1
|
Liu H, Liu L, Rosen CJ. Bone Marrow Adipocytes as Novel Regulators of Metabolic Homeostasis: Clinical Consequences of Bone Marrow Adiposity. Curr Obes Rep 2025; 14:9. [PMID: 39808256 DOI: 10.1007/s13679-024-00594-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 01/16/2025]
Abstract
PURPOSE OF REVIEW Bone marrow adipose tissue is a distinctive fat depot located within the skeleton, with the potential to influence both local and systemic metabolic processes. Although significant strides have been made in understanding bone marrow adipose tissue over the past decade, many questions remain regarding their precise lineage and functional roles. RECENT FINDINGS Recent studies have highlighted bone marrow adipose tissue's involvement in continuous cross-talk with other organs and systems, exerting both endocrine and paracrine functions that play a crucial role in metabolic homeostasis, skeletal remodeling, hematopoiesis, and the progression of bone metastases. The advancement of imaging techniques, particularly cross-sectional imaging, has profoundly expanded our understanding of the complexities beyond the traditional view of bone marrow adipose tissue as an inert depot. Notably, marrow adipocytes are anatomically and functionally distinct from brown, beige, and classic white adipocytes. Emerging evidence suggests that bone marrow adipocytes, bone marrow adipose tissue originate from the differentiation of bone marrow mesenchymal stromal cells; however, they appear to be a heterogeneous population with varying metabolic profiles, lipid compositions, secretory properties, and functional responses depending on their specific location within the bone marrow. This review provides an up-to-date synthesis of current knowledge on bone marrow adipocytes, emphasizing the relationships between bone marrow adipogenesis and factors such as aging, osteoporosis, obesity, and bone marrow tumors or metastases, thereby elucidating the mechanisms underlying musculoskeletal pathophysiology.
Collapse
Affiliation(s)
- Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology &, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Maine Medical Center Research Institute, Maine Medical Center, 81 Research Drive, Scarborough, ME, 04074, USA
| | - Linyi Liu
- Maine Medical Center Research Institute, Maine Medical Center, 81 Research Drive, Scarborough, ME, 04074, USA
| | - Clifford J Rosen
- Maine Medical Center Research Institute, Maine Medical Center, 81 Research Drive, Scarborough, ME, 04074, USA.
| |
Collapse
|
2
|
Ding Y, Zhang Y, Zhang X, Shang M, Dong F. Association of lipid levels, adipokines and multiple myeloma: a two-sample multivariate Mendelian randomization study. Sci Rep 2024; 14:25961. [PMID: 39472615 PMCID: PMC11522568 DOI: 10.1038/s41598-024-74838-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Many observational studies and experiments have found a strong association between lipid levels and adipokines and multiple myeloma (MM), but the causal relationship between lipid levels, adipokines and MM remains to be determined. We performed a two-sample and multivariate MR analysis to investigate the causal relationship between lipid levels, adipokines and MM. Total cholesterol(TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG) were used to represent lipid levels, and adiponectin, leptin, and resistin were used to represent adipokines. Genetic data for each index and MM were obtained from the Integrated Epidemiology Unit (IEU) Genome-Wide Association Study (GWAS) database, and two-sample MR analyses were performed, as well as multivariate MR analyses of adipokines for causality of MM using BMI as an adjusting factor. In the analyzed results, no significant causal association was found between adipokines, lipid levels and multiple myeloma, and after adjusting for BMI, an association between adipokines and MM was still not found. The results of this MR study do not support an association between genetically predicted adipokines, lipid levels, and risk of MM, but we cannot rule out the existence of a weak association. The mechanisms need to be further investigated.
Collapse
Affiliation(s)
- Yi Ding
- Longhua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yudong Zhang
- Department of Peripheral Blood Vessel, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, China.
| | - Xiaoshan Zhang
- Department of Peripheral Blood Vessel, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Mingrong Shang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Fan Dong
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| |
Collapse
|
3
|
Trivanović D, Vujačić M, Labella R, Djordjević IO, Ćazić M, Chernak B, Jauković A. Molecular Deconvolution of Bone Marrow Adipose Tissue Interactions with Malignant Hematopoiesis: Potential for New Therapy Development. Curr Osteoporos Rep 2024; 22:367-377. [PMID: 38922359 DOI: 10.1007/s11914-024-00879-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
PURPOSE OF REVIEW Along with a strong impact on skeletal integrity, bone marrow adipose tissue (BMAT) is an important modulator of the adult hematopoietic system. This review will summarize the current knowledge on the causal relationship between bone marrow (BM) adipogenesis and the development and progression of hematologic malignancies. RECENT FINDINGS BM adipocytes (BMAds) support a number of processes promoting oncogenesis, including the evolution of clonal hematopoiesis, malignant cell survival, proliferation, angiogenesis, and chemoresistance. In addition, leukemic cells manipulate surrounding BMAds by promoting lipolysis and release of free fatty acids, which are then utilized by leukemic cells via β-oxidation. Therefore, limiting BM adipogenesis, blocking BMAd-derived adipokines, or lipid metabolism obstruction have been considered as potential treatment options for hematological malignancies. Leukemic stem cells rely heavily on BMAds within the structural BM microenvironment for necessary signals which foster disease progression. Further development of 3D constructs resembling BMAT at different skeletal regions are critical to better understand these relationships in geometric space and may provide essential insight into the development of hematologic malignancies within the BM niche. In turn, these mechanisms provide promising potential as novel approaches to targeting the microenvironment with new therapeutic strategies.
Collapse
Affiliation(s)
- Drenka Trivanović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia.
| | - Marko Vujačić
- Institute for Orthopedy Banjica, 11000, Belgrade, Serbia
- School of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Rossella Labella
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
- Edward P. Evans Center for Myelodysplastic Syndromes, Columbia University Medical Center, New York, NY, USA
| | - Ivana Okić Djordjević
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Marija Ćazić
- Department of Hematology and Oncology, University Children's Hospital Tiršova, 11000, Belgrade, Serbia
| | - Brian Chernak
- Division of Hematology/Oncology, Columbia University, New York, NY, USA
| | - Aleksandra Jauković
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| |
Collapse
|
4
|
Nyman KJ, Frieling JS, Lynch CC. Emerging roles for stromal cells in bone metastasis. J Bone Oncol 2024; 47:100610. [PMID: 38984147 PMCID: PMC11231529 DOI: 10.1016/j.jbo.2024.100610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/20/2024] [Accepted: 05/15/2024] [Indexed: 07/11/2024] Open
Abstract
The skeleton is a common site of cancer metastasis and malignancy with the resultant lesions often being incurable. Interactions between metastatic cancer cells and the bone microenvironment are critical for cancer cell survival, outgrowth, and progression. Mesenchymal Stem Cells (MSCs) are an essential stromal cell type in bone that are appreciated for their impacts on cancer-induced bone disease, however, newer evidence suggests that MSCs possess extensive roles in cancer-bone crosstalk, including cancer cell dormancy, metabolic demands, and immune-oncology. Emerging evidence has also identified the importance of MSC tissue source and the influence of ageing when studying MSC biology. Combining these considerations together with developing technologies such as spatial transcriptomics will contribute to defining the molecular mechanisms underlying complex stroma-cancer interactions in bone and assist with identification of therapeutically tractable targets.
Collapse
Affiliation(s)
- Karl J Nyman
- The Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jeremy S Frieling
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Conor C Lynch
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
5
|
Bhowmick K, von Suskil M, Al-Odat OS, Elbezanti WO, Jonnalagadda SC, Budak-Alpdogan T, Pandey MK. Pathways to therapy resistance: The sheltering effect of the bone marrow microenvironment to multiple myeloma cells. Heliyon 2024; 10:e33091. [PMID: 39021902 PMCID: PMC11252793 DOI: 10.1016/j.heliyon.2024.e33091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Multiple Myeloma (MM) is a malignant expansion of plasma cells in the bone marrow (BM), resulting in a disease characterized by symptoms of end organ damage from light chain secretion, crowding of the BM, and bone lesions. Although the past two decades have been characterized by numerous novel therapies emerging, the disease remains incurable due to intrinsic or acquired drug resistance. A major player in MM's drug resistance arises from its intimate relationship with the BM microenvironment (BMME). Through stress-inducing conditions, soluble messengers, and physical adhesion to BM elements, the BMME activates numerous pathways in the myeloma cell. This not only propagates myeloma progression through survival and growth signals, but also specific mechanisms to circumvent therapeutic actions. In this review, we provide an overview of the BMME, the role of individual components in MM survival, and various therapy-specific resistance mechanisms reported in the literature.
Collapse
Affiliation(s)
- Kuntal Bhowmick
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Max von Suskil
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Omar S. Al-Odat
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Weam Othman Elbezanti
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
- Department of Hematology, MD Anderson Cancer Center at Cooper, Cooper University Health Care, Camden, NJ, USA
| | - Subash C. Jonnalagadda
- Department of Chemistry and Biochemistry, College of Science and Mathematics, Rowan University, Glassboro, NJ, USA
| | - Tulin Budak-Alpdogan
- Department of Hematology, MD Anderson Cancer Center at Cooper, Cooper University Health Care, Camden, NJ, USA
| | - Manoj K. Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| |
Collapse
|
6
|
Zhang X, Tian L, Majumdar A, Scheller EL. Function and Regulation of Bone Marrow Adipose Tissue in Health and Disease: State of the Field and Clinical Considerations. Compr Physiol 2024; 14:5521-5579. [PMID: 39109972 PMCID: PMC11725182 DOI: 10.1002/cphy.c230016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Bone marrow adipose tissue (BMAT) is a metabolically and clinically relevant fat depot that exists within bone. Two subtypes of BMAT, regulated and constitutive, reside in hematopoietic-rich red marrow and fatty yellow marrow, respectively, and exhibit distinct characteristics compared to peripheral fat such as white and brown adipose tissues. Bone marrow adipocytes (BMAds) are evolutionally preserved in most vertebrates, start development after birth and expand throughout life, and originate from unique progenitor populations that control bone formation and hematopoiesis. Mature BMAds also interact closely with other cellular components of the bone marrow niche, serving as a nearby energy reservoir to support the skeletal system, a signaling hub that contributes to both local and systemic homeostasis, and a final fuel reserve for survival during starvation. Though BMAT and bone are often inversely correlated, more BMAT does not always mean less bone, and the prevention of BMAT expansion as a strategy to prevent bone loss remains questionable. BMAT adipogenesis and lipid metabolism are regulated by the nervous systems and a variety of circulating hormones. This contributes to the plasticity of BMAT, including BMAT expansion in common physiological or pathological conditions, and BMAT catabolism under certain extreme circumstances, which are often associated with malnutrition and/or systemic inflammation. Altogether, this article provides a comprehensive overview of the local and systemic functions of BMAT and discusses the regulation and plasticity of this unique adipose tissue depot in health and disease. © 2024 American Physiological Society. Compr Physiol 14:5521-5579, 2024.
Collapse
Affiliation(s)
- Xiao Zhang
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Linda Tian
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Anurag Majumdar
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Feng D, Wang Z, Cao S, Xu H, Li S. Identification of lipid metabolism-related gene signature in the bone marrow microenvironment of multiple myelomas through deep analysis of transcriptomic data. Clin Exp Med 2024; 24:136. [PMID: 38916672 PMCID: PMC11199273 DOI: 10.1007/s10238-024-01398-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/10/2024] [Indexed: 06/26/2024]
Abstract
Dysregulated lipid metabolism in the bone marrow microenvironment (BMM) plays a vital role in multiple myeloma (MM) development, progression, and drug resistance. However, the exact mechanism by which lipid metabolism impacts the BMM, promotes tumorigenesis, and triggers drug resistance remains to be fully elucidated.By analyzing the bulk sequencing and single-cell sequencing data of MM patients, we identified lipid metabolism-related genes differential expression significantly associated with MM prognosis, referred to as LMRPgenes. Using a cohort of ten machine learning algorithms and 117 combinations, LMRPgenes predictive models were constructed. Further exploration of the effects of the model risk score (RS) on the survival status, immune status of patients with BMM, and response to immunotherapy was conducted. The study also facilitated the identification of personalized therapeutic strategies targeting specified risk categories within patient cohorts.Analysis of the scRNA-seq data revealed increased lipid metabolism-related gene enrichment scores (LMESs) in erythroblasts and progenitor, malignant, and Tprolif cells but decreased LMESs in lymphocytes. LMESs were also strongly correlated with most of the 50 hallmark pathways within these cell populations. An elevated malignant cell ratio and reduced lymphocytes were observed in the high LMES group. Moreover, the LMRPgenes predictive model, consisting of 14 genes, showed great predictive power. The risk score emerged as an independent indicator of poor outcomes. Inverse relationships between the RS and immune status were noted, and a high RS was associated with impaired immunotherapy responses. Drug sensitivity assays indicated the effectiveness of bortezomib, buparlisib, dinaciclib, staurosporine, rapamycin, and MST-312 in the high-RS group, suggesting their potential for treating patients with high-RS values and poor response to immunotherapy. Ultimately, upon verification via qRT-PCR, we observed a significant upregulation of ACBD6 in NDMM group compared to the control group.Our research enhances the knowledge base regarding the association between lipid metabolism-related genes (LMRGs) and the BMM in MM patients, offering substantive insights into the mechanistic effects of the BMM mediated by LMRGs.
Collapse
Affiliation(s)
- Dan Feng
- Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Liaoning, Dalian, 116011, China
| | - Zhen Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Liaoning, Dalian, 116011, China
| | - Shengji Cao
- Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Liaoning, Dalian, 116011, China
| | - Hui Xu
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150000, Heilongjiang, China
| | - Shijun Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Liaoning, Dalian, 116011, China.
- College of Laboratory Medicine, Dalian Medical University, Liaoning, Dalian, 116044, China.
| |
Collapse
|
8
|
Marinelli Busilacchi E, Morsia E, Poloni A. Bone Marrow Adipose Tissue. Cells 2024; 13:724. [PMID: 38727260 PMCID: PMC11083575 DOI: 10.3390/cells13090724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Bone marrow (BM) acts as a dynamic organ within the bone cavity, responsible for hematopoiesis, skeletal remodeling, and immune system control. Bone marrow adipose tissue (BMAT) was long simply considered a filler of space, but now it is known that it instead constitutes an essential element of the BM microenvironment that participates in homeostasis, influences bone health and bone remodeling, alters hematopoietic stem cell functions, contributes to the commitment of mesenchymal stem cells, provides effects to immune homeostasis and defense against infections, and participates in energy metabolism and inflammation. BMAT has emerged as a significant contributor to the development and progression of various diseases, shedding light on its complex relationship with health. Notably, BMAT has been implicated in metabolic disorders, hematological malignancies, and skeletal conditions. BMAT has been shown to support the proliferation of tumor cells in acute myeloid leukemia and niche adipocytes have been found to protect cancer cells against chemotherapy, contributing to treatment resistance. Moreover, BMAT's impact on bone density and remodeling can lead to conditions like osteoporosis, where high levels of BMAT are inversely correlated with bone mineral density, increasing the risk of fractures. BMAT has also been associated with diabetes, obesity, and anorexia nervosa, with varying effects on individuals depending on their weight and health status. Understanding the interaction between adipocytes and different diseases may lead to new therapeutic strategies.
Collapse
Affiliation(s)
- Elena Marinelli Busilacchi
- Hematology Laboratory, Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy; (E.M.B.); (E.M.)
| | - Erika Morsia
- Hematology Laboratory, Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy; (E.M.B.); (E.M.)
- Hematology, AOU delle Marche, 60126 Ancona, Italy
| | - Antonella Poloni
- Hematology Laboratory, Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy; (E.M.B.); (E.M.)
- Hematology, AOU delle Marche, 60126 Ancona, Italy
| |
Collapse
|
9
|
Kumar V, Stewart JH. Obesity, bone marrow adiposity, and leukemia: Time to act. Obes Rev 2024; 25:e13674. [PMID: 38092420 DOI: 10.1111/obr.13674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/07/2023] [Accepted: 11/13/2023] [Indexed: 02/28/2024]
Abstract
Obesity has taken the face of a pandemic with less direct concern among the general population and scientific community. However, obesity is considered a low-grade systemic inflammation that impacts multiple organs. Chronic inflammation is also associated with different solid and blood cancers. In addition, emerging evidence demonstrates that individuals with obesity are at higher risk of developing blood cancers and have poorer clinical outcomes than individuals in a normal weight range. The bone marrow is critical for hematopoiesis, lymphopoiesis, and myelopoiesis. Therefore, it is vital to understand the mechanisms by which obesity-associated changes in BM adiposity impact leukemia development. BM adipocytes are critical to maintain homeostasis via different means, including immune regulation. However, obesity increases BM adiposity and creates a pro-inflammatory environment to upregulate clonal hematopoiesis and a leukemia-supportive environment. Obesity further alters lymphopoiesis and myelopoiesis via different mechanisms, which dysregulate myeloid and lymphoid immune cell functions mentioned in the text under different sequentially discussed sections. The altered immune cell function during obesity alters hematological malignancies and leukemia susceptibility. Therefore, obesity-induced altered BM adiposity, immune cell generation, and function impact an individual's predisposition and severity of leukemia, which should be considered a critical factor in leukemia patients.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - John H Stewart
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Morehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Wei X, Zhang Y, Wang Z, He Y, Ju S, Fu J. Bone marrow adipocytes is a new player in supporting myeloma cells proliferation and survival in myeloma microenvironment. Transl Oncol 2024; 40:101856. [PMID: 38134840 PMCID: PMC10776777 DOI: 10.1016/j.tranon.2023.101856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/09/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Multiple myeloma (MM) is a lethal B cell neoplasm characterized by clonal expansion of malignant plasma cells in the bone marrow and remains incurable due to disease relapse and drug resistance. Bone marrow adipocytes (BMAs) are emerging as playing active functions that can support myeloma cell growth and survival. The aim of this study is to investigate myeloma-mesenchymal stem cells (MSCs) interaction and the impact of such interactions on the pathogenesis of MM using in vitro co-culture assay. Here we provide evidence that MM cell up-regulated MSCs to express PPAR-γ and pushes MSCs differentiation toward adipocytes at the expense of osteoblasts in co-culture manner. The increased BMAs can effectively enhance MM cell to proliferation, migration, and chemoresistance via cell-cell contact and/or cytokines release regulated by PPAR-γ signal pathway. This effect was partially reversed in medium containing PPAR-γ antagonist G3335 and indicated that G3335 distorts the maturation of MSC-derived adipocytes and cytokines release by adipocytes through inhibition of PPAR-γ, a key transcriptional factor for the activation of adipogenesis, or cell to cell contact, or both. In meantime, we observed higher expression of adipocyte differentiation associated genes DLK1, DGAT1, FABP4, and FASN both in MSCs and MSC derived adipocytes, but the osteoblast differentiation-associated gene ALP was down regulated in MSCs. These finding mean that direct consequence of MM/MSC interaction that play a role in MM pathogenesis. Consistent with those in vitro results, our primary clinical observation also showed that bone marrow samples from MM patients had significantly higher bone adiposity in comparison with controls and the number of adipocytes decreased in those who were response to anti-MM therapy. Our finding suggested that BMAs may have an important contribution to MM progression, particularly in drugs resistant of MM cells, and plays an important contribution in MM bone disease and treatment failure, but more clinical studies are needed to confirm its role.
Collapse
Affiliation(s)
- Xiaoqian Wei
- Hematology Department, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China
| | - Yangmin Zhang
- Hematology Department, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China
| | - Ziyan Wang
- Hematology Department, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China
| | - Yuanning He
- Hematology Department, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China
| | - Songguang Ju
- Institute of Biotechnology, Soochow University, Suzhou 215007, PR China
| | - Jinxiang Fu
- Hematology Department, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China.
| |
Collapse
|
11
|
Wang J, Liu J, Yuan C, Yang B, Pang H, Chen K, Feng J, Deng Y, Zhang X, Li W, Wang C, Xie J, Zhang J. Palmitic acid-activated GPRs/KLF7/CCL2 pathway is involved in the crosstalk between bone marrow adipocytes and prostate cancer. BMC Cancer 2024; 24:75. [PMID: 38221626 PMCID: PMC10789002 DOI: 10.1186/s12885-024-11826-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 01/03/2024] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Obesity-induced abnormal bone marrow microenvironment is one of the important risk element for bone metastasis in prostate cancer (PCa). The present study aimed to determine whether obesity-induced elevation in palmitic acid (PA), which is the most abundant of the free fatty acids (FFAs), increased CCL2 via the GPRs/KLF7 pathway in bone marrow adipocytes (BMA) to facilitate PCa growth and metastasis. METHODS We constructed a bone-tumor bearing mouse model with obesity through high-fat diet, and observed the tumor formation ability of PCa cells. In vitro, observe the effect of PA on the expression level of CCL2 in BMA through GPRs/KLF7 signaling pathway. After co-culture of BMA and PCa cells, CCK8 assay and transwell experiment were used to detect the changes in biological behavior of PCa cells stimulated by BMA. RESULTS The BMA distribution in the bone marrow cavity of BALB/c nude mice fed with the high-fat diet (HFD) was evidently higher than that in the mice fed with the normal diet (ND). Moreover, HFD-induced obesity promoted KLF7/CCL2 expression in BMA and PCa cell growth in the bone marrow cavity of the mice. In the vitro experiment, a conditioned medium with increased CCL2 obtained from the BMA cultured with PA (CM-BMA-PA) was used for culturing the PCa cell lines, which evidently enhanced the proliferation, invasion, and migration ability. KLF7 significantly increased the CCL2 expression and secretion levels in BMA by targeting the promoter region of the CCL2 gene. In addition, GPR40/120 engaged in the PA-induced high KLF7/CCL2 levels in BMA to facilitate the malignant progression of PC-3 cells. CONCLUSIONS PA-activated GPRs/KLF7/CCL2 pathway in BMA facilitates prostate cancer growth and metastasis.
Collapse
Affiliation(s)
- Jingzhou Wang
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Jie Liu
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Chenggang Yuan
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Bingqi Yang
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Huai Pang
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Keru Chen
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Jiale Feng
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Yuchun Deng
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Xueting Zhang
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Wei Li
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Cuizhe Wang
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China.
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China.
| | - Jianxin Xie
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China.
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China.
| | - Jun Zhang
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China.
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
12
|
Kozalak G, Koşar A. Autophagy-related mechanisms for treatment of multiple myeloma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:838-857. [PMID: 38239705 PMCID: PMC10792488 DOI: 10.20517/cdr.2023.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024]
Abstract
Multiple myeloma (MM) is a type of hematological cancer that occurs when B cells become malignant. Various drugs such as proteasome inhibitors, immunomodulators, and compounds that cause DNA damage can be used in the treatment of MM. Autophagy, a type 2 cell death mechanism, plays a crucial role in determining the fate of B cells, either promoting their survival or inducing cell death. Therefore, autophagy can either facilitate the progression or hinder the treatment of MM disease. In this review, autophagy mechanisms that may be effective in MM cells were covered and evaluated within the contexts of unfolded protein response (UPR), bone marrow microenvironment (BMME), drug resistance, hypoxia, DNA repair and transcriptional regulation, and apoptosis. The genes that are effective in each mechanism and research efforts on this subject were discussed in detail. Signaling pathways targeted by new drugs to benefit from autophagy in MM disease were covered. The efficacy of drugs that regulate autophagy in MM was examined, and clinical trials on this subject were included. Consequently, among the autophagy mechanisms that are effective in MM, the most suitable ones to be used in the treatment were expressed. The importance of 3D models and microfluidic systems for the discovery of new drugs for autophagy and personalized treatment was emphasized. Ultimately, this review aims to provide a comprehensive overview of MM disease, encompassing autophagy mechanisms, drugs, clinical studies, and further studies.
Collapse
Affiliation(s)
- Gül Kozalak
- Faculty of Engineering and Natural Science, Sabancı University, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabancı University, Istanbul 34956, Turkey
| | - Ali Koşar
- Faculty of Engineering and Natural Science, Sabancı University, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabancı University, Istanbul 34956, Turkey
- Turkish Academy of Sciences (TÜBA), Çankaya, Ankara 06700, Turkey
| |
Collapse
|
13
|
Torcasio R, Gallo Cantafio ME, Ikeda RK, Ganino L, Viglietto G, Amodio N. Lipid metabolic vulnerabilities of multiple myeloma. Clin Exp Med 2023; 23:3373-3390. [PMID: 37639069 PMCID: PMC10618328 DOI: 10.1007/s10238-023-01174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/15/2023] [Indexed: 08/29/2023]
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy worldwide, characterized by abnormal proliferation of malignant plasma cells within a tumor-permissive bone marrow microenvironment. Metabolic dysfunctions are emerging as key determinants in the pathobiology of MM. In this review, we highlight the metabolic features of MM, showing how alterations in various lipid pathways, mainly involving fatty acids, cholesterol and sphingolipids, affect the growth, survival and drug responsiveness of MM cells, as well as their cross-talk with other cellular components of the tumor microenvironment. These findings will provide a new path to understanding the mechanisms underlying how lipid vulnerabilities may arise and affect the phenotype of malignant plasma cells, highlighting novel druggable pathways with a significant impact on the management of MM.
Collapse
Affiliation(s)
- Roberta Torcasio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
- Department of Biology, Ecology and Heart Sciences, University of Calabria, Arcavacata Di Rende, Cosenza, Italy
| | - Maria Eugenia Gallo Cantafio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Raissa Kaori Ikeda
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
- Centro Universitário São Camilo, São Paulo, Brazil
| | - Ludovica Ganino
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy.
| |
Collapse
|
14
|
Diedrich JD, Cole CE, Pianko MJ, Colacino JA, Bernard JJ. Non-Toxicological Role of Aryl Hydrocarbon Receptor in Obesity-Associated Multiple Myeloma Cell Growth and Survival. Cancers (Basel) 2023; 15:5255. [PMID: 37958428 PMCID: PMC10649826 DOI: 10.3390/cancers15215255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Obesity is not only a risk factor for multiple myeloma (MM) incidence, but it is also associated with an increased risk of progression from myeloma precursors-monoclonal gammopathy of undetermined significance-and smoldering myeloma. Adipocytes in the bone marrow (BMAs) microenvironment have been shown to facilitate MM cell growth via secreted factors, but the nature of these secreted factors and their mechanism of action have not been fully elucidated. The elevated expression of aryl hydrocarbon receptor (AhR) is associated with a variety of different cancers, including MM; however, the role of AhR activity in obesity-associated MM cell growth and survival has not been explored. Indeed, this is of particular interest as it has been recently shown that bone marrow adipocytes are a source of endogenous AhR ligands. Using multiple in vitro models of tumor-adipocyte crosstalk to mimic the bone microenvironment, we identified a novel, non-toxicological role of the adipocyte-secreted factors in the suppression of AhR activity in MM cells. A panel of six MM cell lines were cultured in the presence of bone marrow adipocytes in (1) a direct co-culture, (2) a transwell co-culture, or (3) an adipocyte-conditioned media to interrogate the effects of the secreted factors on MM cell AhR activity. Nuclear localization and the transcriptional activity of the AhR, as measured by CYP1A1 and CYP1B1 gene induction, were suppressed by exposure to BMA-derived factors. Additionally, decreased AhR target gene expression was associated with worse clinical outcomes. The knockdown of AhR resulted in reduced CYP1B1 expression and increased cellular growth. This tumor-suppressing role of CYP1A1 and CYP1B1 was supported by patient data which demonstrated an association between reduced target gene expression and worse overall survival. These data demonstrated a novel mechanism by which bone marrow adipocytes promote MM progression.
Collapse
Affiliation(s)
- Jonathan D. Diedrich
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| | - Craig E. Cole
- Department of Medicine, Division of Hematology/Oncology, Michigan State University, East Lansing, MI 48910, USA;
- Karmanos Cancer Institute, McLaren Greater Lansing, Lansing, MI 48910, USA
- Department of Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Matthew J. Pianko
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Justin A. Colacino
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jamie J. Bernard
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
- Department of Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
15
|
Choa R, Panaroni C, Bhatia R, Raje N. It is worth the weight: obesity and the transition from monoclonal gammopathy of undetermined significance to multiple myeloma. Blood Adv 2023; 7:5510-5523. [PMID: 37493975 PMCID: PMC10515310 DOI: 10.1182/bloodadvances.2023010822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/27/2023] Open
Abstract
The overweight/obesity epidemic is a serious public health concern that affects >40% of adults globally and increases the risk of numerous chronic diseases, such as type 2 diabetes, heart disease, and various cancers. Multiple myeloma (MM) is a lymphohematopoietic cancer caused by the uncontrolled clonal expansion of plasma cells. Recent studies have shown that obesity is a risk factor not only for MM but also monoclonal gammopathy of undetermined significance (MGUS), a precursor disease state of MM. Furthermore, obesity may promote the transition from MGUS to MM. Thus, in this review, we summarize the epidemiological evidence regarding the role of obesity in MM and MGUS, discuss the biologic mechanisms that drive these disease processes, and detail the obesity-targeted pharmacologic and lifestyle interventions that may reduce the risk of progression from MGUS to MM.
Collapse
Affiliation(s)
- Ruth Choa
- Center for Multiple Myeloma, Massachusetts General Hospital, Boston, MA
| | - Cristina Panaroni
- Center for Multiple Myeloma, Massachusetts General Hospital, Boston, MA
| | - Roma Bhatia
- Center for Multiple Myeloma, Massachusetts General Hospital, Boston, MA
| | - Noopur Raje
- Center for Multiple Myeloma, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
16
|
Ochiai M, Fierstein S, XsSali F, DeVito N, Purkey LR, May R, Correa-Medina A, Kelley M, Page TD, DeCicco-Skinner K. Unlocking Drug Resistance in Multiple Myeloma: Adipocytes as Modulators of Treatment Response. Cancers (Basel) 2023; 15:4347. [PMID: 37686623 PMCID: PMC10486466 DOI: 10.3390/cancers15174347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Multiple myeloma (MM) is an incurable hematological malignancy characterized by the clonal proliferation of malignant plasma cells. Despite the development of a diverse array of targeted drug therapies over the last decade, patients often relapse and develop refractory disease due to multidrug resistance. Obesity is a growing public health threat and a risk factor for multiple myeloma, although the mechanisms by which obesity contributes to MM growth and progression have not been fully elucidated. In the present study, we evaluated whether crosstalk between adipocytes and MM cells promoted drug resistance and whether this was amplified by obesity. Human adipose-derived stem cells (ASCs) from nineteen normal (BMI = 20-25 kg/m2), overweight (25-30 kg/m2), or obese (30-35 kg/m2) patients undergoing elective liposuction were utilized. Cells were differentiated into adipocytes, co-cultured with RPMI 8226 or U266B1 multiple myeloma cell lines, and treated with standard MM therapies, including bortezomib or a triple combination of bortezomib, dexamethasone, and lenalidomide. We found that adipocytes from overweight and obese individuals increased cell adhesion-mediated drug resistance (CAM-DR) survival signals in MM cells, and P-glycoprotein (P-gp) and multidrug resistance-associated protein (MRP) drug transporter expression. Further, co-culture enhanced in vitro angiogenesis, MMP-2 activity, and protected MM cells from drug-induced decreases in viability. In summary, we provide an underlying mechanism by which obesity can impair the drug response to MM and allow for recurrence and/or disease progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Kathleen DeCicco-Skinner
- Department of Biology, American University, 4400 Massachusetts Ave, NW, Washington, DC 20016, USA
| |
Collapse
|
17
|
Salamanna F, Contartese D, Errani C, Sartori M, Borsari V, Giavaresi G. Role of bone marrow adipocytes in bone metastasis development and progression: a systematic review. Front Endocrinol (Lausanne) 2023; 14:1207416. [PMID: 37711896 PMCID: PMC10497772 DOI: 10.3389/fendo.2023.1207416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/03/2023] [Indexed: 09/16/2023] Open
Abstract
Purpose Bone marrow adipocytes (BMAs) are the most plentiful cells in the bone marrow and function as an endocrine organ by producing fatty acids, cytokines, and adipokines. Consequently, BMAs can interact with tumor cells, influencing both tumor growth and the onset and progression of bone metastasis. This review aims to systematically evaluate the role of BMAs in the development and progression of bone metastasis. Methods A comprehensive search was conducted on PubMed, Web of Science, and Scopus electronic databases, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement standards, to identify studies published from March 2013 to June 2023. Two independent reviewers assessed and screened the literature, extracted the data, and evaluated the quality of the studies. The body of evidence was evaluated and graded using the ROBINS-I tool for non-randomized studies of interventions and the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) tool for in vivo studies. The results were synthesized using descriptive methods. Results The search yielded a total of 463 studies, of which 17 studies were included in the final analysis, including 15 preclinical studies and two non-randomized clinical studies. Analysis of preclinical studies revealed that BMAs play a significant role in bone metastasis, particularly in prostate cancer followed by breast and malignant melanoma cancers. BMAs primarily influence cancer cells by inducing a glycolytic phenotype and releasing or upregulating soluble factors, chemokines, cytokines, adipokines, tumor-derived fatty acid-binding protein (FABP), and members of the nuclear receptor superfamily, such as chemokine (C-C motif) ligand 7 (CCL7), C-X-C Motif Chemokine Ligand (CXCL)1, CXCL2, interleukin (IL)-1β, IL-6, FABP4, and peroxisome proliferator-activated receptor γ (PPARγ). These factors also contribute to adipocyte lipolysis and regulate a pro-inflammatory phenotype in BMAs. However, the number of clinical studies is limited, and definitive conclusions cannot be drawn. Conclusion The preclinical studies reviewed indicate that BMAs may play a crucial role in bone metastasis in prostate, breast, and malignant melanoma cancers. Nevertheless, further preclinical and clinical studies are needed to better understand the complex role and relationship between BMAs and cancer cells in the bone microenvironment. Targeting BMAs in combination with standard treatments holds promise as a potential therapeutic strategy for bone metastasis.
Collapse
Affiliation(s)
- F. Salamanna
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - D. Contartese
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - C. Errani
- 3rd Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - M. Sartori
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - V. Borsari
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - G. Giavaresi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
18
|
Tie W, Ma T, Yi Z, Liu J, Li Y, Bai J, Li L, Zhang L. Obesity as a risk factor for multiple myeloma: insight on the role of adipokines. Pathol Oncol Res 2023; 29:1611338. [PMID: 37637774 PMCID: PMC10447903 DOI: 10.3389/pore.2023.1611338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023]
Abstract
Multiple myeloma (MM) is a hematologic disorder characterized by the accumulation of malignant plasma cells in the bone marrow. Genetic and environmental factors are contributed to the etiology of MM. Notably, studies have shown that obesity increases the risk of MM and worsens outcomes for MM patients. Adipokines play an important role in mediating the close association between MM and metabolic derangements. In this review, we summarize the epidemiologic studies to show that the risk of MM is increased in obese. Accumulating clinical evidence suggests that adipokines could display a correlation with MM. In vitro and in vivo studies have shown that adipokines are linked to MM, including roles in the biological behavior of MM cells, cancer-associated bone loss, the progression of MM, and drug resistance. Current and potential therapeutic strategies targeted to adipokines are discussed, proposing that adipokines can guide early patient diagnosis and treatment.
Collapse
Affiliation(s)
- Wenting Tie
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
- Department of Endocrinology, Lanzhou University Second Hospital, Lanzhou, China
| | - Tao Ma
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhigang Yi
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jia Liu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Yanhong Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jun Bai
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Lijuan Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Liansheng Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
19
|
Bessot A, Gunter J, Waugh D, Clements JA, Hutmacher DW, McGovern J, Bock N. GelMA and Biomimetic Culture Allow the Engineering of Mineralized, Adipose, and Tumor Tissue Human Microenvironments for the Study of Advanced Prostate Cancer In Vitro and In Vivo. Adv Healthc Mater 2023; 12:e2201701. [PMID: 36708740 PMCID: PMC11469108 DOI: 10.1002/adhm.202201701] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/21/2022] [Indexed: 01/30/2023]
Abstract
Increasing evidence shows bone marrow (BM)-adipocytes as a potentially important contributor in prostate cancer (PCa) bone metastases. However, a lack of relevant models has prevented the full understanding of the effects of human BM-adipocytes in this microenvironment. It is hypothesized that the combination of tunable gelatin methacrylamide (GelMA)-based hydrogels with the biomimetic culture of human cells would offer a versatile 3D platform to engineer human bone tumor microenvironments containing BM-adipocytes. Human osteoprogenitors, adipocytes, and PCa cells are individually cultured in vitro in GelMA hydrogels, leading to mineralized, adipose, and PCa tumor 3D microtissues, respectively. Osteoblast mineralization and tumor spheroid formation are tailored by hydrogel stiffness with lower stiffnesses correlating with increased mineralization and tumor spheroid size. Upon coculture with tumor cells, BM-adipocytes undergo morphological changes and delipidation, suggesting reciprocal interactions between the cell types. When brought in vivo, the mineralized and adipose microtissues successfully form a humanized fatty bone microenvironment, presenting, for the first time, with human adipocytes. Using this model, an increase in tumor burden is observed when human adipocytes are present, suggesting that adipocytes support early bone tumor growth. The advanced platform presented here combines natural aspects of the microenvironment with tunable properties useful for bone tumor research.
Collapse
Affiliation(s)
- Agathe Bessot
- School of Biomedical SciencesFaculty of Health, and Translational Research Institute (TRI)Queensland University of Technology (QUT)BrisbaneQLD4102Australia
- Australian Prostate Cancer Research Centre ‐ Queensland (APCRC‐Q)QUTBrisbaneQLD4102Australia
- Centre for Biomedical TechnologiesQUTBrisbaneQLD4000Australia
- Max Planck Queensland CentreBrisbaneQLD4059Australia
| | - Jennifer Gunter
- School of Biomedical SciencesFaculty of Health, and Translational Research Institute (TRI)Queensland University of Technology (QUT)BrisbaneQLD4102Australia
- Australian Prostate Cancer Research Centre ‐ Queensland (APCRC‐Q)QUTBrisbaneQLD4102Australia
- Centre for Genomics and Personalised HealthQUTBrisbaneQLD4102Australia
| | - David Waugh
- School of Biomedical SciencesFaculty of Health, and Translational Research Institute (TRI)Queensland University of Technology (QUT)BrisbaneQLD4102Australia
| | - Judith A. Clements
- School of Biomedical SciencesFaculty of Health, and Translational Research Institute (TRI)Queensland University of Technology (QUT)BrisbaneQLD4102Australia
- Australian Prostate Cancer Research Centre ‐ Queensland (APCRC‐Q)QUTBrisbaneQLD4102Australia
| | - Dietmar W. Hutmacher
- School of MechanicalMedical and Process EngineeringEngineering FacultyQUTBrisbaneQLD4000Australia
- Max Planck Queensland CentreBrisbaneQLD4059Australia
| | - Jacqui McGovern
- School of Biomedical SciencesFaculty of Health, and Translational Research Institute (TRI)Queensland University of Technology (QUT)BrisbaneQLD4102Australia
- Centre for Biomedical TechnologiesQUTBrisbaneQLD4000Australia
- Max Planck Queensland CentreBrisbaneQLD4059Australia
| | - Nathalie Bock
- School of Biomedical SciencesFaculty of Health, and Translational Research Institute (TRI)Queensland University of Technology (QUT)BrisbaneQLD4102Australia
- Australian Prostate Cancer Research Centre ‐ Queensland (APCRC‐Q)QUTBrisbaneQLD4102Australia
- Centre for Biomedical TechnologiesQUTBrisbaneQLD4000Australia
- Max Planck Queensland CentreBrisbaneQLD4059Australia
| |
Collapse
|
20
|
Austin MJ, Kalampalika F, Cawthorn WP, Patel B. Turning the spotlight on bone marrow adipocytes in haematological malignancy and non-malignant conditions. Br J Haematol 2023; 201:605-619. [PMID: 37067783 PMCID: PMC10952811 DOI: 10.1111/bjh.18748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 04/18/2023]
Abstract
Whilst bone marrow adipocytes (BMAd) have long been appreciated by clinical haemato-pathologists, it is only relatively recently, in the face of emerging data, that the adipocytic niche has come under the watchful eye of biologists. There is now mounting evidence to suggest that BMAds are not just a simple structural entity of bone marrow microenvironments but a bona fide driver of physio- and pathophysiological processes relevant to multiple aspects of health and disease. Whilst the truly multifaceted nature of BMAds has only just begun to emerge, paradigms have shifted already for normal, malignant and non-malignant haemopoiesis incorporating a view of adipocyte regulation. Major efforts are ongoing, to delineate the routes by which BMAds participate in health and disease with a final aim of achieving clinical tractability. This review summarises the emerging role of BMAds across the spectrum of normal and pathological haematological conditions with a particular focus on its impact on cancer therapy.
Collapse
Affiliation(s)
- Michael J. Austin
- Barts Cancer Institute, Centre for Haemato‐OncologyQueen Mary University of LondonLondonUK
| | - Foteini Kalampalika
- Barts Cancer Institute, Centre for Haemato‐OncologyQueen Mary University of LondonLondonUK
| | - William P. Cawthorn
- BHF/University Centre for Cardiovascular Science, Edinburgh BioquarterUniversity of EdinburghEdinburghUK
| | - Bela Patel
- Barts Cancer Institute, Centre for Haemato‐OncologyQueen Mary University of LondonLondonUK
| |
Collapse
|
21
|
Matamala Montoya M, van Slobbe GJJ, Chang JC, Zaal EA, Berkers CR. Metabolic changes underlying drug resistance in the multiple myeloma tumor microenvironment. Front Oncol 2023; 13:1155621. [PMID: 37091139 PMCID: PMC10117897 DOI: 10.3389/fonc.2023.1155621] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
Multiple myeloma (MM) is characterized by the clonal expansion of malignant plasma cells in the bone marrow (BM). MM remains an incurable disease, with the majority of patients experiencing multiple relapses from different drugs. The MM tumor microenvironment (TME) and in particular bone-marrow stromal cells (BMSCs) play a crucial role in the development of drug resistance. Metabolic reprogramming is emerging as a hallmark of cancer that can potentially be exploited for cancer treatment. Recent studies show that metabolism is further adjusted in MM cells during the development of drug resistance. However, little is known about the role of BMSCs in inducing metabolic changes that are associated with drug resistance. In this Perspective, we summarize current knowledge concerning the metabolic reprogramming of MM, with a focus on those changes associated with drug resistance to the proteasome inhibitor Bortezomib (BTZ). In addition, we present proof-of-concept fluxomics (glucose isotope-tracing) and Seahorse data to show that co-culture of MM cells with BMSCs skews the metabolic phenotype of MM cells towards a drug-resistant phenotype, with increased oxidative phosphorylation (OXPHOS), serine synthesis pathway (SSP), TCA cycle and glutathione (GSH) synthesis. Given the crucial role of BMSCs in conveying drug resistance, insights into the metabolic interaction between MM and BMSCs may ultimately aid in the identification of novel metabolic targets that can be exploited for therapy.
Collapse
Affiliation(s)
- María Matamala Montoya
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Gijs J. J. van Slobbe
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jung-Chin Chang
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Esther A. Zaal
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- *Correspondence: Celia R. Berkers, ; Esther A. Zaal,
| | - Celia R. Berkers
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- *Correspondence: Celia R. Berkers, ; Esther A. Zaal,
| |
Collapse
|
22
|
Tentolouris A, Ntanasis-Stathopoulos I, Terpos E. Obesity and multiple myeloma: emerging mechanisms and perspectives. Semin Cancer Biol 2023; 92:45-60. [PMID: 37030643 DOI: 10.1016/j.semcancer.2023.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/08/2023]
Abstract
Obesity is a global pandemic that has been associated with the development of breast, endometrial, large intestine, renal, esophageal, and pancreatic cancer. Obesity is also involved in the development of cardiovascular disease and type 2 diabetes mellitus. Recently, an increase in the incidence of obesity-related cancers has been reported. Multiple myeloma (MM) is the second most common hematological malignancy, after lymphoma. The aim of this review is to examine the epidemiological data on obesity and MM, assess the effect of obesity on MM outcomes, evaluate the possible mechanisms through which obesity might increase the incidence of MM and provide the effects of obesity management on MM. Current evidence indicates that obesity may have an impact on the progression of monoclonal gammopathy of undetermined significance (MGUS) to MM and increase the prevalence of MM. However, data regarding the effect of obesity on MGUS incidence are controversial; further studies are needed to examine whether obesity affects the development of MGUS or the progression of MGUS to MM. In addition, obesity affects MM outcomes. Increased BMI is associated with decreased survival in patients with MM, while data regarding the effect of obesity on newly diagnosed MM subjects and autologous stem cell transplantation are limited. Interestingly, the obesity paradox may also apply to patients with relapsed/refractory MM who are overweight or obese, because they may have a survival advantage. The pathophysiological pathways linking obesity to MM are very complicated and include bone marrow adipose tissue; adipokines, such as adiponectin, leptin, resistin, and visfatin; inflammatory cytokines and growth factors, such as TNF-α and IL-6; hormones including insulin and the insulin-like growth factor system as well as sex hormones. In terms of the effect of pharmacological management of obesity, orlistat has been shown to alter the proliferation of MM cells, whereas no data exist on glucagon-like peptide-1 receptor agonists, naltrexone/bupropion, or phentermine/topiramate. Bariatric surgery may be associated with a reduction in the incidence of MM, however, further studies are needed.
Collapse
|
23
|
He N, Liu M, Wu Y. Adipose tissue and hematopoiesis: Friend or foe? J Clin Lab Anal 2023; 37:e24872. [PMID: 36972475 PMCID: PMC10156104 DOI: 10.1002/jcla.24872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/02/2023] [Accepted: 03/12/2023] [Indexed: 03/29/2023] Open
Abstract
AIM Hematopoietic stem cells are the origin of all hematopoietic cells. They have the self-renewal ability and can differentiate into various blood cells. In physiological state, most of the hematopoietic stem cells are dormant, and only a few cells proliferate to maintain hematopoietic homeostasis. METHODS This precise steady-state maintenance is regulated by complex mechanisms. Bone marrow adipocytes make up half of all cells in the bone marrow cavity, a feature that has attracted the attention of researchers from multiple fields. The adipocyte density within marrow increases during aging and obesity. RESULTS Recent studies have shown that bone marrow adipocytes play important roles in regulating hematopoiesis, but the effects of bone marrow adipocytes on hematopoiesis are often conflicting. Bone marrow adipocytes, participating in the formation of bone marrow hematopoietic microenvironment, influence hematopoiesis positively or negatively. In addition, other adipose tissue, especially white adipose tissue, also regulates hematopoiesis. CONCLUSION In this review, we describe the role of adipose tissue in hematological malignancies, which may be useful for understanding hematopoiesis and the pathogenesis of related diseases.
Collapse
Affiliation(s)
- Na He
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Min Liu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yue Wu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
24
|
Zhang H, Liesveld JL, Calvi LM, Lipe BC, Xing L, Becker MW, Schwarz EM, Yeh SCA. The roles of bone remodeling in normal hematopoiesis and age-related hematological malignancies. Bone Res 2023; 11:15. [PMID: 36918531 PMCID: PMC10014945 DOI: 10.1038/s41413-023-00249-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/24/2022] [Accepted: 01/26/2023] [Indexed: 03/16/2023] Open
Abstract
Prior research establishing that bone interacts in coordination with the bone marrow microenvironment (BMME) to regulate hematopoietic homeostasis was largely based on analyses of individual bone-associated cell populations. Recent advances in intravital imaging has suggested that the expansion of hematopoietic stem cells (HSCs) and acute myeloid leukemia cells is restricted to bone marrow microdomains during a distinct stage of bone remodeling. These findings indicate that dynamic bone remodeling likely imposes additional heterogeneity within the BMME to yield differential clonal responses. A holistic understanding of the role of bone remodeling in regulating the stem cell niche and how these interactions are altered in age-related hematological malignancies will be critical to the development of novel interventions. To advance this understanding, herein, we provide a synopsis of the cellular and molecular constituents that participate in bone turnover and their known connections to the hematopoietic compartment. Specifically, we elaborate on the coupling between bone remodeling and the BMME in homeostasis and age-related hematological malignancies and after treatment with bone-targeting approaches. We then discuss unresolved questions and ambiguities that remain in the field.
Collapse
Affiliation(s)
- Hengwei Zhang
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA.
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Jane L Liesveld
- Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, Division of Hematology/Oncology and Bone Marrow Transplantation Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Laura M Calvi
- Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, Division of Endocrinology/Metabolism, University of Rochester Medical Center, Rochester, NY, USA
| | - Brea C Lipe
- Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, Division of Hematology/Oncology and Bone Marrow Transplantation Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Lianping Xing
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael W Becker
- Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, Division of Hematology/Oncology and Bone Marrow Transplantation Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, Division of Allergy/Immunology/Rheumatology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Shu-Chi A Yeh
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY, 14642, USA.
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
- Department of Physiology/Pharmacology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
25
|
Tang W, Xu J, Xu C. Noncoding RNAs in the crosstalk between multiple myeloma cells and bone marrow microenvironment. Cancer Lett 2023; 556:216081. [PMID: 36739065 DOI: 10.1016/j.canlet.2023.216081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy; however, it remains incurable, and the underlying pathogenesis and mechanisms of drug resistance remain unclear. It is widely recognized that the bone marrow microenvironment plays a crucial role in regulating the immune response, inducing drug resistance, and promoting tumor proliferation and invasion in MM, and thus serves as a potential therapeutic target. Among the various signaling loops between myeloma cells and components of the microenvironment, noncoding RNAs are emerging as crucial regulators of intercellular communication within the microenvironment. Noncoding RNAs, such as microRNAs, long noncoding RNAs, circular RNAs, and PIWI-interacting RNAs, have been associated with numerous biological processes involved in myeloma cell growth, survival, migration, invasion, and drug resistance. This review summarizes recent advances in the regulatory mechanisms of noncoding RNAs involved in the interaction between the MM bone marrow microenvironment and discusses the therapeutic potential of noncoding RNAs in MM.
Collapse
Affiliation(s)
- Wenjiao Tang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Juan Xu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Caigang Xu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
26
|
Marques-Mourlet C, Di Iorio R, Fairfield H, Reagan MR. Obesity and myeloma: Clinical and mechanistic contributions to disease progression. Front Endocrinol (Lausanne) 2023; 14:1118691. [PMID: 36909335 PMCID: PMC9996186 DOI: 10.3389/fendo.2023.1118691] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/02/2023] [Indexed: 02/25/2023] Open
Abstract
Obesity and obesogenic behaviors are positively associated with both monoclonal gammopathy of unknown significance (MGUS) and multiple myeloma (MM). As the only known modifiable risk factor, this association has emerged as a new potential target for MM prevention, but little is known about the mechanistic relationship of body weight with MM progression. Here we summarize epidemiological correlations between weight, body composition, and the various stages of myeloma disease progression and treatments, as well as the current understanding of the molecular contributions of obesity-induced changes in myeloma cell phenotype and signaling. Finally, we outline groundwork for the future characterization of the relationship between body weight patterns, the bone marrow microenvironment, and MM pathogenesis in animal models, which have the potential to impact our understanding of disease pathogenesis and inform MM prevention messages.
Collapse
Affiliation(s)
- Constance Marques-Mourlet
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME, United States
- University of Strasbourg, Pharmacology Department, Strasbourg, France
| | - Reagan Di Iorio
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME, United States
- University of New England, College of Osteopathic Medicine, Biddeford, ME, United States
| | - Heather Fairfield
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME, United States
- University of Maine, Graduate School of Biomedical Science and Engineering, Orono, ME, United States
- Tufts University, School of Medicine, Boston, MA, United States
| | - Michaela R. Reagan
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME, United States
- University of Maine, Graduate School of Biomedical Science and Engineering, Orono, ME, United States
- Tufts University, School of Medicine, Boston, MA, United States
| |
Collapse
|
27
|
Fairfield H, Condruti R, Farrell M, Di Iorio R, Gartner CA, Vary C, Reagan MR. Development and characterization of three cell culture systems to investigate the relationship between primary bone marrow adipocytes and myeloma cells. Front Oncol 2023; 12:912834. [PMID: 36713534 PMCID: PMC9874147 DOI: 10.3389/fonc.2022.912834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 11/21/2022] [Indexed: 01/12/2023] Open
Abstract
The unique properties of the bone marrow (BM) allow for migration and proliferation of multiple myeloma (MM) cells while also providing the perfect environment for development of quiescent, drug-resistant MM cell clones. BM adipocytes (BMAds) have recently been identified as important contributors to systemic adipokine levels, bone strength, hematopoiesis, and progression of metastatic and primary BM cancers, such as MM. Recent studies in myeloma suggest that BMAds can be reprogrammed by tumor cells to contribute to myeloma-induced bone disease, and, reciprocally, BMAds support MM cells in vitro. Importantly, most data investigating BMAds have been generated using adipocytes generated by differentiating BM-derived mesenchymal stromal cells (BMSCs) into adipocytes in vitro using adipogenic media, due to the extreme technical challenges associated with isolating and culturing primary adipocytes. However, if studies could be performed with primary adipocytes, then they likely will recapitulate in vivo biology better than BMSC-derived adipocytes, as the differentiation process is artificial and differs from in vivo differentiation, and progenitor cell(s) of the primary BMAd (pBMAds) may not be the same as the BMSCs precursors used for adipogenic differentiation in vitro. Therefore, we developed and refined three methods for culturing pBMAds: two-dimensional (2D) coverslips, 2D transwells, and three-dimensional (3D) silk scaffolds, all of which can be cultured alone or with MM cells to investigate bidirectional tumor-host signaling. To develop an in vitro model with a tissue-like structure to mimic the BM microenvironment, we developed the first 3D, tissue engineered model utilizing pBMAds derived from human BM. We found that pBMAds, which are extremely fragile, can be isolated and stably cultured in 2D for 10 days and in 3D for up to 4 week in vitro. To investigate the relationship between pBMAds and myeloma, MM cells can be added to investigate physical relationships through confocal imaging and soluble signaling molecules via mass spectrometry. In summary, we developed three in vitro cell culture systems to study pBMAds and myeloma cells, which could be adapted to investigate many diseases and biological processes involving the BM, including other bone-homing tumor types.
Collapse
Affiliation(s)
- Heather Fairfield
- MaineHealth Institute for Research, Scarborough, ME, United States,University of Maine Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States,Tufts University School of Medicine, Boston, MA, United States
| | | | - Mariah Farrell
- MaineHealth Institute for Research, Scarborough, ME, United States,University of Maine Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States,Tufts University School of Medicine, Boston, MA, United States
| | - Reagan Di Iorio
- MaineHealth Institute for Research, Scarborough, ME, United States,University of New England, Biddeford, ME, United States
| | - Carlos A. Gartner
- MaineHealth Institute for Research, Scarborough, ME, United States,University of Maine Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States,Tufts University School of Medicine, Boston, MA, United States
| | - Calvin Vary
- MaineHealth Institute for Research, Scarborough, ME, United States,University of Maine Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States,Tufts University School of Medicine, Boston, MA, United States
| | - Michaela R. Reagan
- MaineHealth Institute for Research, Scarborough, ME, United States,University of Maine Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States,Tufts University School of Medicine, Boston, MA, United States,*Correspondence: Michaela R. Reagan,
| |
Collapse
|
28
|
Molecular Crosstalk between Chromatin Remodeling and Tumor Microenvironment in Multiple Myeloma. Curr Oncol 2022; 29:9535-9549. [PMID: 36547163 PMCID: PMC9777166 DOI: 10.3390/curroncol29120749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) is a complex disease driven by numerous genetic and epigenetic alterations that are acquired over time. Despite recent progress in the understanding of MM pathobiology and the availability of innovative drugs, which have pronounced clinical outcome, this malignancy eventually progresses to a drug-resistant lethal stage and, thus, novel therapeutic drugs/models always play an important role in effective management of MM. Modulation of tumor microenvironment is one of the hallmarks of cancer biology, including MM, which affects the myeloma genomic architecture and disease progression subtly through chromatin modifications. The bone marrow niche has a prime role in progression, survival, and drug resistance of multiple myeloma cells. Therefore, it is important to develop means for targeting the ecosystem between multiple myeloma bone marrow microenvironment and chromatin remodeling. Extensive gene expression profile analysis has indeed provided the framework for new risk stratification of MM patients and identifying novel molecular targets and therapeutics. However, key tumor microenvironment factors/immune cells and their interactions with chromatin remodeling complex proteins that drive MM cell growth and progression remain grossly undefined.
Collapse
|
29
|
Lourenço D, Lopes R, Pestana C, Queirós AC, João C, Carneiro EA. Patient-Derived Multiple Myeloma 3D Models for Personalized Medicine-Are We There Yet? Int J Mol Sci 2022; 23:12888. [PMID: 36361677 PMCID: PMC9657251 DOI: 10.3390/ijms232112888] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 12/03/2023] Open
Abstract
Despite the wide variety of existing therapies, multiple myeloma (MM) remains a disease with dismal prognosis. Choosing the right treatment for each patient remains one of the major challenges. A new approach being explored is the use of ex vivo models for personalized medicine. Two-dimensional culture or animal models often fail to predict clinical outcomes. Three-dimensional ex vivo models using patients' bone marrow (BM) cells may better reproduce the complexity and heterogeneity of the BM microenvironment. Here, we review the strengths and limitations of currently existing patient-derived ex vivo three-dimensional MM models. We analyze their biochemical and biophysical properties, molecular and cellular characteristics, as well as their potential for drug testing and identification of disease biomarkers. Furthermore, we discuss the remaining challenges and give some insight on how to achieve a more biomimetic and accurate MM BM model. Overall, there is still a need for standardized culture methods and refined readout techniques. Including both myeloma and other cells of the BM microenvironment in a simple and reproducible three-dimensional scaffold is the key to faithfully mapping and examining the relationship between these players in MM. This will allow a patient-personalized profile, providing a powerful tool for clinical and research applications.
Collapse
Affiliation(s)
- Diana Lourenço
- Myeloma Lymphoma Research Group—Champalimaud Experimental Clinical Research Programme of Champalimaud Foundation, 1400-038 Lisbon, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Raquel Lopes
- Myeloma Lymphoma Research Group—Champalimaud Experimental Clinical Research Programme of Champalimaud Foundation, 1400-038 Lisbon, Portugal
- Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| | - Carolina Pestana
- Myeloma Lymphoma Research Group—Champalimaud Experimental Clinical Research Programme of Champalimaud Foundation, 1400-038 Lisbon, Portugal
- Centre of Statistics and Its Applications, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Ana C. Queirós
- Myeloma Lymphoma Research Group—Champalimaud Experimental Clinical Research Programme of Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Cristina João
- Myeloma Lymphoma Research Group—Champalimaud Experimental Clinical Research Programme of Champalimaud Foundation, 1400-038 Lisbon, Portugal
- Faculty of Medical Sciences, NOVA Medical School, 1169-056 Lisbon, Portugal
- Hemato-Oncology Department of Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Emilie Arnault Carneiro
- Myeloma Lymphoma Research Group—Champalimaud Experimental Clinical Research Programme of Champalimaud Foundation, 1400-038 Lisbon, Portugal
| |
Collapse
|
30
|
Adipokines as Regulators of Autophagy in Obesity-Linked Cancer. Cells 2022; 11:cells11203230. [PMID: 36291097 PMCID: PMC9600294 DOI: 10.3390/cells11203230] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/02/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Excess body weight and obesity have become significant risk factors for cancer development. During obesity, adipose tissue alters its biological function, deregulating the secretion of bioactive factors such as hormones, cytokines, and adipokines that promote an inflammatory microenvironment conducive to carcinogenesis and tumor progression. Adipokines regulate tumor processes such as apoptosis, proliferation, migration, angiogenesis, and invasion. Additionally, it has been found that they can modulate autophagy, a process implicated in tumor suppression in healthy tissue and cancer progression in established tumors. Since the tumor-promoting role of autophagy has been well described, the process has been suggested as a therapeutic target in cancer. However, the effects of targeting autophagy might depend on the tumor type and microenvironmental conditions, where circulating adipokines could influence the role of autophagy in cancer. Here, we review recent evidence related to the role of adipokines in cancer cell autophagy in an effort to understand the tumor response in the context of obesity under the assumption of an autophagy-targeting treatment.
Collapse
|
31
|
Solimando AG, Malerba E, Leone P, Prete M, Terragna C, Cavo M, Racanelli V. Drug resistance in multiple myeloma: Soldiers and weapons in the bone marrow niche. Front Oncol 2022; 12:973836. [PMID: 36212502 PMCID: PMC9533079 DOI: 10.3389/fonc.2022.973836] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple myeloma (MM) is still an incurable disease, despite considerable improvements in treatment strategies, as resistance to most currently available agents is not uncommon. In this study, data on drug resistance in MM were analyzed and led to the following conclusions: resistance occurs via intrinsic and extrinsic mechanisms, including intraclonal heterogeneity, drug efflux pumps, alterations of drug targets, the inhibition of apoptosis, increased DNA repair and interactions with the bone marrow (BM) microenvironment, cell adhesion, and the release of soluble factors. Since MM involves the BM, interactions in the MM-BM microenvironment were examined as well, with a focus on the cross-talk between BM stromal cells (BMSCs), adipocytes, osteoclasts, osteoblasts, endothelial cells, and immune cells. Given the complex mechanisms that drive MM, next-generation treatment strategies that avoid drug resistance must target both the neoplastic clone and its non-malignant environment. Possible approaches based on recent evidence include: (i) proteasome and histone deacetylases inhibitors that not only target MM but also act on BMSCs and osteoclasts; (ii) novel peptide drug conjugates that target both the MM malignant clone and angiogenesis to unleash an effective anti-MM immune response. Finally, the role of cancer stem cells in MM is unknown but given their roles in the development of solid and hematological malignancies, cancer relapse, and drug resistance, their identification and description are of paramount importance for MM management.
Collapse
Affiliation(s)
- Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, School of Medicine, ‘Aldo Moro’ University of Bari, Bari, Italy
- Istituto di ricovero e cura a carattere scientifico (IRCCS) Istituto Tumori ‘Giovanni Paolo II’ of Bari, Bari, Italy
| | - Eleonora Malerba
- Department of Biomedical Sciences and Human Oncology, School of Medicine, ‘Aldo Moro’ University of Bari, Bari, Italy
| | - Patrizia Leone
- Department of Biomedical Sciences and Human Oncology, School of Medicine, ‘Aldo Moro’ University of Bari, Bari, Italy
| | - Marcella Prete
- Department of Interdisciplinary Medicine, School of Medicine, ‘Aldo Moro’ University of Bari, Bari, Italy
| | - Carolina Terragna
- ’Seràgnoli’ Institute of Hematology, Bologna University School of Medicine, Bologna, Italy
| | - Michele Cavo
- ’Seràgnoli’ Institute of Hematology, Bologna University School of Medicine, Bologna, Italy
| | - Vito Racanelli
- Department of Interdisciplinary Medicine, School of Medicine, ‘Aldo Moro’ University of Bari, Bari, Italy
- *Correspondence: Vito Racanelli,
| |
Collapse
|
32
|
Roman-Trufero M, Auner HW, Edwards CM. Multiple myeloma metabolism - a treasure trove of therapeutic targets? Front Immunol 2022; 13:897862. [PMID: 36072593 PMCID: PMC9441940 DOI: 10.3389/fimmu.2022.897862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple myeloma is an incurable cancer of plasma cells that is predominantly located in the bone marrow. Multiple myeloma cells are characterized by distinctive biological features that are intricately linked to their core function, the assembly and secretion of large amounts of antibodies, and their diverse interactions with the bone marrow microenvironment. Here, we provide a concise and introductory discussion of major metabolic hallmarks of plasma cells and myeloma cells, their roles in myeloma development and progression, and how they could be exploited for therapeutic purposes. We review the role of glucose consumption and catabolism, assess the dependency on glutamine to support key metabolic processes, and consider metabolic adaptations in drug-resistant myeloma cells. Finally, we examine the complex metabolic effects of proteasome inhibitors on myeloma cells and the extracellular matrix, and we explore the complex relationship between myeloma cells and bone marrow adipocytes.
Collapse
Affiliation(s)
- Monica Roman-Trufero
- Department of Immunology and Inflammation, Cancer Cell Protein Metabolism, The Hugh and Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Imperial College London, London, United Kingdom
| | - Holger W. Auner
- Department of Immunology and Inflammation, Cancer Cell Protein Metabolism, The Hugh and Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Imperial College London, London, United Kingdom
| | - Claire M. Edwards
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
33
|
Hernandez M, Shin S, Muller C, Attané C. The role of bone marrow adipocytes in cancer progression: the impact of obesity. Cancer Metastasis Rev 2022; 41:589-605. [PMID: 35708800 DOI: 10.1007/s10555-022-10042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/27/2022] [Indexed: 11/27/2022]
Abstract
Bone marrow adipose tissues (BMATs) and their main cellular component, bone marrow adipocytes (BMAds), are found within the bone marrow (BM), which is a niche for the development of hematological malignancies as well as bone metastasis from solid tumors such as breast and prostate cancers. In humans, BMAds are present within the hematopoietic or "red" BMAT and in the "yellow" BMAT where they are more densely packed. BMAds are emerging as new actors in tumor progression; however, there are many outstanding questions regarding their precise role. In this review, we summarized our current knowledge regarding the development, distribution, and regulation by external stimuli of the BMATs in mice and humans and addressed how obesity could affect these traits. We then discussed the specific metabolic phenotype of BMAds that appear to be different from "classical" white adipocytes, since they are devoid of lipolytic function. According to this characterization, we presented how tumor cells affect the in vitro and in vivo phenotype of BMAds and the signals emanating from BMAds that are susceptible to modulate tumor behavior with a specific emphasis on their metabolic crosstalk with cancer cells. Finally, we discussed how obesity could affect this crosstalk. Deciphering the role of BMAds in tumor progression would certainly lead to the identification of new targets in oncology in the near future.
Collapse
Affiliation(s)
- Marine Hernandez
- Institut de Pharmacologie Et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue Contre Le Cancer, Toulouse, France
| | - Sauyeun Shin
- Institut de Pharmacologie Et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue Contre Le Cancer, Toulouse, France
| | - Catherine Muller
- Institut de Pharmacologie Et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
- Equipe Labellisée Ligue Contre Le Cancer, Toulouse, France.
| | - Camille Attané
- Institut de Pharmacologie Et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
- Equipe Labellisée Ligue Contre Le Cancer, Toulouse, France.
| |
Collapse
|
34
|
Schwestermann J, Besse A, Driessen C, Besse L. Contribution of the Tumor Microenvironment to Metabolic Changes Triggering Resistance of Multiple Myeloma to Proteasome Inhibitors. Front Oncol 2022; 12:899272. [PMID: 35692781 PMCID: PMC9178120 DOI: 10.3389/fonc.2022.899272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Virtually all patients with multiple myeloma become unresponsive to treatment with proteasome inhibitors over time. Relapsed/refractory multiple myeloma is accompanied by the clonal evolution of myeloma cells with heterogeneous genomic aberrations, diverse proteomic and metabolic alterations, and profound changes of the bone marrow microenvironment. However, the molecular mechanisms that drive resistance to proteasome inhibitors within the context of the bone marrow microenvironment remain elusive. In this review article, we summarize the latest knowledge about the complex interaction of malignant plasma cells with its surrounding microenvironment. We discuss the pivotal role of metabolic reprograming of malignant plasma cells within the tumor microenvironment with a subsequent focus on metabolic rewiring in plasma cells upon treatment with proteasome inhibitors, driving multiple ways of adaptation to the treatment. At the same time, mutual interaction of plasma cells with the surrounding tumor microenvironment drives multiple metabolic alterations in the bone marrow. This provides a tumor-promoting environment, but at the same time may offer novel therapeutic options for the treatment of relapsed/refractory myeloma patients.
Collapse
Affiliation(s)
| | | | | | - Lenka Besse
- Laboratory of Experimental Oncology, Clinics for Medical Hematology and Oncology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
35
|
Targeting of the Peritumoral Adipose Tissue Microenvironment as an Innovative Antitumor Therapeutic Strategy. Biomolecules 2022; 12:biom12050702. [PMID: 35625629 PMCID: PMC9138344 DOI: 10.3390/biom12050702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 12/03/2022] Open
Abstract
The tumor microenvironment (TME) plays a key role in promoting and sustaining cancer growth. Adipose tissue (AT), due to its anatomical distribution, is a prevalent component of TME, and contributes to cancer development and progression. Cancer-associated adipocytes (CAAs), reprogrammed by cancer stem cells (CSCs), drive cancer progression by releasing metabolites and inflammatory adipokines. In this review, we highlight the mechanisms underlying the bidirectional crosstalk among CAAs, CSCs, and stromal cells. Moreover, we focus on the recent advances in the therapeutic targeting of adipocyte-released factors as an innovative strategy to counteract cancer progression.
Collapse
|
36
|
Panaroni C, Fulzele K, Mori T, Siu KT, Onyewadume C, Maebius A, Raje N. Multiple myeloma cells induce lipolysis in adipocytes and uptake fatty acids through fatty acid transporter proteins. Blood 2022; 139:876-888. [PMID: 34662370 PMCID: PMC8832479 DOI: 10.1182/blood.2021013832] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022] Open
Abstract
Adipocytes occupy 70% of the cellular volume within the bone marrow (BM) wherein multiple myeloma (MM) originates and resides. However, the nature of the interaction between MM cells and adipocytes remains unclear. Cancer-associated adipocytes support tumor cells through various mechanisms, including metabolic reprogramming of cancer cells. We hypothesized that metabolic interactions mediate the dependence of MM cells on BM adipocytes. Here we show that BM aspirates from precursor states of MM, including monoclonal gammopathy of undetermined significance and smoldering MM, exhibit significant upregulation of adipogenic commitment compared with healthy donors. In vitro coculture assays revealed an adipocyte-induced increase in MM cell proliferation in monoclonal gammopathy of undetermined significance/smoldering MM compared with newly diagnosed MM. Using murine MM cell/BM adipocyte coculture assays, we describe MM-induced lipolysis in adipocytes via activation of the lipolysis pathway. Upregulation of fatty acid transporters 1 and 4 on MM cells mediated the uptake of secreted free fatty acids (FFAs) by adjacent MM cells. The effect of FFAs on MM cells was dose dependent and revealed increased proliferation at lower concentrations vs induction of lipotoxicity at higher concentrations. Lipotoxicity occurred via the ferroptosis pathway. Exogenous treatment with arachidonic acid, a very-long-chain FFA, in a murine plasmacytoma model displayed a reduction in tumor burden. Taken together, our data reveal a novel pathway involving MM cell-induced lipolysis in BM adipocytes and suggest prevention of FFA uptake by MM cells as a potential target for myeloma therapeutics.
Collapse
Affiliation(s)
- Cristina Panaroni
- Center for Multiple Myeloma, Division of Hematology and Oncology, MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA; and
| | - Keertik Fulzele
- Center for Multiple Myeloma, Division of Hematology and Oncology, MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA; and
| | - Tomoaki Mori
- Center for Multiple Myeloma, Division of Hematology and Oncology, MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA; and
| | - Ka Tat Siu
- Center for Multiple Myeloma, Division of Hematology and Oncology, MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA; and
- Beam Therapeutics, Cambridge, MA
| | - Chukwuamaka Onyewadume
- Center for Multiple Myeloma, Division of Hematology and Oncology, MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA; and
| | - Allison Maebius
- Center for Multiple Myeloma, Division of Hematology and Oncology, MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA; and
| | - Noopur Raje
- Center for Multiple Myeloma, Division of Hematology and Oncology, MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA; and
| |
Collapse
|
37
|
Parikh R, Tariq SM, Marinac CR, Shah UA. A comprehensive review of the impact of obesity on plasma cell disorders. Leukemia 2022; 36:301-314. [PMID: 34654885 PMCID: PMC8810701 DOI: 10.1038/s41375-021-01443-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/05/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022]
Abstract
Multiple myeloma (MM) remains an incurable plasma cell malignancy. Although little is known about the etiology of MM, several metabolic risk factors such as obesity, diabetes, poor nutrition, many of which are modifiable, have been linked to the pathogenesis of numerous neoplasms including MM. In this article, we provide a detailed summary of what is known about the impact of obesity on the pathogenesis of MM, its influence on outcomes in MM patients, and discuss potential mechanisms through which obesity is postulated to influence MM risk and prognosis. Along with advancements in treatment modalities to improve survival in MM patients, focused efforts are needed to prevent or intercept MM at its earliest stages. The consolidated findings presented in this review highlight the need for clinical trials to assess if lifestyle modifications can reduce the incidence and improve outcomes of MM in high-risk populations. Data generated from such studies can help formulate evidence-based lifestyle recommendations for the prevention and control of MM.
Collapse
Affiliation(s)
- Richa Parikh
- University of Arkansas for Medical Sciences, Myeloma Center, Little Rock, AR, USA
| | - Syed Maaz Tariq
- Jinnah Sindh Medical University, Karachi City, Sindh, Pakistan
| | - Catherine R. Marinac
- Division of Population Sciences, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Urvi A. Shah
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York City, NY 10065, USA
| |
Collapse
|
38
|
Liu R, Gao D, Lv Y, Zhai M, He A. Importance of circulating adipocytokines in multiple myeloma: a systematic review and meta-analysis based on case-control studies. BMC Endocr Disord 2022; 22:29. [PMID: 35073877 PMCID: PMC8787905 DOI: 10.1186/s12902-022-00939-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/14/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Adipocytes and their products, adipocytokines, play important roles in the generation and development of multiple myeloma (MM). Studies have demonstrated some adipocytokines to be associated with MM, although those results are controversial. Therefore, we conducted a meta-analysis to verify the association of adipocytokines with MM. METHODS We performed a systematic retrieval of literature published prior to 26 October 2021. Standardized mean difference (SMD) with a 95% confidence interval (CI) was calculated to evaluate pooled effects. Subgroup analysis and meta-regression analysis were conducted to detect sources of heterogeneity. Sensitivity analysis was performed to evaluate the stability of the study. Publication bias was assessed by funnel plots and Egger's linear regression test. RESULTS Ten eligible studies with 1269 MM patients and 2158 controls were included. The pooled analyses indicated that circulating leptin levels of MM patients were significantly higher than control levels (SMD= 0.87, 95%CI: 0.33 to 1.41), while the circulating adiponectin levels in MM patients were significantly lower than controls with a pooled SMD of -0.49 (95%CI: -0.78 to -0.20). The difference of circulating resistin levels were not significant between MM patients and controls (SMD= -0.08, 95%CI: -0.55 to 0.39). Subgroup analysis and meta-regression analysis found that sample size, age, and sex were possible sources of heterogeneity. Sensitivity analysis demonstrated our pooled results to be stable. CONCLUSION Decreased circulating adiponectin and increased leptin levels were associated with the occurrence and development of MM. Adiponectin and leptin may be potential biomarkers and therapeutic targets for MM.
Collapse
Affiliation(s)
- Rui Liu
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157, 5th West Road, Xi'an, 710004, Shaanxi, China
| | - Dandan Gao
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157, 5th West Road, Xi'an, 710004, Shaanxi, China
| | - Yang Lv
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157, 5th West Road, Xi'an, 710004, Shaanxi, China
| | - Meng Zhai
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157, 5th West Road, Xi'an, 710004, Shaanxi, China
| | - Aili He
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157, 5th West Road, Xi'an, 710004, Shaanxi, China.
- National-Local Joint Engineering Research Center of Biodiagnostics & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
39
|
Da Ros F, Persano L, Bizzotto D, Michieli M, Braghetta P, Mazzucato M, Bonaldo P. Emilin-2 is a component of bone marrow extracellular matrix regulating mesenchymal stem cell differentiation and hematopoietic progenitors. Stem Cell Res Ther 2022; 13:2. [PMID: 35012633 PMCID: PMC8744352 DOI: 10.1186/s13287-021-02674-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/09/2021] [Indexed: 02/08/2023] Open
Abstract
Background Dissection of mechanisms involved in the regulation of bone marrow microenvironment through cell–cell and cell–matrix contacts is essential for the detailed understanding of processes underlying bone marrow activities both under physiological conditions and in hematologic malignancies. Here we describe Emilin-2 as an abundant extracellular matrix component of bone marrow stroma. Methods Immunodetection of Emilin-2 was performed in bone marrow sections of mice from 30 days to 6 months of age. Emilin-2 expression was monitored in vitro in primary and mesenchymal stem cell lines under undifferentiated and adipogenic conditions. Hematopoietic stem cells and progenitors in bone marrow of 3- to 10-month-old wild-type and Emilin-2 null mice were analyzed by flow cytometry. Results Emilin-2 is deposited in bone marrow extracellular matrix in an age-dependent manner, forming a meshwork that extends from compact bone boundaries to the central trabecular regions. Emilin-2 is expressed and secreted by both primary and immortalized bone marrow mesenchymal stem cells, exerting an inhibitory action in adipogenic differentiation. In vivo Emilin-2 deficiency impairs the frequency of hematopoietic stem/progenitor cells in bone marrow during aging. Conclusion Our data provide new insights in the contribution of bone marrow extracellular matrix microenvironment in the regulation of stem cell niches and hematopoietic progenitor differentiation. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02674-2.
Collapse
Affiliation(s)
- Francesco Da Ros
- SOSd Cell Stem Unit, Department of Translational Research, National Cancer Center CRO-IRCSS, 33081, Aviano, Italy.,Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Luca Persano
- Department of Women's and Children's Health, University of Padova, 35131, Padova, Italy.,IRP - Pediatric Research Institute, 35131, Padova, Italy
| | - Dario Bizzotto
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Mariagrazia Michieli
- SOSd Cell Therapy and High Dose Chemotherapy, National Cancer Center CRO- IRCCS, 33081, Aviano, Italy
| | - Paola Braghetta
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Mario Mazzucato
- SOSd Cell Stem Unit, Department of Translational Research, National Cancer Center CRO-IRCSS, 33081, Aviano, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy. .,CRIBI Biotechnology Center, University of Padova, 35131, Padova, Italy.
| |
Collapse
|
40
|
Wang Z, He J, Bach DH, Huang YH, Li Z, Liu H, Lin P, Yang J. Induction of m 6A methylation in adipocyte exosomal LncRNAs mediates myeloma drug resistance. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:4. [PMID: 34980213 PMCID: PMC8722039 DOI: 10.1186/s13046-021-02209-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/04/2021] [Indexed: 11/10/2022]
Abstract
Background Therapeutic resistance occurs in most patients with multiple myeloma (MM). One of the key mechanisms for MM drug resistance comes from the interaction between MM cells and adipocytes that inhibits drug-induced apoptosis in MM cells; MM cells reprogram adipocytes to morph into different characterizations, including exosomes, which are important for tumor-stroma cellular communication. However, the mechanism by which exosomes mediate the cellular machinery of the vicious cycle between MM cells and adipocytes remains unclear. Methods Adipocytes were either isolated from bone marrow aspirates of healthy donors or MM patients or derived from mesenchymal stem cells. Co-culturing normal adipocytes with MM cells was used to generate MM-associated adipocytes. Exosomes were collected from the culture medium of adipocytes. Annexin V-binding and TUNEL assays were performed to assess MM cell apoptosis. Methyltransferase activity assay and dot blotting were used to access the m6A methylation activity of methyltransferase like 7A (METTL7A). RIP, MeRIP-seq, and RNA–protein pull down for assessing the interaction between long non-cording RNAs (LncRNAs) and RNA binding proteins were performed. Adipocyte-specific enhancer of zeste homolog 2 (EZH2) knockout mice and MM-xenografted mice were used for evaluating MM therapeutic response in vivo. Results Exosomes collected from MM patient adipocytes protect MM cells from chemotherapy-induced apoptosis. Two LncRNAs in particular, LOC606724 and SNHG1, are significantly upregulated in MM cells after exposure to adipocyte exosomes. The raised LncRNA levels in MM cells are positively correlated to worse outcomes in patients, indicating their clinical relevancy in MM. The functional roles of adipocyte exosomal LOC606724 or SNHG1 in inhibition of MM cell apoptosis are determined by knockdown in adipocytes or overexpression in MM cells. We discovered the interactions between LncRNAs and RNA binding proteins and identified methyltransferase like 7A (METTL7A) as an RNA methyltransferase. MM cells promote LncRNA package into adipocyte exosomes through METTL7A-mediated LncRNA m6A methylation. Exposure of adipocytes to MM cells enhances METTL7A activity in m6A methylation through EZH2-mediated protein methylation. Conclusion This study elucidates an unexplored mechanism of how adipocyte-rich microenvironment exacerbates MM therapeutic resistance and indicates a potential strategy to improve therapeutic efficacy by blocking this vicious exosome-mediated cycle. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02209-w.
Collapse
Affiliation(s)
- Zhiming Wang
- Houston Methodist Cancer Center, Research Institute Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Jin He
- Houston Methodist Cancer Center, Research Institute Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Duc-Hiep Bach
- Houston Methodist Cancer Center, Research Institute Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Yung-Hsing Huang
- Houston Methodist Cancer Center, Research Institute Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Zongwei Li
- Houston Methodist Cancer Center, Research Institute Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Huan Liu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Pei Lin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jing Yang
- Houston Methodist Cancer Center, Research Institute Houston Methodist Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
41
|
Lim AR, Ghajar CM. Thorny ground, rocky soil: Tissue-specific mechanisms of tumor dormancy and relapse. Semin Cancer Biol 2022; 78:104-123. [PMID: 33979673 PMCID: PMC9595433 DOI: 10.1016/j.semcancer.2021.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
Disseminated tumor cells (DTCs) spread systemically yet distinct patterns of metastasis indicate a range of tissue susceptibility to metastatic colonization. Distinctions between permissive and suppressive tissues are still being elucidated at cellular and molecular levels. Although there is a growing appreciation for the role of the microenvironment in regulating metastatic success, we have a limited understanding of how diverse tissues regulate DTC dormancy, the state of reversible quiescence and subsequent awakening thought to contribute to delayed relapse. Several themes of microenvironmental regulation of dormancy are beginning to emerge, including vascular association, co-option of pre-existing niches, metabolic adaptation, and immune evasion, with tissue-specific nuances. Conversely, DTC awakening is often associated with injury or inflammation-induced activation of the stroma, promoting a proliferative environment with DTCs following suit. We review what is known about tissue-specific regulation of tumor dormancy on a tissue-by-tissue basis, profiling major metastatic organs including the bone, lung, brain, liver, and lymph node. An aerial view of the barriers to metastatic growth may reveal common targets and dependencies to inform the therapeutic prevention of relapse.
Collapse
Affiliation(s)
- Andrea R Lim
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Graduate Program in Molecular and Cellular Biology, University of Washington/Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Cyrus M Ghajar
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
42
|
Li Y, Cao S, Gaculenko A, Zhan Y, Bozec A, Chen X. Distinct Metabolism of Bone Marrow Adipocytes and their Role in Bone Metastasis. Front Endocrinol (Lausanne) 2022; 13:902033. [PMID: 35800430 PMCID: PMC9253270 DOI: 10.3389/fendo.2022.902033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/06/2022] [Indexed: 12/23/2022] Open
Abstract
Bone marrow adipocytes (BMAs) represent 10% of the total fat mass of the human body and serve as an energy reservoir for the skeletal niche. They function as an endocrine organ by actively secreting fatty acids, cytokines, and adipokines. The volume of BMAs increases along with age, osteoporosis and/or obesity. With the rapid development of multi-omic analysis and the advance in in vivo imaging technology, further distinct characteristics and functions of BMAs have been revealed. There is accumulating evidence that BMAs are metabolically, biologically and functionally unique from white, brown, beige and pink adipocytes. Bone metastatic disease is an uncurable complication in cancer patients, where primary cancer cells spread from their original site into the bone marrow. Recent publications have highlighted those BMAs could also serve as a rich lipid source of fatty acids that can be utilized by the cancer cells during bone metastasis, particularly for breast, prostate, lung, ovarian and pancreatic cancer as well as melanoma. In this review, we summarize the novel progressions in BMAs metabolism, especially with multi-omic analysis and in vivo imaging technology. We also update the metabolic role of BMAs in bone metastasis, and their potential new avenues for diagnosis and therapies against metastatic cancers.
Collapse
Affiliation(s)
- Yixuan Li
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Cao
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Anastasia Gaculenko
- Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Yifan Zhan
- Drug Discovery, Shanghai Huaota Biopharmaceutical Co. Ltd., Shanghai, China
| | - Aline Bozec
- Department of Internal Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Xiaoxiang Chen
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xiaoxiang Chen,
| |
Collapse
|
43
|
Gilchrist A, Echeverria SL. Targeting Chemokine Receptor CCR1 as a Potential Therapeutic Approach for Multiple Myeloma. Front Endocrinol (Lausanne) 2022; 13:846310. [PMID: 35399952 PMCID: PMC8991687 DOI: 10.3389/fendo.2022.846310] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Multiple myeloma is an incurable plasma B-cell malignancy with 5-year survival rates approximately 10-30% lower than other hematologic cancers. Treatment options include combination chemotherapy followed by autologous stem cell transplantation. However, not all patients are eligible for autologous stem cell transplantation, and current pharmacological agents are limited in their ability to reduce tumor burden and extend multiple myeloma remission times. The "chemokine network" is comprised of chemokines and their cognate receptors, and is a critical component of the normal bone microenvironment as well as the tumor microenvironment of multiple myeloma. Antagonists targeting chemokine-receptor 1 (CCR1) may provide a novel approach for treating multiple myeloma. In vitro CCR1 antagonists display a high degree of specificity, and in some cases signaling bias. In vivo studies have shown they can reduce tumor burden, minimize osteolytic bone damage, deter metastasis, and limit disease progression in multiple myeloma models. While multiple CCR1 antagonists have entered the drug pipeline, none have entered clinical trials for treatment of multiple myeloma. This review will discuss whether current CCR1 antagonists are a viable treatment option for multiple myeloma, and studies aimed at identifying which CCR1 antagonist(s) are most appropriate for this disease.
Collapse
Affiliation(s)
- Annette Gilchrist
- College of Pharmacy-Downers Grove, Department of Pharmaceutical Sciences, Midwestern University, Downers Grove, IL, United States
- *Correspondence: Annette Gilchrist,
| | | |
Collapse
|
44
|
Eng GWL, Zheng Y, Yap DWT, Teo AYT, Cheong JK. Autophagy and ncRNAs: Dangerous Liaisons in the Crosstalk between the Tumor and Its Microenvironment. Cancers (Basel) 2021; 14:cancers14010020. [PMID: 35008183 PMCID: PMC8750064 DOI: 10.3390/cancers14010020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Tumor cells communicate with the stromal cells within the tumor microenvironment (TME) to create a conducive environment for tumor growth. One major avenue for mediating crosstalk between various cell types in the TME involves exchanges of molecular payloads in the form of extracellular vesicles/exosomes. Autophagy is a fundamental mechanism to maintain intracellular homeostasis but recent reports suggest that secretory autophagy plays an important role in promoting secretion of exosomes that are packaged with non-coding RNAs (ncRNAs) and other biomolecules from the donor cell. Uptake of exosomal autophagy-modulating ncRNAs by recipient cells may further perpetuate tumor progression. Abstract Autophagy is a fundamental cellular homeostasis mechanism known to play multifaceted roles in the natural history of cancers over time. It has recently been shown that autophagy also mediates the crosstalk between the tumor and its microenvironment by promoting the export of molecular payloads such as non-coding RNA (ncRNAs) via LC3-dependent Extracellular Vesicle loading and secretion (LDELS). In turn, the dynamic exchange of exosomal ncRNAs regulate autophagic responses in the recipient cells within the tumor microenvironment (TME), for both tumor and stromal cells. Autophagy-dependent phenotypic changes in the recipient cells further enhance tumor growth and metastasis, through diverse biological processes, including nutrient supplementation, immune evasion, angiogenesis, and therapeutic resistance. In this review, we discuss how the feedforward autophagy-ncRNA axis orchestrates vital communications between various cell types within the TME ecosystem to promote cancer progression.
Collapse
Affiliation(s)
- Gracie Wee Ling Eng
- Precision Medicine Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 11, Singapore 119228, Singapore; (G.W.L.E.); (Y.Z.); (D.W.T.Y.); (A.Y.T.T.)
| | - Yilong Zheng
- Precision Medicine Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 11, Singapore 119228, Singapore; (G.W.L.E.); (Y.Z.); (D.W.T.Y.); (A.Y.T.T.)
| | - Dominic Wei Ting Yap
- Precision Medicine Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 11, Singapore 119228, Singapore; (G.W.L.E.); (Y.Z.); (D.W.T.Y.); (A.Y.T.T.)
| | - Andrea York Tiang Teo
- Precision Medicine Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 11, Singapore 119228, Singapore; (G.W.L.E.); (Y.Z.); (D.W.T.Y.); (A.Y.T.T.)
| | - Jit Kong Cheong
- Precision Medicine Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 11, Singapore 119228, Singapore; (G.W.L.E.); (Y.Z.); (D.W.T.Y.); (A.Y.T.T.)
- NUS Centre for Cancer Research, National University of Singapore, 14 Medical Dr, Centre for Translational Medicine #12-01, Singapore 117599, Singapore
- Department of Biochemistry, YLLSoM, National University of Singapore, 8 Medical Drive, MD7 #03-09, Singapore 117597, Singapore
- Correspondence: ; Tel.: +65-66016388
| |
Collapse
|
45
|
Hoy AJ, Nagarajan SR, Butler LM. Tumour fatty acid metabolism in the context of therapy resistance and obesity. Nat Rev Cancer 2021; 21:753-766. [PMID: 34417571 DOI: 10.1038/s41568-021-00388-4] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Fatty acid metabolism is known to support tumorigenesis and disease progression as well as treatment resistance through enhanced lipid synthesis, storage and catabolism. More recently, the role of membrane fatty acid composition, for example, ratios of saturated, monounsaturated and polyunsaturated fatty acids, in promoting cell survival while limiting lipotoxicity and ferroptosis has been increasingly appreciated. Alongside these insights, it has become clear that tumour cells exhibit plasticity with respect to fatty acid metabolism, responding to extratumoural and systemic metabolic signals, such as obesity and cancer therapeutics, to promote the development of aggressive, treatment-resistant disease. Here, we describe cellular fatty acid metabolic changes that are connected to therapy resistance and contextualize obesity-associated changes in host fatty acid metabolism that likely influence the local tumour microenvironment to further modify cancer cell behaviour while simultaneously creating potential new vulnerabilities.
Collapse
Affiliation(s)
- Andrew J Hoy
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
| | - Shilpa R Nagarajan
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Lisa M Butler
- Adelaide Medical School and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|
46
|
Pan T, Lin SC, Lee YC, Yu G, Song JH, Pan J, Titus M, Satcher RL, Panaretakis T, Logothetis C, Yu-Lee LY, Lin SH. Statins reduce castration-induced bone marrow adiposity and prostate cancer progression in bone. Oncogene 2021; 40:4592-4603. [PMID: 34127814 PMCID: PMC8384136 DOI: 10.1038/s41388-021-01874-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/14/2021] [Accepted: 05/27/2021] [Indexed: 02/05/2023]
Abstract
A fraction of patients undergoing androgen deprivation therapy (ADT) for advanced prostate cancer (PCa) will develop recurrent castrate-resistant PCa (CRPC) in bone. Strategies to prevent CRPC relapse in bone are lacking. Here we show that the cholesterol-lowering drugs statins decrease castration-induced bone marrow adiposity in the tumor microenvironment and reduce PCa progression in bone. Using primary bone marrow stromal cells (BMSC) and M2-10B4 cells, we showed that ADT increases bone marrow adiposity by enhancing BMSC-to-adipocyte transition in vitro. Knockdown of androgen receptor abrogated BMSC-to-adipocyte transition, suggesting an androgen receptor-dependent event. RNAseq analysis showed that androgens reduce the secretion of adipocyte hormones/cytokines including leptin during BMSC-to-adipocyte transition. Treatment of PCa C4-2b, C4-2B4, and PC3 cells with leptin led to an increase in cell cycle progression and nuclear Stat3. RNAseq analysis also showed that androgens inhibit cholesterol biosynthesis pathway, raising the possibility that inhibiting cholesterol biosynthesis may decrease BMSC-to-adipocyte transition. Indeed, statins decreased BMSC-to-adipocyte transition in vitro and castration-induced bone marrow adiposity in vivo. Statin pre-treatment reduced 22RV1 PCa progression in bone after ADT. Our findings with statin may provide one of the mechanisms to the clinical correlations that statin use in patients undergoing ADT seems to delay progression to "lethal" PCa.
Collapse
Affiliation(s)
- Tianhong Pan
- Department of Orthopedic Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Song-Chang Lin
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Yu-Chen Lee
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Guoyu Yu
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Jian H Song
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Pan
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Mark Titus
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Robert L Satcher
- Department of Orthopedic Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Theocharis Panaretakis
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher Logothetis
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Li-Yuan Yu-Lee
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
47
|
Tratwal J, Rojas-Sutterlin S, Bataclan C, Blum S, Naveiras O. Bone marrow adiposity and the hematopoietic niche: A historical perspective of reciprocity, heterogeneity, and lineage commitment. Best Pract Res Clin Endocrinol Metab 2021; 35:101564. [PMID: 34417114 DOI: 10.1016/j.beem.2021.101564] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE Here we review the current knowledge on bone marrow adipocytes (BMAds) as active contributors to the regulation of the hematopoietic niche, and as potentially pivotal players in the progression of hematological malignancies. We highlight the hierarchical and functional heterogeneity of the adipocyte lineage within the bone marrow, and how potentially different contexts dictate their interactions with hematopoietic populations. RECENT FINDINGS Growing evidence associates the adipocyte lineage with important functions in hematopoietic regulation within the BM niche. Initially proposed to serve as negative regulators of the hematopoietic microenvironment, studies have also demonstrated that BMAds positively influence the survival and maintenance of hematopoietic stem cells (HSCs). These seemingly incongruous findings may at least be partially explained by stage-specificity across the adipocytic differentiation axis and by BMAds subtypes, suggesting that the heterogeneity of these populations allows for differential context-based interactions. One such distinction relies on the location of adipocytes. Constitutive bone marrow adipose tissue (cBMAT) historically associates to the "yellow" marrow containing so-called "stable" BMAs larger in size, less responsive to stimuli, and linked to HSC quiescence. On the other hand, regulated bone marrow adipose tissue (rBMAT)-associated adipocytes, also referred to as "labile" are smaller, more responsive to hematopoietic demand and strategically situated in hematopoietically active regions of the skeleton. Here we propose a model where the effect of distinct BM stromal cell populations (BMSC) in hematopoiesis is structured along the BMSC-BMAd differentiation axis, and where the effects on HSC maintenance versus hematopoietic proliferation are segregated. In doing so, it is possible to explain how recently identified, adipocyte-primed leptin receptor-expressing, CXCL12-high adventitial reticular cells (AdipoCARs) and marrow adipose lineage precursor cells (MALPs) best support active hematopoietic cell proliferation, while adipose progenitor cells (APCs) and maturing BMAd gradually lose the capacity to support active hematopoiesis, favoring HSC quiescence. Implicated soluble mediators include MCP-1, PAI-1, NRP1, possibly DPP4 and limiting availability of CXCL12 and SCF. How remodeling occurs within the BMSC-BMAd differentiation axis is yet to be elucidated and will likely unravel a three-way regulation of the hematopoietic, bone, and adipocytic compartments orchestrated by vascular elements. The interaction of malignant hematopoietic cells with BMAds is precisely contributing to unravel specific mechanisms of remodeling. SUMMARY BMAds are important operative components of the hematopoietic microenvironment. Their heterogeneity directs their ability to exert a range of regulatory capacities in a manner dependent on their hierarchical, spatial, and biological context. This complexity highlights the importance of (i) developing experimental tools and nomenclature adapted to address stage-specificity and heterogeneity across the BMSC-BMAd differentiation axis when reporting effects in hematopoiesis, (ii) interpreting gene reporter studies within this framework, and (iii) quantifying changes in all three compartments (hematopoiesis, adiposity and bone) when addressing interdependency.
Collapse
Affiliation(s)
- Josefine Tratwal
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) & Department of Biomedical Sciences, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Shanti Rojas-Sutterlin
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) & Department of Biomedical Sciences, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Charles Bataclan
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) & Department of Biomedical Sciences, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Sabine Blum
- Hematology Service, Departments of Oncology and Laboratory Medicine, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Olaia Naveiras
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) & Department of Biomedical Sciences, University of Lausanne (UNIL), Lausanne, Switzerland; Hematology Service, Departments of Oncology and Laboratory Medicine, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland.
| |
Collapse
|
48
|
Khalife J, Sanchez JF, Pichiorri F. The Emerging Role of Extracellular Vesicle-Associated RNAs in the Multiple Myeloma Microenvironment. Front Oncol 2021; 11:689538. [PMID: 34235082 PMCID: PMC8255802 DOI: 10.3389/fonc.2021.689538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is a cancer of terminally differentiated plasma cells (PCs) that develop at multiple sites within the bone marrow (BM). MM is treatable but rarely curable because of the frequent emergence of drug resistance and relapse. Increasing evidence indicates that the BM microenvironment plays a major role in supporting MM-PC survival and resistance to therapy. The BM microenvironment is a complex milieu containing hematopoietic cells, stromal cells, endothelial cells, immune cells, osteoclasts and osteoblasts, all contributing to the pathobiology of MM, including PC proliferation, escape from immune surveillance, angiogenesis and bone disease development. Small extracellular vesicles (EVs) are heterogenous lipid structures released by all cell types and mediate local and distal cellular communication. In MM, EVs are key mediators of the cross-talk between PCs and the surrounding microenvironment because of their ability to deliver bioactive cargo molecules such as lipids, mRNAs, non-coding regulatory RNA and proteins. Hence, MM-EVs highly contribute to establish a tumor-supportive BM niche that impacts MM pathogenesis and disease progression. In this review, we will first highlight the effects of RNA-containing, MM-derived EVs on the several cellular compartments within the BM microenvironment that play a role in the different aspects of MM pathology. We will also touch on the prospective use of MM-EV-associated non-coding RNAs as clinical biomarkers in the context of “liquid biopsy” in light of their importance as a promising tool in MM diagnosis, prognosis and prediction of drug resistance.
Collapse
Affiliation(s)
- Jihane Khalife
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, CA, United States.,Department of Hematologic Malignancies Translational Science, City of Hope, Duarte, CA, United States
| | - James F Sanchez
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, CA, United States
| | - Flavia Pichiorri
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, CA, United States.,Department of Hematologic Malignancies Translational Science, City of Hope, Duarte, CA, United States
| |
Collapse
|
49
|
Ni Y, Zhou X, Yang J, Shi H, Li H, Zhao X, Ma X. The Role of Tumor-Stroma Interactions in Drug Resistance Within Tumor Microenvironment. Front Cell Dev Biol 2021; 9:637675. [PMID: 34095111 PMCID: PMC8173135 DOI: 10.3389/fcell.2021.637675] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/19/2021] [Indexed: 02/05/2023] Open
Abstract
Cancer cells resistance to various therapies remains to be a key challenge nowadays. For a long time, scientists focused on tumor cells themselves for the mechanisms of acquired drug resistance. However, recent evidence showed that tumor microenvironment (TME) is essential for regulating immune escape, drug resistance, progression and metastasis of malignant cells. Reciprocal interactions between cancer cells and non-malignant cells within this milieu often reshape the TME and promote drug resistance. Therefore, advanced knowledge about these sophisticated interactions is significant for the design of effective therapeutic approaches. In this review, we highlight cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs), T-regulatory lymphocytes (Tregs), mesenchymal stem cells (MSCs), cancer-associated adipocytes (CAAs), and tumor endothelial cells (TECs) existing in TME, as well as their multiple cross-talk with tumor cells, which eventually endows tumor cells with therapeutic resistance.
Collapse
Affiliation(s)
- Yanghong Ni
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China.,Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xiaoting Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China.,Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Jia Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China.,Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Houhui Shi
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China.,Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Hongyi Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China.,Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
50
|
Giannakoulas N, Ntanasis-Stathopoulos I, Terpos E. The Role of Marrow Microenvironment in the Growth and Development of Malignant Plasma Cells in Multiple Myeloma. Int J Mol Sci 2021; 22:ijms22094462. [PMID: 33923357 PMCID: PMC8123209 DOI: 10.3390/ijms22094462] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022] Open
Abstract
The development and effectiveness of novel therapies in multiple myeloma have been established in large clinical trials. However, multiple myeloma remains an incurable malignancy despite significant therapeutic advances. Accumulating data have elucidated our understanding of the genetic background of the malignant plasma cells along with the role of the bone marrow microenvironment. Currently, the interaction among myeloma cells and the components of the microenvironment are considered crucial in multiple myeloma pathogenesis. Adhesion molecules, cytokines and the extracellular matrix play a critical role in the interplay among genetically transformed clonal plasma cells and stromal cells, leading to the proliferation, progression and survival of myeloma cells. In this review, we provide an overview of the multifaceted role of the bone marrow microenvironment in the growth and development of malignant plasma cells in multiple myeloma.
Collapse
Affiliation(s)
- Nikolaos Giannakoulas
- Department of Hematology of University Hospital of Larisa, Faculty of Medicine, University of Thessaly, 41110 Larisa, Greece;
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece;
- Correspondence:
| |
Collapse
|