1
|
Malek Mohammadi M, Rismanchi H, Esmailzadeh S, Farahani A, Hedayati N, Alimohammadi M, Mafi A, Farahani N, Hushmandi K. The emerging role of circular RNAs in cisplatin resistance in ovarian cancer: From molecular mechanism to future potential. Noncoding RNA Res 2024; 9:1280-1291. [PMID: 39040815 PMCID: PMC11261309 DOI: 10.1016/j.ncrna.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/05/2024] [Accepted: 05/19/2024] [Indexed: 07/24/2024] Open
Abstract
Ovarian cancer (OC) is the most common cause of death in female cancers. The prognosis of OC is very poor due to delayed diagnosis and identification of most patients in advanced stages, metastasis, recurrence, and resistance to chemotherapy. As chemotherapy with platinum-based drugs such as cisplatin (DDP) is the main treatment in most OC cases, resistance to DDP is an important obstacle to achieving satisfactory therapeutic efficacy. Consequently, knowing the different molecular mechanisms involved in resistance to DDP is necessary to achieve new therapeutic approaches. According to numerous recent studies, non-coding RNAs (ncRNAs) could regulate proliferation, differentiation, apoptosis, and chemoresistance in many cancers, including OC. Most of these ncRNAs are released by tumor cells into human fluid, allowing them to be used as tools for diagnosis. CircRNAs are ncRNA family members that have a role in the initiation, progression, and chemoresistance regulation of various cancers. In the current study, we investigated the roles of several circRNAs and their signaling pathways on OC progression and also on DDP resistance during chemotherapy.
Collapse
Affiliation(s)
| | - Hamidreza Rismanchi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shakiba Esmailzadeh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aryan Farahani
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Mafi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Liu Y, Meng Y, Zhang J, Gu L, Shen S, Zhu Y, Wang J. Pharmacology Progresses and Applications of Chloroquine in Cancer Therapy. Int J Nanomedicine 2024; 19:6777-6809. [PMID: 38983131 PMCID: PMC11232884 DOI: 10.2147/ijn.s458910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/07/2024] [Indexed: 07/11/2024] Open
Abstract
Chloroquine is a common antimalarial drug and is listed in the World Health Organization Standard List of Essential Medicines because of its safety, low cost and ease of use. Besides its antimalarial property, chloroquine also was used in anti-inflammatory and antivirus, especially in antitumor therapy. A mount of data showed that chloroquine mainly relied on autophagy inhibition to exert its antitumor effects. However, recently, more and more researches have revealed that chloroquine acts through other mechanisms that are autophagy-independent. Nevertheless, the current reviews lacked a comprehensive summary of the antitumor mechanism and combined pharmacotherapy of chloroquine. So here we focused on the antitumor properties of chloroquine, summarized the pharmacological mechanisms of antitumor progression of chloroquine dependent or independent of autophagy inhibition. Moreover, we also discussed the side effects and possible application developments of chloroquine. This review provided a more systematic and cutting-edge knowledge involved in the anti-tumor mechanisms and combined pharmacotherapy of chloroquine in hope of carrying out more in-depth exploration of chloroquine and obtaining more clinical applications.
Collapse
Affiliation(s)
- Yanqing Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Yuqing Meng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Liwei Gu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Shengnan Shen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Yongping Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
- Department of Pharmacological Sciences, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| |
Collapse
|
3
|
Rozilah MI, Yusoff K, Chia SL, Ismail S. Autophagy inhibition suppresses Newcastle disease virus-induced cell death by inhibiting viral replication in human breast cancer cells. Virology 2024; 590:109957. [PMID: 38100982 DOI: 10.1016/j.virol.2023.109957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023]
Abstract
Newcastle disease virus (NDV) is an oncolytic virus which selectively replicates in cancer cells without harming normal cells. Autophagy is a cellular mechanism that breaks down unused cytoplasmic constituents into nutrients. In previous studies, autophagy enhanced NDV-induced oncolysis in lung cancer and glioma cells. However, the effect of autophagy inhibition on NDV-induced oncolysis in breast cancer cells remains unknown. This study aimed to examine the effect of autophagy inhibition on NDV-induced oncolysis in human breast cancer cells, MCF7. To inhibit autophagy, we knocked down the expression of the autophagy protein beclin-1 (BECN1) by short interfering RNA (siRNA). The cells were infected with the recombinant NDV strain AF2240 expressing green fluorescent protein. We found that NDV induced autophagy and knockdown of BECN1 significantly reduced the NDV-induced autophagy in MCF7 cells. Importantly, BECN1 knockdown significantly suppressed cell death by inhibiting viral replication, as observed at 24 h post infection. Overall, our data suggest that autophagy inhibition may not be a suitable strategy to enhance NDV oncolytic efficacy against breast cancer.
Collapse
Affiliation(s)
- Megat Irfan Rozilah
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, 43000, Kajang, Selangor, Malaysia
| | - Suet Lin Chia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, 43000, Kajang, Selangor, Malaysia
| | - Saila Ismail
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
4
|
Islam M, Anvarbatcha R, Kunnathodi F, Athar MT, Tariq M. Quinacrine enhances the efficacy of cisplatin by increasing apoptosis and modulating cancer survival proteins in a colorectal cancer cell line. J Cancer Res Ther 2023; 19:1988-1997. [PMID: 38376308 DOI: 10.4103/jcrt.jcrt_902_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/01/2022] [Indexed: 02/21/2024]
Abstract
BACKGROUND Cisplatin and platinum-based compounds have been used successfully to treat various cancers. However, their use is often restricted due to the acquired resistance by cancer cells. Over-expression of p53 and inhibition of NF-kB sensitize several cancer cells towards cisplatin-induced apoptosis. Quinacrine, a cytotoxic drug with predictable safety revealed to concurrently suppress NF-kB and activate p53, which may be an attractive adjuvant in cisplatin chemotherapy. Therefore, the objective of the present study was to establish the role of quinacrine as an adjuvant in lowering the dose of cisplatin during cancer therapy to circumvent its toxic effects. MATERIALS AND METHODS The colon cancer (HCT-8) cells were cultured and cell survival assays were performed using standard procedures. Cell cycle arrest and the extent of apoptosis were determined using a muse cell analyzer. Cancer survival proteins were analyzed using western blotting techniques. RESULTS AND CONCLUSION We demonstrated that concomitant use of quinacrine with cisplatin increased cell apoptosis, suppressed cell proliferation and inhibited colony formation in a colorectal cancer cell line. Moreover, cell cycle arrest in the G0/G1 and G2/M phases and upregulation of p53 expression were observed. There was also downregulation of NF-kB and Bcl-xL protein expressions, both of which are associated with enhanced cell apoptosis and an increase in the sensitivity of cancer cells to cisplatin, overcoming its chemoresistance. Overall, the results of the present study and available literature clearly indicate that the use of quinacrine as an adjuvant with cisplatin may enhance its anti-cancer activity and reduce chemoresistance.
Collapse
Affiliation(s)
- Mozaffarul Islam
- Scientific Research Center, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Riyasdeen Anvarbatcha
- Scientific Research Center, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Faisal Kunnathodi
- Scientific Research Center, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Md Tanwir Athar
- Scientific Research Center, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Dentistry and Pharmacy, Buraydah Colleges, Buraydah, Al-Qassim, Saudi Arabia
| | - Mohammad Tariq
- Scientific Research Center, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Lee YC, Chiou JT, Wang LJ, Chen YJ, Chang LS. Amsacrine downregulates BCL2L1 expression and triggers apoptosis in human chronic myeloid leukemia cells through the SIDT2/NOX4/ERK/HuR pathway. Toxicol Appl Pharmacol 2023; 474:116625. [PMID: 37451322 DOI: 10.1016/j.taap.2023.116625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Accumulating evidence indicates that the anticancer activity of acridine derivatives is mediated through the regulation of anti-apoptotic and pro-apoptotic BCL2 protein expression. Therefore, we investigated whether the cytotoxicity of amsacrine with an acridine structural scaffold in human chronic myeloid leukemia (CML) K562 cells was mediated by BCL2 family proteins. Amsacrine induced apoptosis, mitochondrial depolarization, and BCL2L1 (also known as BCL-XL) downregulation in K562 cells. BCL2L1 overexpression inhibited amsacrine-induced cell death and mitochondrial depolarization. Amsacrine treatment triggered SIDT2-mediated miR-25 downregulation, leading to increased NOX4-mediated ROS production. ROS-mediated inactivation of ERK triggered miR-22 expression, leading to increased HuR mRNA decay. As HuR is involved in stabilizing BCL2L1 mRNA, downregulation of BCL2L1 was noted in K562 cells after amsacrine treatment. In contrast, amsacrine-induced BCL2L1 downregulation was alleviated by restoring ERK phosphorylation and HuR expression. Altogether, the results of this study suggest that amsacrine triggers apoptosis in K562 cells by inhibiting BCL2L1 expression through the SIDT2/NOX4/ERK-mediated downregulation of HuR. Furthermore, a similar pathway also explains the cytotoxicity of amsacrine in CML MEG-01 and KU812 cells.
Collapse
Affiliation(s)
- Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Liang-Jun Wang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Ying-Jung Chen
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
6
|
Ray U, Thirusangu P, Jin L, Xiao Y, Pathoulas CL, Staub J, Erskine CL, Dredge K, Hammond E, Block MS, Kaufmann SH, Bakkum-Gamez JN, Shridhar V. PG545 sensitizes ovarian cancer cells to PARP inhibitors through modulation of RAD51-DEK interaction. Oncogene 2023; 42:2725-2736. [PMID: 37550562 PMCID: PMC10491494 DOI: 10.1038/s41388-023-02785-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 08/09/2023]
Abstract
PG545 (Pixatimod) is a highly sulfated small molecule known for its ability to inhibit heparanase and disrupt signaling mediated by heparan-binding-growth factors (HB-GF). Previous studies indicated that PG545 inhibits growth factor-mediated signaling in ovarian cancer (OC) to enhance response to chemotherapy. Here we investigated the previously unidentified mechanisms by which PG545 induces DNA damage in OC cells and found that PG545 induces DNA single- and double-strand breaks, reduces RAD51 expression in an autophagy-dependent manner and inhibits homologous recombination repair (HRR). These changes accompanied the ability of PG545 to inhibit endocytosis of the heparan-sulfate proteoglycan interacting DNA repair protein, DEK, leading to DEK sequestration in the tumor microenvironment (TME) and loss of nuclear DEK needed for HRR. As a result, PG545 synergized with poly (ADP-ribose) polymerase inhibitors (PARPis) in OC cell lines in vitro and in 55% of primary cultures of patient-derived ascites samples ex vivo. Moreover, PG545/PARPi synergy was observed in OC cells exhibiting either de novo or acquired resistance to PARPi monotherapy. PG545 in combination with rucaparib also generated increased DNA damage, increased antitumor effects and increased survival of mice bearing HRR proficient OVCAR5 xenografts compared to monotherapy treatment in vivo. Synergistic antitumor activity of the PG545/rucaparib combination was likewise observed in an immunocompetent syngeneic ID8F3 OC model. Collectively, these results suggest that targeting DEK-HSPG interactions in the TME through the use of PG545 may be a novel method of inhibiting DNA repair and sensitizing cells to PARPis.
Collapse
Affiliation(s)
- Upasana Ray
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA
| | - Prabhu Thirusangu
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ling Jin
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yinan Xiao
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | | | - Julie Staub
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Keith Dredge
- Zucero Therapeutics, South Melbourne, VIC, Australia
| | | | | | - Scott H Kaufmann
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | | | - Viji Shridhar
- Department of Experimental Pathology and Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
7
|
Ahmadi-Dehlaghi F, Mohammadi P, Valipour E, Pournaghi P, Kiani S, Mansouri K. Autophagy: A challengeable paradox in cancer treatment. Cancer Med 2023. [PMID: 36760166 DOI: 10.1002/cam4.5577] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/14/2022] [Accepted: 12/21/2022] [Indexed: 02/11/2023] Open
Abstract
OBJECTIVE Autophagy is an intracellular degradation pathway conserved in all eukaryotes from yeast to humans. This process plays a quality-control role by destroying harmful cellular components under normal conditions, maintaining cell survival, and establishing cellular adaptation under stressful conditions. Hence, there are various studies indicating dysfunctional autophagy as a factor involved in the development and progression of various human diseases, including cancer. In addition, the importance of autophagy in the development of cancer has been highlighted by paradoxical roles, as a cytoprotective and cytotoxic mechanism. Despite extensive research in the field of cancer, there are many questions and challenges about the roles and effects suggested for autophagy in cancer treatment. The aim of this study was to provide an overview of the paradoxical roles of autophagy in different tumors and related cancer treatment options. METHODS In this study, to find articles, a search was made in PubMed and Google scholar databases with the keywords Autophagy, Autophagy in Cancer Management, and Drug Design. RESULTS According to the investigation, some studies suggest that several advanced cancers are dependent on autophagy for cell survival, so when cancer cells are exposed to therapy, autophagy is induced and suppresses the anti-cancer effects of therapeutic agents and also results in cell resistance. However, enhanced autophagy from using anti-cancer drugs causes autophagy-mediated cell death in several cancers. Because autophagy also plays roles in both tumor suppression and promotion further research is needed to determine the precise mechanism of this process in cancer treatment. CONCLUSION We concluded in this article, autophagy manipulation may either promote or hinder the growth and development of cancer according to the origin of the cancer cells, the type of cancer, and the behavior of the cancer cells exposed to treatment. Thus, before starting treatment it is necessary to determine the basal levels of autophagy in various cancers.
Collapse
Affiliation(s)
- Farnaz Ahmadi-Dehlaghi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Biology, Payame Noor University, Tehran, Iran
| | - Parisa Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Elahe Valipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sarah Kiani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
8
|
Nokhostin F, Azadehrah M, Azadehrah M. The multifaced role and therapeutic regulation of autophagy in ovarian cancer. Clin Transl Oncol 2022; 25:1207-1217. [PMID: 36534371 DOI: 10.1007/s12094-022-03045-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Ovarian cancer (OC) is one of the tumors that occurs most frequently in women. Autophagy is involved in cell homeostasis, biomolecule recycling, and survival, making it a potential target for anti-tumor drugs. It is worth noting that growing evidence reveals a close link between autophagy and OC. In the context of OC, autophagy demonstrates activity as both a tumor suppressor and a tumor promoter, depending on the context. Autophagy's exact function in OC is greatly reliant on the tumor microenvironment (TME) and other conditions, such as hypoxia, nutritional deficiency, chemotherapy, and so on. However, what can be concluded from different studies is that autophagy-related signaling pathways, especially PI3K/AKT/mTOR axis, increase in advanced stages and malignant phenotype of the disease reduces autophagy and ultimately leads to tumor progression. This study sought to present a thorough understanding of the role of autophagy-related signaling pathways in OC and existing therapies targeting these signaling pathways.
Collapse
Affiliation(s)
- Fahimeh Nokhostin
- Department of Obstetrics and Gynecology, Faculty of Medicine, Shahid Sadughi University of Medical Sciences, Yazd, Iran
| | - Mahboobeh Azadehrah
- Cancer Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Malihe Azadehrah
- Cancer Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
9
|
CC Chemokine Ligand-2: A Promising Target for Overcoming Anticancer Drug Resistance. Cancers (Basel) 2022; 14:cancers14174251. [PMID: 36077785 PMCID: PMC9454502 DOI: 10.3390/cancers14174251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Drug resistance is an obstacle to cancer therapy, and the underlying mechanisms are still being explored. CC chemokine ligand-2 (CCL2) is one of the key proinflammatory chemokines that regulate the migration and infiltration of multiple inflammatory cells, such as monocytes and macrophages. CCL2 can be secreted by tumor cells and multiple cell types, mediating the formation of the tumor-promoting and immunosuppressive microenvironment to promote cancer development, progression, and anticancer drug resistance. Notably, CCL2 is also frequently overexpressed in drug-resistant cancer cells. Here, we review recent findings regarding the role of CCL2 in the development of resistance to multiple anticancer reagents. In addition, the possible mechanisms by which CCL2 participates in anticancer drug resistance are discussed, which may provide new therapeutic targets for reversing cancer resistance. Abstract CC chemokine ligand-2 (CCL2), a proinflammatory chemokine that mediates chemotaxis of multiple immune cells, plays a crucial role in the tumor microenvironment (TME) and promotes tumorigenesis and development. Recently, accumulating evidence has indicated that CCL2 contributes to the development of drug resistance to a broad spectrum of anticancer agents, including chemotherapy, hormone therapy, targeted therapy, and immunotherapy. It has been reported that CCL2 can reduce tumor sensitivity to drugs by inhibiting drug-induced apoptosis, antiangiogenesis, and antitumor immunity. In this review, we mainly focus on elucidating the relationship between CCL2 and resistance as well as the underlying mechanisms. A comprehensive understanding of the role and mechanism of CCL2 in anticancer drug resistance may provide new therapeutic targets for reversing cancer resistance.
Collapse
|
10
|
Zheng X, Zhang J, Li S, Gao X, Zhang Y, Wang M, Dong L, Sun L, Zhao N, Ma Z, Ding C, Wang Y. Low doses of niclosamide and quinacrine combination yields synergistic effect in melanoma via activating autophagy-mediated p53-dependent apoptosis. Transl Oncol 2022; 21:101425. [PMID: 35460941 PMCID: PMC9048101 DOI: 10.1016/j.tranon.2022.101425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 01/20/2023] Open
Abstract
Malignant melanoma is a highly aggressive, malignant, and drug-resistant tumor. It lacks an efficient treatment approach. In this study, we developed a novel anti-melanoma strategy by using anti-tapeworm drug niclosamide and anti-malarial drug quinacrine, and investigated the molecular mechanism by in vitro and in vivo assays. Meanwhile, other types of tumor cells, immortalized epithelial cells and bone marrow mesenchymal stem cells were used to evaluate the universal role of anti-cancer and safety of the strategy. The results showed, briefly, an exposure to niclosamide and quinacrine led to an increased apoptosis-related protein p53, cleaved caspase-3 and cleaved PARP and autophagy-related protein LC3B expression, and a decreased expression of autophagy-related protein p62, finally leading to cell apoptosis and autophage. After inhibiting autophagy by Baf-A1, flow cytometry and western blot showed that the expression of apoptosis-related proteins was down-regulated and the number of apoptotic cells decreased. Subsequently, in the siRNA-mediated p53 knockdown cells, the expression of apoptosis-related proteins and the number of apoptotic cells were also reduced, while the expression of autophagy-related proteins including LC3B, p62 did not change significantly. To sum up, we developed a new, safe strategy for melanoma treatment by using low doses of niclosamide and quinacrine to treat melanoma; and found a novel mechanism by which the combination application of low doses of niclosamide and quinacrine exerts an efficient anti-melanoma effect through activation of autophagy-mediated p53-dependent apoptosis. The novel strategy was verified to exert a universal anti-cancer role in other types of cancer.
Collapse
Affiliation(s)
- Xuan Zheng
- Central Laboratory, Peking University School and Hospital of Stomatology, No.22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China; Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, No.22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Jianyun Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, No.22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Shuangting Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
| | - Xiaolei Gao
- Central Laboratory, Peking University School and Hospital of Stomatology, No.22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China; Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, No.22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Yixin Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, No.22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China; Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, No.22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Meng Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, No.22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Liying Dong
- Central Laboratory, Peking University School and Hospital of Stomatology, No.22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China; Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, No.22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Liangjie Sun
- Central Laboratory, Peking University School and Hospital of Stomatology, No.22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China; Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, No.22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Na Zhao
- Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, MA, USA; Shanghai Stomatological Hospital, Fudan University, No.356, Beijing Road East, Shanghai, China
| | - Zeyun Ma
- Department of VIP Service, Peking University School and Hospital of Stomatology, No.22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China.
| | - Chong Ding
- Central Laboratory, Peking University School and Hospital of Stomatology, No.22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China.
| | - Yixiang Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, No.22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China; Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, No.22, Zhongguancun Avenue South, Haidian District, Beijing 100081, China.
| |
Collapse
|
11
|
Surface functionalization of lipidic core nanoparticles with albumin: A great opportunity for quinacrine in lung cancer therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Repurposing of Anti-Malarial Drug Quinacrine for Cancer Treatment: A Review. Sci Pharm 2022. [DOI: 10.3390/scipharm90010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Quinacrine (QC), a synthetic drug belonging to the 9-aminoacridine family, has been used extensively to treat malaria and multiple ailments over the past several decades. Following its discovery in the 1920s and extensive use for the treatment of malaria for nearly two decades, numerous studies have explored its antineoplastic potential in both preclinical and clinical settings. Multiple studies spanning over seven decades have examined a wide range of QC anticancer activities across various types of cancers, along with the underlying mechanisms. Many of these mechanisms, including activation of the p53 signaling cascade and simultaneous NF-κB signaling inhibition, have been reported in various studies, bringing QC to a unique polypharmacological category drug possessing the potential to treat a wide variety of diseases, including cancer. This article summarizes most of the research conducted over several decades to uncover new molecular mechanisms activated or inactivated and directly correlate with antineoplastic activity QC.
Collapse
|
13
|
Huang PJ, Chiu CC, Hsiao MH, Yow JL, Tzang BS, Hsu TC. Potential of antiviral drug oseltamivir for the treatment of liver cancer. Int J Oncol 2021; 59:109. [PMID: 34859259 PMCID: PMC8651232 DOI: 10.3892/ijo.2021.5289] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022] Open
Abstract
Liver cancer is a leading cause of cancer‑related mortality globally. Since hepatitis virus infections have been strongly associated with the incidence of liver cancer, studies concerning the effects of antiviral drugs on liver cancer have attracted great attention in recent years. The present study investigated the effects of two anti‑hepatitis virus drugs, lamivudine and ribavirin, and one anti‑influenza virus drug, oseltamivir, on liver cancer cells to assess alternative methods for treating liver cancer. MTT assays, wound healing assays, Τranswell assays, flow cytometry, immunoblotting, ELISA, immunofluorescence staining and a xenograft animal model were adopted to verify the effects of lamivudine, ribavirin and oseltamivir on liver cancer cells. Treatment with ribavirin and oseltamivir for 24 and 48 h significantly decreased the viability of both Huh-7 and HepG2 cells compared with that of THLE‑3 cells in a dose‑dependent manner. The subsequent investigations focused on oseltamivir, considering the more serious clinical adverse effects of ribavirin than those of oseltamivir. Significantly decreased migration and invasion were observed in both Huh-7 and HepG2 cells that were treated with oseltamivir for 24 and 48 h. In addition, oseltamivir significantly increased autophagy in Huh‑7 cells, as revealed by the significantly higher ratios of LC3‑II/LC3‑I, increased expression of Beclin‑1, and decreased expression of p62, whereas no significant increases in the expression of apoptosis‑related proteins, including Apaf‑1, cleaved caspase‑3, and cleaved PARP‑1, were detected. Notably, apoptosis and autophagy were significantly increased in HepG2 cells in the presence of oseltamivir, as revealed by the significant increases in the expression of Apaf‑1, cleaved caspase‑3, and cleaved PARP‑1, the higher ratios of LC3‑II/LC3‑I, the increased expression of Beclin‑1, and the decreased expression of p62. Additionally, significant inhibitory effects of oseltamivir on xenografted Huh‑7 cells in athymic nude mice were observed. The present study, for the first time to the best of our knowledge, reported the differential effects of oseltamivir on inducing liver cancer cell death both in vitro and in vivo and may provide an alternative approach for treating liver cancer.
Collapse
Affiliation(s)
- Pei-Ju Huang
- Department of Family Medicine, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Chun-Ching Chiu
- Department of Neurology and Department of Medical Intensive Care Unit, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Min-Hua Hsiao
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C
| | - Jia Le Yow
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C
| | - Bor-Show Tzang
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C
| | - Tsai-Ching Hsu
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung 402, Taiwan, R.O.C
| |
Collapse
|
14
|
Wu L, Chatla S, Lin Q, Chowdhury FA, Geldenhuys W, Du W. Quinacrine-CASIN combination overcomes chemoresistance in human acute lymphoid leukemia. Nat Commun 2021; 12:6936. [PMID: 34836965 PMCID: PMC8626516 DOI: 10.1038/s41467-021-27300-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 11/11/2021] [Indexed: 01/30/2023] Open
Abstract
Chemoresistance posts a major hurdle for treatment of acute leukemia. There is increasing evidence that prolonged and intensive chemotherapy often fails to eradicate leukemic stem cells, which are protected by the bone marrow niche and can induce relapse. Thus, new therapeutic approaches to overcome chemoresistance are urgently needed. By conducting an ex vivo small molecule screen, here we have identified Quinacrine (QC) as a sensitizer for Cytarabine (AraC) in treating acute lymphoblastic leukemia (ALL). We show that QC enhances AraC-mediated killing of ALL cells, and subsequently abrogates AraC resistance both in vitro and in an ALL-xenograft model. However, while combo AraC+QC treatment prolongs the survival of primary transplanted recipients, the combination exhibits limited efficacy in secondary transplanted recipients, consistent with the survival of niche-protected leukemia stem cells. Introduction of Cdc42 Activity Specific Inhibitor, CASIN, enhances the eradication of ALL leukemia stem cells by AraC+QC and prolongs the survival of both primary and secondary transplanted recipients without affecting normal long-term human hematopoiesis. Together, our findings identify a small-molecule regimen that sensitizes AraC-mediated leukemia eradication and provide a potential therapeutic approach for better ALL treatment.
Collapse
Affiliation(s)
- Limei Wu
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
| | - Srinivas Chatla
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Qiqi Lin
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
| | - Fabliha Ahmed Chowdhury
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
- Molecular Pharmacology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Werner Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA
| | - Wei Du
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26506, USA.
- Molecular Pharmacology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, USA.
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
15
|
Oien DB, Sarkar Bhattacharya S, Chien J, Molina J, Shridhar V. Quinacrine Has Preferential Anticancer Effects on Mesothelioma Cells With Inactivating NF2 Mutations. Front Pharmacol 2021; 12:750352. [PMID: 34621176 PMCID: PMC8490927 DOI: 10.3389/fphar.2021.750352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/30/2021] [Indexed: 12/29/2022] Open
Abstract
Mesothelioma is a rare cancer with disproportionately higher death rates for shipping and mining populations. These patients have few treatment options, which can be partially attributed to limited chemotherapy responses for tumors. We initially hypothesized that quinacrine could be combined with cisplatin or pemetrexed to synergistically eliminate mesothelioma cells. The combination with cisplatin resulted in synergistic cell death and the combination with pemetrexed was not synergistic, although novel artificially-generated pemetrexed-resistant cells were more sensitive to quinacrine. Unexpectedly, we discovered cells with NF2 mutations were very sensitive to quinacrine. This change of quinacrine sensitivity was confirmed by NF2 ectopic expression and knockdown in NF2 mutant and wildtype cell lines, respectively. There are few common mutations in mesothelioma and inactivating NF2 mutations are present in up to 60% of these tumors. We found quinacrine alters the expression of over 3000 genes in NF2-mutated cells that were significantly different than quinacrine-induced changes in NF2 wildtype cells. Changes to NF2/hippo pathway biomarkers were validated at the mRNA and protein levels. Additionally, quinacrine induces a G1 phase cell cycle arrest in NF2-mutated cells versus the S phase arrest in NF2-wildtype cells. This study suggests quinacrine may have repurposing potential for a large subset of mesothelioma patients.
Collapse
Affiliation(s)
- Derek B Oien
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| | | | - Jeremy Chien
- Department of Biochemistry and Molecular Medicine, University of California, Davis Health, Sacramento, CA, United States
| | - Julian Molina
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Medical Oncology, Mayo Clinic, Rochester, MN, United States
| | - Viji Shridhar
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
16
|
Quinacrine Induces Nucleolar Stress in Treatment-Refractory Ovarian Cancer Cell Lines. Cancers (Basel) 2021; 13:cancers13184645. [PMID: 34572872 PMCID: PMC8466834 DOI: 10.3390/cancers13184645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 12/29/2022] Open
Abstract
A considerable subset of gynecologic cancer patients experience disease recurrence or acquired resistance, which contributes to high mortality rates in ovarian cancer (OC). Our prior studies showed that quinacrine (QC), an antimalarial drug, enhanced chemotherapy sensitivity in treatment-refractory OC cells, including artificially generated chemoresistant and high-grade serous OC cells. In this study, we investigated QC-induced transcriptomic changes to uncover its cytotoxic mechanisms of action. Isogenic pairs of OC cells generated to be chemoresistant and their chemosensitive counterparts were treated with QC followed by RNA-seq analysis. Validation of selected expression results and database comparison analyses indicated the ribosomal biogenesis (RBG) pathway is inhibited by QC. RBG is commonly upregulated in cancer cells and is emerging as a drug target. We found that QC attenuates the in vitro and in vivo expression of nucleostemin (NS/GNL3), a nucleolar RBG and DNA repair protein, and the RPA194 catalytic subunit of Pol I that results in RBG inhibition and nucleolar stress. QC promotes the redistribution of fibrillarin in the form of extranuclear foci and nucleolar caps, an indicator of nucleolar stress conditions. In addition, we found that QC-induced downregulation of NS disrupted homologous recombination repair both by reducing NS protein levels and PARylation resulting in reduced RAD51 recruitment to DNA damage. Our data suggest that QC inhibits RBG and this inhibition promotes DNA damage by directly downregulating the NS-RAD51 interaction. Additionally, QC showed strong synergy with PARP inhibitors in OC cells. Overall, we found that QC downregulates the RBG pathway, induces nucleolar stress, supports the increase of DNA damage, and sensitizes cells to PARP inhibition, which supports new therapeutic stratagems for treatment-refractory OC. Our work offers support for targeting RBG in OC and determines NS to be a novel target for QC.
Collapse
|
17
|
Mitochondrial Modulations, Autophagy Pathways Shifts in Viral Infections: Consequences of COVID-19. Int J Mol Sci 2021; 22:ijms22158180. [PMID: 34360945 PMCID: PMC8347486 DOI: 10.3390/ijms22158180] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/24/2021] [Accepted: 07/24/2021] [Indexed: 01/05/2023] Open
Abstract
Mitochondria are vital intracellular organelles that play an important role in regulating various intracellular events such as metabolism, bioenergetics, cell death (apoptosis), and innate immune signaling. Mitochondrial fission, fusion, and membrane potential play a central role in maintaining mitochondrial dynamics and the overall shape of mitochondria. Viruses change the dynamics of the mitochondria by altering the mitochondrial processes/functions, such as autophagy, mitophagy, and enzymes involved in metabolism. In addition, viruses decrease the supply of energy to the mitochondria in the form of ATP, causing viruses to create cellular stress by generating ROS in mitochondria to instigate viral proliferation, a process which causes both intra- and extra-mitochondrial damage. SARS-COV2 propagates through altering or changing various pathways, such as autophagy, UPR stress, MPTP and NLRP3 inflammasome. Thus, these pathways act as potential targets for viruses to facilitate their proliferation. Autophagy plays an essential role in SARS-COV2-mediated COVID-19 and modulates autophagy by using various drugs that act on potential targets of the virus to inhibit and treat viral infection. Modulated autophagy inhibits coronavirus replication; thus, it becomes a promising target for anti-coronaviral therapy. This review gives immense knowledge about the infections, mitochondrial modulations, and therapeutic targets of viruses.
Collapse
|
18
|
Ray U, Roy D, Jin L, Thirusangu P, Staub J, Xiao Y, Kalogera E, Wahner Hendrickson AE, Cullen GD, Goergen K, Oberg AL, Shridhar V. Group III phospholipase A2 downregulation attenuated survival and metastasis in ovarian cancer and promotes chemo-sensitization. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:182. [PMID: 34082797 PMCID: PMC8173968 DOI: 10.1186/s13046-021-01985-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/16/2021] [Indexed: 11/13/2022]
Abstract
Background Aberrant lipogenicity and deregulated autophagy are common in most advanced human cancer and therapeutic strategies to exploit these pathways are currently under consideration. Group III Phospholipase A2 (sPLA2-III/PLA2G3), an atypical secretory PLA2, is recognized as a regulator of lipid metabolism associated with oncogenesis. Though recent studies reveal that high PLA2G3 expression significantly correlates with poor prognosis in several cancers, however, role of PLA2G3 in ovarian cancer (OC) pathogenesis is still undetermined. Methods CRISPR-Cas9 and shRNA mediated knockout and knockdown of PLA2G3 in OC cells were used to evaluate lipid droplet (LD) biogenesis by confocal and Transmission electron microscopy analysis, and the cell viability and sensitization of the cells to platinum-mediated cytotoxicity by MTT assay. Regulation of primary ciliation by PLA2G3 downregulation both genetically and by metabolic inhibitor PFK-158 induced autophagy was assessed by immunofluorescence-based confocal analysis and immunoblot. Transient transfection with GFP-RFP-LC3B and confocal analysis was used to assess the autophagic flux in OC cells. PLA2G3 knockout OVCAR5 xenograft in combination with carboplatin on tumor growth and metastasis was assessed in vivo. Efficacy of PFK158 alone and with platinum drugs was determined in patient-derived primary ascites cultures expressing PLA2G3 by MTT assay and immunoblot analysis. Results Downregulation of PLA2G3 in OVCAR8 and 5 cells inhibited LD biogenesis, decreased growth and sensitized cells to platinum drug mediated cytotoxicity in vitro and in in vivo OVCAR5 xenograft. PLA2G3 knockdown in HeyA8MDR-resistant cells showed sensitivity to carboplatin treatment. We found that both PFK158 inhibitor-mediated and genetic downregulation of PLA2G3 resulted in increased number of percent ciliated cells and inhibited cancer progression. Mechanistically, we found that PFK158-induced autophagy targeted PLA2G3 to restore primary cilia in OC cells. Of clinical relevance, PFK158 also induces percent ciliated cells in human-derived primary ascites cells and reduces cell viability with sensitization to chemotherapy. Conclusions Taken together, our study for the first time emphasizes the role of PLA2G3 in regulating the OC metastasis. This study further suggests the therapeutic potential of targeting phospholipases and/or restoration of PC for future OC treatment and the critical role of PLA2G3 in regulating ciliary function by coordinating interface between lipogenesis and metastasis. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01985-9.
Collapse
Affiliation(s)
- Upasana Ray
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Debarshi Roy
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.,Alcorn State University, Lorman, MS, USA
| | - Ling Jin
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Prabhu Thirusangu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Julie Staub
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Yinan Xiao
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Grace D Cullen
- Department of Internal Medicine, Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Krista Goergen
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Ann L Oberg
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Viji Shridhar
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
19
|
Hussein NA, Malla S, Pasternak MA, Terrero D, Brown NG, Ashby CR, Assaraf YG, Chen ZS, Tiwari AK. The role of endolysosomal trafficking in anticancer drug resistance. Drug Resist Updat 2021; 57:100769. [PMID: 34217999 DOI: 10.1016/j.drup.2021.100769] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/10/2021] [Accepted: 05/14/2021] [Indexed: 02/08/2023]
Abstract
Multidrug resistance (MDR) remains a major obstacle towards curative treatment of cancer. Despite considerable progress in delineating the basis of intrinsic and acquired MDR, the underlying molecular mechanisms remain to be elucidated. Emerging evidences suggest that dysregulation in endolysosomal compartments is involved in mediating MDR through multiple mechanisms, such as alterations in endosomes, lysosomes and autophagosomes, that traffic and biodegrade the molecular cargo through macropinocytosis, autophagy and endocytosis. For example, altered lysosomal pH, in combination with transcription factor EB (TFEB)-mediated lysosomal biogenesis, increases the sequestration of hydrophobic anti-cancer drugs that are weak bases, thereby producing an insufficient and off-target accumulation of anti-cancer drugs in MDR cancer cells. Thus, the use of well-tolerated, alkalinizing compounds that selectively block Vacuolar H⁺-ATPase (V-ATPase) may be an important strategy to overcome MDR in cancer cells and increase chemotherapeutic efficacy. Other mechanisms of endolysosomal-mediated drug resistance include increases in the expression of lysosomal proteases and cathepsins that are involved in mediating carcinogenesis and chemoresistance. Therefore, blocking the trafficking and maturation of lysosomal proteases or direct inhibition of cathepsin activity in the cytosol may represent novel therapeutic modalities to overcome MDR. Furthermore, endolysosomal compartments involved in catabolic pathways, such as macropinocytosis and autophagy, are also shown to be involved in the development of MDR. Here, we review the role of endolysosomal trafficking in MDR development and discuss how targeting endolysosomal pathways could emerge as a new therapeutic strategy to overcome chemoresistance in cancer.
Collapse
Affiliation(s)
- Noor A Hussein
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - Saloni Malla
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - Mariah A Pasternak
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - David Terrero
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - Noah G Brown
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, St. John's University, Queens, NY, USA
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, St. John's University, Queens, NY, USA.
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA; Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, 43614, OH, USA.
| |
Collapse
|
20
|
Ghaznavi H, Shirvaliloo M, Zarebkohan A, Shams Z, Radnia F, Bahmanpour Z, Sargazi S, Saravani R, Shirvalilou S, Shahraki O, Shahraki S, Nazarlou Z, Sheervalilou R. An Updated Review on Implications of Autophagy and Apoptosis in Tumorigenesis: Possible Alterations in Autophagy through Engineered Nanomaterials and Their Importance in Cancer Therapy. Mol Pharmacol 2021; 100:119-143. [PMID: 33990406 DOI: 10.1124/molpharm.121.000234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
Most commonly recognized as a catabolic pathway, autophagy is a perplexing mechanism through which a living cell can free itself of excess cytoplasmic components, i.e., organelles, by means of certain membranous vesicles or lysosomes filled with degrading enzymes. Upon exposure to external insult or internal stimuli, the cell might opt to activate such a pathway, through which it can gain control over the maintenance of intracellular components and thus sustain homeostasis by intercepting the formation of unnecessary structures or eliminating the already present dysfunctional or inutile organelles. Despite such appropriateness, autophagy might also be considered a frailty for the cell, as it has been said to have a rather complicated role in tumorigenesis. A merit in the early stages of tumor formation, autophagy appears to be salutary because of its tumor-suppressing effects. In fact, several investigations on tumorigenesis have reported diminished levels of autophagic activity in tumor cells, which might result in transition to malignancy. On the contrary, autophagy has been suggested to be a seemingly favorable mechanism to progressed malignancies, as it contributes to survival of such cells. Based on the recent literature, this mechanism might also be activated upon the entry of engineered nanomaterials inside a cell, supposedly protecting the host from foreign materials. Accordingly, there is a good chance that therapeutic interventions for modulating autophagy in malignant cells using nanoparticles may sensitize cancerous cells to certain treatment modalities, e.g., radiotherapy. In this review, we will discuss the signaling pathways involved in autophagy and the significance of the mechanism itself in apoptosis and tumorigenesis while shedding light on possible alterations in autophagy through engineered nanomaterials and their potential therapeutic applications in cancer. SIGNIFICANCE STATEMENT: Autophagy has been said to have a complicated role in tumorigenesis. In the early stages of tumor formation, autophagy appears to be salutary because of its tumor-suppressing effects. On the contrary, autophagy has been suggested to be a favorable mechanism to progressed malignancies. This mechanism might be affected upon the entry of nanomaterials inside a cell. Accordingly, therapeutic interventions for modulating autophagy using nanoparticles may sensitize cancerous cells to certain therapies.
Collapse
Affiliation(s)
- Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Milad Shirvaliloo
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Amir Zarebkohan
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Zinat Shams
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Fatemeh Radnia
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Zahra Bahmanpour
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Saman Sargazi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Ramin Saravani
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Sakine Shirvalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Omolbanin Shahraki
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Sheida Shahraki
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Ziba Nazarlou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| | - Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H.G.), Infectious and Tropical Diseases Research Center, (M.S.), Department of Medical Nanotechnology, School of Advanced Medical Sciences,Tabriz University of Medical Sciences, Tabriz, Iran (A.Z.), Department of Biological Science, Kharazmi University, Tehran, Iran (Z.S.), Department of Medical Biotechnology, Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (F.R.), Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (Z.B.), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sar), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (R.S.), Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran (S.Sh), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (O.S), Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran (S.Sha), Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey (Z.N.), Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (R.Sh)
| |
Collapse
|
21
|
Quinacrine-Induced Autophagy in Ovarian Cancer Triggers Cathepsin-L Mediated Lysosomal/Mitochondrial Membrane Permeabilization and Cell Death. Cancers (Basel) 2021; 13:cancers13092004. [PMID: 33919392 PMCID: PMC8122252 DOI: 10.3390/cancers13092004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/01/2021] [Accepted: 04/17/2021] [Indexed: 01/08/2023] Open
Abstract
Simple Summary Ovarian cancer (OC) is the most common cause of cancer-related deaths among women worldwide, and its incidence has been increasing and has continued to prove resistant to a variety of therapeutics. This observation is principally disturbing given the amount of money invested in identifying novel therapies for this disease. A comparatively rapid and economical pipeline for identification of novel drugs is drug repurposing. We reported earlier that the antimalarial drug Quinacrine (QC) also has anticancer activity and here we discovered that QC significantly upregulates cathepsin L (CTSL) and promoting autophagic flux in ovarian cancer. QC-induced CTSL activation promotes lysosomal membrane permeability resulting in active CTSL release into the cytosol, which promotes Bid cleavage, mitochondrial membrane permeability, cytochrome-c release and cell death in both in-vitro and in-vivo models. Therefore, QC is a promising candidate for OC treatment. Abstract We previously reported that the antimalarial compound quinacrine (QC) induces autophagy in ovarian cancer cells. In the current study, we uncovered that QC significantly upregulates cathepsin L (CTSL) but not cathepsin B and D levels, implicating the specific role of CTSL in promoting QC-induced autophagic flux and apoptotic cell death in OC cells. Using a Magic Red® cathepsin L activity assay and LysoTracker red, we discerned that QC-induced CTSL activation promotes lysosomal membrane permeability (LMP) resulting in the release of active CTSL into the cytosol to promote apoptotic cell death. We found that QC-induced LMP and CTSL activation promotes Bid cleavage, mitochondrial outer membrane permeabilization (MOMP), and mitochondrial cytochrome-c release. Genetic (shRNA) and pharmacological (Z-FY(tBU)-DMK) inhibition of CTSL markedly reduces QC-induced autophagy, LMP, MOMP, apoptosis, and cell death; whereas induced overexpression of CTSL in ovarian cancer cell lines has an opposite effect. Using recombinant CTSL, we identified p62/SQSTM1 as a novel substrate of CTSL, suggesting that CTSL promotes QC-induced autophagic flux. CTSL activation is specific to QC-induced autophagy since no CTSL activation is seen in ATG5 knockout cells or with the anti-malarial autophagy-inhibiting drug chloroquine. Importantly, we showed that upregulation of CTSL in QC-treated HeyA8MDR xenografts corresponds with attenuation of p62, upregulation of LC3BII, cytochrome-c, tBid, cleaved PARP, and caspase3. Taken together, the data suggest that QC-induced autophagy and CTSL upregulation promote a positive feedback loop leading to excessive autophagic flux, LMP, and MOMP to promote QC-induced cell death in ovarian cancer cells.
Collapse
|
22
|
Etman SM, Mehanna RA, Bary AA, Elnaggar YSR, Abdallah OY. Undaria pinnatifida fucoidan nanoparticles loaded with quinacrine attenuate growth and metastasis of pancreatic cancer. Int J Biol Macromol 2021; 170:284-297. [PMID: 33340624 DOI: 10.1016/j.ijbiomac.2020.12.109] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer is a devastating gastrointestinal tumor with limited Chemotherapeutic options. Treatment is restricted by its poor vascularity and dense surrounding stroma. Quinacrine is a repositioned drug with an anticancer activity but suffers a limited ability to reach tumor cells. This could be enhanced using nanotechnology by the preparation of quinacrine-loaded Undaria pinnatifida fucoidan nanoparticles. The system exploited fucoidan as both a delivery system of natural origin and active targeting ligand. Lactoferrin was added as a second active targeting ligand. Single and dual-targeted particles prepared through nanoprecipitation and ionic interaction respectively were appraised. Both particles showed a size lower than 200 nm, entrapment efficiency of 80% and a pH-dependent release of the drug in the acidic environment of the tumor. The anticancer activity of quinacrine was enhanced by 5.7 folds in dual targeted particles compared to drug solution with a higher ability to inhibit migration and invasion of cancer. In vivo, these particles showed a 68% reduction in tumor volume compared to only 20% for drug solution. In addition, they showed a higher animals' survival rate with no hepatotoxicity. Hence, these particles could be an effective option for the eradication of pancreatic cancer cells.
Collapse
Affiliation(s)
- Samar M Etman
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt.
| | - Radwa A Mehanna
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Egypt
| | - Amany Abdel Bary
- Pathology Department, Faculty of Medicine, Alexandria University, Egypt
| | - Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt; Head of International Publication and Nanotechnology Center INCC, Department of Pharmaceutics, Faculty of Pharmacy, Pharos University of Alexandria, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| |
Collapse
|
23
|
Kulkarni NS, Vaidya B, Gupta V. Nano-synergistic combination of Erlotinib and Quinacrine for non-small cell lung cancer (NSCLC) therapeutics - Evaluation in biologically relevant in-vitro models. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111891. [PMID: 33579503 DOI: 10.1016/j.msec.2021.111891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 01/10/2023]
Abstract
Non-small cell lung cancer (NSCLC), pre-dominant subtype of lung cancer, is a global disorder affecting millions worldwide. One of the early treatments for NSCLC was use of a first-generation tyrosine kinase inhibitor, Erlotinib (Erlo). However, chronic exposure to Erlo led to development of acquired drug resistance (ADR) in NSCLC, limiting the clinical use of Erlo. A potential approach to overcome development of ADR is a multi-drug therapy. It has been previously reported that Erlo and Quinacrine (QA), an anti-malarial drug, can work synergistically to inhibit tumor progression in NSCLC. However, the combination failed at clinical stages, citing lack of efficacy. In this study, an effort has been made to improve the efficacy of Erlo-QA combination via development of nanoformulations, known to enhance therapeutic efficacy of potent chemotherapies. Synergy between Erlo and QA was measured via estimating the combination indices (CI). It was seen that established combination of nanoformulations (CI: 0.25) had better synergy than plain drug solutions (CI: 0.85) in combination. Following extensive in-vitro testing, data were simulated in biologically relevant 3D tumor models. Two tumor models were developed for extensive in-vitro testing, 3D-Spheroids grown in ultra-low attachment culture plates for efficacy evaluation and a 5D-spheroid model in 5D-sphericalplate with capability of growing 750 spheroids/well for protein expression analysis. Extensive studies on these models revealed that combination of Erlo and QA nanoformulations overall had a better effect in terms of synergy enhancement as compared to plain drug combination. Further, effect of combinatorial therapy on molecular markers was evaluated on 5D-Sphericalplate leading to similar effects on synergy enhancement. Results from present study suggests that combination of nanoformulations can improve the synergy between Erlo and QA while reducing the overall therapeutic dose.
Collapse
Affiliation(s)
- Nishant S Kulkarni
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | | | - Vivek Gupta
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; School of Pharmacy, Keck Graduate Institute, Claremont, CA, USA.
| |
Collapse
|
24
|
Xiao Y, Jin L, Deng C, Guan Y, Kalogera E, Ray U, Thirusangu P, Staub J, Sarkar Bhattacharya S, Xu H, Fang X, Shridhar V. Inhibition of PFKFB3 induces cell death and synergistically enhances chemosensitivity in endometrial cancer. Oncogene 2021; 40:1409-1424. [PMID: 33420377 PMCID: PMC7906909 DOI: 10.1038/s41388-020-01621-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/05/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023]
Abstract
The advanced or recurrent endometrial cancer (EC) has a poor prognosis because of chemoresistance. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a glycolytic enzyme, is overexpressed in a variety of human cancers and plays important roles in promoting tumor cell growth. Here, we showed that high expression of PFKFB3 in EC cell lines is associated with chemoresistance. Pharmacological inhibition of PFKFB3 with PFK158 and or genetic downregulation of PFKFB3 dramatically suppressed cell proliferation and enhanced the sensitivity of EC cells to carboplatin (CBPt) and cisplatin (Cis). Moreover, PFKFB3 inhibition resulted in reduced glucose uptake, ATP production, and lactate release. Notably, we found that PFK158 with CBPt or Cis exerted strong synergistic antitumor activity in chemoresistant EC cell lines, HEC-1B and ARK-2 cells. We also found that the combination of PFK158 and CBPt/Cis induced apoptosis- and autophagy-mediated cell death through inhibition of the Akt/mTOR signaling pathway. Mechanistically, we found that PFK158 downregulated the CBPt/Cis-induced upregulation of RAD51 expression and enhanced CBPt/Cis-induced DNA damage as demonstrated by an increase in γ-H2AX levels in HEC-1B and ARK-2 cells, potentially revealing a means to enhance PFK158-induced chemosensitivity. More importantly, PFK158 treatment, either as monotherapy or in combination with CBPt, led to a marked reduction in tumor growth in two chemoresistant EC mouse xenograft models. These data suggest that PFKFB3 inhibition alone or in combination with standard chemotherapy may be used as a novel therapeutic strategy for improved therapeutic efficacy and outcomes of advanced and recurrent EC patients.
Collapse
Affiliation(s)
- Yinan Xiao
- grid.66875.3a0000 0004 0459 167XDepartment of Experimental Pathology, Mayo Clinic, Rochester, MN USA ,grid.452708.c0000 0004 1803 0208Department of Obstetrics and Gynecology, the Second Xiangya Hospital, Central South University, Changsha, Hunan P.R. China
| | - Ling Jin
- grid.66875.3a0000 0004 0459 167XDepartment of Experimental Pathology, Mayo Clinic, Rochester, MN USA
| | - Chaolin Deng
- grid.66875.3a0000 0004 0459 167XDepartment of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| | - Ye Guan
- grid.214458.e0000000086837370Department of Chemistry, University of Michigan, Ann Arbor, MI USA
| | - Eleftheria Kalogera
- grid.66875.3a0000 0004 0459 167XDivision of Gynecologic Oncology, Mayo Clinic, Rochester, MN USA
| | - Upasana Ray
- grid.66875.3a0000 0004 0459 167XDepartment of Experimental Pathology, Mayo Clinic, Rochester, MN USA
| | - Prabhu Thirusangu
- grid.66875.3a0000 0004 0459 167XDepartment of Experimental Pathology, Mayo Clinic, Rochester, MN USA
| | - Julie Staub
- grid.66875.3a0000 0004 0459 167XDepartment of Experimental Pathology, Mayo Clinic, Rochester, MN USA
| | | | - Haotian Xu
- grid.254444.70000 0001 1456 7807Department of Computer Science, Wayne State University, Detroit, MI USA
| | - Xiaoling Fang
- grid.452708.c0000 0004 1803 0208Department of Obstetrics and Gynecology, the Second Xiangya Hospital, Central South University, Changsha, Hunan P.R. China
| | - Viji Shridhar
- grid.66875.3a0000 0004 0459 167XDepartment of Experimental Pathology, Mayo Clinic, Rochester, MN USA
| |
Collapse
|
25
|
Gąsiorkiewicz BM, Koczurkiewicz-Adamczyk P, Piska K, Pękala E. Autophagy modulating agents as chemosensitizers for cisplatin therapy in cancer. Invest New Drugs 2020; 39:538-563. [PMID: 33159673 PMCID: PMC7960624 DOI: 10.1007/s10637-020-01032-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 02/08/2023]
Abstract
Although cisplatin is one of the most common antineoplastic drug, its successful utilisation in cancer treatment is limited by the drug resistance. Multiple attempts have been made to find potential cisplatin chemosensitisers which would overcome cancer cells resistance thus improving antineoplastic efficacy. Autophagy modulation has become an important area of interest regarding the aforementioned topic. Autophagy is a highly conservative cellular self-digestive process implicated in response to multiple environmental stressors. The high basal level of autophagy is a common phenomenon in cisplatin-resistant cancer cells which is thought to grant survival benefit. However current evidence supports the role of autophagy in either promoting or limiting carcinogenesis depending on the context. This encourages the search of substances modulating the process to alleviate cisplatin resistance. Such a strategy encompasses not only simple autophagy inhibition but also harnessing the process to induce autophagy-dependent cell death. In this paper, we briefly describe the mechanism of cisplatin resistance with a special emphasis on autophagy and we give an extensive literature review of potential substances with cisplatin chemosensitising properties related to autophagy modulation.
Collapse
Affiliation(s)
- Bartosz Mateusz Gąsiorkiewicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland.
| | - Paulina Koczurkiewicz-Adamczyk
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Kamil Piska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| |
Collapse
|
26
|
Darbankhales S, Mirfakhraie R, Ghahremani H, Asadolahi M, Saket-Kisomi K, Safakish L, Darbeheshti S, Ganjkhanlou Z, Salami S, Sirati-Sabet M. Effects of Quinacrine on Expression of Hippo signaling Pathway Components (LATS1, LATS2, and YAP) in Human Breast Cancer Stem Cells. Asian Pac J Cancer Prev 2020; 21:3171-3176. [PMID: 33247672 PMCID: PMC8033116 DOI: 10.31557/apjcp.2020.21.11.3171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE The Hippo signaling pathway has important role in the pathogenesis of some tumors. Breast cancer is the most prevalent cancer among females in the world. In recent years, various articles referred to inhibiting effect of quinacrine, a derivative of 9-aminoacridine, on the growth of several types of cancer cells. In this study, we evaluated the effect of quinacrine on expression of LATS1, LATS2, and YAP genes of the Hippo signaling pathway and YAP level in human breast cancer stem cells (MDA-MB 231 cell line). This cell line of breast cancer expresses the triple negative characteristics. METHODS MDA-MB 231 cells was treated with 0.5 µM of quinacrine for 3 days. The dose was selected using MTT assays. The expression of genes was quantified by Real-time PCR. The protein expression was performed by Western blotting. Significance of observations were checked by means of Mann-Whitney test using p.
Collapse
Affiliation(s)
- Soroush Darbankhales
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Mirfakhraie
- Department of Medical Genetic, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Ghahremani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Asadolahi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kobra Saket-Kisomi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Lily Safakish
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Darbeheshti
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Ganjkhanlou
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siamak Salami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Sirati-Sabet
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Mudassar F, Shen H, O'Neill G, Hau E. Targeting tumor hypoxia and mitochondrial metabolism with anti-parasitic drugs to improve radiation response in high-grade gliomas. J Exp Clin Cancer Res 2020; 39:208. [PMID: 33028364 PMCID: PMC7542384 DOI: 10.1186/s13046-020-01724-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023] Open
Abstract
High-grade gliomas (HGGs), including glioblastoma and diffuse intrinsic pontine glioma, are amongst the most fatal brain tumors. These tumors are associated with a dismal prognosis with a median survival of less than 15 months. Radiotherapy has been the mainstay of treatment of HGGs for decades; however, pronounced radioresistance is the major obstacle towards the successful radiotherapy treatment. Herein, tumor hypoxia is identified as a significant contributor to the radioresistance of HGGs as oxygenation is critical for the effectiveness of radiotherapy. Hypoxia plays a fundamental role in the aggressive and resistant phenotype of all solid tumors, including HGGs, by upregulating hypoxia-inducible factors (HIFs) which stimulate vital enzymes responsible for cancer survival under hypoxic stress. Since current attempts to target tumor hypoxia focus on reducing oxygen demand of tumor cells by decreasing oxygen consumption rate (OCR), an attractive strategy to achieve this is by inhibiting mitochondrial oxidative phosphorylation, as it could decrease OCR, and increase oxygenation, and could therefore improve the radiation response in HGGs. This approach would also help in eradicating the radioresistant glioma stem cells (GSCs) as these predominantly rely on mitochondrial metabolism for survival. Here, we highlight the potential for repurposing anti-parasitic drugs to abolish tumor hypoxia and induce apoptosis of GSCs. Current literature provides compelling evidence that these drugs (atovaquone, ivermectin, proguanil, mefloquine, and quinacrine) could be effective against cancers by mechanisms including inhibition of mitochondrial metabolism and tumor hypoxia and inducing DNA damage. Therefore, combining these drugs with radiotherapy could potentially enhance the radiosensitivity of HGGs. The reported efficacy of these agents against glioblastomas and their ability to penetrate the blood-brain barrier provides further support towards promising results and clinical translation of these agents for HGGs treatment.
Collapse
Affiliation(s)
- Faiqa Mudassar
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, NSW, Westmead, Australia
| | - Han Shen
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, NSW, Westmead, Australia.
- Sydney Medical School, University of Sydney, NSW, Sydney, Australia.
| | - Geraldine O'Neill
- Children's Cancer Research Unit, The Children's Hospital at Westmead, NSW, Westmead, Australia
- Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, NSW, Sydney, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW, Sydney, Australia
| | - Eric Hau
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, NSW, Westmead, Australia
- Sydney Medical School, University of Sydney, NSW, Sydney, Australia
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, NSW, Westmead, Australia
- Blacktown Hematology and Cancer Centre, Blacktown Hospital, NSW, Blacktown, Australia
| |
Collapse
|
28
|
Repurposing Quinacrine for Treatment of Malignant Mesothelioma: In-Vitro Therapeutic and Mechanistic Evaluation. Int J Mol Sci 2020; 21:ijms21176306. [PMID: 32878257 PMCID: PMC7503636 DOI: 10.3390/ijms21176306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
Malignant mesothelioma (MM) is a rare type of cancer primarily affecting mesothelial cells lining the pleural cavity. In this study, we propose to repurpose quinacrine (QA), a widely approved anti-malarial drug, for Malignant Pleural Mesothelioma (MPM) treatment. QA demonstrates high degree of cytotoxicity against both immortalized and primary patient-derived cell lines with sub-micromolar 50% inhibitory concentration (IC50) values ranging from 1.2 µM (H2452) to 5.03 µM (H28). Further, QA also inhibited cellular migration and colony formation in MPM cells, demonstrated using scratch and clonogenic assays, respectively. A 3D-spheroid cell culture experiment was performed to mimic in-vivo tumor conditions, and QA was reported to be highly effective in this simulated cellular model. Anti-angiogenic properties were also discovered for QA. Autophagy inhibition assay was performed, and results revealed that QA successfully inhibited autophagy process in MPM cells, which has been cited to be one of the survival pathways for MPM. Annexin V real-time apoptosis study revealed significant apoptotic induction in MPM cells following QA treatment. Western blots confirmed inhibition of autophagy and induction of apoptosis. These studies highlight anti-mesothelioma efficacy of QA at low doses, which can be instrumental in developing it as a stand-alone treatment strategy for MPM.
Collapse
|
29
|
khorshid Sofyani E, sharifi R. Synergistic Effect of Docetaxel Combined with Quinacrine on Induction of Apoptosis and Reduction of Cell proliferation in a Lung Cancer Cell Line. MEDICAL LABORATORY JOURNAL 2020. [DOI: 10.29252/mlj.14.4.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
30
|
Development of inhalable quinacrine loaded bovine serum albumin modified cationic nanoparticles: Repurposing quinacrine for lung cancer therapeutics. Int J Pharm 2020; 577:118995. [PMID: 31935471 DOI: 10.1016/j.ijpharm.2019.118995] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/18/2019] [Accepted: 12/22/2019] [Indexed: 01/05/2023]
Abstract
Drug repurposing is on the rise as an atypical strategy for discovery of new molecules, involving use of pre-existing molecules for a different therapeutic application than the approved indication. Using this strategy, the current study aims to leverage effects of quinacrine (QA), a well-known anti-malarial drug, for treatment of non-small cell lung cancer (NSCLC). For respiratory diseases, designing a QA loaded inhalable delivery system has multiple advantages over invasive delivery. QA-loaded nanoparticles (NPs) were thus prepared using polyethyleneimine (PEI) as a cationic stabilizer. While the use of PEI provided cationic charge on the particles, it also mediated a burst release of QA and demonstrated potential particle toxicity. These concerns were circumvented by coating nanoparticles with bovine serum albumin (BSA), which retained the cationic charge, reduced NP toxicity and modulated QA release. Prepared nanoparticles were characterized for physicochemical properties along with their aerosolization potential. Therapeutic efficacy of the formulations was tested in different NSCLC cells. Mechanism of higher anti-proliferation was evaluated by studying cell cycle profile, apoptosis and molecular markers involved in the progression of lung cancer. BSA coated QA nanoparticles demonstrated good aerosolization potential with a mass median aerodynamic diameter of significantly less than 5 µm. Nanoparticles also demonstrated improved therapeutic efficacy against NSCLC cells in terms of low IC50 values, cell cycle arrest at G2/M phase and autophagy inhibition leading to increased apoptosis. BSA coated QA NPs also demonstrated enhanced therapeutic efficacy in a 3D cell culture model. The present study thus lays solid groundwork for pre-clinical and eventual clinical studies as a standalone therapy and in combination with existing chemotherapeutics.
Collapse
|
31
|
Abstract
Osteosarcoma (OS) remains a difficult disease to treat. The standard chemotherapy regimen has not improved survival for the past three decades. Resistance to chemotherapy remains a challenge and constitutes a major concern to clinical investigators. Autophagy has been recognized as a survival mechanism implicated in resistance to chemotherapy. We previously demonstrated chemotherapy to induce autophagy in OS. However, whether induction of autophagy will lead to survival or death has been the focus of many laboratories. Autophagy is a very context-dependent process, and no specific biomarker has been identified to define whether the process will lead to survival or death. In the present chapter, we present some of the mechanisms involved in the process of autophagy and summarize some of the most recent work related to autophagy in OS and the challenges encountered with the use of old and new autophagy inhibitors.
Collapse
|
32
|
Ho CJ, Gorski SM. Molecular Mechanisms Underlying Autophagy-Mediated Treatment Resistance in Cancer. Cancers (Basel) 2019; 11:E1775. [PMID: 31717997 PMCID: PMC6896088 DOI: 10.3390/cancers11111775] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
Despite advances in diagnostic tools and therapeutic options, treatment resistance remains a challenge for many cancer patients. Recent studies have found evidence that autophagy, a cellular pathway that delivers cytoplasmic components to lysosomes for degradation and recycling, contributes to treatment resistance in different cancer types. A role for autophagy in resistance to chemotherapies and targeted therapies has been described based largely on associations with various signaling pathways, including MAPK and PI3K/AKT signaling. However, our current understanding of the molecular mechanisms underlying the role of autophagy in facilitating treatment resistance remains limited. Here we provide a comprehensive summary of the evidence linking autophagy to major signaling pathways in the context of treatment resistance and tumor progression, and then highlight recently emerged molecular mechanisms underlying autophagy and the p62/KEAP1/NRF2 and FOXO3A/PUMA axes in chemoresistance.
Collapse
Affiliation(s)
- Cally J. Ho
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada;
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Sharon M. Gorski
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada;
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
33
|
Dandu K, Kallamadi PR, Thakur SS, Rao CM. Drug Repurposing for Retinoblastoma: Recent Advances. Curr Top Med Chem 2019; 19:1535-1544. [PMID: 30659544 DOI: 10.2174/1568026619666190119152706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 12/28/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023]
Abstract
Retinoblastoma is the intraocular malignancy that occurs during early childhood. The current standard of care includes chemotherapy followed by focal consolidative therapies, and enucleation. Unfortunately, these are associated with many side and late effects. New drugs and/or drug combinations need to be developed for safe and effective treatment. This compelling need stimulated efforts to explore drug repurposing for retinoblastoma. While conventional drug development is a lengthy and expensive process, drug repurposing is a faster, alternate approach, where an existing drug, not meant for treating cancer, can be repurposed to treat retinoblastoma. The present article reviews various attempts to test drugs approved for different purposes such as calcium channels blockers, non-steroidal antiinflammatory drugs, cardenolides, antidiabetic, antibiotics and antimalarial for treating retinoblastoma. It also discusses other promising candidates that could be explored for repurposing for retinoblastoma.
Collapse
Affiliation(s)
- Kamakshi Dandu
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad 500 007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Prathap R Kallamadi
- School of Life Sciences. University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500 046, India
| | - Suman S Thakur
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad 500 007, India
| | - Ch Mohan Rao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad 500 007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| |
Collapse
|
34
|
Kumar S, Oien DB, Khurana A, Cliby W, Hartmann L, Chien J, Shridhar V. Coiled-Coil and C2 Domain-Containing Protein 1A (CC2D1A) Promotes Chemotherapy Resistance in Ovarian Cancer. Front Oncol 2019; 9:986. [PMID: 31632917 PMCID: PMC6779793 DOI: 10.3389/fonc.2019.00986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022] Open
Abstract
Recurrence within 6 months of the last round of chemotherapy is clinically defined as platinum-resistant ovarian cancer. Gene expression associated with early recurrence may provide insights into platinum resistant recurrence. Prior studies identified a 14-gene model that accurately predicted early or late recurrence in 86% of patients. One of the genes identified was CC2D1A (encoding coiled-coil and C2 domain containing 1A), which showed higher expression in tumors from patients with early recurrence. Here, we show that CC2D1A protein expression was higher in cisplatin-resistant ovarian cancer cell lines compared to cisplatin-sensitive cell lines. In addition, immunohistochemical analysis of patient tumors on a tissue microarray (n = 146) showed that high levels of CC2D1A were associated with a significantly worse overall and progression-free survival (p = 0.0002 and p = 0.006, respectively). To understand the contribution of CC2D1A in chemoresistance, we generated shRNA-mediated knockdown of CC2D1A in SKOV3ip and PEO4 cell lines. Cell death and clonogenic assays of these isogenic clonal lines clearly showed that downregulation of CC2D1A resulted in increased sensitivity to cisplatin and paclitaxel in ovarian cancer cells. Moreover, nude mice bearing SKOV3ip xenografts with stably downregulated CC2D1A were more sensitive to chemotherapy as evidenced by a significantly longer survival time compared to xenografts derived from cells stably transduced with non-targeting shRNA. These results suggest CC2D1A promotes chemotherapy resistance in ovarian cancer.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, United States
| | - Derek B Oien
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| | - Ashwani Khurana
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| | - William Cliby
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, United States
| | - Lynn Hartmann
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, United States
| | - Jeremy Chien
- Department of Biochemistry and Molecular Medicine, University of California Davis Health, Sacramento, CA, United States
| | - Viji Shridhar
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
35
|
Oien DB, Pathoulas CL, Ray U, Thirusangu P, Kalogera E, Shridhar V. Repurposing quinacrine for treatment-refractory cancer. Semin Cancer Biol 2019; 68:21-30. [PMID: 31562955 DOI: 10.1016/j.semcancer.2019.09.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023]
Abstract
Quinacrine, also known as mepacrine, has originally been used as an antimalarial drug for close to a century, but was recently rediscovered as an anticancer agent. The mechanisms of anticancer effects of quinacrine are not well understood. The anticancer potential of quinacrine was discovered in a screen for small molecule activators of p53, and was specifically shown to inhibit NFκB suppression of p53. However, quinacrine can cause cell death in cells that lack p53 or have p53 mutations, which is a common occurrence in many malignant tumors including high grade serous ovarian cancer. Recent reports suggest quinacrine may inhibit cancer cell growth through multiple mechanisms including regulating autophagy, FACT (facilitates chromatin transcription) chromatin trapping, and the DNA repair process. Additional reports also suggest quinacrine is effective against chemoresistant gynecologic cancer. In this review, we discuss anticancer effects of quinacrine and potential mechanisms of action with a specific focus on gynecologic and breast cancer where treatment-refractory tumors are associated with increased mortality rates. Repurposing quinacrine as an anticancer agent appears to be a promising strategy based on its ability to target multiple pathways, its selectivity against cancer cells, and the synergistic cytotoxicity when combined with other anticancer agents with limited side effects and good tolerability profile.
Collapse
Affiliation(s)
- Derek B Oien
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| | - Christopher L Pathoulas
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| | - Upasana Ray
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| | - Prabhu Thirusangu
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| | | | - Viji Shridhar
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
36
|
Bryant J, Batis N, Franke AC, Clancey G, Hartley M, Ryan G, Brooks J, Southam AD, Barnes N, Parish J, Roberts S, Khanim F, Spruce R, Mehanna H. Repurposed quinacrine synergizes with cisplatin, reducing the effective dose required for treatment of head and neck squamous cell carcinoma. Oncotarget 2019; 10:5229-5244. [PMID: 31497252 PMCID: PMC6718257 DOI: 10.18632/oncotarget.27156] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 07/17/2019] [Indexed: 12/03/2022] Open
Abstract
Despite highly toxic treatments, head and neck squamous cell carcinoma (HNSCC) have poor outcomes. There is an unmet need for more effective, less toxic therapies. Repurposing of clinically-approved drugs, with known safety profiles, may provide a time- and cost-effective approach to address this need. We have developed the AcceleraTED platform to repurpose drugs for HNSCC treatment; using in vitro assays (cell viability, clonogenic survival, apoptosis) and in vivo models (xenograft tumors in NOD/SCID/gamma mice). Screening a library of clinically-approved drugs identified the anti-malarial agent quinacrine as a candidate, which significantly reduced viability in a concentration dependent manner in five HNSCC cell lines (IC50 0.63–1.85 μM) and in six primary HNSCC samples (IC50 ~2 μM). Decreased clonogenic survival, increased apoptosis and accumulation of LC3-II (indicating altered autophagy) were also observed. Effects were additional to those resulting from standard treatments (cisplatin +/– irradiation) alone. In vivo, daily treatment with 100 mg/kg oral quinacrine plus cisplatin significantly inhibited tumor outgrowth, extending median time to reach maximum tumor volume from 20 to 32 days (p
< 0.0001) versus control, and from 28 to 32 days versus 2 mg/kg cisplatin alone. Importantly, combination therapy enabled the dose of cisplatin to be halved to 1 mg/kg, whilst maintaining the same impairment of tumor growth. Treatment was well tolerated; murine plasma levels reached a steady concentration of 0.5 μg/mL, comparable to levels achievable and tolerated in humans. Consequently, due to its favorable toxicity profile and proven safety, quinacrine may be particularly useful in reducing cisplatin dose, especially in frail and older patients; warranting a clinical trial.
Collapse
Affiliation(s)
- Jennifer Bryant
- Institute of Head and Neck Studies and Education (InHANSE), University of Birmingham, Birmingham, UK.,Joint first authors
| | - Nikolaos Batis
- Institute of Head and Neck Studies and Education (InHANSE), University of Birmingham, Birmingham, UK.,Joint first authors
| | - Anna Clara Franke
- Institute of Head and Neck Studies and Education (InHANSE), University of Birmingham, Birmingham, UK
| | - Gabriella Clancey
- Institute of Head and Neck Studies and Education (InHANSE), University of Birmingham, Birmingham, UK
| | - Margaret Hartley
- Institute of Head and Neck Studies and Education (InHANSE), University of Birmingham, Birmingham, UK
| | - Gordon Ryan
- Institute of Head and Neck Studies and Education (InHANSE), University of Birmingham, Birmingham, UK
| | - Jill Brooks
- Institute of Head and Neck Studies and Education (InHANSE), University of Birmingham, Birmingham, UK
| | - Andrew D Southam
- School of Biosciences, University of Birmingham, Birmingham, UK.,Phenome Centre Birmingham, University of Birmingham, Birmingham, UK
| | - Nicholas Barnes
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Joanna Parish
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Sally Roberts
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Farhat Khanim
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Rachel Spruce
- Institute of Head and Neck Studies and Education (InHANSE), University of Birmingham, Birmingham, UK.,Joint senior authors
| | - Hisham Mehanna
- Institute of Head and Neck Studies and Education (InHANSE), University of Birmingham, Birmingham, UK.,University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Joint senior authors
| |
Collapse
|
37
|
Lei H, Tu Y, Yang L, Jin J, Luo H, Xu H, Kang J, Zhou L, Wu Y. Quinacrine Depletes BCR-ABL and Suppresses Ph-Positive Leukemia Cells. Cancer Invest 2019; 37:242-252. [PMID: 31296070 DOI: 10.1080/07357907.2019.1630633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Drug resistance to TKIs and the existance of CML leukemia stem cells is an urgent problem. In this study, we demonstrate that quinacrine (QC) induces apoptosis in BCR-ABL positive CML and acute lymphoblastic leukemia (ALL) cells. Interestingly, QC inhibits the colony formation of primary CD34+ progenitor/stem leukemia cells from CML patients. QC targets RNA polymerase I, which produces ribosomal (r)RNA, involving in protein translation process. Also, QC treatment prolongs CML-like mice survival and inhibits K562 tumor growth in vivo. In conclusion, we demonstrate that QC depletes BCR-ABL protein and suppresses Ph-positive leukemia cells in vitro and in vivo.
Collapse
Affiliation(s)
- Hu Lei
- a Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Yaoyao Tu
- a Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Li Yang
- a Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Jin Jin
- a Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Hao Luo
- a Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Hanzhang Xu
- a Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Jingwu Kang
- b State Key Laboratory of Bioorganic and Natural Products Chemistry, Chinese Academy of Sciences , Shanghai , China
| | - Li Zhou
- c Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Yingli Wu
- a Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| |
Collapse
|
38
|
Jin MZ, Xia BR, Xu Y, Jin WL. Curaxin CBL0137 Exerts Anticancer Activity via Diverse Mechanisms. Front Oncol 2018; 8:598. [PMID: 30581774 PMCID: PMC6292929 DOI: 10.3389/fonc.2018.00598] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/26/2018] [Indexed: 12/22/2022] Open
Abstract
Chemotherapy with or without radiation remains the first choice for most cancers. However, intolerant side effects and conventional drug resistance restrict actual clinical efficacy. Curaxin CBL0137 is designed to regulate p53 and nuclear factor-κB simultaneously and to prevent the resistance caused by a single target. Functionally, CBL0137 exhibits an antitumor activity in multiple cancers, including glioblastoma, renal cell carcinoma, melanoma, neuroblastoma, and small cell lung cancer (SCLC). Mechanistically, CBL0137 is originally identified to act by facilitates chromatin transcription (FACT) complex. Further investigations reveal that several pathways, such as NOTCH1 and heat shock factor 1 (HSF1), are involved in the process. CBL0137 has been reported to target cancer stem cells (CSCs) and enhance chemotherapy/monotherapy efficacy. The translational advance of CBL0137 into clinical practice is expected to provide a promising future for cancer treatment.
Collapse
Affiliation(s)
- Ming-Zhu Jin
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bai-Rong Xia
- Department of Gynecology, The Affiliated Tumor Hospital, Harbin Medical University, Harbin, China
| | - Yu Xu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Lin Jin
- Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, Department of Instrument Science and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, School of Electronic Information and Electronic Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, Shanghai, China.,National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai, China.,Shaanxi Key Laboratory of Brain Disorders and Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| |
Collapse
|
39
|
Mondal S, Roy D, Sarkar Bhattacharya S, Jin L, Jung D, Zhang S, Kalogera E, Staub J, Wang Y, Xuyang W, Khurana A, Chien J, Telang S, Chesney J, Tapolsky G, Petras D, Shridhar V. Therapeutic targeting of PFKFB3 with a novel glycolytic inhibitor PFK158 promotes lipophagy and chemosensitivity in gynecologic cancers. Int J Cancer 2018; 144:178-189. [PMID: 30226266 PMCID: PMC6261695 DOI: 10.1002/ijc.31868] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/27/2018] [Accepted: 08/01/2018] [Indexed: 12/28/2022]
Abstract
Metabolic alterations are increasingly recognized as important novel anti‐cancer targets. Among several regulators of metabolic alterations, fructose 2,6 bisphosphate (F2,6BP) is a critical glycolytic regulator. Inhibition of the active form of PFKFB3ser461 using a novel inhibitor, PFK158 resulted in reduced glucose uptake, ATP production, lactate release as well as induction of apoptosis in gynecologic cancer cells. Moreover, we found that PFK158 synergizes with carboplatin (CBPt) and paclitaxel (PTX) in the chemoresistant cell lines, C13 and HeyA8MDR but not in their chemosensitive counterparts, OV2008 and HeyA8, respectively. We determined that PFK158‐induced autophagic flux leads to lipophagy resulting in the downregulation of cPLA2, a lipid droplet (LD) associated protein. Immunofluorescence and co‐immunoprecipitation revealed colocalization of p62/SQSTM1 with cPLA2 in HeyA8MDR cells uncovering a novel pathway for the breakdown of LDs promoted by PFK158. Interestingly, treating the cells with the autophagic inhibitor bafilomycin A reversed the PFK158‐mediated synergy and lipophagy in chemoresistant cells. Finally, in a highly metastatic PTX‐resistant in vivo ovarian mouse model, a combination of PFK158 with CBPt significantly reduced tumor weight and ascites and reduced LDs in tumor tissue as seen by immunofluorescence and transmission electron microscopy compared to untreated mice. Since the majority of cancer patients will eventually recur and develop chemoresistance, our results suggest that PFK158 in combination with standard chemotherapy may have a direct clinical role in the treatment of recurrent cancer. What's new? Ovarian and cervical cancer patients experience high rates of chemoresistance and tumor recurrence. To improve patient outcome, greater understanding of mechanisms behind these phenomena is needed. Here, activity of PFKFB3, a glycolytic regulator overexpressed in cancer, was found to be positively correlated with chemoresistance and lipid droplet (LD) biogenesis in ovarian and cervical cancer cells. PFK‐158, a PFKFB3 inhibitor, sensitized chemoresistant cells to drug‐induced cytotoxicity by simultaneously targeting both glycolytic and lipogenic pathways to inhibit tumor growth and LDs in a drug‐resistant xenograft model. The findings warrant further investigation of PFK158 as a treatment for recurrent gynecological malignancy.
Collapse
Affiliation(s)
- Susmita Mondal
- Department of Experimental Pathology, Mayo Clinic, Rochester, MN.,Department of Microbiology, Sammilani Mahavidyalaya, Kolkata, India
| | - Debarshi Roy
- Department of Experimental Pathology, Mayo Clinic, Rochester, MN
| | | | - Ling Jin
- Department of Experimental Pathology, Mayo Clinic, Rochester, MN
| | - Deokbeom Jung
- Department of Experimental Pathology, Mayo Clinic, Rochester, MN
| | - Song Zhang
- Division of Cardiovascular disease, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Eleftheria Kalogera
- Division of Gynecologic Surgery, Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN
| | - Julie Staub
- Department of Experimental Pathology, Mayo Clinic, Rochester, MN
| | - Yaxian Wang
- Department of Experimental Pathology, Mayo Clinic, Rochester, MN
| | - Wen Xuyang
- Department of Experimental Pathology, Mayo Clinic, Rochester, MN
| | - Ashwani Khurana
- Department of Experimental Pathology, Mayo Clinic, Rochester, MN
| | - Jeremey Chien
- Division of Molecular Medicine, University of New Mexico School of Medicine, Albuquerque, NM
| | - Sucheta Telang
- Department of Medicine, University of Louisville, Louisville, KY
| | - Jason Chesney
- Department of Medicine, University of Louisville, Louisville, KY
| | | | - Dzeja Petras
- Division of Cardiovascular disease, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Viji Shridhar
- Department of Experimental Pathology, Mayo Clinic, Rochester, MN
| |
Collapse
|
40
|
Young AN, Herrera D, Huntsman AC, Korkmaz MA, Lantvit DD, Mazumder S, Kolli S, Coss CC, King S, Wang H, Swanson SM, Kinghorn AD, Zhang X, Phelps MA, Aldrich LN, Fuchs JR, Burdette JE. Phyllanthusmin Derivatives Induce Apoptosis and Reduce Tumor Burden in High-Grade Serous Ovarian Cancer by Late-Stage Autophagy Inhibition. Mol Cancer Ther 2018; 17:2123-2135. [PMID: 30018048 PMCID: PMC6168422 DOI: 10.1158/1535-7163.mct-17-1195] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/06/2018] [Accepted: 07/13/2018] [Indexed: 11/16/2022]
Abstract
High-grade serous ovarian cancer (HGSOC) is a lethal gynecological malignancy with a need for new therapeutics. Many of the most widely used chemotherapeutic drugs are derived from natural products or their semi-synthetic derivatives. We have developed potent synthetic analogues of a class of compounds known as phyllanthusmins, inspired by natural products isolated from Phyllanthus poilanei Beille. The most potent analogue, PHY34, had the highest potency in HGSOC cell lines in vitro and displayed cytotoxic activity through activation of apoptosis. PHY34 exerts its cytotoxic effects by inhibiting autophagy at a late stage in the pathway, involving the disruption of lysosomal function. The autophagy activator, rapamycin, combined with PHY34 eliminated apoptosis, suggesting that autophagy inhibition may be required for apoptosis. PHY34 was readily bioavailable through intraperitoneal administration in vivo where it significantly inhibited the growth of cancer cell lines in hollow fibers, as well as reduced tumor burden in a xenograft model. We demonstrate that PHY34 acts as a late-stage autophagy inhibitor with nanomolar potency and significant antitumor efficacy as a single agent against HGSOC in vivo This class of compounds holds promise as a potential, novel chemotherapeutic and demonstrates the effectiveness of targeting the autophagic pathway as a viable strategy for combating ovarian cancer. Mol Cancer Ther; 17(10); 2123-35. ©2018 AACR.
Collapse
Affiliation(s)
- Alexandria N Young
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Denisse Herrera
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Andrew C Huntsman
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Melissa A Korkmaz
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois
| | - Daniel D Lantvit
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Sarmistha Mazumder
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Shamalatha Kolli
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Christopher C Coss
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Salane King
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Hongyan Wang
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Steven M Swanson
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Xiaoli Zhang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Mitch A Phelps
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Leslie N Aldrich
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois
| | - James R Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Joanna E Burdette
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
41
|
He Q, Liu W, Sha S, Fan S, Yu Y, Chen L, Dong M. Adenosine 5'-monophosphate-activated protein kinase-dependent mTOR pathway is involved in flavokawain B-induced autophagy in thyroid cancer cells. Cancer Sci 2018; 109:2576-2589. [PMID: 29908094 PMCID: PMC6113436 DOI: 10.1111/cas.13699] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 06/06/2018] [Indexed: 12/19/2022] Open
Abstract
Flavokawain B (FKB), a natural kava chalcone, shows potent antitumor activity in various types of cancer, although the mechanism of action remains unclear. In this study, we report that FKB has profound effects on the metabolic state of human thyroid cancer (TCa) cells, leading to high autophagy flux through upregulation of AMP‐activated protein kinase, which in turn inhibits mTOR and activates Beclin‐1 in TCa cells. We further report that the autophagy induced by FKB plays a prosurvival role in TCa cells both in vitro and in vivo. In conclusion, our findings provide evidence that combination treatment with FKB and pharmacological autophagy inhibitors will be a potential therapeutic strategy for the treatment of TCa.
Collapse
Affiliation(s)
- Qin He
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong University, Jinan, China.,Key Laboratory of Endocrinology and Metabolism, Shandong Province in Medicine and Health, Jinan, China
| | - Wenping Liu
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong University, Jinan, China.,Key Laboratory of Endocrinology and Metabolism, Shandong Province in Medicine and Health, Jinan, China
| | - Sha Sha
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong University, Jinan, China.,Key Laboratory of Endocrinology and Metabolism, Shandong Province in Medicine and Health, Jinan, China
| | - Shanshan Fan
- Department of Endocrinology, the Fourth People's Hospital of Jinan City, Jinan, China
| | - Yajing Yu
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong University, Jinan, China.,Key Laboratory of Endocrinology and Metabolism, Shandong Province in Medicine and Health, Jinan, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong University, Jinan, China.,Key Laboratory of Endocrinology and Metabolism, Shandong Province in Medicine and Health, Jinan, China
| | - Ming Dong
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong University, Jinan, China.,Key Laboratory of Endocrinology and Metabolism, Shandong Province in Medicine and Health, Jinan, China
| |
Collapse
|
42
|
Xu W, Wei Q, Han M, Zhou B, Wang H, Zhang J, Wang Q, Sun J, Feng L, Wang S, Ye Y, Wang X, Zhou J, Jin H. CCL2-SQSTM1 positive feedback loop suppresses autophagy to promote chemoresistance in gastric cancer. Int J Biol Sci 2018; 14:1054-1066. [PMID: 29989092 PMCID: PMC6036739 DOI: 10.7150/ijbs.25349] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy is one of the most important approaches for the treatment of various cancers. However, tumor cells often develop resistance to chemotherapeutic drugs. The tumor microenvironment reconstituted by various cytokines secreted from immune cells was recently found to play important roles in affecting therapeutic response of tumor cells. Herein, we reported that tumor cells can secrete autocrine cytokines to confer chemoresistance by inactivating proapoptotic autophagy. Through cytokine screening, we found that drug resistant cancer cells secreted more CCL2 than drug sensitive cells. Such secreted CCL2 could not only maintain chemoresistance in drug-resistant cancer cells but also confer drug resistance to drug-sensitive cancer cells. CCL2 attenuated drug-induced cytotoxicity by activating PI3K-Akt-mTOR signaling to inhibit proapoptotic autophagy and increase SQSTM1 expression. CCL2 expression in primary carcinoma tissues also correlated well with SQSTM1 expression. Either CCL2 knock-down or autophagy induction successfully reversed drug resistance of tumor cells. Moreover, increased expression of SQSTM1 in turn activated CCL2 transcription via NF-κB signal pathway, representing a positive feedback loop to maintain drug resistance. Therefore, our results provided a new insight to understand drug resistance, and indicated the potential value of CCL2 as a biomarker and intervention target for chemotherapy resistance.
Collapse
Affiliation(s)
- Wenxia Xu
- Labortaory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Runrun Shaw hospital, Medical School of Zhejiang University, China
| | - Qi Wei
- Labortaory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Runrun Shaw hospital, Medical School of Zhejiang University, China
| | - Mengjiao Han
- Department of Medical Oncology, Sir Runrun Shaw hospital, Medical School of Zhejiang University, China
| | - Bingluo Zhou
- Department of Medical Oncology, Sir Runrun Shaw hospital, Medical School of Zhejiang University, China
| | - Hanying Wang
- Department of Medical Oncology, Sir Runrun Shaw hospital, Medical School of Zhejiang University, China
| | - Jianbing Zhang
- Pathology Center, Shanghai General Hospital, Medical School of Shanghai Jiaotong University
| | - Qiang Wang
- Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jie Sun
- Labortaory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Runrun Shaw hospital, Medical School of Zhejiang University, China
| | - Lifeng Feng
- Labortaory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Runrun Shaw hospital, Medical School of Zhejiang University, China
| | - Shouyu Wang
- Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yang Ye
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xian Wang
- Department of Medical Oncology, Sir Runrun Shaw hospital, Medical School of Zhejiang University, China
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongchuan Jin
- Labortaory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Runrun Shaw hospital, Medical School of Zhejiang University, China
| |
Collapse
|
43
|
Yan H, Bian A, Gao X, Li H, Chen Z, Liu X. Novel applications for an established antimalarial drug: tumoricidal activity of quinacrine. Future Oncol 2018; 14:1511-1520. [DOI: 10.2217/fon-2017-0728] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Quinacrine (QC), a synthetic antimalarial drug, was consistently used worldwide to combat malaria during the last century. Interestingly, later studies revealed that it also displays various additional properties, specifically antitumor activity. QC's antitumor activity occurs via a variety of pathways, including DNA intercalation, angiogenesis inhibition, signal transduction regulation, cell cycle arrest and autophagy induction. In combination with traditional therapies such as chemotherapy and radiotherapy, QC has also displayed synergistic effects against tumors, which may open promising therapeutic avenues. However, the breadth and complexity of its antitumor mechanisms have not yet been fully elucidated. In this review, we have systematically categorized QC's reported antitumor mechanisms from recent studies, to enable a deeper understanding of its antitumor activity.
Collapse
Affiliation(s)
- Hongru Yan
- Jiangsu Key Laboratory of Immunity & Metabolism, Department of Pathogenic Biology & Immunology, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Anning Bian
- Jiangsu Key Laboratory of Immunity & Metabolism, Department of Pathogenic Biology & Immunology, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Xiaoge Gao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, PR China
| | - Huiqin Li
- Jiangsu Key Laboratory of Immunity & Metabolism, Department of Pathogenic Biology & Immunology, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Zetian Chen
- Jiangsu Key Laboratory of Immunity & Metabolism, Department of Pathogenic Biology & Immunology, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Xiangye Liu
- Jiangsu Key Laboratory of Immunity & Metabolism, Department of Pathogenic Biology & Immunology, Xuzhou Medical University, Xuzhou, 221004, PR China
| |
Collapse
|
44
|
Cadena I, Werth VP, Levine P, Yang A, Downey A, Curtin J, Muggia F. Lasting pathologic complete response to chemotherapy for ovarian cancer after receiving antimalarials for dermatomyositis. Ecancermedicalscience 2018; 12:837. [PMID: 29910834 PMCID: PMC5985755 DOI: 10.3332/ecancer.2018.837] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Indexed: 01/07/2023] Open
Abstract
Could hydroxychloroquine and quinacrine antimalarial therapy for dermatomyositis later attributed to a paraneoplasic manifestation of an ovarian cancer enhance its subsequent response to chemotherapy? Five months after being diagnosed with dermatomyositis, while somewhat improved with hydroxychloroquine, quinacrine and methotrexate, this 63-year-old woman presented with an advanced intra-abdominal epithelial ovarian cancer documented (but not resected) at laparotomy. Neoadjuvant carboplatin/paclitaxel resulted in remarkable improvement of symptoms, tumour markers and imaging findings leading to thorough cytoreductive surgery at completion of five cycles. No tumour was found in the resected omentum, gynaecologic organs, as well as hepatic and nodal sampling thus documenting a complete pathologic response; a subcutaneous port and an intraperitoneal (IP) catheter were placed for two cycles of IP cisplatin consolidation. She remains free of disease 3 years after such treatment and her dermatomyositis is in remission in the absence of any treatment. We discuss a possible role of autophagy in promoting tumour cell survival and chemoresistance that is potentially reversed by antimalarial drugs. Thus, chemotherapy following their use may subsequently lead to dramatic potentiation of anticancer treatment.
Collapse
Affiliation(s)
| | | | | | - Annie Yang
- New York University, New York, NY 10003, USA
| | | | - John Curtin
- New York University, New York, NY 10003, USA
| | | |
Collapse
|
45
|
Shikonin potentiates the effect of arsenic trioxide against human hepatocellular carcinoma in vitro and in vivo. Oncotarget 2018; 7:70504-70515. [PMID: 27655700 PMCID: PMC5342569 DOI: 10.18632/oncotarget.12041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/02/2016] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly lethal malignancy mostly because of metastasis, recurrence and acquired resistance to conventional chemotherapy. Arsenic trioxide (ATO) is successfully used to treat hematological malignancies, and has been proven to trigger apoptosis in HCC cells. However, the phase II trial evaluating the efficacy and toxicity of ATO in patients with HCC showed that single-agent ATO is poorly active against HCC. Therefore, it is of great importance to develop effective chemosensitization agents to ATO. The aim of the present study was to determine whether shikonin (SHI), a natural product from the root of lithospermum erythrorhizon, could synergistically enhance the anti-HCC efficacy of ATO both in vitro and in vivo. We found that the combination of SHI and ATO exhibited synergistic anticancer efficacy and achieved greater selectivity between cancer cells and normal cells. By inducing intracellular oxidative stress, SHI potentiated ATO-induced DNA damage, followed by increased activation of endoplasmic reticulum stress. In addition, inhibition of ROS reversed the apoptosis induced by SHI and ATO, and recovered the activation of endoplasmic reticulum stress, which revealed the vital role of ROS in the synergism. Moreover, HepG2 xenograft tumor growth in nude mice was more effectively inhibited by combined treatment with SHI and ATO. These data suggest that the combination of SHI with ATO presents a promising therapeutic approach for the treatment of HCC.
Collapse
|
46
|
Zhan L, Zhang Y, Wang W, Song E, Fan Y, Li J, Wei B. Autophagy as an emerging therapy target for ovarian carcinoma. Oncotarget 2018; 7:83476-83487. [PMID: 27825125 PMCID: PMC5347782 DOI: 10.18632/oncotarget.13080] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/21/2016] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a conserved cellular self-digestion pathway for maintenance of homeostasis under basal and stressed conditions. Autophagy plays pivotal roles in the pathogenesis of many diseases, such as aging-related diseases, autoimmune diseases, cardiovascular diseases, and cancers. Of special note is that accumulating data suggest an intimate relationship between autophagy and ovarian carcinoma. Autophagy is well identified to act as either as a tumor-suppressor or as a tumor-promoter in ovarian carcinoma. The exact function of autophagy in ovarian carcinoma is highly dependent on the circumstances of cancer including hypoxic, nutrient-deficient, chemotherapy and so on. However, the mechanism underlying autophagy associated with ovarian carcinoma remains elusive, the precise role of autophagy in ovarian carcinoma also remains undetermined. In this review, we tried to sum up and discuss recent research achievements of autophagy in ovarian cancer. Moreover, waves of novel therapies ways for ovarian carcinoma based on the functions of autophagy were collected.
Collapse
Affiliation(s)
- Lei Zhan
- Department of gynecology and obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yu Zhang
- Department of gynecology and obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Wenyan Wang
- Department of gynecology and obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Enxue Song
- Department of gynecology and obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yijun Fan
- Department of gynecology and obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jun Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China
| | - Bing Wei
- Department of gynecology and obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| |
Collapse
|
47
|
Jung D, Khurana A, Roy D, Kalogera E, Bakkum-Gamez J, Chien J, Shridhar V. Quinacrine upregulates p21/p27 independent of p53 through autophagy-mediated downregulation of p62-Skp2 axis in ovarian cancer. Sci Rep 2018; 8:2487. [PMID: 29410485 PMCID: PMC5802832 DOI: 10.1038/s41598-018-20531-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/19/2018] [Indexed: 02/04/2023] Open
Abstract
We have previously shown that the anti-malarial compound Quinacrine (QC) inhibits ovarian cancer (OC) growth by modulating autophagy. In the present study we extended these studies to identify the molecular pathways regulated by QC to promote apoptosis independent of p53 status in OC. QC exhibited strong anti-cancer properties in OC cell lines in contrast to other anti-malarial autophagy inhibiting drugs. QC treatment selectively upregulated cell cycle inhibitor p21, and downregulated F box protein Skp2 and p62/SQSTM1 expression independent of p53 status. Genetic downregulation of key autophagy protein ATG5 abolished QC-mediated effects on both cell cycle protein p21/Skp2 as well as autophagic cargo protein p62. Furthermore, genetic silencing of p62/SQSTM1 resulted in increased sensitivity to QC-mediated apoptosis, downregulated Skp2 mRNA and increased accumulation of p21 expression. Likewise, genetic knockdown of Skp2 resulted in the upregulation of p21 and p27 and increased sensitivity of OC cells to QC treatment. In contrast, transient overexpression of exogenous p62-HA plasmid rescued the QC-mediated Skp2 downregulation indicating the positive regulation of Skp2 by p62. Collectively, these data indicate that QC-mediated effects on cell cycle proteins p21/Skp2is autophagy-dependent and p53-independent in high grade serious OC cells.
Collapse
Affiliation(s)
- DeokBeom Jung
- Department of Experimental Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ashwani Khurana
- Department of Experimental Pathology, Mayo Clinic, Rochester, MN, USA
| | - Debarshi Roy
- Department of Experimental Pathology, Mayo Clinic, Rochester, MN, USA
| | - Eleftheria Kalogera
- Division of Gynecologic Surgery, Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
| | - Jamie Bakkum-Gamez
- Division of Gynecologic Surgery, Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
| | - Jeremy Chien
- Division of Molecular Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Viji Shridhar
- Department of Experimental Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
48
|
Huang CH, Lee YC, Chen YJ, Wang LJ, Shi YJ, Chang LS. Quinacrine induces the apoptosis of human leukemia U937 cells through FOXP3/miR-183/β-TrCP/SP1 axis-mediated BAX upregulation. Toxicol Appl Pharmacol 2017; 334:35-46. [PMID: 28867437 DOI: 10.1016/j.taap.2017.08.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/21/2017] [Accepted: 08/25/2017] [Indexed: 11/23/2022]
Abstract
Quinacrine, which is clinically used as an antimalarial drug, has anti-cancer activity. However, mechanism underlying its cytotoxic effect remains to be completely elucidated. In the present study, we investigated the cytotoxic effect of quinacrine on human leukemia U937 cells. Quinacrine-induced apoptosis of U937 cells was accompanied with ROS generation, mitochondrial depolarization, and BAX upregulation. Quinacrine-treated U937 cells showed ROS-mediated p38 MAPK activation and ERK inactivation, which in turn upregulated FOXP3 transcription. FOXP3-mediated miR-183 expression decreased β-TrCP mRNA stability and suppressed β-TrCP-mediated SP1 degradation, thus increasing SP1 expression in U937 cells. Upregulated SP1 expression further increased BAX expression. BAX knock-down attenuated quinacrine-induced mitochondrial depolarization and increased the viability of quinacrine-treated cells. Together, our data indicate that quinacrine-induced apoptosis of U937 cells is mediated by mitochondrial alterations triggered by FOXP3/miR-183/β-TrCP/SP1 axis-mediated BAX upregulation.
Collapse
Affiliation(s)
- Chia-Hui Huang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Ying-Jung Chen
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Liang-Jun Wang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yi-Jun Shi
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
49
|
Li YJ, Lei YH, Yao N, Wang CR, Hu N, Ye WC, Zhang DM, Chen ZS. Autophagy and multidrug resistance in cancer. CHINESE JOURNAL OF CANCER 2017. [PMID: 28646911 PMCID: PMC5482965 DOI: 10.1186/s40880-017-0219-2] [Citation(s) in RCA: 500] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multidrug resistance (MDR) occurs frequently after long-term chemotherapy, resulting in refractory cancer and tumor recurrence. Therefore, combatting MDR is an important issue. Autophagy, a self-degradative system, universally arises during the treatment of sensitive and MDR cancer. Autophagy can be a double-edged sword for MDR tumors: it participates in the development of MDR and protects cancer cells from chemotherapeutics but can also kill MDR cancer cells in which apoptosis pathways are inactive. Autophagy induced by anticancer drugs could also activate apoptosis signaling pathways in MDR cells, facilitating MDR reversal. Therefore, research on the regulation of autophagy to combat MDR is expanding and is becoming increasingly important. We summarize advanced studies of autophagy in MDR tumors, including the variable role of autophagy in MDR cancer cells.
Collapse
Affiliation(s)
- Ying-Jie Li
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, P. R. China
| | - Yu-He Lei
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, P. R. China
| | - Nan Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, P. R. China
| | - Chen-Ran Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, P. R. China
| | - Nan Hu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, P. R. China
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, P. R. China
| | - Dong-Mei Zhang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, P. R. China.
| | - Zhe-Sheng Chen
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, P. R. China. .,Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| |
Collapse
|
50
|
Inhibition of Kir4.1 potassium channels by quinacrine. Brain Res 2017; 1663:87-94. [PMID: 28288868 DOI: 10.1016/j.brainres.2017.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/24/2017] [Accepted: 03/07/2017] [Indexed: 12/27/2022]
Abstract
Inwardly rectifying potassium (Kir) channels are expressed in many cell types and contribute to a wide range of physiological processes. Particularly, Kir4.1 channels are involved in the astroglial spatial potassium buffering. In this work, we examined the effects of the cationic amphiphilic drug quinacrine on Kir4.1 channels heterologously expressed in HEK293 cells, employing the patch clamp technique. Quinacrine inhibited the currents of Kir4.1 channels in a concentration and voltage dependent manner. In inside-out patches, quinacrine inhibited Kir4.1 channels with an IC50 value of 1.8±0.3μM and with extremely slow blocking and unblocking kinetics. Molecular modeling combined with mutagenesis studies suggested that quinacrine blocks Kir4.1 by plugging the central cavity of the channels, stabilized by the residues E158 and T128. Overall, this study shows that quinacrine blocks Kir4.1 channels, which would be expected to impact the potassium transport in several tissues.
Collapse
|