1
|
Costa BA, Costa TA, Chagas GCL, Mouhieddine TH, Richter J, Usmani SZ, Mailankody S, Rajeeve S, Hashmi H. Addition of Elotuzumab to Backbone Treatment Regimens for Multiple Myeloma: An Updated Meta-Analysis of Randomized Clinical Trials. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024:S2152-2650(24)02352-8. [PMID: 39414558 DOI: 10.1016/j.clml.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/18/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND The efficacy of elotuzumab, an anti-SLAMF7 monoclonal antibody, in treating relapsed/refractory multiple myeloma (RRMM) and newly-diagnosed multiple myeloma (NDMM) has varied in randomized controlled trials (RCTs). Moreover, there is limited data on its real-world application. PATIENTS AND METHODS We conducted a systematic review and meta-analysis of RCTs investigating the addition of elotuzumab to backbone antimyeloma regimens. The primary outcome of interest was progression-free survival (PFS). Secondary efficacy outcomes included overall survival (OS), overall response rate (ORR), and rates of very good partial response or better (VGPR). Key toxicities were also evaluated. RESULTS Three RRMM trials (n = 915) and 5 NDMM trials (n = 1790) were included, with 50% of the 2705 patients receiving elotuzumab-containing triplets or quadruplets. In RRMM settings, elotuzumab use significantly improved PFS (hazard ratio [HR], 0.70; 95% confidence interval [CI], 0.60-0.82; P < .001; I² = 0%). This benefit was consistent among patients with high-risk cytogenetics (HR, 0.62; 95% CI, 0.43-0.90; P = .01; I² = 0%) and was particularly evident in those previously treated with proteasome inhibitors (PIs) or immunomodulatory drugs (IMiDs). The RRMM cohort also demonstrated better OS, ORR, and ≥VGPR rate. However, the NDMM cohort showed no significant improvements in any efficacy outcomes. Despite an increase in severe (grade ≥3) infections, elotuzumab use did not adversely affect rates of severe cytopenias, severe cardiac disorders, or second primary malignancies. CONCLUSION Our results suggest that elotuzumab-containing regimens represent valuable therapeutic options for PI/IMiD-exposed patients with RRMM. In contrast, elotuzumab's role in frontline settings remains limited.
Collapse
Affiliation(s)
- Bruno Almeida Costa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, Myeloma and Cellular Therapy Service, New York, NY; Brookdale Department of Geriatrics and Palliative Medicine, The Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | - Tarek H Mouhieddine
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Joshua Richter
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Saad Z Usmani
- Department of Medicine, Memorial Sloan Kettering Cancer Center, Myeloma and Cellular Therapy Service, New York, NY; Department of Medicine, Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Sham Mailankody
- Department of Medicine, Memorial Sloan Kettering Cancer Center, Myeloma and Cellular Therapy Service, New York, NY; Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Sridevi Rajeeve
- Department of Medicine, Memorial Sloan Kettering Cancer Center, Myeloma and Cellular Therapy Service, New York, NY.
| | - Hamza Hashmi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, Myeloma and Cellular Therapy Service, New York, NY.
| |
Collapse
|
2
|
Sedloev D, Chen Q, Unglaub JM, Schanda N, Hao Y, Besiridou E, Neuber B, Schmitt A, Raffel S, Liu Y, Janssen M, Müller-Tidow C, Schmitt M, Sauer T. Proteasome inhibition enhances the anti-leukemic efficacy of chimeric antigen receptor (CAR) expressing NK cells against acute myeloid leukemia. J Hematol Oncol 2024; 17:85. [PMID: 39285441 PMCID: PMC11406742 DOI: 10.1186/s13045-024-01604-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Relapsed and refractory acute myeloid leukemia (AML) carries a dismal prognosis. CAR T cells have shown limited efficacy in AML, partially due to dysfunctional autologous T cells and the extended time for generation of patient specific CAR T cells. Allogeneic NK cell therapy is a promising alternative, but strategies to enhance efficacy and persistence may be necessary. Proteasome inhibitors (PI) induce changes in the surface proteome which may render malignant cells more vulnerable to NK mediated cytotoxicity. Here, we investigated the potential benefit of combining PIs with CAR-expressing allogeneic NK cells against AML. METHODS We established the IC50 concentrations for Bortezomib and Carfilzomib against several AML cell lines. Surface expression of class-I HLA molecules and stress-associated proteins upon treatment with proteasome inhibitors was determined by multiparameter flow cytometry. Using functional in vitro assays, we explored the therapeutic synergy between pre-treatment with PIs and the anti-leukemic efficacy of NK cells with or without expression of AML-specific CAR constructs against AML cell lines and primary patient samples. Also, we investigated the tolerability and efficacy of a single PI application strategy followed by (CAR-) NK cell infusion in two different murine xenograft models of AML. RESULTS AML cell lines and primary AML patient samples were susceptible to Bortezomib and Carfilzomib mediated cytotoxicity. Conditioned resistance to Azacitidine/Venetoclax did not confer primary resistance to PIs. Treating AML cells with PIs reduced the surface expression of class-I HLA molecules on AML cells in a time-and-dose dependent manner. Stress-associated proteins were upregulated on the transcriptional level and on the cell surface. NK cell mediated killing of AML cells was enhanced in a synergistic manner. PI pre-treatment increased effector-target cell conjugate formation and Interferon-γ secretion, resulting in enhanced NK cell activity against AML cell lines and primary samples in vitro. Expression of CD33- and CD70-specific CARs further improved the antileukemic efficacy. In vivo, Bortezomib pre-treatment followed by CAR-NK cell infusion reduced AML growth, leading to prolonged overall survival. CONCLUSIONS PIs enhance the anti-leukemic efficacy of CAR-expressing allogeneic NK cells against AML in vitro and in vivo, warranting further exploration of this combinatorial treatment within early phase clinical trials.
Collapse
MESH Headings
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/drug effects
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/drug therapy
- Proteasome Inhibitors/pharmacology
- Proteasome Inhibitors/therapeutic use
- Receptors, Chimeric Antigen/immunology
- Animals
- Mice
- Cell Line, Tumor
- Bortezomib/pharmacology
- Bortezomib/therapeutic use
- Oligopeptides/pharmacology
- Oligopeptides/therapeutic use
- Immunotherapy, Adoptive/methods
- Xenograft Model Antitumor Assays
- Mice, Inbred NOD
- Mice, SCID
- Female
Collapse
Affiliation(s)
- David Sedloev
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Qian Chen
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Julia M Unglaub
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Nicola Schanda
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Yao Hao
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Eleni Besiridou
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Brigitte Neuber
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Anita Schmitt
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Simon Raffel
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Yi Liu
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Maike Janssen
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Michael Schmitt
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Tim Sauer
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany.
| |
Collapse
|
3
|
Wang C, Wang W, Wang M, Deng J, Sun C, Hu Y, Luo S. Different evasion strategies in multiple myeloma. Front Immunol 2024; 15:1346211. [PMID: 38464531 PMCID: PMC10920326 DOI: 10.3389/fimmu.2024.1346211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/09/2024] [Indexed: 03/12/2024] Open
Abstract
Multiple myeloma is the second most common malignant hematologic malignancy which evolved different strategies for immune escape from the host immune surveillance and drug resistance, including uncontrolled proliferation of malignant plasma cells in the bone marrow, genetic mutations, or deletion of tumor antigens to escape from special targets and so. Therefore, it is a big challenge to efficiently treat multiple myeloma patients. Despite recent applications of immunomodulatory drugs (IMiDS), protease inhibitors (PI), targeted monoclonal antibodies (mAb), and even hematopoietic stem cell transplantation (HSCT), it remains hardly curable. Summarizing the possible evasion strategies can help design specific drugs for multiple myeloma treatment. This review aims to provide an integrative overview of the intrinsic and extrinsic evasion mechanisms as well as recently discovered microbiota utilized by multiple myeloma for immune evasion and drug resistance, hopefully providing a theoretical basis for the rational design of specific immunotherapies or drug combinations to prevent the uncontrolled proliferation of MM, overcome drug resistance and improve patient survival.
Collapse
Affiliation(s)
| | | | | | | | | | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Zhang L, Peng X, Ma T, Liu J, Yi Z, Bai J, Li Y, Li L, Zhang L. Natural killer cells affect the natural course, drug resistance, and prognosis of multiple myeloma. Front Cell Dev Biol 2024; 12:1359084. [PMID: 38410372 PMCID: PMC10895066 DOI: 10.3389/fcell.2024.1359084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/30/2024] [Indexed: 02/28/2024] Open
Abstract
Multiple myeloma (MM), a stage-developed plasma cell malignancy, evolves from monoclonal gammopathy of undetermined significance (MGUS) or smoldering MM (SMM). Emerging therapies including immunomodulatory drugs, proteasome inhibitors, monoclonal antibodies, chimeric antigen-T/natural killer (NK) cells, bispecific T-cell engagers, selective inhibitors of nuclear export, and small-molecule targeted therapy have considerably improved patient survival. However, MM remains incurable owing to inevitable drug resistance and post-relapse rapid progression. NK cells with germline-encoded receptors are involved in the natural evolution of MGUS/SMM to active MM. NK cells actively recognize aberrant plasma cells undergoing malignant transformation but are yet to proliferate during the elimination phase, a process that has not been revealed in the immune editing theory. They are potential effector cells that have been neglected in the therapeutic process. Herein, we characterized changes in NK cells regarding disease evolution and elucidated its role in the early clinical monitoring of MM. Additionally, we systematically explored dynamic changes in NK cells from treated patients who are in remission or relapse to explore future combination therapy strategies to overcome drug resistance.
Collapse
Affiliation(s)
- Li Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xiaohuan Peng
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Tao Ma
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jia Liu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Zhigang Yi
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Jun Bai
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Yanhong Li
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Lijuan Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Liansheng Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Bhutani M, Foureau DM, Robinson M, Guo F, Fesenkova K, Atrash S, Paul B, Varga C, Friend R, Pineda-Roman M, Rigby K, Symanowski JT, Norek S, Tucker MR, Druhan LJ, Voorhees PM, Usmani SZ. A Clinical and Correlative Study of Elotuzumab, Carfilzomib, Lenalidomide, and Dexamethasone (Elo-KRd) for Lenalidomide Refractory Multiple Myeloma in First Relapse. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023:S2152-2650(23)00113-1. [PMID: 37127471 DOI: 10.1016/j.clml.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
INTRODUCTION Treatment of patients with multiple myeloma (MM) in first relapse remains a challenge. This phase II study combined elotuzumab (Elo) with carfilzomib, lenalidomide, and dexamethasone (KRd) for treatment of MM in first relapse with the aim of improving efficacy. METHODS Enrolled patients received Elo-KRd induction for 4 cycles, and Elo-lenalidomide maintenance until progression. The primary endpoint was VGPR or better (≥VGPR) postinduction. Secondary endpoints were MRD by flow cytometry, OS, PFS, and safety. Correlatives included characterization of the impact of Elo-KRd on NK and T cell subsets via flow cytometry. Target accrual of 40 patients was not met due to COVID-19 pandemic. RESULTS Of 15 patients enrolled, 10 (67%) had high-risk features (del17p, t[4;14], t[14;16], 1q gain/amplification, plasma cell leukemia, extramedullary MM, or functional high risk), 12 (80%) were lenalidomide-refractory, and 5 (33.3%) bortezomib-refractory. Postinduction ≥VGPR was 7/15 (46.7%) and MRD-negative (10-5) rate 20%. Overall response during study was 80%, including ≥VGPR as best response of 53.3%. At median follow-up of 28.2 (range, 3.8 to 44.2) months, the median PFS was 11.5 months (95% CI 1.9, 18), and median OS not reached (95% CI 10.1, NA). No new safety concerns were reported. Elo-KRd treatment did not augment NK cell distribution or activity in blood or bone marrow. Effector CD4+ and CD8+ T cells significantly decreased postinduction, with concomitant acquisition of T central memory phenotype, particularly at a high rate in ≥VGPR group. CONCLUSION A short course of Elo-KRd induction followed by Elo-lenalidomide maintenance demonstrated activity in predominantly lenalidomide-refractory and / or high-risk MM. The results with this well-tolerated combination are comparable to other contemporary approved triplet combinations.
Collapse
Affiliation(s)
- Manisha Bhutani
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC.
| | - David M Foureau
- Immune Monitoring Core Laboratory, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - Myra Robinson
- Department of Cancer Biostatistics, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - Fei Guo
- Immune Monitoring Core Laboratory, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - Kateryna Fesenkova
- Immune Monitoring Core Laboratory, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - Shebli Atrash
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - Barry Paul
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - Cindy Varga
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - Reed Friend
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - Mauricio Pineda-Roman
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - Katherine Rigby
- Immune Monitoring Core Laboratory, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - James T Symanowski
- Department of Cancer Biostatistics, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - Sarah Norek
- Clinical Trials, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - Mallory R Tucker
- Clinical Trials, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - Lawrence J Druhan
- Hematology Oncology Research Laboratory, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - Peter M Voorhees
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | - Saad Z Usmani
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC; Department of Medicine, Myeloma Service, Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
6
|
Roshandel E, Ghaffari-Nazari H, Mohammadian M, Salimi M, Abroun S, Mirfakhraie R, Hajifathali A. NK cell therapy in relapsed refractory multiple myeloma. Clin Immunol 2023; 246:109168. [PMID: 36415020 DOI: 10.1016/j.clim.2022.109168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 09/03/2022] [Accepted: 10/18/2022] [Indexed: 01/18/2023]
Abstract
Recent advances in adoptive cell therapy have considerably changed the paradigm of cancer immunotherapy. Although current immunotherapies could cure many patients with multiple myeloma (MM), relapsed/refractory MM (RR/MM) is still challenging in some cases. Natural killer (NK) cells are innate immune cells that exert effective cytotoxic activity against malignant cells like myeloma cells. In addition to their antitumor properties, NK cells do not induce graft versus host disease following transplantation. Therefore, they provide a promising approach to treating RR/MM patients. Currently, attempts have been made to produce large-scale and good manufacturing practices (GMP) of NK cells. Ex vivo expanded/activated NK cells derived from the own patient or allogenic donors are potential options for NK cell therapy in MM. Besides, novel cell-based products such as NK cell lines and chimeric antigen receptor (CAR)-NK cells may provide an off-the-shelf source for NK cell therapy. Here, we summarized NK cell activity in the MM microenvironment and focused on different NK cell therapy methods for MM patients.
Collapse
Affiliation(s)
- Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Haniyeh Ghaffari-Nazari
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mozhdeh Mohammadian
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Salimi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Abroun
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Reza Mirfakhraie
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Hajifathali
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
McCurdy A, Louzada M, Venner CP, Visram A, Masih‐Khan E, Kardjadj M, Jimenez‐Zepeda VH, LeBlanc R, Sebag M, Song K, White D, Mian H, Stakiw J, Reiman A, Aslam M, Kotb R, Gul E, Reece D. Carfilzomib usage patterns and outcomes in patients with relapsed multiple myeloma: A multi-institutional report from the Canadian Myeloma Research Group (CMRG) Database. EJHAEM 2022; 3:1252-1261. [PMID: 36467802 PMCID: PMC9713064 DOI: 10.1002/jha2.559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/22/2022] [Accepted: 08/16/2022] [Indexed: 06/17/2023]
Abstract
Carfilzomib is an active and commonly used treatment in patients with multiple myeloma (MM). Using the Canadian Myeloma Research Group Database, we performed a retrospective observational study of patients treated with carfilzomib for relapse of MM in a real-world setting in Canada between years 2007 and 2020. A total of 445 patients were included in this study: the doublet (Kd/p, n = 218) and triplets (KCd, n = 88; KRd, n = 99; KPd/p, n = 40). One hundred and twenty-two (27%) received carfilzomib-based treatment in line 2, 133 (30%) in line 3, 90 (20%) in line 4, and 100 (23%) in line 5 or higher. Carfilzomib was dosed weekly in 40% of patients and twice weekly in 60%. The overall response rate of the entire cohort was 57.7%, with 33.6% of patients achieving very good partial response or better. Median progression-free survival for the overall cohort was 6.3 months with overall survival 19.7 months. This study provides a benchmark for carfilzomib-based regimens in the real world, demonstrating that these regimens are effective in treating patients with relapsed MM.
Collapse
Affiliation(s)
| | | | | | | | - Esther Masih‐Khan
- Princess Margaret Cancer CentreTorontoOntarioCanada
- Canadian Myeloma Research GroupVaughanOntarioCanada
| | | | | | - Richard LeBlanc
- Maisonneuve‐Rosemont Hospital Research CentreUniversity of MontrealMontrealQuebecCanada
| | | | - Kevin Song
- BC Cancer AgencyVancouver General HospitalVancouverBritish ColumbiaCanada
| | - Darrell White
- Queen Elizabeth II Health Sciences CentreDalhousie UniversityHalifaxNova ScotiaCanada
| | - Hira Mian
- Juravinski Cancer CenterHamiltonOntarioCanada
| | - Julie Stakiw
- Saskatoon Cancer CentreUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Anthony Reiman
- Saint John Regional HospitalSaint JohnNew BrunswickCanada
| | | | - Rami Kotb
- Cancer Care ManitobaWinnipegManitobaCanada
| | - Engin Gul
- Canadian Myeloma Research GroupVaughanOntarioCanada
| | - Donna Reece
- Princess Margaret Cancer CentreTorontoOntarioCanada
- Canadian Myeloma Research GroupVaughanOntarioCanada
| |
Collapse
|
8
|
Allegra A, Casciaro M, Lo Presti E, Musolino C, Gangemi S. Harnessing Unconventional T Cells and Innate Lymphoid Cells to Prevent and Treat Hematological Malignancies: Prospects for New Immunotherapy. Biomolecules 2022; 12:biom12060754. [PMID: 35740879 PMCID: PMC9221132 DOI: 10.3390/biom12060754] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 11/18/2022] Open
Abstract
Unconventional T cells and innate lymphoid cells (ILCs) make up a heterogeneous set of cells that characteristically show prompt responses toward specific antigens. Unconventional T cells recognize non-peptide antigens, which are bound and presented by diverse non-polymorphic antigen-presenting molecules and comprise γδ T cells, MR1-restricted mucosal-associated invariant T cells (MAITs), and natural killer T cells (NKTs). On the other hand, ILCs lack antigen-specific receptors and act as the innate counterpart to the T lymphocytes found in the adaptive immune response. The alteration of unconventional T cells and ILCs in frequency and functionality is correlated with the onset of several autoimmune diseases, allergy, inflammation, and tumor. However, depending on the physio-pathological framework, unconventional T cells may exhibit either protective or pathogenic activity in a range of neoplastic diseases. Nonetheless, experimental models and clinical studies have displayed that some unconventional T cells are potential therapeutic targets, as well as prognostic and diagnostic markers. In fact, cell-mediated immune response in tumors has become the focus in immunotherapy against neoplastic disease. This review concentrates on the present knowledge concerning the function of unconventional T cell sets in the antitumor immune response in hematological malignancies, such as acute and chronic leukemia, multiple myeloma, and lymphoproliferative disorders. Moreover, we discuss the possibility that modulating the activity of unconventional T cells could be useful in the treatment of hematological neoplasms, in the prevention of specific conditions (such as graft versus host disease), and in the formulation of an effective anticancer vaccine therapy. The exact knowledge of the role of these cells could represent the prerequisite for the creation of a new form of immunotherapy for hematological neoplasms.
Collapse
Affiliation(s)
- Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Hematology, University of Messina, 98125 Messina, Italy; (A.A.); (C.M.)
| | - Marco Casciaro
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy;
- Correspondence: ; Tel.: +39-090-221-2013
| | - Elena Lo Presti
- National Research Council (CNR)—Institute for Biomedical Research and Innovation (IRIB), 90146 Palermo, Italy;
| | - Caterina Musolino
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Hematology, University of Messina, 98125 Messina, Italy; (A.A.); (C.M.)
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
9
|
Venglar O, Bago JR, Motais B, Hajek R, Jelinek T. Natural Killer Cells in the Malignant Niche of Multiple Myeloma. Front Immunol 2022; 12:816499. [PMID: 35087536 PMCID: PMC8787055 DOI: 10.3389/fimmu.2021.816499] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells represent a subset of CD3- CD7+ CD56+/dim lymphocytes with cytotoxic and suppressor activity against virus-infected cells and cancer cells. The overall potential of NK cells has brought them to the spotlight of targeted immunotherapy in solid and hematological malignancies, including multiple myeloma (MM). Nonetheless, NK cells are subjected to a variety of cancer defense mechanisms, leading to impaired maturation, chemotaxis, target recognition, and killing. This review aims to summarize the available and most current knowledge about cancer-related impairment of NK cell function occurring in MM.
Collapse
Affiliation(s)
- Ondrej Venglar
- Faculty of Science, University of Ostrava, Ostrava, Czechia.,Faculty of Medicine, University of Ostrava, Ostrava, Czechia.,Hematooncology Clinic, University Hospital Ostrava, Ostrava, Czechia
| | - Julio Rodriguez Bago
- Faculty of Medicine, University of Ostrava, Ostrava, Czechia.,Hematooncology Clinic, University Hospital Ostrava, Ostrava, Czechia
| | - Benjamin Motais
- Faculty of Science, University of Ostrava, Ostrava, Czechia.,Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Roman Hajek
- Faculty of Medicine, University of Ostrava, Ostrava, Czechia.,Hematooncology Clinic, University Hospital Ostrava, Ostrava, Czechia
| | - Tomas Jelinek
- Faculty of Medicine, University of Ostrava, Ostrava, Czechia.,Hematooncology Clinic, University Hospital Ostrava, Ostrava, Czechia
| |
Collapse
|
10
|
Clara JA, Childs RW. Harnessing natural killer cells for the treatment of multiple myeloma. Semin Oncol 2022; 49:69-85. [DOI: 10.1053/j.seminoncol.2022.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 01/08/2022] [Indexed: 12/11/2022]
|
11
|
Ri M, Iida S, Maruyama D, Sakabe A, Kamei R, Nakashima T, Tohkin M, Osaga S, Tobinai K, Fukuhara N, Miyazaki K, Tsukamoto N, Tsujimura H, Yoshimitsu M, Miyamoto K, Tsukasaki K, Nagai H. HLA genotyping in Japanese patients with multiple myeloma receiving bortezomib: An exploratory biomarker study of JCOG1105 (JCOG1105A1). Cancer Sci 2021; 112:5011-5019. [PMID: 34626515 PMCID: PMC8645746 DOI: 10.1111/cas.15158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/31/2021] [Accepted: 09/14/2021] [Indexed: 11/26/2022] Open
Abstract
Bortezomib (Btz) shows robust efficacy in patients with multiple myeloma (MM); however, some patients experience suboptimal responses and show specific toxicities. Therefore, we attempted to identify specific HLA alleles associated with Btz-related toxicities and response to treatment. Eighty-two transplant-ineligible patients with newly diagnosed MM enrolled in a phase II study (JCOG1105) comparing two less intensive melphalan, prednisolone, plus Btz (MPB) regimens were subjected to HLA typing. The frequency of each allele was compared between the groups, categorized based on toxicity grades and responses to MPB therapy. Among 82 patients, the numbers of patients with severe peripheral neuropathy (PN; grade 2 or higher), skin disorders (SD; grade 2 or higher), and pneumonitis were 16 (19.5%), 15 (18.3%), and 6 (7.3%), respectively. Complete response was achieved in 10 (12.2%) patients. Although no significant HLA allele was identified by multiple comparisons, several candidates were identified. HLA-B*40:06 was more prevalent in patients with severe PN than in those with less severe PN (odds ratio [OR] = 6.76). HLA-B*40:06 and HLA-DRB1*12:01 were more prevalent in patients with SD than in those with less severe SD (OR = 7.47 and OR = 5.55, respectively). HLA-DRB1*08:02 clustered in the group of patients with pneumonitis (OR = 11.34). Complete response was achieved in patients carrying HLA-DQB1*03:02, HLA-DQB1*05:01, and HLA-DRB1*01:01 class II alleles. HLA genotyping could help predict Btz-induced toxicity and treatment efficacy in patients with MM, although this needs further validation.
Collapse
Affiliation(s)
- Masaki Ri
- Department of Hematology and OncologyNagoya City University HospitalNagoyaJapan
| | - Shinsuke Iida
- Department of Hematology and OncologyNagoya City University HospitalNagoyaJapan
| | - Dai Maruyama
- Department of HematologyNational Cancer Center HospitalTokyoJapan
- Department of Hematology OncologyCancer Institute Hospital of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Aya Sakabe
- Department of Regulatory ScienceGraduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan
| | - Ryo Kamei
- Department of Regulatory ScienceGraduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan
| | - Takuto Nakashima
- Department of Regulatory ScienceGraduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan
| | - Masahiro Tohkin
- Department of Regulatory ScienceGraduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan
| | - Satoshi Osaga
- Clinical Research Management CenterNagoya City University HospitalNagoyaJapan
| | - Kensei Tobinai
- Department of HematologyNational Cancer Center HospitalTokyoJapan
| | - Noriko Fukuhara
- Department of Hematology and RheumatologyTohoku University HospitalSendaiJapan
| | - Kana Miyazaki
- Department of Hematology and OncologyMie University Graduate School of MedicineTsuJapan
| | | | | | - Makoto Yoshimitsu
- Department of Hematology and ImmunologyKagoshima University HospitalKagoshimaJapan
| | - Kenichi Miyamoto
- JCOG Data Center/Operating OfficeNational Cancer Center HospitalTokyoJapan
| | - Kunihiro Tsukasaki
- Department of HematologyInternational Medical CenterSaitama Medical UniversitySaitamaJapan
| | - Hirokazu Nagai
- Department of HematologyNational Hospital Organization Nagoya Medical CenterNagoyaJapan
| |
Collapse
|
12
|
Suzuki K, Min CK, Kim K, Lee JJ, Shibayama H, Ko PS, Huang SY, Li SS, Ding B, Khurana M, Iida S. Carfilzomib, dexamethasone, and daratumumab in Asian patients with relapsed or refractory multiple myeloma: post hoc subgroup analysis of the phase 3 CANDOR trial. Int J Hematol 2021; 114:653-663. [PMID: 34410635 DOI: 10.1007/s12185-021-03204-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Due to increasing use of frontline lenalidomide, effective and safe lenalidomide-free therapies for relapsed/refractory multiple myeloma (RRMM) are needed in Asia. This subgroup analysis of phase 3 CANDOR study evaluated efficacy and safety of KdD vs Kd in Asian patients with RRMM. METHODS Self-identified Asian patients with RRMM (KdD = 46; Kd = 20) with 1‒3 prior therapies were included. The primary endpoint of progression-free survival was estimated by stratified Cox regression. RESULTS Baseline demographics and patient characteristics were balanced in both arms. KdD reduced the risk of progression or death by 25% vs Kd [hazard ratio (HR) = 0.75; 95% CI 0.259, 2.168] in the Asian subgroup, compared with 37% vs Kd (0.63; 0.464, 0.854) in the overall CANDOR population. Percentage of patients who reported grade ≥ 3 treatment-emergent adverse events (TEAEs) in the KdD and Kd arms was 95.7 and 90.0%, respectively. Serious AEs were observed in 58.7 and 40.0% of patients in the KdD and Kd arms, respectively. There were two (4.3%) fatal TEAEs in the KdD arm due to infections. CONCLUSIONS There was a trend toward better efficacy and a favorable benefit-risk profile for KdD vs Kd in Asian patients with RRMM. Cautious interpretation is warranted due to small patient size.
Collapse
Affiliation(s)
- Kenshi Suzuki
- Department of Hematology, Japanese Red Cross Medical Center, 4-1-22 Hiroo, Shibuya-ku, Tokyo, Japan.
| | - Chang-Ki Min
- Division of Hematology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Kihyun Kim
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Je-Jung Lee
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Jeollanam-do, South Korea
| | - Hirohiko Shibayama
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Po-Shen Ko
- Faculty of Medicine, National Yang-Ming University, Taipei City, Taiwan.,Division of Hematology, Department of Medicine, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Shang-Yi Huang
- Division of Hematology, Department of Internal Medicine, National Taiwan University, Taipei City, Taiwan
| | - Sin-Syue Li
- Division of Hematology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | - Shinsuke Iida
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
13
|
PI3K/Akt Pathway: The Indestructible Role of a Vintage Target as a Support to the Most Recent Immunotherapeutic Approaches. Cancers (Basel) 2021; 13:cancers13164040. [PMID: 34439194 PMCID: PMC8392360 DOI: 10.3390/cancers13164040] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary PI3K/Akt pathway has an impressive story as tumor marker. PI3K-dependent solid tumors have been studied for several years in order to inhibit the pathway at different levels along the signaling. Despite the highly satisfactory results obtained in vitro and in xenograft mouse tumor models, the use of PI3K/Akt inhibitors in clinical trials resulted in being not as efficient as expected. With the emerging role of the tumor microenvironment in the response to therapy and the awareness, increasing in recent years, of the necessity to army the immune system against the tumor, new opportunities have emerged for PI3K/Akt inhibitors. Here, we show that PI3K/Akt, in addition to its function as tumor marker, exerts a pivotal role as an immunomodulator. Recent studies demonstrate that PI3K/Akt pathway is crucial for the regulation of the immune system and that its inhibition in combination with immunomodulatory agents may provide a new therapeutic approach for cancer. Abstract Pathologic activation of PI3Ks and the subsequent deregulation of its downstream signaling pathway is among the most frequent events associated with cellular transformation, cancer, and metastasis. PI3Ks are also emerging as critical factors in regulating anti-tumor immunity by either promoting an immunosuppressive tumor microenvironment or by controlling the activity and the tumor infiltration of cells involved in the immune response. For these reasons, significant pharmaceutical efforts are dedicated to inhibiting the PI3K pathway, with the main goal to target the tumor and, at the same time, to enhance the anti-tumor immunity. Recent immunotherapeutic approaches involving the use of adoptive cell transfer of autologous genetically modified T cells or immune check-point inhibitors showed high efficacy. However, mechanisms of resistance to these kinds of therapy are emerging, due in part to the inhibition of effector T cell functions exerted by the immunosuppressive tumor microenvironment. Here, we first describe how inhibition of PI3K/Akt pathway contribute to enhance anti-tumor immunity and further discuss how inhibitors of the pathway are used in combination with different immunomodulatory and immunotherapeutic agents to improve anti-tumor efficacy.
Collapse
|
14
|
Rubio MT, Dhuyser A, Nguyen S. Role and Modulation of NK Cells in Multiple Myeloma. HEMATO 2021. [DOI: 10.3390/hemato2020010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Myeloma tumor cells are particularly dependent on their microenvironment and sensitive to cellular antitumor immune response, including natural killer (NK) cells. These later are essential innate lymphocytes implicated in the control of viral infections and cancers. Their cytotoxic activity is regulated by a balance between activating and inhibitory signals resulting from the complex interaction of surface receptors and their respective ligands. Myeloma disease evolution is associated with a progressive alteration of NK cell number, phenotype and cytotoxic functions. We review here the different therapeutic approaches that could restore or enhance NK cell functions in multiple myeloma. First, conventional treatments (immunomodulatory drugs-IMids and proteasome inhibitors) can enhance NK killing of tumor cells by modulating the expression of NK receptors and their corresponding ligands on NK and myeloma cells, respectively. Because of their ability to kill by antibody-dependent cell cytotoxicity, NK cells are important effectors involved in the efficacy of anti-myeloma monoclonal antibodies targeting the tumor antigens CD38, CS1 or BCMA. These complementary mechanisms support the more recent therapeutic combination of IMids or proteasome inhibitors to monoclonal antibodies. We finally discuss the ongoing development of new NK cell-based immunotherapies, such as ex vivo expanded killer cell immunoglobulin-like receptors (KIR)-mismatched NK cells, chimeric antigen receptors (CAR)-NK cells, check point and KIR inhibitors.
Collapse
|
15
|
Landgren O, Sonneveld P, Jakubowiak A, Mohty M, Iskander KS, Mezzi K, Siegel DS. Carfilzomib with immunomodulatory drugs for the treatment of newly diagnosed multiple myeloma. Leukemia 2019; 33:2127-2143. [PMID: 31341235 PMCID: PMC6756042 DOI: 10.1038/s41375-019-0517-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/13/2019] [Accepted: 05/20/2019] [Indexed: 11/08/2022]
Abstract
Carfilzomib, a selective proteasome inhibitor (PI), is approved for the treatment of patients with relapsed or refractory multiple myeloma (MM). Combination regimens incorporating a PI and immunomodulatory drug (IMiD) have been associated with deep responses and extended survival in patients with newly diagnosed MM (NDMM). Carfilzomib-based combinations with immunomodulators are being extensively studied in the frontline setting. The objective of this review was to describe efficacy and safety data for carfilzomib-based, PI/immunomodulatory combinations in NDMM. Information sources were articles indexed in PubMed and abstracts from key hematology/oncology congresses published between January 2012 and December 2018. PubMed and congresses were searched for prospective clinical studies assessing the combination of carfilzomib with an IMiD for NDMM treatment. Retrospective and preclinical reports, case reports/series, reviews, and clinical studies not evaluating carfilzomib-immunomodulator combinations in NDMM were excluded based on review of titles and abstracts. A total of nine articles and 72 abstracts were deemed relevant and included in the review. A total of six distinct carfilzomib-based, PI/immunomodulator combination regimens have been evaluated in 12 clinical trials. Overall, treatment with these regimens has resulted in deep responses, including high rates of negativity for minimal residual disease. These deep responses have translated to long progression-free survival and overall survival rates. Efficacy results for these regimens have generally been consistent across subgroups defined by age, transplant eligibility, and cytogenetic risk. The safety profile of carfilzomib in NDMM is consistent with that observed in the relapsed-refractory MM setting. Clinical studies have found that carfilzomib-based combinations with immunomodulators are highly active with a favorable safety profile in NDMM. The carfilzomib, lenalidomide, and dexamethasone (KRd) drug backbone is a promising foundation for treatment strategies aimed at achieving long-term, deep responses (functional cures) in the frontline setting. Several ongoing studies are evaluating KRd, with or without anti-CD38 monoclonal antibodies.
Collapse
Affiliation(s)
- Ola Landgren
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | | | | | - Mohamad Mohty
- Saint-Antoine Hospital, Sorbonne University, INSERM UMRs 938, Paris, France
| | | | | | - David S Siegel
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| |
Collapse
|
16
|
Khan AM, Devarakonda S, Bumma N, Chaudhry M, Benson DM. Potential of NK cells in multiple Myeloma therapy. Expert Rev Hematol 2019; 12:425-435. [PMID: 31070067 DOI: 10.1080/17474086.2019.1617128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Despite rapid advances in myeloma treatment with the development of new drugs, curative therapies remain elusive. Relapsed/refractory disease related to progressive dysregulation of immune system and acquired genetic abnormalities continues to be a major obstacle in achieving cure. Immune-based therapy harnessing the host defense mechanism of natural killer (NK) cells is a promising avenue in the treatment of myeloma. Areas covered: Here, we discuss the biology and cytotoxic activity of NK cells and the potential role of these innate immune cells in defense against cancer and specifically multiple myeloma. We also discuss the role of NK cells in the anti-myeloma effects of autologous and allogeneic stem cell transplantation, various novel drugs, and treatment modalities such as chimeric antigen receptor therapy. Immune evasion, either directly or indirectly involving NK cell dysfunction, may be a key and under-recognized mechanism in myeloma progression. We reviewed extensive literature identified using the keywords immunotherapy, natural killer cells, and multiple myeloma. Expert opinion: Novel treatment approaches in myeloma utilizing the immunomodulatory and cytotoxic properties of NK cells to eradicate resistant and quiescent clones could pave the way for potentially curative interventions.
Collapse
Affiliation(s)
- Abdullah M Khan
- a Division of Hematology, Department of Medicine , The Ohio State University Comprehensive Cancer Center , Columbus , OH , USA
| | - Srinivas Devarakonda
- a Division of Hematology, Department of Medicine , The Ohio State University Comprehensive Cancer Center , Columbus , OH , USA
| | - Naresh Bumma
- a Division of Hematology, Department of Medicine , The Ohio State University Comprehensive Cancer Center , Columbus , OH , USA
| | - Maria Chaudhry
- a Division of Hematology, Department of Medicine , The Ohio State University Comprehensive Cancer Center , Columbus , OH , USA
| | - Don M Benson
- a Division of Hematology, Department of Medicine , The Ohio State University Comprehensive Cancer Center , Columbus , OH , USA
| |
Collapse
|
17
|
Lenalidomide and Low Dose Dexamethasone Plus Elotuzumab or Carfilzomib for Relapsed or Refractory Multiple Myeloma: A Comparison of Progression-Free Survival with Reconstructed Individual Participant Data. BIOMED RESEARCH INTERNATIONAL 2019; 2018:9057823. [PMID: 30643823 PMCID: PMC6311249 DOI: 10.1155/2018/9057823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/03/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022]
Abstract
Background Refractory and relapsed multiple myeloma (RRMM) remains a clinical challenge. We compared the progression-free survival (PFS) of RRMM patients treated with lenalidomide and low dose dexamethasone plus elotuzumab or carfilzomib (ELD vs. CLD), using reconstructed individual patient data (IPD) based on two published trials reports. Methods We extracted data of study-level characteristics from original trial reports. We evaluated the comparability between the two treatment groups in terms of baseline status. Digitization of PFS Kaplan-Meier curves, reconstruction of IPD data, and subsequent survival analysis were performed. Distribution of progression and death events over time was visualized as histograms and corresponding kernel density lines, and Kaplan-Meier survival curves were plotted. Hazard ratio (HR) and corresponding 95% confidence interval (95% CI) were calculated. Results Significant difference in race and disease stage distribution was found (P < 0.0001). Higher proportion of white patients and patients with advanced disease in the carfilzomib group was identified. Survival analysis revealed better PFS in the carfilzomib group (elotuzumab group vs. carfilzomib group: HR = 1.36, 95% CI = [1.11-1.67]). Conclusion The CLD regimen may result in better PFS as compared with the ELD regimen in RRMM patients.
Collapse
|
18
|
Mahaweni NM, Ehlers FAI, Bos GMJ, Wieten L. Tuning Natural Killer Cell Anti-multiple Myeloma Reactivity by Targeting Inhibitory Signaling via KIR and NKG2A. Front Immunol 2018; 9:2848. [PMID: 30564241 PMCID: PMC6288976 DOI: 10.3389/fimmu.2018.02848] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/19/2018] [Indexed: 12/11/2022] Open
Abstract
Natural killer (NK) cells are attractive candidates for allogeneic cell-based immunotherapy due to their potent antitumor effector function and good safety profile. NK cells express killer immunoglobulin-like receptors (KIRs) and the NKG2A receptor important for NK cells education as well as providing inhibitory signals upon encountering HLA-expressing target cells. Multiple myeloma (MM) is an example of a tumor expressing relatively high levels of HLA molecules. In this review, we discuss the functional relevance of inhibitory KIRs and NKG2A for NK cells anti-MM response and strategies to lower these inhibitory signaling to enhance clinical efficacy of allogeneic NK cells in MM.
Collapse
Affiliation(s)
- Niken M Mahaweni
- Division of Hematology, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands.,Tissue Typing Laboratory, Department of Transplantation Immunology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Femke A I Ehlers
- Division of Hematology, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands.,Tissue Typing Laboratory, Department of Transplantation Immunology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Gerard M J Bos
- Division of Hematology, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Lotte Wieten
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands.,Tissue Typing Laboratory, Department of Transplantation Immunology, Maastricht University Medical Center+, Maastricht, Netherlands
| |
Collapse
|
19
|
Tognarelli S, Wirsching S, von Metzler I, Rais B, Jacobs B, Serve H, Bader P, Ullrich E. Enhancing the Activation and Releasing the Brakes: A Double Hit Strategy to Improve NK Cell Cytotoxicity Against Multiple Myeloma. Front Immunol 2018; 9:2743. [PMID: 30542346 PMCID: PMC6277768 DOI: 10.3389/fimmu.2018.02743] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/07/2018] [Indexed: 01/16/2023] Open
Abstract
Natural killer (NK) cells are innate lymphocytes with a strong antitumor ability. In tumor patients, such as multiple myeloma (MM) patients, an elevated number of NK cells after stem cell transplantation (SCT) has been reported to be correlated with a higher overall survival rate. With the aim of improving NK cell use for adoptive cell therapy, we also addressed the cytotoxicity of patient-derived, cytokine-stimulated NK cells against MM cells at specific time points: at diagnosis and before and after autologous stem cell transplantation. Remarkably, after cytokine stimulation, the patients' NK cells did not significantly differ from those of healthy donors. In a small cohort of MM patients, we were able to isolate autologous tumor cells, and we could demonstrate that IL-2/15 stimulated autologous NK cells were able to significantly improve their killing capacity of autologous tumor cells. With the aim to further improve the NK cell killing capacity against MM cells, we investigated the potential use of NK specific check point inhibitors with focus on NKG2A because this inhibitory NK cell receptor was upregulated following ex vivo cytokine stimulation and MM cells showed HLA-E expression that could even be increased by exposure to IFN-γ. Importantly, blocking of NKG2A resulted in a significant increase in the NK cell-mediated lysis of different MM target cells. Finally, these results let suggest that combining cytokine induced NK cell activation and the specific check point inhibition of the NKG2A-mediated pathways can be an effective strategy to optimize NK cell therapeutic approaches for treatment of multiple myeloma.
Collapse
Affiliation(s)
- Sara Tognarelli
- Childrens Hospital, Experimental Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
- Childrens Hospital, Department of Pediatric Stem Cell Transplantation and Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
- LOEWE Center for Cell and Gene Therapy, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Sebastian Wirsching
- Childrens Hospital, Experimental Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
- Childrens Hospital, Department of Pediatric Stem Cell Transplantation and Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Ivana von Metzler
- Department of Hematology and Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Bushra Rais
- Childrens Hospital, Experimental Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
- Childrens Hospital, Department of Pediatric Stem Cell Transplantation and Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
- LOEWE Center for Cell and Gene Therapy, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Benedikt Jacobs
- Department of Haematology and Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Hubert Serve
- Department of Hematology and Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Bader
- Childrens Hospital, Experimental Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Evelyn Ullrich
- Childrens Hospital, Experimental Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
- Childrens Hospital, Department of Pediatric Stem Cell Transplantation and Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
- LOEWE Center for Cell and Gene Therapy, Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
20
|
Kropp KN, Maurer S, Rothfelder K, Schmied BJ, Clar KL, Schmidt M, Strunz B, Kopp HG, Steinle A, Grünebach F, Rittig SM, Salih HR, Dörfel D. The novel deubiquitinase inhibitor b-AP15 induces direct and NK cell-mediated antitumor effects in human mantle cell lymphoma. Cancer Immunol Immunother 2018; 67:935-947. [PMID: 29556699 PMCID: PMC11028140 DOI: 10.1007/s00262-018-2151-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 03/12/2018] [Indexed: 12/18/2022]
Abstract
The first therapeutic proteasome inhibitor bortezomib has clinical efficacy in mantle cell lymphoma (MCL) which resulted in its incorporation in treatment algorithms for this disease. Impairment of proteasomal function by bortezomib is mediated via inhibition of the 20S core particle. However, proteasome function can also be modified by targeting upstream components of the ubiquitin-proteasome system. Recently, b-AP15 has been identified as a small molecule achieving proteasome inhibition by targeting the deubiquitinase (DUB) activity of the 19S regulatory subunit and was found to inhibit cancer cell growth in preclinical analyses. In the present study, both direct antitumor effects and the possibility to induce natural killer group 2 member D ligands (NKG2DL) to reinforce NK cell immunity with b-AP15 were investigated to provide a rational basis for clinical evaluation of this novel DUB inhibitor in MCL. Treatment with b-AP15 resulted in reduced viability as well as induction of apoptosis in a time- and dose-dependent manner, which could be attributed to caspase activation in MCL cells. In addition, treatment with b-AP15 differentially induced NKG2DL expression and subsequent NK cell lysis of MCL cells. These results indicate that the DUB inhibitor b-AP15 displays substantial antitumor activity in human MCL and suggest that b-AP15 might be a novel therapeutic option in the treatment of MCL that warrants clinical investigation.
Collapse
Affiliation(s)
- Korbinian N Kropp
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
| | - Stefanie Maurer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
| | - Kathrin Rothfelder
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
| | - Bastian J Schmied
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
| | - Kim L Clar
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
| | - Moritz Schmidt
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
| | - Benedikt Strunz
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
| | - Hans-Georg Kopp
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmology, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Departments of Molecular Oncology and Thoracic Oncology, Robert-Bosch-Hospital Stuttgart, Auerbachstr. 110, 70376, Stuttgart, Germany
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Frank Grünebach
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmology, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
| | - Susanne M Rittig
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmology, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Department of Hematology, Oncology and Tumor Immunology, Charité Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmology, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
| | - Daniela Dörfel
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany.
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmology, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany.
| |
Collapse
|
21
|
Liu P, Jin Y, Sattar H, Liu H, Xie W, Zhou F. Natural killer cell immunotherapy against multiple myeloma: Progress and possibilities. J Leukoc Biol 2018; 103:821-828. [PMID: 29733502 DOI: 10.1002/jlb.2ru0517-176rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 01/06/2018] [Accepted: 01/07/2018] [Indexed: 12/29/2022] Open
Affiliation(s)
- Pan Liu
- Department of Hematology; Zhongnan Hospital; Wuhan University; Wuhan P.R. China
| | - Yanxia Jin
- Department of Hematology; Zhongnan Hospital; Wuhan University; Wuhan P.R. China
| | - Haseeb Sattar
- Department of Clinical Pharmacy; Wuhan Union Hospital; affiliated Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan P.R. China
| | - Hailing Liu
- Department of Clinical Hematology; Second Affiliated Hospital; Xi'an Jiao Tong University; Xi'an P.R. China
| | - Weiling Xie
- Department of Hematology; Zhongnan Hospital; Wuhan University; Wuhan P.R. China
| | - Fuling Zhou
- Department of Hematology; Zhongnan Hospital; Wuhan University; Wuhan P.R. China
- Hubei Key Laboratory of Tumor Biological Behavior; Wuhan P.R. China
| |
Collapse
|
22
|
Niu C, Jin H, Li M, Zhu S, Zhou L, Jin F, Zhou Y, Xu D, Xu J, Zhao L, Hao S, Li W, Cui J. Low-dose bortezomib increases the expression of NKG2D and DNAM-1 ligands and enhances induced NK and γδ T cell-mediated lysis in multiple myeloma. Oncotarget 2018; 8:5954-5964. [PMID: 27992381 PMCID: PMC5351604 DOI: 10.18632/oncotarget.13979] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 12/08/2016] [Indexed: 12/20/2022] Open
Abstract
Multiple myeloma (MM) is an incurable hematological malignancy, although bortezomib has markedly improved its outcomes. Growing clinical evidence indicates that enhancing induced natural killer (NK) or γδ T cells for infusion is useful in the treatment of MM. However, whether combination treatment with bortezomib and induced NK and γδ T cells further improves outcomes in MM, and how the treatments should be combined, remain unclear. Herein, we found that low-dose bortezomib did not suppress the viability of induced NK and γδ T cells, but did induce MM cell apoptosis. Importantly, low-dose bortezomib increased the expression of NKG2D and DNAM-1 ligands on MM cells, which sensitized the multiple myeloma cells to lysis by induced NK and γδ T cells. Our results suggested that combination treatment with low-dose bortezomib and induced NK or γδ T cells had a synergistic cytotoxic effect on MM cells. This study provided a proof of principle for the design of future trials and investigation of this combination therapeutic strategy for MM treatment.
Collapse
Affiliation(s)
- Chao Niu
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Haofan Jin
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Min Li
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Shan Zhu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Lei Zhou
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Feng Jin
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China.,College of Pharmacy, Jilin University, Changchun 130021, China
| | - Yulai Zhou
- College of Pharmacy, Jilin University, Changchun 130021, China
| | - Dongsheng Xu
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Jianting Xu
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Lianjing Zhao
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Shanshan Hao
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China.,Department of Hematology, Taian Central Hospital, Taian 271000, China
| | - Wei Li
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
23
|
Elotuzumab for the Treatment of Relapsed or Refractory Multiple Myeloma, with Special Reference to its Modes of Action and SLAMF7 Signaling. Mediterr J Hematol Infect Dis 2018. [PMID: 29531651 PMCID: PMC5841936 DOI: 10.4084/mjhid.2018.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Elotuzumab, targeting signaling lymphocytic activation molecule family 7 (SLAMF7), has been approved in combination with lenalidomide and dexamethasone (ELd) for relapsed/refractory multiple myeloma (MM) based on the findings of the phase III randomized trial ELOQUENT-2 (NCT01239797). Four-year follow-up analyses of ELOQUENT-2 have demonstrated that progression-free survival was 21% in ELd versus 14% in Ld. Elotuzumab binds a unique epitope on the membrane IgC2 domain of SLAMF7, exhibiting a dual mechanism of action: natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC) and enhancement of NK cell activity. The ADCC is mediated through engagement between Fc portion of elotuzumab and FcgRIIIa/CD16 on NK cells. Enhanced NK cell cytotoxicity results from phosphorylation of the immunoreceptor tyrosine-based switch motif (ITSM) that is induced via elotuzumab binding and recruits the SLAM-associated adaptor protein EAT-2. The coupling of EAT-2 to the phospholipase Cg enzymes SH2 domain leads to enhanced Ca2+ influx and MAPK/Erk pathway activation, resulting in granule polarization and enhanced exocytosis in NK cells. Elotuzumab does not stimulate the proliferation of MM cells due to a lack of EAT-2. The inhibitory effects of elotuzumab on MM cell growth are not induced by the lack of CD45, even though SHP-2, SHP-1, SHIP-1, and Csk may be recruited to phosphorylated ITSM of SLAMF7. ELd improves PFS in patients with high-risk cytogenetics, i.e. t(4;14), del(17p), and 1q21 gain/amplification. Since the immune state is paralytic in advanced MM, the efficacy of ELd with minimal toxicity may bring forward for consideration of its use in the early stages of the disease.
Collapse
|
24
|
Nelde A, Kowalewski DJ, Backert L, Schuster H, Werner JO, Klein R, Kohlbacher O, Kanz L, Salih HR, Rammensee HG, Stevanović S, Walz JS. HLA ligandome analysis of primary chronic lymphocytic leukemia (CLL) cells under lenalidomide treatment confirms the suitability of lenalidomide for combination with T-cell-based immunotherapy. Oncoimmunology 2018; 7:e1316438. [PMID: 29632711 DOI: 10.1080/2162402x.2017.1316438] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/14/2017] [Accepted: 03/31/2017] [Indexed: 02/06/2023] Open
Abstract
Recent studies suggest that CLL is an immunogenic disease, which might be effectively targeted by antigen-specific T-cell-based immunotherapy. However, CLL is associated with a profound immune defect, which might represent a critical limitation for mounting clinically effective antitumor immune responses. As several studies have demonstrated that lenalidomide can reinforce effector T-cell responses in CLL, the combination of T-cell-based immunotherapy with the immunomodulatory drug lenalidomide represents a promising approach to overcome the immunosuppressive state in CLL. Antigen-specific immunotherapy also requires the robust presentation of tumor-associated HLA-presented antigens on target cells. We thus performed a longitudinal study of the effect of lenalidomide on the HLA ligandome of primary CLL cells in vitro. We showed that lenalidomide exposure does not affect absolute HLA class I and II surface expression levels on primary CLL cells. Importantly, semi-quantitative mass spectrometric analyses of the HLA peptidome of three CLL patient samples found only minor qualitative and quantitative effects of lenalidomide on HLA class I- and II-restricted peptide presentation. Furthermore, we confirmed stable presentation of previously described CLL-associated antigens under lenalidomide treatment. Strikingly, among the few HLA ligands showing significant modulation under lenalidomide treatment, we identified upregulated IKZF-derived peptides, which may represent a direct reflection of the cereblon-mediated effect of lenalidomide on CLL cells. Since we could not observe any relevant influence of lenalidomide on the established CLL-associated antigen targets of anticancer T-cell responses, this study validates the suitability of lenalidomide for the combination with antigen-specific T-cell-based immunotherapies.
Collapse
Affiliation(s)
- Annika Nelde
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Department of Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Daniel J Kowalewski
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Immatics Biotechnologies GmbH, Tübingen, Germany
| | - Linus Backert
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Applied Bioinformatics, Center for Bioinformatics and Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Heiko Schuster
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Immatics Biotechnologies GmbH, Tübingen, Germany
| | - Jan-Ole Werner
- Department of Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Reinhild Klein
- Department of Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Oliver Kohlbacher
- Applied Bioinformatics, Center for Bioinformatics and Department of Computer Science, University of Tübingen, Tübingen, Germany.,Quantitative Biology Center, University of Tübingen, Tübingen, Germany.,Biomolecular Interactions, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Lothar Kanz
- Department of Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Helmut R Salih
- Department of Hematology and Oncology, University of Tübingen, Tübingen, Germany.,Clinical Cooperation Unit Translational Immunology, German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Tübingen, Germany
| | - Hans-Georg Rammensee
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Tübingen, Germany
| | - Stefan Stevanović
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Tübingen, Germany
| | - Juliane S Walz
- Department of Hematology and Oncology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
25
|
Activation of NK cells and disruption of PD-L1/PD-1 axis: two different ways for lenalidomide to block myeloma progression. Oncotarget 2017; 8:24031-24044. [PMID: 28199990 PMCID: PMC5410361 DOI: 10.18632/oncotarget.15234] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 01/16/2017] [Indexed: 12/16/2022] Open
Abstract
Natural Killer (NK) cells play a critical role against tumor cells in hematological malignancies. Their activating receptors are essential in tumor cell killing. In Multiple Myeloma (MM) patients, NK cell differentiation, activation and cytotoxic potential are strongly impaired leading to MM escape from immune surveillance in tissues and bone marrow. Mechanisms used by MM to affect NK cell functions are mediated by the release of soluble factors, the expression of activating and inhibitory NK cell ligands, and the expression of immune check-point inhibitors. Lenalidomide represents an efficient clinical approach in MM treatment to improve patients' survival. Lenalidomide does not only promotes tumor apoptosis, but also stimulates T and NK cells, thereby facilitating NK-mediated tumor recognition and killing. This occurs since Lenalidomide acts on several critical points: stimulates T cell proliferation and cytokine secretion; decreases the expression of the immune check-point inhibitor Programmed Death-1 (PD-1) on both T and NK cells in MM patients; decreases the expression of both PD-1 and PD-L1 on MM cells; promotes MM cell death and abrogates MM/stromal microenvironment cross-talk, a process known to promote the MM cell survival and proliferation. This leads to the inhibition of the negative signal induced by PD-1/PD-L1 axis on NK cells, restoring NK cell cytotoxic functions. Given the importance of an effective immune response to counteract the MM progression and the promising approaches using anti-PD-1/PD-L1 strategies, we will discuss in this review how Lenalidomide could represent an adequate approach to re-establish the recognition against MM by exhausted NK cell.
Collapse
|
26
|
Abstract
Carfilzomib (Kyprolis®) is a proteasome inhibitor that binds selectively and irreversibly to the 20S proteasome (the proteolytic core particle within the 26S proteasome), inducing growth arrest and apoptosis. This intravenous drug is approved in the EU and the USA as combination therapy with oral lenalidomide and intravenous or oral dexamethasone for the treatment of patients with multiple myeloma who have received at least one prior therapy. In the multinational, phase III ASPIRE study in this patient population, carfilzomib triple combination therapy significantly prolonged progression-free survival (PFS), reflecting a clinically relevant gain in PFS of 8.7 months, compared with lenalidomide plus dexamethasone. Improvements in overall response rate and patients' global health status were also observed with carfilzomib triple combination therapy. A significant improvement in overall survival (OS) is yet to be demonstrated, with the prespecified stopping boundary not crossed at the time of the prespecified interim analysis, although OS data were not mature by the cut-off date. Carfilzomib triple combination therapy had a manageable tolerability profile. The incidences of the most frequently reported grade 3 or higher adverse events of special interest (with the exception of neutropenia, anaemia and thrombocytopenia) were low in both the carfilzomib triple combination therapy and lenalidomide plus dexamethasone groups. Although final OS data are awaited, current evidence suggests carfilzomib in combination with lenalidomide and dexamethasone is a welcome addition to the treatment options currently available for patients with relapsed multiple myeloma.
Collapse
|