse
Affiliation(s)
- Dingxiao Zhang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA; Key Lab of Agricultural Animal Genetics, Breeding & Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA; Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Kiera Rycaj
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| |
Collapse
|
39
|
Banerjee PP, Banerjee S, Brown TR, Zirkin BR. Androgen action in prostate function and disease. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2018; 6:62-77. [PMID: 29666834 PMCID: PMC5902724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
Benign prostatic hyperplasia (BPH) is an enlargement of the prostate gland that is frequently found in aging men. Androgens are essential for the development and differentiated function of the prostate, as well as for proliferation and survival of prostatic cells. In man, dog and rodent, there are age-related decreases in serum testosterone. Despite the lower serum testosterone levels, benign prostatic hyperplasia increases with age in men and dogs, while age-dependent prostatic hyperplasia develops in the dorsal and lateral lobes of the rat prostate. The possible mechanisms that lead to prostate hyperplasia have been extensively studied over many years. It is clear that androgens, estrogens and growth factors contribute to the condition, but the exact etiology remains unknown. Prostate cancer (CaP) represents a significant cause of death among males worldwide. As is the case of BPH, it is clear that androgens (testosterone and dihydrotestosterone) and their metabolites play important roles in the disease, but cause-effect relationships have not been established. Androgen deprivation therapy has been used for decades, primarily in the metastatic stage, to inhibit androgen-dependent prostate cancer cell growth. Androgen deprivation, which can be achieved by targeting hormone biosynthesis or androgen receptor activation, results in symptom amelioration. However, most patients will develop hormone refractory cancer or castration-resistant prostate cancer (CRPC). Prostatic epithelial cells demonstrate enormous plasticity in response to androgen ablation. This characteristic of prostatic epithelial cells may give rise to different populations of cells, some of which may not be dependent on androgen. Consequently, androgen receptor positive and negative cells might co-exist within CRPC. A clear understanding of this possible cellular heterogeneity and plasticity of prostate epithelial cells is necessary to develop an optimal strategy to treat or prevent CRPC.
Collapse
Affiliation(s)
- Partha P Banerjee
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical CenterWashington, DC 20057, USA
| | - Subhadra Banerjee
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of HealthBethesda, Maryland 20892, USA
| | - Terry R Brown
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public HealthBaltimore, Maryland 21205, USA
| | - Barry R Zirkin
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public HealthBaltimore, Maryland 21205, USA
| |
Collapse
|
40
|
miR-199a-3p targets stemness-related and mitogenic signaling pathways to suppress the expansion and tumorigenic capabilities of prostate cancer stem cells. Oncotarget 2018; 7:56628-56642. [PMID: 27447749 PMCID: PMC5302940 DOI: 10.18632/oncotarget.10652] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 06/13/2016] [Indexed: 12/22/2022] Open
Abstract
Human cancers exhibit significant cellular heterogeneity featuring tumorigenic cancer stem cells (CSCs) in addition to more differentiated progeny with limited tumor-initiating capabilities. Recent studies suggest that microRNAs (miRNAs) regulate CSCs and tumor development. A previous library screening for differential miRNA expression in CD44+ (and other) prostate CSC vs. non-CSC populations identified miR-199a-3p to be among the most highly under-expressed miRNAs in CSCs. In this study, we characterized the biological functions of miR-199a-3p in CD44+ prostate cancer (PCa) cells and in tumor regeneration. Overexpression of miR-199a-3p in purified CD44+ or bulk PCa cells, including primary PCa, inhibited proliferation and clonal expansion without inducing apoptosis. miR-199a-3p overexpression also diminished tumor-initiating capacities of CD44+ PCa cells as well as tumor regeneration from bulk PCa cells. Importantly, inducible miR-199a-3p expression in pre-established prostate tumors in NOD/SCID mice inhibited tumor growth. Using target prediction program and luciferase assays, we show mechanistically that CD44 is a direct functional target of miR-199a-3p in PCa cells. Moreover, miR-199a-3p also directly or indirectly targeted several additional mitogenic molecules, including c-MYC, cyclin D1 (CCND1) and EGFR. Taken together, our results demonstrate how the aberrant loss of a miRNA-mediated mechanism can lead to the expansion and tumorigenic activity of prostate CSCs, further supporting the development and implementation of miRNA mimics for cancer treatment.
Collapse
|
41
|
Blockade of ACK1/TNK2 To Squelch the Survival of Prostate Cancer Stem-like Cells. Sci Rep 2018; 8:1954. [PMID: 29386546 PMCID: PMC5792546 DOI: 10.1038/s41598-018-20172-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/15/2018] [Indexed: 01/08/2023] Open
Abstract
Prostate cancer stem-like cells (PCSCs) are not only enriched in the CD44+PSA-/lo subpopulation but also employ androgen-independent signaling mechanisms for survival. CD44+ PCSCs defy androgen deprivation, resist chemo- and radiotherapy and are highly tumorigenic. Human prostate tissue microarray (TMA) staining revealed an increased membranous staining of CD44 in the luminal compartment in higher grade G7-G9 tumors versus staining of the basal layer in benign hyperplasia. To uncover tyrosine kinase/s critical for the survival of the CD44+PSA-/lo subpopulation, we performed an unbiased screen targeting 87 tyrosine kinases with gene specific siRNAs. Among a subset of tyrosine kinases crucial for PCSC survival, was a non-receptor tyrosine kinase, ACK1/TNK2, a critical regulator of castration resistant prostate cancer (CRPC) growth. Consistently, activated ACK1 as measured by phosphorylation at Tyr284 was significant in the CD44+PSA-/lo population. Conversely, pharmacological inhibition by ACK1 inhibitor, (R)-9bMS mitigated CD44+PSA-/lo sphere formation, overcame resistance to radiation-induced cell death, induced significant apoptosis in PCSCs and inhibited CD44+PSA-/lo xenograft tumor growth in castrated mice suggesting dependency of PCSCs on ACK1 for survival. Thus, blockade of ACK1/TNK2 could be a new therapeutic modality to target recalcitrant PCSCs.
Collapse
|
42
|
Longitudinal tracking of subpopulation dynamics and molecular changes during LNCaP cell castration and identification of inhibitors that could target the PSA-/lo castration-resistant cells. Oncotarget 2017; 7:14220-40. [PMID: 26871947 PMCID: PMC4924710 DOI: 10.18632/oncotarget.7303] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/29/2016] [Indexed: 12/02/2022] Open
Abstract
We have recently demonstrated that the undifferentiated PSA−/lo prostate cancer (PCa) cell population harbors self-renewing long-term tumor-propagating cells that are refractory to castration, thus representing a therapeutic target. Our goals here are, by using the same lineage-tracing reporter system, to track the dynamic changes of PSA−/lo and PSA+ cells upon castration in vitro, investigate the molecular changes accompanying persistent castration, and develop large numbers of PSA−/lo PCa cells for drug screening. To these ends, we treated LNCaP cells infected with the PSAP-GFP reporter with three regimens of castration, i.e., CDSS, CDSS plus bicalutamide, and MDV3100 continuously for up to ~21 months. We observed that in the first ~7 months, castration led to time-dependent increases in PSA−/lo cells, loss of AR and PSA expression, increased expression of cancer stem cell markers, and many other molecular changes. Meanwhile, castrated LNCaP cells became resistant to high concentrations of MDV3100, chemotherapeutic drugs, and other agents. However, targeted and medium-throughput library screening identified several kinase (e.g., IGF-1R, AKT, PI3K/mTOR, Syk, GSK3) inhibitors as well as the BCL2 inhibitor that could effectively sensitize the LNCaP-CRPC cells to killing. Of interest, LNCaP cells castrated for >7 months showed evidence of cyclic changes in AR and the mTOR/AKT signaling pathways potentially involving epigenetic mechanisms. These observations indicate that castration elicits numerous molecular changes and leads to enrichment of PSA−/lo PCa cells. The ability to generate large numbers of PSA−/lo PCa cells should allow future high-throughput screening to identify novel therapeutics that specifically target this population.
Collapse
|
43
|
Ferrari N, Granata I, Capaia M, Piccirillo M, Guarracino MR, Venè R, Brizzolara A, Petretto A, Inglese E, Morini M, Astigiano S, Amaro AA, Boccardo F, Balbi C, Barboro P. Adaptive phenotype drives resistance to androgen deprivation therapy in prostate cancer. Cell Commun Signal 2017; 15:51. [PMID: 29216878 PMCID: PMC5721601 DOI: 10.1186/s12964-017-0206-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/28/2017] [Indexed: 12/21/2022] Open
Abstract
Background Prostate cancer (PCa), the second most common cancer affecting men worldwide, shows a broad spectrum of biological and clinical behaviour representing the epiphenomenon of an extreme heterogeneity. Androgen deprivation therapy is the mainstay of treatment for advanced forms but after few years the majority of patients progress to castration-resistant prostate cancer (CRPC), a lethal form that poses considerable therapeutic challenges. Methods Western blotting, immunocytochemistry, invasion and reporter assays, and in vivo studies were performed to characterize androgen resistant sublines phenotype in comparison to the parental cell line LNCaP. RNA microarray, mass spectrometry, integrative transcriptomic and proteomic differential analysis coupled with GeneOntology and multivariate analyses were applied to identify deregulated genes and proteins involved in CRPC evolution. Results Treating the androgen-responsive LNCaP cell line for over a year with 10 μM bicalutamide both in the presence and absence of 0.1 nM 5-α-dihydrotestosterone (DHT) we obtained two cell sublines, designated PDB and MDB respectively, presenting several analogies with CRPC. Molecular and functional analyses of PDB and MDB, compared to the parental cell line, showed that both resistant cell lines were PSA low/negative with comparable levels of nuclear androgen receptor devoid of activity due to altered phosphorylation; cell growth and survival were dependent on AKT and p38MAPK activation and PARP-1 overexpression; their malignant phenotype increased both in vitro and in vivo. Performing bioinformatic analyses we highlighted biological processes related to environmental and stress adaptation supporting cell survival and growth. We identified 15 proteins that could direct androgen-resistance acquisition. Eleven out of these 15 proteins were closely related to biological processes involved in PCa progression. Conclusions Our models suggest that environmental factors and epigenetic modulation can activate processes of phenotypic adaptation driving drug-resistance. The identified key proteins of these adaptive phenotypes could be eligible targets for innovative therapies as well as molecules of prognostic and predictive value. Electronic supplementary material The online version of this article (10.1186/s12964-017-0206-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicoletta Ferrari
- Molecular Oncology and Angiogenesis, Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Ilaria Granata
- Institute for High Performance Computing and Networking (ICAR), National Research Council (CNR), Via Pietro Castellino 111, 80131, Naples, Italy
| | - Matteo Capaia
- Academic Unit of Medical Oncology, Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Marina Piccirillo
- Institute for High Performance Computing and Networking (ICAR), National Research Council (CNR), Via Pietro Castellino 111, 80131, Naples, Italy
| | - Mario Rosario Guarracino
- Institute for High Performance Computing and Networking (ICAR), National Research Council (CNR), Via Pietro Castellino 111, 80131, Naples, Italy
| | - Roberta Venè
- Molecular Oncology and Angiogenesis, Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Antonella Brizzolara
- Molecular Oncology and Angiogenesis, Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Andrea Petretto
- Core Facilities-Proteomics Laboratory, Giannina Gaslini Institute, L.go G. Gaslini 5, 16147, Genoa, Italy
| | - Elvira Inglese
- Core Facilities-Proteomics Laboratory, Giannina Gaslini Institute, L.go G. Gaslini 5, 16147, Genoa, Italy
| | - Martina Morini
- Laboratory of Molecular Biology, Giannina Gaslini Institute, L.go G. Gaslini 5, 16147, Genoa, Italy
| | - Simonetta Astigiano
- Immunology, Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Adriana Agnese Amaro
- Molecular Pathology, Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Francesco Boccardo
- Academic Unit of Medical Oncology, Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy.,Department of Internal Medicine and Medical Specialties, School of Medicine, University of Genova, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Cecilia Balbi
- Academic Unit of Medical Oncology, Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Paola Barboro
- Academic Unit of Medical Oncology, Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy.
| |
Collapse
|
44
|
Panyutin IG, Panyutin IV, Powell-Castilla I, Felix L, Neumann RD. Single nucleotide variations in cultured cancer cells: Effect of mismatch repair. Mutat Res 2017; 803-805:22-25. [PMID: 28837838 PMCID: PMC5623640 DOI: 10.1016/j.mrfmmm.2017.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 07/06/2017] [Accepted: 07/14/2017] [Indexed: 06/07/2023]
Abstract
We assessed single nucleotide variations (SNVs) between individual cells in two cancer cell lines; DU145, from brain metastasis of prostate tumor with deficient mismatch repair; and HT1080, a fibrosarcoma cell line. Clones of individual cells were isolated, and sequenced using Ion Ampliseq comprehensive cancer panel that covered the exomes of 409 oncogenes and tumor suppressor genes. Five clones of DU145 and four clones of HT1080 cells were analyzed. We found from 7 to 12 unique SNVs between DU145 clones, while HT1080 clones showed no more than one unique SNV. We then sub-cloned individual cells from some of these isolated clones of DU145 and HT1080 cells. The sub-clones were expanded from a single cell to approximately one million cells after about 20 cell divisions. The sub-clones of DU145 cells had from one to four new unique SNVs within the sequenced regions. No unique SNVs were found between sub-clones of HT1080 cells. Our data demonstrate that the extent of genetic variation at the single nucleotide level in cultured cancer cells is significantly affected by the status of the DNA mismatch repair system.
Collapse
Affiliation(s)
- Igor G Panyutin
- Nuclear Medicine Division, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Irina V Panyutin
- Nuclear Medicine Division, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Ian Powell-Castilla
- Nuclear Medicine Division, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Laura Felix
- Nuclear Medicine Division, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Ronald D Neumann
- Nuclear Medicine Division, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| |
Collapse
|
45
|
Cattrini C, Zanardi E, Vallome G, Cavo A, Cerbone L, Di Meglio A, Fabbroni C, Latocca MM, Rizzo F, Messina C, Rubagotti A, Barboro P, Boccardo F. Targeting androgen-independent pathways: new chances for patients with prostate cancer? Crit Rev Oncol Hematol 2017; 118:42-53. [PMID: 28917268 DOI: 10.1016/j.critrevonc.2017.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 02/08/2023] Open
Abstract
Androgen deprivation therapy (ADT) is the mainstay treatment for advanced prostate cancer (PC). Most patients eventually progress to a condition known as castration-resistant prostate cancer (CRPC), characterized by lack of response to ADT. Although new androgen receptor signaling (ARS) inhibitors and chemotherapeutic agents have been introduced to overcome resistance to ADT, many patients progress because of primary or acquired resistance to these agents. This comprehensive review aims at exploring the mechanisms of resistance and progression of PC, with specific focus on alterations which lead to the activation of androgen receptor (AR)-independent pathways of survival. Our work integrates available clinical and preclinical data on agents which target these pathways, assessing their potential clinical implication in specific settings of patients. Given the rising interest of the scientific community in cancer immunotherapy strategies, further attention is dedicated to the role of immune evasion in PC.
Collapse
Affiliation(s)
- C Cattrini
- Academic Unit of Medical Oncology, San Martino University Hospital - IST National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy.
| | - E Zanardi
- Academic Unit of Medical Oncology, San Martino University Hospital - IST National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - G Vallome
- Academic Unit of Medical Oncology, San Martino University Hospital - IST National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - A Cavo
- Academic Unit of Medical Oncology, San Martino University Hospital - IST National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - L Cerbone
- Academic Unit of Medical Oncology, San Martino University Hospital - IST National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - A Di Meglio
- Academic Unit of Medical Oncology, San Martino University Hospital - IST National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - C Fabbroni
- Academic Unit of Medical Oncology, San Martino University Hospital - IST National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - M M Latocca
- Academic Unit of Medical Oncology, San Martino University Hospital - IST National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - F Rizzo
- Academic Unit of Medical Oncology, San Martino University Hospital - IST National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - C Messina
- Academic Unit of Medical Oncology, San Martino University Hospital - IST National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - A Rubagotti
- Academic Unit of Medical Oncology, San Martino University Hospital - IST National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy; Department of Health Sciences (DISSAL), University of Genoa, Via A. Pastore 1, 16132, Genoa, Italy
| | - P Barboro
- Academic Unit of Medical Oncology, San Martino University Hospital - IST National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy
| | - F Boccardo
- Academic Unit of Medical Oncology, San Martino University Hospital - IST National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| |
Collapse
|
46
|
Nyquist MD, Corella A, Burns J, Coleman I, Gao S, Tharakan R, Riggan L, Cai C, Corey E, Nelson PS, Mostaghel EA. Exploiting AR-Regulated Drug Transport to Induce Sensitivity to the Survivin Inhibitor YM155. Mol Cancer Res 2017; 15:521-531. [PMID: 28465296 PMCID: PMC5471626 DOI: 10.1158/1541-7786.mcr-16-0315-t] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/03/2016] [Accepted: 12/22/2016] [Indexed: 12/12/2022]
Abstract
Androgen receptor (AR) signaling is fundamental to prostate cancer and is the dominant therapeutic target in metastatic disease. However, stringent androgen deprivation therapy regimens decrease quality of life and have been largely unsuccessful in curtailing mortality. Recent clinical and preclinical studies have taken advantage of the dichotomous ability of AR signaling to elicit growth-suppressive and differentiating effects by administering hyperphysiologic levels of testosterone. In this study, high-throughput drug screening identified a potent synergy between high-androgen therapy and YM155, a transcriptional inhibitor of survivin (BIRC5). This interaction was mediated by the direct transcriptional upregulation of the YM155 transporter SLC35F2 by the AR. Androgen-mediated YM155-induced cell death was completely blocked by the overexpression of multidrug resistance transporter ABCB1. SLC35F2 expression was significantly correlated with intratumor androgen levels in four distinct patient-derived xenograft models, and with AR activity score in a large gene expression dataset of castration-resistant metastases. A subset of tumors had significantly elevated SLC35F2 expression and, therefore, may identify patients who are highly responsive to YM155 treatment. IMPLICATIONS The combination of androgen therapy with YM155 represents a novel drug synergy, and SLC35F2 may serve as a clinical biomarker of response to YM155.
Collapse
Affiliation(s)
- Michael D Nyquist
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Alexandra Corella
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - John Burns
- Virginia Mason Medical Center, Seattle, Washington
| | - Ilsa Coleman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Shuai Gao
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
- Hematology-Oncology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Robin Tharakan
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Luke Riggan
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Changmeng Cai
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
- Hematology-Oncology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Urology, University of Washington, Seattle, Washington
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington
| | - Elahe A Mostaghel
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington.
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
47
|
Nolan KD, Kaur J, Isaacs JS. Secreted heat shock protein 90 promotes prostate cancer stem cell heterogeneity. Oncotarget 2017; 8:19323-19341. [PMID: 28038472 PMCID: PMC5386687 DOI: 10.18632/oncotarget.14252] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/05/2016] [Indexed: 12/16/2022] Open
Abstract
Heat-shock protein 90 (Hsp90), a highly conserved molecular chaperone, is frequently upregulated in tumors, and remains an attractive anti-cancer target. Hsp90 is also found extracellularly, particularly in tumor models. Although extracellular Hsp90 (eHsp90) action is not well defined, eHsp90 targeting attenuates tumor invasion and metastasis, supporting its unique role in tumor progression. We herein investigated the potential role of eHsp90 as a modulator of cancer stem-like cells (CSCs) in prostate cancer (PCa). We report a novel function for eHsp90 as a facilitator of PCa stemness, determined by its ability to upregulate stem-like markers, promote self-renewal, and enhance prostasphere growth. Moreover, eHsp90 increased the side population typically correlated with the drug-resistant phenotype. Intriguingly, tumor cells with elevated surface eHsp90 exhibited a marked increase in stem-like markers coincident with increased expression of the epithelial to mesenchymal (EMT) effector Snail, indicating that surface eHsp90 may enrich for a unique CSC population. Our analysis of distinct effectors modulating the eHsp90-dependent CSC phenotyperevealed that eHsp90 is a likely facilitator of stem cell heterogeneity. Taken together, our findings provide unique functional insights into eHsp90 as a modulator of PCa plasticity, and provide a framework towards understanding its role as a driver of tumor progression.
Collapse
Affiliation(s)
- Krystal D. Nolan
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Hollings Cancer Center, Charleston, SC, USA
| | - Jasmine Kaur
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Hollings Cancer Center, Charleston, SC, USA
| | - Jennifer S. Isaacs
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Hollings Cancer Center, Charleston, SC, USA
| |
Collapse
|
48
|
Kumar R. Steroid hormone receptors and prostate cancer: role of structural dynamics in therapeutic targeting. Asian J Androl 2017; 18:682-6. [PMID: 27364545 PMCID: PMC5000788 DOI: 10.4103/1008-682x.183380] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Steroid hormone receptors (SHRs) act in cell type- and gene-specific manner through interactions with coregulatory proteins to regulate numerous physiological and pathological processes at the level of gene regulation. Binding of steroid receptor modulator (SRM) ligand leads to allosteric changes in SHR to exert positive or negative effects on the expression of target genes. Due, in part, to the fact that current SRMs generally target ligand binding domain (LBD)/AF2 and neglect intrinsically disordered (ID) N-terminal domain (NTD)/AF1, clinically relevant SRMs lack selectivity and are also prone to the development of resistance over time. Therefore, to maximize the efficacy of SHR-based therapeutics, the possibility of developing unique modulators that act to control AF1 activity must be considered. Recent studies targeting androgen receptor's (AR's) ID AF1 domain for the castration-resistant prostate cancer has provided the possibility of therapeutically targeting ID NTD/AF1 surfaces by allosteric modulations to achieve desired effects. In this review article, we discuss how inter- and intra- molecular allosteric regulations controlled by AR's structural flexibility and dynamics particularly the ID NTD/AF1 is an emerging area of investigation, which could be exploited for drug development and therapeutic targeting of prostate cancer.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA, USA
| |
Collapse
|
49
|
Lu ZH, Kaliberov S, Sohn RE, Kaliberova L, Du Y, Prior JL, Leib DJ, Chauchereau A, Sehn JK, Curiel DT, Arbeit JM. A new model of multi-visceral and bone metastatic prostate cancer with perivascular niche targeting by a novel endothelial specific adenoviral vector. Oncotarget 2017; 8:12272-12289. [PMID: 28103576 PMCID: PMC5355343 DOI: 10.18632/oncotarget.14699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/26/2016] [Indexed: 12/21/2022] Open
Abstract
While modern therapies for metastatic prostate cancer (PCa) have improved survival they are associated with an increasingly prevalent entity, aggressive variant PCa (AVPCa), lacking androgen receptor (AR) expression, enriched for cancer stem cells (CSCs), and evidencing epithelial-mesenchymal plasticity with a varying extent of neuroendocrine transdifferentiation. Parallel work revealed that endothelial cells (ECs) create a perivascular CSC niche mediated by juxtacrine and membrane tethered signaling. There is increasing interest in pharmacological metastatic niche targeting, however, targeted access has been impossible. Here, we discovered that the Gleason 7 derived, androgen receptor negative, IGR-CaP1 cell line possessed some but not all of the molecular features of AVPCa. Intracardiac injection into NOD/SCID/IL2Rg -/- (NSG) mice produced a completely penetrant bone, liver, adrenal, and brain metastatic phenotype; noninvasively and histologically detectable at 2 weeks, and necessitating sacrifice 4-5 weeks post injection. Bone metastases were osteoblastic, and osteolytic. IGR-CaP1 cells expressed the neuroendocrine marker synaptophysin, near equivalent levels of vimentin and e-cadherin, all of the EMT transcription factors, and activation of NOTCH and WNT pathways. In parallel, we created a new triple-targeted adenoviral vector containing a fiber knob RGD peptide, a hexon mutation, and an EC specific ROBO4 promoter (Ad.RGD.H5/3.ROBO4). This vector was expressed in metastatic microvessels tightly juxtaposed to IGR-CaP1 cells in bone and visceral niches. Thus, the combination of IGR-CaP1 cells and NSG mice produces a completely penetrant metastatic PCa model emulating end-stage human disease. In addition, the metastatic niche access provided by our novel Ad vector could be therapeutically leveraged for future disease control or cure.
Collapse
Affiliation(s)
- Zhi Hong Lu
- Urology Division and Department of Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Sergey Kaliberov
- Siteman Cancer Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Biologic Therapeutics Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Rebecca E. Sohn
- Urology Division and Department of Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Lyudmila Kaliberova
- Siteman Cancer Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Biologic Therapeutics Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Yingqiu Du
- Urology Division and Department of Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Julie L. Prior
- Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Daniel J. Leib
- Department of Orthopedic Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Anne Chauchereau
- Prostate Cancer Group, INSERM U981, Gustave Roussy, Villejuif, F-94805, France
| | - Jennifer K. Sehn
- Siteman Cancer Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Department of Anatomic and Molecular Pathology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - David T. Curiel
- Siteman Cancer Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Biologic Therapeutics Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey M. Arbeit
- Urology Division and Department of Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
50
|
Liu C, Liu R, Zhang D, Deng Q, Liu B, Chao HP, Rycaj K, Takata Y, Lin K, Lu Y, Zhong Y, Krolewski J, Shen J, Tang DG. MicroRNA-141 suppresses prostate cancer stem cells and metastasis by targeting a cohort of pro-metastasis genes. Nat Commun 2017; 8:14270. [PMID: 28112170 PMCID: PMC5264244 DOI: 10.1038/ncomms14270] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 12/13/2016] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs play important roles in regulating tumour development, progression and metastasis. Here we show that one of the miR-200 family members, miR-141, is under-expressed in several prostate cancer (PCa) stem/progenitor cell populations in both xenograft and primary patient tumours. Enforced expression of miR-141 in CD44+ and bulk PCa cells inhibits cancer stem cell properties including holoclone and sphere formation, as well as invasion, and suppresses tumour regeneration and metastasis. Moreover, miR-141 expression enforces a strong epithelial phenotype with a partial loss of mesenchymal phenotype. Whole-genome RNA sequencing uncovers novel miR-141-regulated molecular targets in PCa cells including the Rho GTPase family members (for example, CDC42, CDC42EP3, RAC1 and ARPC5) and stem cell molecules CD44 and EZH2, all of which are validated as direct and functionally relevant targets of miR-141. Our results suggest that miR-141 employs multiple mechanisms to obstruct tumour growth and metastasis. MicroRNAs have important roles in regulating tumor development, progression and metastasis. Here, the authors demonstrate the tumor-suppressive functions of miRNA141 in prostate cancer stem cells mediated by directly targeting CD44, Rho GTPase protein family members, and EZH2.
Collapse
Affiliation(s)
- Can Liu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Texas 78957, USA.,Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Ruifang Liu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Texas 78957, USA.,Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Carlton and Elm Streets, Buffalo, New York 14263, USA
| | - Dingxiao Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Texas 78957, USA.,Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Carlton and Elm Streets, Buffalo, New York 14263, USA
| | - Qu Deng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Texas 78957, USA.,Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Carlton and Elm Streets, Buffalo, New York 14263, USA.,Department of Epigenetics and Molecular Carcinogenesis, Program in Molecular Carcinogenesis, University of Texas Graduate School of Biomedical Sciences (GSBS), Houston, Texas 77030, USA
| | - Bigang Liu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Texas 78957, USA
| | - Hsueh-Ping Chao
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Texas 78957, USA.,Department of Epigenetics and Molecular Carcinogenesis, Program in Molecular Carcinogenesis, University of Texas Graduate School of Biomedical Sciences (GSBS), Houston, Texas 77030, USA
| | - Kiera Rycaj
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Texas 78957, USA.,Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Carlton and Elm Streets, Buffalo, New York 14263, USA
| | - Yoko Takata
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Texas 78957, USA
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Texas 78957, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Texas 78957, USA
| | - Yi Zhong
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Texas 78957, USA
| | - John Krolewski
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Texas 78957, USA
| | - Dean G Tang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Texas 78957, USA.,Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Carlton and Elm Streets, Buffalo, New York 14263, USA
| |
Collapse
|