1
|
Alhegaili AS, Bafail DA, Bawahab AA, Alsubaie N, Abd-Elhakim YM, Mohamed AAR, Khamis T, Khalifa NE, Elhamouly M, Dahran N, El Shetry ES. The interplay of oxidative stress, apoptotic signaling, and impaired mitochondrial function in the pyrethroid-induced cardiac injury: Alleviative role of curcumin-loaded chitosan nanoparticle. Food Chem Toxicol 2024; 194:115095. [PMID: 39515510 DOI: 10.1016/j.fct.2024.115095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
This study assessed the consequence of exposure to a pyrethroid insecticide, fenpropathrin (FPN), on the heart and the probable underlying mechanisms in rats. Moreover, the probable protective effect of curcumin-loaded chitosan nanoparticles (CMN-CNP) was evaluated. Forty male Sprague Dawley rats were distributed into four groups orally given corn oil, CMN-CNP (50 mg/kg b.wt), FPN (15 mg/kg b.wt), or CMN-CNP + FPN for 60 days. The results revealed that FPN exposure increased serum cardiac damage indicators. In addition, a substantial increase in the reactive oxygen species and malondialdehyde content but reduced enzymatic and non-enzymatic antioxidants and altered architecture was recorded in the cardiac tissue of FPN-exposed rats. Additionally, a significant down-regulation of expression of the mitochondrial complexes I-V, mitochondrial dynamics, and antioxidants-related genes but up-regulation of apoptosis-related genes was detected in the FPN-exposed group. Immunofluorescence analyses revealed higher amounts of the harmful protein 4-hydroxynonenal in the heart tissue of FPN-exposed rats. Nevertheless, the earlier disturbances were significantly rescued in the FPN + CMN-CNP treated group. Conclusively, our findings reported the cardiotoxic activity of FPN and the involvement of several mitochondrial imbalances as a probable underlying mechanism. Also, the study findings proved the efficacy of CMN-CNP in combating FPN cardiotoxic effects.
Collapse
Affiliation(s)
- Alaa S Alhegaili
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Duaa Abdullah Bafail
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Abdulwahab Bawahab
- Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Nawal Alsubaie
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51511, Egypt
| | - Moustafa Elhamouly
- Department of Histology and Cytology Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Naief Dahran
- Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Eman S El Shetry
- Department of Anatomy, College of Medicine, University of Hail, Hail, Saudi Arabia; Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
2
|
Wang J, Chen Y, Yuan H, Zhang X, Febbraio M, Pan Y, Huang S, Liu Z. Mitochondrial biogenesis disorder and oxidative damage promote refractory apical periodontitis in rat and human. Int Endod J 2024; 57:1326-1342. [PMID: 38881187 DOI: 10.1111/iej.14106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/18/2024]
Abstract
AIM To elucidate whether mitochondrial biogenesis disorder and damage from oxidative stress promote refractory apical periodontitis (RAP) in rat and human. METHODOLOGY Twenty Enterococcus faecalis-induced RAPs were established in the maxillary first molars of male Wistar rats. Concurrently, 12 periapical lesion specimens from patients presenting with RAP were obtained by apicoectomy. Radiographic examination and histologic analysis were conducted to evaluate periapical bone tissue destruction and morphological changes. The expression of key regulators of mitochondrial biogenesis, PGC-1α and Nrf2, were detected by immunohistochemistry and double immunofluorescence staining, Western blot and real-time PCR were also assayed. Mitochondrial ROS (mtROS) was identified by MitoSOX staining. Mitochondrial function was detected by the quantification of ATP production, mitochondrial DNA (mtDNA) copy number and activities of mitochondrial respiratory chain complexes. Furthermore, mitochondrial oxidative stress was evaluated by the determination of 3-nitrotyrosine (3-NT), 4-hydroxy-2-nonenal (4-HNE) and 8-hydroxy-deoxyguanosine (8-OHdG) expression levels, as well as malondialdehyde (MDA) expression and antioxidant capacity. Student's t-test was performed to determine significance between the groups; p < .05 was considered significant. RESULTS In the maxilla, significantly more bone resorption, greater number of periapical apoptotic cells and Tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells were observed in the RAP group compared with the control group (p < .01). PGC-1α and Nrf2 were significantly reduced in rat and human RAP lesions compared to the control group (p < .01) at both the mRNA and protein levels. Double immunofluorescence analysis of PGC-1α or Nrf2 with TOMM20 also indicated that mitochondrial biogenesis was impaired in RAP group (p < .01). Additionally, mitochondrial dysfunction was observed in RAP group, as reflected by increased mtROS, decreased ATP production, reduced mtDNA copy number and complexes of the mitochondrial respiratory chain. Finally, the expression levels of mitochondrial oxidative stress markers, 3-NT, 4-HNE and 8-OHdG, were significantly increased in the RAP group (p < .01). Consistent with this, systemic oxidative damage was also present in the progression of RAP, including increased MDA expression and decreased antioxidant activity (p < .01). CONCLUSIONS Mitochondrial biogenesis disorder and damage from oxidative stress contribute to the development of RAP.
Collapse
Affiliation(s)
- Jun Wang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yuge Chen
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Huina Yuan
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Xuejia Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Maria Febbraio
- Department of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Yihuai Pan
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Shengbin Huang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Zhongfang Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Narala VR, Narala SR, Aiya Subramani P, Panati K, Kolliputi N. Role of mitochondria in inflammatory lung diseases. Front Pharmacol 2024; 15:1433961. [PMID: 39228517 PMCID: PMC11368744 DOI: 10.3389/fphar.2024.1433961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024] Open
Abstract
Mitochondria play a significant and varied role in inflammatory lung disorders. Mitochondria, known as the powerhouse of the cell because of their role in producing energy, are now recognized as crucial regulators of inflammation and immunological responses. Asthma, chronic obstructive pulmonary disease, and acute respiratory distress syndrome are characterized by complex interactions between immune cells, inflammatory substances, and tissue damage. Dysfunctional mitochondria can increase the generation of reactive oxygen species (ROS), triggering inflammatory pathways. Moreover, mitochondrial failure impacts cellular signaling, which in turn affects the expression of molecules that promote inflammation. In addition, mitochondria have a crucial role in controlling the behavior of immune cells, such as their activation and differentiation, which is essential in the development of inflammatory lung diseases. Their dynamic behavior, encompassing fusion, fission, and mitophagy, also impacts cellular responses to inflammation and oxidative stress. Gaining a comprehensive understanding of the intricate correlation between mitochondria and lung inflammation is essential in order to develop accurate treatment strategies. Targeting ROS generation, dynamics, and mitochondrial function may offer novel approaches to treating inflammatory lung diseases while minimizing tissue damage. Additional investigation into the precise contributions of mitochondria to lung inflammation will provide significant knowledge regarding disease mechanisms and potential therapeutic approaches. This review will focus on how mitochondria in the lung regulate these processes and their involvement in acute and chronic lung diseases.
Collapse
Affiliation(s)
| | | | | | - Kalpana Panati
- Department of Biotechnology, Government College for Men, Kadapa, India
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
4
|
Zhong T, Li Y, Jin M, Liu J, Wu Z, Zhu F, Zhao L, Fan Y, Xu L, Ji J. Downregulation of 4-HNE and FOXO4 collaboratively promotes NSCLC cell migration and tumor growth. Cell Death Dis 2024; 15:546. [PMID: 39085238 PMCID: PMC11291900 DOI: 10.1038/s41419-024-06948-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Non-small cell lung cancer (NSCLC) is among the most prevalent cancers and a leading cause of cancer-related mortality globally. Extracellular vesicles (EVs) derived from NSCLC play a pivotal role in lung cancer progression. Our findings reveal a direct correlation between the abundance of EVs and the transfection efficiencies. Co-culturing two different lung cancer cell lines could enhance EVs formation, cell proliferation, migration and tumorigenicity. mRNA chip and metabolic analyses revealed significant alterations in the FOXO signaling pathway and unsaturated fatty acid metabolism within tumor tissues derived from co-cultured cells. Shotgun lipidomics studies and bioinformatics analyses guided our attention towards 4-Hydroxynonenal (4-HNE) and FOXO4. Elevating 4-HNE or FOXO4 levels could reduce the formation of EVs and impede cell growth and migration. While silencing FOXO4 expression lead to an increase in cell cloning rate and enhanced migration. These findings suggest that regulating the production of 4-HNE and FOXO4 might provide an effective therapeutic approach for the treatment of NSCLC.
Collapse
Affiliation(s)
- Tianfei Zhong
- College of Basic Medical, Zhejiang Chinese Medical University, Hangzhou, China
- Logistic Affairs Department, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Li
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meng Jin
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingqun Liu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhenyu Wu
- College of Basic Medical, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laborat Laboratory of Chinese Medicine Rtheumatology of Zhejiang Province, Hangzhou, China
| | - Feiye Zhu
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lisha Zhao
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Yongsheng Fan
- Key Laborat Laboratory of Chinese Medicine Rtheumatology of Zhejiang Province, Hangzhou, China
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Xu
- College of Basic Medical, Zhejiang Chinese Medical University, Hangzhou, China.
- Key Laborat Laboratory of Chinese Medicine Rtheumatology of Zhejiang Province, Hangzhou, China.
| | - Jinjun Ji
- College of Basic Medical, Zhejiang Chinese Medical University, Hangzhou, China.
- Key Laborat Laboratory of Chinese Medicine Rtheumatology of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
5
|
Gupta RC, Singh-Gupta V, Szekely KJ, Zhang K, Lanfear DE, Sabbah HN. Dysregulation of cardiac mitochondrial aldehyde dehydrogenase 2: Studies in dogs with chronic heart failure. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 8:100067. [PMID: 38938550 PMCID: PMC11210280 DOI: 10.1016/j.jmccpl.2024.100067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Mitochondrial (MITO) dysfunction occurs in the failing heart and contributes to worsening of heart failure (HF). Reduced aldehyde dehydrogenase 2 (ALDH2) in left ventricular (LV) myocardium of diabetic hearts has been implicated in MITO dysfunction through accumulation of toxic aldehydes including and elevated levels of 4-hydroxy-2-nonenal (4HNE). This study examined whether dysregulation of MITO ALDH2 (mALDH2) occurs in mitochondria of the failing LV and is associated with increased levels of 4HNE. LV tissue from 7 HF and 7 normal (NL) dogs was obtained. Protein quantification of total mitochondrial ALDH2 (t-mALDH2), phosphorylated mALDH2 (p-mALDH2), total MITO protein kinase c epsilon (t-mPKCε), phosphorylated mPKCε (p-mPKCε) was performed by Western blotting, and total mALDH2 enzymatic activity was measured. Protein adducts of 4HNE-MITO and 4HNE-mALDH2 were also measured in MITO fraction by Western Blotting. Protein level of t-mALDH2 was decreased in HF compared with NL dogs (0.63 ± 0.07 vs 1.17 ± 0.08, p < 0.05) as did mALDH2 enzymatic activity (51.39 ± 3 vs. 107.66 ± 4 nmol NADH/min/mg, p < 0.05). Phosphorylated-mALDH2 and p-mPKCε were unchanged. 4HNE-MITO proteins adduct levels increased in HF compared with NL (2.45 ± 0.08 vs 1.30 ± 0.03 du, p < 0.05) as did adduct levels of 4HNE-mALDH2 (1.60 ± 0.20 vs 0.39 ± 0.08, p < 0.05). In isolated failing cardiomyocytes (CM) exposure to 4HNE decreased mALDH2 activity, increased ROS and 4HNE-ALDH2 adducts, and worsened MITO function. Stimulation of mALDH2 activity with ALDA-1 in isolated HF CMs compared to NL CMs improved ADP-stimulated respiration and maximal ATP synthesis to a greater extant (+47 % and +89 %, respectively). Down-regulation of mALDH2 protein levels and activity occurs in HF and contributes to MITO dysfunction and is likely caused by accumulation of 4HNE-mALDH2 adduct. Increasing mALDH2 activity (via ALDA-1) improved MITO function in failing CMs.
Collapse
Affiliation(s)
- Ramesh C. Gupta
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
- Henry Ford Health & Michigan State University Health Science, USA
| | - Vinita Singh-Gupta
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
- Henry Ford Health & Michigan State University Health Science, USA
| | - Kristina J. Szekely
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
- Henry Ford Health & Michigan State University Health Science, USA
| | - Kefei Zhang
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
- Henry Ford Health & Michigan State University Health Science, USA
| | - David E. Lanfear
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
- Henry Ford Health & Michigan State University Health Science, USA
| | - Hani N. Sabbah
- Corresponding author at: Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA. (H.N. Sabbah)
| |
Collapse
|
6
|
Valdenassi L, Chierchia M, Pandolfi S, Bellardi D, Chirumbolo S, Franzini M. Adjunct treatment with ozone to enhance therapy of knee osteoarthritis: preliminary results. Clin Rheumatol 2024; 43:2093-2101. [PMID: 38671261 DOI: 10.1007/s10067-024-06972-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Knee osteoarthritis (knee OA), commonly known as gonarthrosis, is a chronic pathology involving knee at the joint level causing progressive pain, stiffness and difficulty in ambulation and leg movements. So far in situ infiltration therapies such as platelet rich plasma, conditioned autologous serum or hyaluronic acid, provided some encouraging though limited hopes for a routinely recommended therapy for knee OA. Recent clinical successful observations about the use of whole autologous blood ozonated with a calibrated mixture of oxygen and ozone, has promoted the present research study, in order to treat knee OA. A number of 250 patients suffering with knee OA of different Ahlback scores, were treated with infiltration of ozonated blood and evaluated for their WOMAC and Lequesne indexes, pre- and post-treatment, to evaluate pain, disability and stiffness. Patients recovered about 50% of their health status, reducing pain, stiffness and disability by only 5 sessions, one/week, with 20 μg/ml O3 ozonated autologous blood knee infiltrations. The evidence asks for further supporting results yet encourages our efforts to go ahead in this research issue. Key Points •The oxygen-ozone therapy via ozonated blood infiltration was used in this study. •Ozone reduced pain, disability, and stiffness in both female and male patients. •The treatment with ozone improved WOMAC both in type I and type II Ahlback knee OA. •The oxygen-ozone therapy via ozonated blood ameliorated Lequesne functional index.
Collapse
Affiliation(s)
- Luigi Valdenassi
- Magenta Medical Center, Genoa, Italy
- Italian Scientific Society of Oxygen Ozone Therapy (SIOOT) and Master School of Oxygen Ozone Therapy, University of Pavia, Pavia, Italy
| | - Marianna Chierchia
- Department of Orthopedics and Traumatology, University of Caserta "Luigi Vanvitelli", Caserta, Italy
| | - Sergio Pandolfi
- Italian Scientific Society of Oxygen Ozone Therapy (SIOOT) and Master School of Oxygen Ozone Therapy, University of Pavia, Pavia, Italy
| | | | - Salvatore Chirumbolo
- Department of Engineering and Innovation Medicine (DIMI), University of Verona, Strada Le Grazie 8, 37134, Verona, Italy.
| | - Marianno Franzini
- Italian Scientific Society of Oxygen Ozone Therapy (SIOOT) and Master School of Oxygen Ozone Therapy, University of Pavia, Pavia, Italy
| |
Collapse
|
7
|
Adejor J, Tumukunde E, Li G, Lin H, Xie R, Wang S. Impact of Lysine Succinylation on the Biology of Fungi. Curr Issues Mol Biol 2024; 46:1020-1046. [PMID: 38392183 PMCID: PMC10888112 DOI: 10.3390/cimb46020065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 02/24/2024] Open
Abstract
Post-translational modifications (PTMs) play a crucial role in protein functionality and the control of various cellular processes and secondary metabolites (SMs) in fungi. Lysine succinylation (Ksuc) is an emerging protein PTM characterized by the addition of a succinyl group to a lysine residue, which induces substantial alteration in the chemical and structural properties of the affected protein. This chemical alteration is reversible, dynamic in nature, and evolutionarily conserved. Recent investigations of numerous proteins that undergo significant succinylation have underscored the potential significance of Ksuc in various biological processes, encompassing normal physiological functions and the development of certain pathological processes and metabolites. This review aims to elucidate the molecular mechanisms underlying Ksuc and its diverse functions in fungi. Both conventional investigation techniques and predictive tools for identifying Ksuc sites were also considered. A more profound comprehension of Ksuc and its impact on the biology of fungi have the potential to unveil new insights into post-translational modification and may pave the way for innovative approaches that can be applied across various clinical contexts in the management of mycotoxins.
Collapse
Affiliation(s)
- John Adejor
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Elisabeth Tumukunde
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guoqi Li
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Lin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rui Xie
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
8
|
Zhu Y, He YJ, Yu Y, Xu D, Yuan SY, Yan H. Aldehyde Dehydrogenase 2 Preserves Mitochondrial Function in the Ischemic Heart: A Redox-dependent Mechanism for AMPK Activation by Thioredoxin-1. J Cardiovasc Pharmacol 2024; 83:93-104. [PMID: 37816196 DOI: 10.1097/fjc.0000000000001499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/24/2023] [Indexed: 10/12/2023]
Abstract
ABSTRACT Aldehyde dehydrogenase 2 (ALDH2) protects the ischemic heart by activating adenosine 5'-monophosphate-activated protein kinase (AMPK) signaling. However, the molecular mechanisms linking ALDH2 and AMPK signaling are not fully understood. This study aimed to explore the potential mechanisms linking ALDH2 and AMPK in myocardial ischemic injury. An ischemic model was established by ligating the left anterior descending coronary artery in rats. The overexpression or knockdown of ALDH2 in H9c2 cells treated with oxygen-glucose deprivation was obtained through lentivirus infection. Transferase-mediated dUTP nick-end labeling was used to evaluate apoptosis in an ischemic rat model and oxygen-glucose deprivation cells. ALDH2 activity, mitochondrial oxidative stress markers, adenosine triphosphate, respiratory control ratio, and cell viability in H9c2 cells were evaluated using a biological kit and 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide. Protein expression of ALDH2 , 4-hydroxynonenal, thioredoxin-1 (Trx-1), and AMPK-proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) signaling pathway was detected through Western blotting. ALDH2 activation reduced ischemic-induced myocardial infarct size and apoptosis. ALDH2 protected mitochondrial function by enhancing mitochondrial respiratory control ratio and adenosine triphosphate production, alleviated mitochondrial oxidative stress, and suppressed myocardial apoptosis. Moreover, ALDH2 attenuated ischemia-induced oxidative stress and maintained Trx-1 levels by reducing 4-hydroxynonenal, thereby promoting AMPK-PGC-1α signaling activation. Inhibiting Trx-1 or AMPK abolished the cardioprotective effect of ALDH2 on ischemia. ALDH2 alleviates myocardial injury through increased mitochondrial biogenesis and reduced oxidative stress, and these effects were achieved through Trx1-mediating AMPK-PGC1-α signaling activation.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Jun He
- Department of Intensive Care Unit, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China; and
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Yu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi-Ying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Yan
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
She W, Shi X, Liu T, Liu Y, Liu Y. Discovery of novel organoarsenicals as robust thioredoxin reductase inhibitors for oxidative stress mediated cancer therapy. Biochem Pharmacol 2023; 218:115908. [PMID: 37931662 DOI: 10.1016/j.bcp.2023.115908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Targeting overexpressed thioredoxin reductase (TrxR) in cancer cells to induce oxidative stress has been proved to be an effective strategy for cancer therapy. However, the treatment was hindered by the low efficiency and frequent administration of TrxR inhibitors, and hence more potent TrxR inhibitors were urgently needed. Herein, we designed and synthesized a series of TrxR inhibitors based on arsenicals. Among these, compound 1d inhibited the proliferation of a variety of cancer cells at low micromolar concentrations and exhibited low toxicity to normal cells. Importantly, compound 1d induced the accumulation of reactive oxygen species (ROS) by inhibiting the TrxR activity, further causing the collapse of the redox system, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, and DNA damage, followed by oxidative stress-induced cell apoptosis. In vivo data showed that, compared with the clinical TrxR inhibitor auranofin (AUR), compound 1d could more effectively eliminate tumors by 90 % at a dose of 1.5 mg/kg without any obvious side effects. These results indicated that compound 1d was a potent TrxR inhibitor against cancer.
Collapse
Affiliation(s)
- Wenyan She
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, PR China
| | - Xuemin Shi
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, PR China
| | - Tingting Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry & School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Yujiao Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry & School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Yi Liu
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, PR China; State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry & School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China; Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, PR China.
| |
Collapse
|
10
|
Chirumbolo S, Tirelli U, Franzini M, Pandolfi S, Ricevuti G, Vaiano F, Valdenassi L. Ozone in the adjunct medical treatment. The round personality of a molecule with hormetic properties. Hum Exp Toxicol 2023; 42:9603271231218926. [PMID: 38073286 DOI: 10.1177/09603271231218926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Ozone, an allotrope of oxygen, is enjoying an increasing interest in the setting and management of the medical adjunct treatment, which is called, maybe too simplistically, "ozone therapy". Ozone is not a medicine, so the word therapy does not properly fit this gaseous molecule. Like many natural compounds, for example plant flavonoids, even ozone interacts with aryl hydrocarbon receptors (AhRs) and, at low doses, it works according to the paradoxical mechanism of hormesis, involving mitochondria (mitohormesis). Ozone, in the hormetic range, exerts cell protective functions via the Nrf2-mediated activation of the anti-oxidant system, then leading to anti-inflammatory effects, also via the triggering of low doses of 4-HNE. Moreover, its interaction with plasma and lipids forms reactive oxygen species (ROS) and lipoperoxides (LPOs), generally called ozonides, which are enabled to rule the major molecular actions of ozone in the cell. Ozone behaves as a bioregulator, by activating a wide population of reactive intermediates, which usually target mitochondria and their turnover/biogenesis, often leading to a pleiotropic spectrum of actions and behaving as a tuner of the fundamental mechanisms of survival in the cell. In this sense, ozone can be considered a novelty in the medical sciences and in the clinical approach to pharmacology and medical therapy, due to its ability to target complex regulatory systems and not simple receptors.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | | | - Marianno Franzini
- Italian Scientific Society of Oxygen Ozone Therapy (SIOOT) and High Master School in Oxygen Ozone Therapy, University of Pavia, Pavia, Italy
| | - Sergio Pandolfi
- Italian Scientific Society of Oxygen Ozone Therapy (SIOOT) and High Master School in Oxygen Ozone Therapy, University of Pavia, Pavia, Italy
| | | | - Francesco Vaiano
- Italian Scientific Society of Oxygen Ozone Therapy (SIOOT) and High Master School in Oxygen Ozone Therapy, University of Pavia, Pavia, Italy
| | - Luigi Valdenassi
- Italian Scientific Society of Oxygen Ozone Therapy (SIOOT) and High Master School in Oxygen Ozone Therapy, University of Pavia, Pavia, Italy
| |
Collapse
|
11
|
Attanzio A, Restivo I, Tutone M, Tesoriere L, Allegra M, Livrea MA. Redox Properties, Bioactivity and Health Effects of Indicaxanthin, a Bioavailable Phytochemical from Opuntia ficus indica, L.: A Critical Review of Accumulated Evidence and Perspectives. Antioxidants (Basel) 2022; 11:antiox11122364. [PMID: 36552572 PMCID: PMC9774763 DOI: 10.3390/antiox11122364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Phytochemicals from plant foods are considered essential to human health. Known for their role in the adaptation of plants to their environment, these compounds can induce adaptive responses in cells, many of which are directed at maintaining the redox tone. Indicaxanthin is a long-known betalain pigment found in the genus Opuntia of cactus pear and highly concentrated in the edible fruits of O. ficus indica, L. whose bioactivity has been overlooked until recently. This review summarizes studies conducted so far in vitro and in vivo, most of which have been performed in our laboratory. The chemical and physicochemical characteristics of Indicaxanthin are reflected in the molecule's reducing properties and antioxidant effects and help explain its ability to interact with membranes, modulate redox-regulated cellular pathways, and possibly bind to protein molecules. Measurement of bioavailability in volunteers has been key to exploring its bioactivity; amounts consistent with dietary intake, or plasma concentration after dietary consumption of cactus pear fruit, have been used in experimental setups mimicking physiological or pathophysiological conditions, in cells and in animals, finally suggesting pharmacological potential and relevance of Indicaxanthin as a nutraceutical. In reporting experimental results, this review also aimed to raise questions and seek insights for further basic research and health promotion applications.
Collapse
|
12
|
Electrophilic Aldehyde 4-Hydroxy-2-Nonenal Mediated Signaling and Mitochondrial Dysfunction. Biomolecules 2022; 12:biom12111555. [PMID: 36358905 PMCID: PMC9687674 DOI: 10.3390/biom12111555] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 01/21/2023] Open
Abstract
Reactive oxygen species (ROS), a by-product of aerobic life, are highly reactive molecules with unpaired electrons. The excess of ROS leads to oxidative stress, instigating the peroxidation of polyunsaturated fatty acids (PUFA) in the lipid membrane through a free radical chain reaction and the formation of the most bioactive aldehyde, known as 4-hydroxynonenal (4-HNE). 4-HNE functions as a signaling molecule and toxic product and acts mainly by forming covalent adducts with nucleophilic functional groups in proteins, nucleic acids, and lipids. The mitochondria have been implicated as a site for 4-HNE generation and adduction. Several studies clarified how 4-HNE affects the mitochondria's functions, including bioenergetics, calcium homeostasis, and mitochondrial dynamics. Our research group has shown that 4-HNE activates mitochondria apoptosis-inducing factor (AIFM2) translocation and facilitates apoptosis in mice and human heart tissue during anti-cancer treatment. Recently, we demonstrated that a deficiency of SOD2 in the conditional-specific cardiac knockout mouse increases ROS, and subsequent production of 4-HNE inside mitochondria leads to the adduction of several mitochondrial respiratory chain complex proteins. Moreover, we highlighted the physiological functions of HNE and discussed their relevance in human pathophysiology and current discoveries concerning 4-HNE effects on mitochondria.
Collapse
|
13
|
The Mito-Hormetic Mechanisms of Ozone in the Clearance of SARS-CoV2 and in the COVID-19 Therapy. Biomedicines 2022; 10:biomedicines10092258. [PMID: 36140358 PMCID: PMC9496465 DOI: 10.3390/biomedicines10092258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
An increasing body of evidence in the literature is reporting the feasibility of using medical ozone as a possible alternative and adjuvant treatment for COVID-19 patients, significantly reducing hospitalization time, pro-inflammatory indicators, and coagulation markers and improving blood oxygenation parameters. In addition to the well-described ability of medical ozone in counteracting oxidative stress through the upregulation of the main anti-oxidant and scavenging enzymes, oxygen–ozone (O2–O3) therapy has also proved effective in reducing chronic inflammation and the occurrence of immune thrombosis, two key players involved in COVID-19 exacerbation and severity. As chronic inflammation and oxidative stress are also reported to be among the main drivers of the long sequelae of SARS-CoV2 infection, a rising number of studies is investigating the potential of O2–O3 therapy to reduce and/or prevent the wide range of post-COVID (or PASC)-related disorders. This narrative review aims to describe the molecular mechanisms through which medical ozone acts, to summarize the clinical evidence on the use of O2–O3 therapy as an alternative and adjuvant COVID-19 treatment, and to discuss the emerging potential of this approach in the context of PASC symptoms, thus offering new insights into effective and safe nonantiviral therapies for the fighting of this devastating pandemic.
Collapse
|
14
|
Chio JCT, Punjani N, Hejrati N, Zavvarian MM, Hong J, Fehlings MG. Extracellular Matrix and Oxidative Stress Following Traumatic Spinal Cord Injury: Physiological and Pathophysiological Roles and Opportunities for Therapeutic Intervention. Antioxid Redox Signal 2022; 37:184-207. [PMID: 34465134 DOI: 10.1089/ars.2021.0120] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Traumatic spinal cord injury (SCI) causes significant disruption to neuronal, glial, vascular, and extracellular elements. The spinal cord extracellular matrix (ECM) comprises structural and communication proteins that are involved in reparative and regenerative processes after SCI. In the healthy spinal cord, the ECM helps maintain spinal cord homeostasis. After SCI, the damaged ECM limits plasticity and contributes to inflammation through the expression of damage-associated molecules such as proteoglycans. Recent Advances: Considerable insights have been gained by characterizing the origins of the gliotic and fibrotic scars, which not only reduce the spread of injury but also limit neuroregeneration. These properties likely limit the success of therapies used to treat patients with SCI. The ECM, which is a major contributor to the scars and normal physiological functions of the spinal cord, represents an exciting therapeutic target to enhance recovery post-SCI. Critical Issue: Various ECM-based preclinical therapies have been developed. These include disrupting scar components, inhibiting activity of ECM metalloproteinases, and maintaining iron homeostasis. Biomaterials have also been explored. However, the majority of these treatments have not experienced successful clinical translation. This could be due to the ECM and scars' polarizing roles. Future Directions: This review surveys the complexity involved in spinal ECM modifications, discusses new ECM-based combinatorial strategies, and explores the biomaterials evaluated in clinical trials, which hope to introduce new treatments that enhance recovery after SCI. These topics will incorporate oxidative species, which are both beneficial and harmful in reparative and regenerative processes after SCI, and not often assessed in pertinent literature. Antioxid. Redox Signal. 37, 184-207.
Collapse
Affiliation(s)
- Jonathon Chon Teng Chio
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Nayaab Punjani
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Nader Hejrati
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada
| | - Mohammad-Masoud Zavvarian
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - James Hong
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada
| | - Michael G Fehlings
- Department of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Surgery and Spine Program, University of Toronto, Toronto, Canada
| |
Collapse
|
15
|
Chang JW, Chen HC, Hu HZ, Chang WT, Huang PC, Wang IJ. Phthalate Exposure and Oxidative/Nitrosative Stress in Childhood Asthma: A Nested Case-Control Study with Propensity Score Matching. Biomedicines 2022; 10:biomedicines10061438. [PMID: 35740459 PMCID: PMC9219890 DOI: 10.3390/biomedicines10061438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 11/27/2022] Open
Abstract
Whether low-dose phthalate exposure triggers asthma among children, and its underlying mechanisms, remain debatable. Here, we evaluated the individual and mixed effects of low-dose phthalate exposure on children with asthma and five (oxidative/nitrosative stress/lipid peroxidation) mechanistic biomarkers—8-hydroxy-2′-deoxyguanosine (8-OHdG), 8-nitroguanine (8-NO2Gua), 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA), 8-isoprostaglandin F2α (8-isoPF2α), and malondialdehyde (MDA)—using a propensity score-matched case-control study (case vs. control = 41 vs. 111). The median monobenzyl phthalate (MBzP) concentrations in the case group were significantly higher than those in the control group (3.94 vs. 2.52 ng/mL, p = 0.02), indicating that dust could be an important source. After adjustment for confounders, the associations of high monomethyl phthalate (MMP) (75th percentile) with 8-NO2Gua (adjusted odds ratio (aOR): 2.66, 95% confidence interval (CI): 1.03–6.92) and 8-isoPF2α (aOR: 4.04, 95% CI: 1.51–10.8) and the associations of mono-iso-butyl phthalate (MiBP) with 8-isoPF2α (aOR: 2.96, 95% CI: 1.13–7.79) were observed. Weighted quantile sum regression revealed that MBzP contributed more than half of the association (56.8%), followed by MiBP (26.6%) and mono-iso-nonyl phthalate (MiNP) (8.77%). Our findings supported the adjuvant effect of phthalates in enhancing the immune system response.
Collapse
Affiliation(s)
- Jung-Wei Chang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (J.-W.C.); (H.-Z.H.)
| | - Hsin-Chang Chen
- Department of Chemistry, Tunghai University, Taichung 407224, Taiwan;
| | - Heng-Zhao Hu
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (J.-W.C.); (H.-Z.H.)
| | - Wan-Ting Chang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli 35042, Taiwan;
| | - Po-Chin Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli 35042, Taiwan;
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 406040, Taiwan
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli 36003, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (I-J.W.); (P.-C.H.); Tel.: +886-222-765-566 (ext. 2532) (I-J.W.); +886-37-206166 (ext. 38507) (P.-C.H.)
| | - I-Jen Wang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (J.-W.C.); (H.-Z.H.)
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli 35042, Taiwan;
- Department of Pediatrics, Taipei Hospital, Ministry of Health and Welfare, Taipei 10341, Taiwan
- College of Public Health, China Medical University, Taichung 406040, Taiwan
- Correspondence: (I-J.W.); (P.-C.H.); Tel.: +886-222-765-566 (ext. 2532) (I-J.W.); +886-37-206166 (ext. 38507) (P.-C.H.)
| |
Collapse
|
16
|
Sidramagowda Patil S, Soundararajan R, Fukumoto J, Breitzig M, Hernández-Cuervo H, Alleyn M, Lin M, Narala VR, Lockey R, Kolliputi N, Galam L. Mitochondrial Protein Akap1 Deletion Exacerbates Endoplasmic Reticulum Stress in Mice Exposed to Hyperoxia. Front Pharmacol 2022; 13:762840. [PMID: 35370705 PMCID: PMC8964370 DOI: 10.3389/fphar.2022.762840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/27/2022] [Indexed: 01/02/2023] Open
Abstract
Acute lung injury (ALI) and its severe manifestation, acute respiratory distress syndrome (ARDS), are treated with high concentrations of supplementary oxygen. However, prolonged exposure to high oxygen concentrations stimulates the production of reactive oxygen species (ROS), which damages the mitochondria and accumulates misfolded proteins in the endoplasmic reticulum (ER). The mitochondrial protein A-kinase anchoring protein 1 (Akap1) is critical for mitochondrial homeostasis. It is known that Akap1 deficiency results in heart damage, neuronal development impairment, and mitochondrial malfunction in preclinical studies. Our laboratory recently revealed that deleting Akap1 increases the severity of hyperoxia-induced ALI in mice. To assess the role of Akap1 deletion in ER stress in lung injury, wild-type and Akap1−/− mice were exposed to hyperoxia for 48 h. This study indicates that Akap1−/− mice exposed to hyperoxia undergo ER stress, which is associated with an increased expression of BiP, JNK phosphorylation, eIF2α phosphorylation, ER stress-induced cell death, and autophagy. This work demonstrates that deleting Akap1 results in increased ER stress in the lungs of mice and that hyperoxia exacerbates ER stress-related consequences.
Collapse
Affiliation(s)
- Sahebgowda Sidramagowda Patil
- University of South Florida, Division of Allergy and Immunology, Department of Internal Medicine, College of Medicine, Tampa, FL, United States
| | - Ramani Soundararajan
- University of South Florida, Division of Allergy and Immunology, Department of Internal Medicine, College of Medicine, Tampa, FL, United States
| | - Jutaro Fukumoto
- University of South Florida, Division of Allergy and Immunology, Department of Internal Medicine, College of Medicine, Tampa, FL, United States
| | - Mason Breitzig
- University of South Florida, Division of Allergy and Immunology, Department of Internal Medicine, College of Medicine, Tampa, FL, United States.,Washington University in St. Louis, Brown School, St. Louis, MO, United States
| | - Helena Hernández-Cuervo
- University of South Florida, Division of Allergy and Immunology, Department of Internal Medicine, College of Medicine, Tampa, FL, United States.,University of South Florida, Department of Molecular Medicine, College of Medicine, Tampa, FL, United States
| | - Matthew Alleyn
- University of South Florida, Division of Allergy and Immunology, Department of Internal Medicine, College of Medicine, Tampa, FL, United States
| | - Muling Lin
- University of South Florida, Division of Allergy and Immunology, Department of Internal Medicine, College of Medicine, Tampa, FL, United States
| | | | - Richard Lockey
- University of South Florida, Division of Allergy and Immunology, Department of Internal Medicine, College of Medicine, Tampa, FL, United States
| | - Narasaiah Kolliputi
- University of South Florida, Division of Allergy and Immunology, Department of Internal Medicine, College of Medicine, Tampa, FL, United States.,University of South Florida, Department of Molecular Medicine, College of Medicine, Tampa, FL, United States
| | - Lakshmi Galam
- University of South Florida, Division of Allergy and Immunology, Department of Internal Medicine, College of Medicine, Tampa, FL, United States
| |
Collapse
|
17
|
Ketema RM, Ait Bamai Y, Miyashita C, Saito T, Kishi R, Ikeda-Araki A. Phthalates mixture on allergies and oxidative stress biomarkers among children: The Hokkaido study. ENVIRONMENT INTERNATIONAL 2022; 160:107083. [PMID: 35051840 DOI: 10.1016/j.envint.2022.107083] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Exposure to individual phthalates and the mediation effect of oxidative stress in association with asthma and allergic symptoms have been studied previously. Little is known about the mixture effect of phthalates on health outcomes. Thus, we investigated the effect of a mixture of ten phthalate metabolites in association with wheeze, rhino-conjunctivitis, and eczema. The mediating effect of three oxidative stress biomarkers was also assessed. METHODS Levels of 10 phthalate metabolites and 3 oxidative stress biomarkers were measured in 386 urine samples from 7-year-old children. Parents reported demographic and allergic symptoms using ISAAC questionnaires. Logistic regression for individual metabolites and mixture analysis weighted quantile sum (WQS) and Bayesian kernel machine regression (BKMR) were fitted to examine the association between phthalate metabolite exposure and health outcomes. Baron and Kenny's regression approach was used for mediation analysis. RESULTS In logistic regression model showed mono (2-ethyl-5-carboxypentyl) phthalate (MECPP) (OR = 1.41, 95% CI 1.02-1.97) and mono carboxy-isononyl phthalate (cx-MINP) (OR = 1.40, 95% CI 1.07-1.86) were associated with wheeze. The WQS index had a significant association (OR = 1.46, 95% CI 1.09-1.96) with wheeze and (OR = 1.40, 95% CI 1.07-1.82) with eczema. Mono-isononyl phthalate (MINP) and mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) were the most highly weighted metabolites. In the BKMR model, diisononyl phthalate (DINP) metabolites showed the highest group posterior inclusion probability (PIP). Among DINP metabolites, MINP in wheeze, cx-MINP in rhino-conjunctivitis and OH-MINP in eczema showed the highest conditional PIPs. The overall metabolites mixture effect was associated with eczema. We did not find any mediation of oxidative stress in the association between phthalates and symptoms. No significant association between phthalate metabolites and oxidative stress was observed in this study. CONCLUSION Mixture of phthalate metabolites were associated with wheeze and eczema. The main contributors to the association were DEHP and DINP metabolites. No mediation of oxidative stress was observed.
Collapse
Affiliation(s)
- Rahel Mesfin Ketema
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan; Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Takeshi Saito
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Atsuko Ikeda-Araki
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan; Faculty of Health Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
18
|
Sun H, Hu H, Xu X, Fang M, Tao T, Liang Z. Protective effect of dexmedetomidine in cecal ligation perforation-induced acute lung injury through HMGB1/RAGE pathway regulation and pyroptosis activation. Bioengineered 2021; 12:10608-10623. [PMID: 34747306 PMCID: PMC8810048 DOI: 10.1080/21655979.2021.2000723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/02/2022] Open
Abstract
Dexmedetomidine (DEX) has been reported to attenuate cecal ligation perforation (CLP)-stimulated acute lung injury (ALI) by downregulating HMGB1 and RAGE. This study aimed to further investigate the specific mechanisms of RAGE and its potential-related mechanisms of DEX on ALI models in vitro and in vivo. The in vitro and in vivo ALI models were established by lipopolysaccharide treatment in MLE-12 cells and CLP in mice, respectively. The effect of DEX on pathological alteration was investigated by HE staining. Thereafter, the myeloperoxidase (MPO) activity and inflammatory cytokine levels were respectively detected to assess the lung injury of mice using commercial kits. The expression levels of HMGB1, RAGE, NF-κB, and pyroptosis-related molecules were detected by RT-qPCR and Western blot. HE staining showed that lung injury, increased inflammatory cell infiltration, and lung permeability was found in the ALI mice, and DEX treatment significantly attenuated lung tissue damage induced by CLP. The MPO activity and inflammatory cytokines (TNF-α, IL-1β, and NLRP3) levels were also significantly reduced after DEX treatment compared with those in the ALI mice. Moreover, DEX activated the HMGB1/RAGE/NF-κB pathway and upregulated the pyroptosis-related proteins. However, the protective DEX effect was impaired by RAGE overexpression in ALI mice and MLE-12 cells. Additionally, DEX treatment significantly suppressed HMGB1 translocation from the nucleus region to the cytoplasm, and this effect was reversed by RAGE overexpression. These findings suggested that DEX may be a useful ALI treatment, and the protective effects on ALI mice may be through the inhibition of HMGB1/RAGE/NF-κB pathway and cell pyroptosis.
Collapse
Affiliation(s)
- Huaqin Sun
- Department of Anesthesiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Hongyi Hu
- Department of Anesthesiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Xiaoping Xu
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Mingsun Fang
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Tao Tao
- Department of Anesthesiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Zhehao Liang
- Department of Ultrasound, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
19
|
Reyes-Jiménez E, Ramírez-Hernández AA, Santos-Álvarez JC, Velázquez-Enríquez JM, Pina-Canseco S, Baltiérrez-Hoyos R, Vásquez-Garzón VR. Involvement of 4-hydroxy-2-nonenal in the pathogenesis of pulmonary fibrosis. Mol Cell Biochem 2021; 476:4405-4419. [PMID: 34463938 DOI: 10.1007/s11010-021-04244-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/12/2021] [Indexed: 01/19/2023]
Abstract
Pulmonary fibrosis is a chronic progressive disease with high incidence, prevalence, and mortality rates worldwide. It is characterized by excessive accumulation of extracellular matrix in the lung parenchyma. The cellular and molecular mechanisms involved in its pathogenesis are complex, and some are still unknown. Several studies indicate that oxidative stress, characterized by overproduction of 4-hydroxy-2-nonenal (4-HNE), is an important player in pulmonary fibrosis. 4-HNE is a highly reactive compound derived from polyunsaturated fatty acids that can react with proteins, phospholipids, and nucleic acids. Thus, many of the altered cellular mechanisms that contribute to this disease can be explained by the participation of 4-HNE. Here, we summarize the current knowledge on the molecular states and signal transduction pathways that contribute to the pathogenesis of pulmonary fibrosis. Furthermore, we describe the participation of 4-HNE in various mechanisms involved in pulmonary fibrosis development, with a focus on the cell populations involved in the initiation, development, and maintenance of the fibrotic process, mainly alveolar cells, endothelial cells, macrophages, and inflammatory cells. Due to its characteristic activity as a second messenger, 4-HNE, in addition to being a consequence of oxidative stress, can support maintenance of the inflammatory and fibrotic process by spreading the effects of reactive oxygen species (ROS). Thus, regulation of 4-HNE levels could be a viable strategy to reduce its effects on the mechanisms involved in pulmonary fibrosis development.
Collapse
Affiliation(s)
- Edilburga Reyes-Jiménez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Alma Aurora Ramírez-Hernández
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Jovito Cesar Santos-Álvarez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Juan Manuel Velázquez-Enríquez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | | | - Rafael Baltiérrez-Hoyos
- CONACYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | | |
Collapse
|
20
|
Rajapriya S, Geetha A. Effect of luteolin on the gene level expression of apoptosis-associated speck-like protein containing a caspase recruitment domain of NLRP3 inflammasome and NF-κB in rats subjected to experimental pancreatitis - influence of HSP70. J Basic Clin Physiol Pharmacol 2021; 33:477-486. [PMID: 34167178 DOI: 10.1515/jbcpp-2020-0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 04/14/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Nod-like receptor pyrin domain containing 3 (NLRP3) is one of the well characterized inflammasome that controls the maturation of pro-inflammatory cytokines and thereby the inflammation in pancreas which could be a promising target for anti-inflammatory drugs. The present study is aimed to explore whether luteolin can target the NLRP3 inflammasome and modulate its activity through the signaling protein, HSP70 in the ethanol-cerulein model of experimental pancreatitis. METHODS Male albino Wistar rats were divided into four groups. Groups 1 and 2 rats received normal diet. Groups 3 and 4 rats received isocalorically adjusted diet containing ethanol for 5 weeks and cerulein (20 μg/kg body weight i.p., thrice weekly for the last 3 weeks of the experimental period). Additionally, group 2 and 4 rats received 2 mg/kg body weight of luteolin orally from third week. RESULTS Luteolin co-administration decreased the serum levels of HSP70, oxidative stress markers, myeloperoxidase, GSH/GSSG and GST with concomitant downregulation in the mRNA expression of HSP70, caspase-1, ASC-NLRP3 and NF-κB. Spearman's rank correlation test showed that serum HSP70 has positive correlation with the expression of ASC-NLRP3, caspase-1, NF-κB and 4-hydroxynonenal and negative correlation with GSH:GSSG ratio. CONCLUSIONS The modulating effect of luteolin on the expression of HSP70, NF-κB and thereby on ASC-NLRP3 complex may be claimed for its pancreato-protective activity.
Collapse
Affiliation(s)
- Sadanandan Rajapriya
- Department of Biochemistry, Bharathi Women's College, Affiliated to University of Madras, Chennai, Tamil Nadu, India
| | - Arumugam Geetha
- Dr. Ambedkar Government Arts College, Chennai, Tamil Nadu, India
| |
Collapse
|
21
|
Sidramagowda Patil S, Hernández-Cuervo H, Fukumoto J, Krishnamurthy S, Lin M, Alleyn M, Breitzig M, Narala VR, Soundararajan R, Lockey RF, Kolliputi N, Galam L. Alda-1 Attenuates Hyperoxia-Induced Acute Lung Injury in Mice. Front Pharmacol 2021; 11:597942. [PMID: 33597876 PMCID: PMC7883597 DOI: 10.3389/fphar.2020.597942] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/19/2020] [Indexed: 12/31/2022] Open
Abstract
Acute lung injury (ALI), a milder form of acute respiratory distress syndrome (ARDS), is a leading cause of mortality in older adults with an increasing prevalence. Oxygen therapy, is a common treatment for ALI, involving exposure to a high concentration of oxygen. Unfortunately, hyperoxia induces the formation of reactive oxygen species which can cause an increase in 4-HNE (4-hydroxy 2 nonenal), a toxic byproduct of lipid peroxidation. Mitochondrial aldehyde dehydrogenase 2 (ALDH2) serves as an endogenous shield against oxidative stress-mediated damage by clearing 4-HNE. Alda-1 [(N-(1, 3 benzodioxol-5-ylmethyl)-2, 6- dichloro-benzamide)], a small molecular activator of ALDH2, protects against reactive oxygen species-mediated oxidative stress by promoting ALDH2 activity. As a result, Alda-1 shields against ischemic reperfusion injury, heart failure, stroke, and myocardial infarction. However, the mechanisms of Alda-1 in hyperoxia-induced ALI remains unclear. C57BL/6 mice implanted with Alzet pumps received Alda-1 in a sustained fashion while being exposed to hyperoxia for 48 h. The mice displayed suppressed immune cell infiltration, decreased protein leakage and alveolar permeability compared to controls. Mechanistic analysis shows that mice pretreated with Alda-1 also experience decreased oxidative stress and enhanced levels of p-Akt and mTOR pathway associated proteins. These results show that continuous delivery of Alda-1 protects against hyperoxia-induced lung injury in mice.
Collapse
Affiliation(s)
- Sahebgowda Sidramagowda Patil
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Helena Hernández-Cuervo
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Jutaro Fukumoto
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Sudarshan Krishnamurthy
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Muling Lin
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Matthew Alleyn
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Mason Breitzig
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Brown School, Washington University, St. Louis, MO, United States
| | | | - Ramani Soundararajan
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Richard F Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Lakshmi Galam
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
22
|
Jaganjac M, Milkovic L, Gegotek A, Cindric M, Zarkovic K, Skrzydlewska E, Zarkovic N. The relevance of pathophysiological alterations in redox signaling of 4-hydroxynonenal for pharmacological therapies of major stress-associated diseases. Free Radic Biol Med 2020; 157:128-153. [PMID: 31756524 DOI: 10.1016/j.freeradbiomed.2019.11.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/04/2019] [Accepted: 11/17/2019] [Indexed: 02/07/2023]
Abstract
Modern analytical methods combined with the modern concepts of redox signaling revealed 4-hydroxy-2-nonenal (4-HNE) as particular growth regulating factor involved in redox signaling under physiological and pathophysiological circumstances. In this review current knowledge of the relevance of 4-HNE as "the second messenger of reactive oxygen species" (ROS) in redox signaling of representative major stress-associated diseases is briefly summarized. The findings presented allow for 4-HNE to be considered not only as second messenger of ROS, but also as one of fundamental factors of the stress- and age-associated diseases. While standard, even modern concepts of molecular medicine and respective therapies in majority of these diseases target mostly the disease-specific symptoms. 4-HNE, especially its protein adducts, might appear to be the bioactive markers that would allow better monitoring of specific pathophysiological processes reflecting their complexity. Eventually that could help development of advanced integrative medicine approach for patients and the diseases they suffer from on the personalized basis implementing biomedical remedies that would optimize beneficial effects of ROS and 4-HNE to prevent the onset and progression of the illness, perhaps even providing the real cure.
Collapse
Affiliation(s)
- Morana Jaganjac
- Qatar Analytics & BioResearch Lab, Anti Doping Lab Qatar, Sport City Street, Doha, Qatar
| | - Lidija Milkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Div. of Molecular Medicine, Bijenicka 54, Zagreb, Croatia
| | - Agnieszka Gegotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Marina Cindric
- University of Zagreb, School of Medicine, Div. of Pathology, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, Croatia
| | - Kamelija Zarkovic
- University of Zagreb, School of Medicine, Div. of Pathology, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, Croatia
| | - Elzbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Neven Zarkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Div. of Molecular Medicine, Bijenicka 54, Zagreb, Croatia.
| |
Collapse
|
23
|
Alda-1 attenuates hyperoxia-induced mitochondrial dysfunction in lung vascular endothelial cells. Aging (Albany NY) 2020; 11:3909-3918. [PMID: 31209184 PMCID: PMC6628993 DOI: 10.18632/aging.102012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/31/2019] [Indexed: 12/19/2022]
Abstract
Acute lung injury (ALI) is a major cause of morbidity and mortality worldwide, especially in aged populations. Mitochondrial damage is one of the key features of ALI. Hyperoxia-induced lung injury model in mice has been widely used for ALI study because it features many ALI phenotypes including, but not limited to, mitochondrial and vascular endothelial cell damage. Recently, accumulating evidence has shown that mitochondrial aldehyde dehydrogenase 2 (ALDH2) has a protective effect against oxidative stress mediated cell damage in epithelial cells. However, it is not known whether ALDH2 protects against oxidative stress in vascular endothelial cells. In this current study, we attempted to find the capacity of Alda-1 [(N-(1,3benzodioxol-5-ylmethyl)-2,6- dichloro-benzamide), an ALDH2 activator] to protect against oxidative stress in human microvascular endothelial cells (HMVEC). HMVEC pretreated with Alda-1 prior to hyperoxic exposure vs non-treated controls showed i) lower 4-hydroxynonenal (4-HNE) levels, ii) significantly decreased expressions of Bax and Cytochrome C, iii) partially restored activity and expression of ALDH2 and iv) significantly improved mitochondrial membrane potential. These results suggest that ALDH2 protein in lung vascular endothelial cells is a promising therapeutic target for the treatment of ALI and that Alda-1 is a potential treatment option.
Collapse
|
24
|
Lipid peroxidation is involved in calcium dependent upregulation of mitochondrial metabolism in skeletal muscle. Biochim Biophys Acta Gen Subj 2020; 1864:129487. [DOI: 10.1016/j.bbagen.2019.129487] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023]
|
25
|
4-Hydroxy-2-nonenal in food products: A review of the toxicity, occurrence, mitigation strategies and analysis methods. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Perez M, Robbins ME, Revhaug C, Saugstad OD. Oxygen radical disease in the newborn, revisited: Oxidative stress and disease in the newborn period. Free Radic Biol Med 2019; 142:61-72. [PMID: 30954546 PMCID: PMC6791125 DOI: 10.1016/j.freeradbiomed.2019.03.035] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/06/2019] [Accepted: 03/29/2019] [Indexed: 12/28/2022]
Abstract
Thirty years ago, there was an emerging appreciation for the significance of oxidative stress in newborn disease. This prompted a renewed interest in the impact of oxygen therapy for the newborn in the delivery room and beyond, especially in premature infants. Today, the complexity of oxidative stress both in normal regulation and pathology is better understood, especially as it relates to neonatal mitochondrial oxidative stress responses to hyperoxia. Mitochondria are recipients of oxidative damage and have a propensity for oxidative self-injury that has been implicated in the pathogenesis of neonatal lung diseases. Similarly, both intrauterine growth restriction (IUGR) and macrosomia are associated with mitochondrial dysfunction and oxidative stress. Additionally, reoxygenation with 100% O2 in a hypoxic-ischemic newborn lamb model increased the production of pro-inflammatory cytokines in the brain. Moreover, the interplay between inflammation and oxidative stress in the newborn is better understood because of animal studies. Transcriptomic analyses have found a number of genes to be differentially expressed in murine models of bronchopulmonary dysplasia (BPD). Epigenetic changes have also been detected both in animal models of BPD and premature infants exposed to oxygen. Antioxidant therapy to prevent newborn disease has not been very successful; however, new therapeutic principles, like melatonin, are under investigation.
Collapse
Affiliation(s)
- Marta Perez
- Division of Neonatology, Stanley Manne Children's Research Institute, Ann and Robert H Lurie Children's Hospital, Chicago, IL, United States; Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Mary E Robbins
- Division of Neonatology, Stanley Manne Children's Research Institute, Ann and Robert H Lurie Children's Hospital, Chicago, IL, United States; Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Cecilie Revhaug
- Department of Pediatric Research, University of Oslo, Oslo University Hospital, Norway
| | - Ola D Saugstad
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States; Department of Pediatric Research, University of Oslo, Oslo University Hospital, Norway.
| |
Collapse
|
27
|
Tsubouchi K, Araya J, Yoshida M, Sakamoto T, Koumura T, Minagawa S, Hara H, Hosaka Y, Ichikawa A, Saito N, Kadota T, Kurita Y, Kobayashi K, Ito S, Fujita Y, Utsumi H, Hashimoto M, Wakui H, Numata T, Kaneko Y, Mori S, Asano H, Matsudaira H, Ohtsuka T, Nakayama K, Nakanishi Y, Imai H, Kuwano K. Involvement of GPx4-Regulated Lipid Peroxidation in Idiopathic Pulmonary Fibrosis Pathogenesis. THE JOURNAL OF IMMUNOLOGY 2019; 203:2076-2087. [DOI: 10.4049/jimmunol.1801232] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 08/08/2019] [Indexed: 12/22/2022]
|
28
|
Mitochondria as a Source and a Target for Uremic Toxins. Int J Mol Sci 2019; 20:ijms20123094. [PMID: 31242575 PMCID: PMC6627204 DOI: 10.3390/ijms20123094] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 01/23/2023] Open
Abstract
Elucidation of molecular and cellular mechanisms of the uremic syndrome is a very challenging task. More than 130 substances are now considered to be "uremic toxins" and represent a very diverse group of molecules. The toxicity of these molecules affects many cellular processes, and expectably, some of them are able to disrupt mitochondrial functioning. However, mitochondria can be the source of uremic toxins as well, as the mitochondrion can be the site of complete synthesis of the toxin, whereas in some scenarios only some enzymes of the pathway of toxin synthesis are localized here. In this review, we discuss the role of mitochondria as both the target and source of pathological processes and toxic compounds during uremia. Our analysis revealed about 30 toxins closely related to mitochondria. Moreover, since mitochondria are key regulators of cellular redox homeostasis, their functioning might directly affect the production of uremic toxins, especially those that are products of oxidation or peroxidation of cellular components, such as aldehydes, advanced glycation end-products, advanced lipoxidation end-products, and reactive carbonyl species. Additionally, as a number of metabolic products can be degraded in the mitochondria, mitochondrial dysfunction would therefore be expected to cause accumulation of such toxins in the organism. Alternatively, many uremic toxins (both made with the participation of mitochondria, and originated from other sources including exogenous) are damaging to mitochondrial components, especially respiratory complexes. As a result, a positive feedback loop emerges, leading to the amplification of the accumulation of uremic solutes. Therefore, uremia leads to the appearance of mitochondria-damaging compounds, and consecutive mitochondrial damage causes a further rise of uremic toxins, whose synthesis is associated with mitochondria. All this makes mitochondrion an important player in the pathogenesis of uremia and draws attention to the possibility of reducing the pathological consequences of uremia by protecting mitochondria and reducing their role in the production of uremic toxins.
Collapse
|
29
|
Enhanced Oxidative Damage and Nrf2 Downregulation Contribute to the Aggravation of Periodontitis by Diabetes Mellitus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9421019. [PMID: 30622677 PMCID: PMC6304894 DOI: 10.1155/2018/9421019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/29/2018] [Indexed: 02/05/2023]
Abstract
Diabetes mellitus is a well-recognized risk factor for periodontitis. The goal of the present study was to elucidate whether oxidative stress and nuclear factor erythroid 2-related factor 2 (Nrf2) participate in the aggravation of periodontitis by diabetes. For this purpose, we assigned Wistar rats to control, periodontitis, diabetes, and diabetic periodontitis groups. Two weeks after induction of diabetes by streptozotocin, periodontitis was induced by ligation. Two weeks later, periodontal tissues and blood were harvested and analyzed by stereomicroscopy, immunohistochemistry, and real-time polymerase chain reaction. We found that ligation induced more severe bone loss and periodontal cell apoptosis in diabetic rats than in normal rats (p < 0.05). Compared with the control group, periodontitis significantly enhanced local oxidative damage (elevated expression of 3-nitrotyrosine, 4-hydroxy-2-nonenal, and 8-hydroxy-deoxyguanosine), whereas diabetes significantly increased systemic oxidative damage and suppressed antioxidant capacity (increased malondialdehyde expression and decreased superoxide dismutase activity) (p < 0.05). Simultaneous periodontitis and diabetes synergistically aggravated both local and systemic oxidative damage (p < 0.05); this finding was strongly correlated with the more severe periodontal destruction in diabetic periodontitis. Furthermore, gene and protein expression of Nrf2 was significantly downregulated in diabetic periodontitis (p < 0.05). Multiple regression analysis indicated that the reduced Nrf2 expression was strongly correlated with the aggravated periodontal destruction and oxidative damage in diabetic periodontitis. We conclude that enhanced local and systemic oxidative damage and Nrf2 downregulation contribute to the development and progression of diabetic periodontitis.
Collapse
|
30
|
Balogh E, Veale DJ, McGarry T, Orr C, Szekanecz Z, Ng CT, Fearon U, Biniecka M. Oxidative stress impairs energy metabolism in primary cells and synovial tissue of patients with rheumatoid arthritis. Arthritis Res Ther 2018; 20:95. [PMID: 29843785 PMCID: PMC5972404 DOI: 10.1186/s13075-018-1592-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/12/2018] [Indexed: 03/18/2023] Open
Abstract
Background In this study, we examined the effect of oxidative stress on cellular energy metabolism and pro-angiogenic/pro-inflammatory mechanisms of primary rheumatoid arthritis synovial fibroblast cells (RASFC) and human umbilical vein endothelial cells (HUVEC). Methods Primary RASFC and HUVEC were cultured with the oxidative stress inducer 4-hydroxy-2-nonenal (4-HNE), and extracellular acidification rate, oxygen consumption rate, mitochondrial function and pro-angiogenic/pro-inflammatory mechanisms were assessed using the Seahorse analyser, complex I–V activity assays, random mutation mitochondrial capture assays, enzyme-linked immunosorbent assays and functional assays, including angiogenic tube formation, migration and invasion. Expression of angiogenic growth factors in synovial tissue (ST) was assessed by IHC in patients with rheumatoid arthritis (RA) undergoing arthroscopy before and after administration of tumour necrosis factor inhibitors (TNFi). Results In RASFC and HUVEC, 4-HNE-induced oxidative stress reprogrammed energy metabolism by inhibiting mitochondrial basal, maximal and adenosine triphosphate-linked respiration and reserve capacity, coupled with the reduced enzymatic activity of oxidative phosphorylation complexes III and IV. In contrast, 4-HNE elevated basal glycolysis, glycolytic capacity and glycolytic reserve, paralleled by an increase in mitochondrial DNA mutations and reactive oxygen species. 4-HNE activated pro-angiogenic responses of RASFC, which subsequently altered HUVEC invasion and migration, angiogenic tube formation and the release of pro-angiogenic mediators. In vivo markers of angiogenesis (vascular endothelial growth factor, angiopoietin 2 [Ang2], tyrosine kinase receptor [Tie2]) were significantly associated with oxidative damage and oxygen metabolism in the inflamed synovium. Significant reduction in ST vascularity and Ang2/Tie2 expression was demonstrated in patients with RA before and after administration of TNFi. Conclusions Oxidative stress promotes metabolism in favour of glycolysis, an effect that may contribute to acceleration of inflammatory mechanisms and subsequent dysfunctional angiogenesis in RA. Electronic supplementary material The online version of this article (10.1186/s13075-018-1592-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emese Balogh
- Department of Rheumatology, University of Debrecen Medical and Health Science Centre, 98. Nagyerdei krt, Debrecen, Hungary
| | - Douglas J Veale
- Centre for Arthritis and Rheumatic Diseases, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin, Ireland
| | - Trudy McGarry
- Molecular Rheumatology, Trinity Biomedical Sciences Institute Trinity College Dublin, Dublin, Ireland
| | - Carl Orr
- Centre for Arthritis and Rheumatic Diseases, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin, Ireland
| | - Zoltan Szekanecz
- Department of Rheumatology, University of Debrecen Medical and Health Science Centre, 98. Nagyerdei krt, Debrecen, Hungary
| | - Chin-Teck Ng
- Department of Rheumatology and Immunology, Singapore General Hospital, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Ursula Fearon
- Molecular Rheumatology, Trinity Biomedical Sciences Institute Trinity College Dublin, Dublin, Ireland
| | - Monika Biniecka
- Centre for Arthritis and Rheumatic Diseases, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin, Ireland.
| |
Collapse
|
31
|
Breitzig MT, Alleyn MD, Lockey RF, Kolliputi N. A mitochondrial delicacy: dynamin-related protein 1 and mitochondrial dynamics. Am J Physiol Cell Physiol 2018; 315:C80-C90. [PMID: 29669222 DOI: 10.1152/ajpcell.00042.2018] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The constant physiological flux of mitochondrial fission and fusion is inextricably tied to the maintenance of cellular bioenergetics and the fluidity of mitochondrial networks. Yet, the intricacies of this dynamic duo remain unclear in diseases that encompass mitochondrial dysregulation. Particularly, the role of the GTPase fission protein dynamin-related protein 1 (Drp1) is of profound interest. Studies have identified that Drp1 participates in complex signaling pathways, suggesting that the function of mitochondria in pathophysiology may extend far beyond energetics alone. Research indicates that, in stressed conditions, Drp1 translocation to the mitochondria leads to elevated fragmentation and mitophagy; however, despite this, there is limited knowledge about the mechanistic regulation of Drp1 in disease conditions. This review highlights literature about fission, fusion, and, more importantly, discusses Drp1 in cardiac, neural, carcinogenic, renal, and pulmonary diseases. The therapeutic desirability for further research into its contribution to diseases that involve mitochondrial dysregulation is also discussed.
Collapse
Affiliation(s)
- Mason T Breitzig
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Matthew D Alleyn
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Richard F Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| |
Collapse
|
32
|
Narala VR, Fukumoto J, Hernández-Cuervo H, Patil SS, Krishnamurthy S, Breitzig M, Galam L, Soundararajan R, Lockey RF, Kolliputi N. Akap1 genetic deletion increases the severity of hyperoxia-induced acute lung injury in mice. Am J Physiol Lung Cell Mol Physiol 2018; 314:L860-L870. [PMID: 29388469 DOI: 10.1152/ajplung.00365.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Critically ill patients are commonly treated with high levels of oxygen, hyperoxia, for prolonged periods of time. Unfortunately, extended exposure to hyperoxia can exacerbate respiratory failure and lead to a high mortality rate. Mitochondrial A-kinase anchoring protein (Akap) has been shown to regulate mitochondrial function. It has been reported that, under hypoxic conditions, Akap121 undergoes proteolytic degradation and promotes cardiac injury. However, the role of Akap1 in hyperoxia-induced acute lung injury (ALI) is largely unknown. To address this gap in our understanding of Akap1, we exposed wild-type ( wt) and Akap1-/- mice to 100% oxygen for 48 h, a time point associated with lung damage in the murine model of ALI. We found that under hyperoxia, Akap1-/- mice display increased levels of proinflammatory cytokines, immune cell infiltration, and protein leakage in lungs, as well as increased alveolar capillary permeability compared with wt controls. Further analysis revealed that Akap1 deletion enhances lung NF-κB p65 activity as assessed by immunoblotting and DNA-binding assay and mitochondrial autophagy-related markers, PINK1 and Parkin. Ultrastructural analysis using electron microscopy revealed that Akap1 deletion was associated with remarkably aberrant mitochondria and lamellar bodies in type II alveolar epithelial cells. Taken together, these results demonstrate that Akap1 genetic deletion increases the severity of hyperoxia-induced acute lung injury in mice.
Collapse
Affiliation(s)
- Venkata Ramireddy Narala
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida.,Department of Zoology, Yogi Vemana University, Kadapa, India
| | - Jutaro Fukumoto
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Helena Hernández-Cuervo
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Sahebgowda Sidramagowda Patil
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Sudarshan Krishnamurthy
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Mason Breitzig
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Lakshmi Galam
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Ramani Soundararajan
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Richard F Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| |
Collapse
|
33
|
Why should neuroscientists worry about iron? The emerging role of ferroptosis in the pathophysiology of neuroprogressive diseases. Behav Brain Res 2017; 341:154-175. [PMID: 29289598 DOI: 10.1016/j.bbr.2017.12.036] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/23/2017] [Accepted: 12/27/2017] [Indexed: 12/12/2022]
Abstract
Ferroptosis is a unique form of programmed death, characterised by cytosolic accumulation of iron, lipid hydroperoxides and their metabolites, and effected by the fatal peroxidation of polyunsaturated fatty acids in the plasma membrane. It is a major driver of cell death in neurodegenerative neurological diseases. Moreover, cascades underpinning ferroptosis could be active drivers of neuropathology in major psychiatric disorders. Oxidative and nitrosative stress can adversely affect mechanisms and proteins governing cellular iron homeostasis, such as the iron regulatory protein/iron response element system, and can ultimately be a source of abnormally high levels of iron and a source of lethal levels of lipid membrane peroxidation. Furthermore, neuroinflammation leads to the upregulation of divalent metal transporter1 on the surface of astrocytes, microglia and neurones, making them highly sensitive to iron overload in the presence of high levels of non-transferrin-bound iron, thereby affording such levels a dominant role in respect of the induction of iron-mediated neuropathology. Mechanisms governing systemic and cellular iron homeostasis, and the related roles of ferritin and mitochondria are detailed, as are mechanisms explaining the negative regulation of ferroptosis by glutathione, glutathione peroxidase 4, the cysteine/glutamate antiporter system, heat shock protein 27 and nuclear factor erythroid 2-related factor 2. The potential role of DJ-1 inactivation in the precipitation of ferroptosis and the assessment of lipid peroxidation are described. Finally, a rational approach to therapy is considered, with a discussion on the roles of coenzyme Q10, iron chelation therapy, in the form of deferiprone, deferoxamine (desferrioxamine) and deferasirox, and N-acetylcysteine.
Collapse
|
34
|
Alleyn M, Breitzig M, Lockey R, Kolliputi N. The dawn of succinylation: a posttranslational modification. Am J Physiol Cell Physiol 2017; 314:C228-C232. [PMID: 29167150 DOI: 10.1152/ajpcell.00148.2017] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Posttranslational modifications affect almost all proteins and are critical to a well-functioning and diverse proteome; however, many modifications remain relatively unknown and unstudied. This paper will give a perspective on the rapidly developing, novel posttranslational modification called succinylation. This modification may be implicated in numerous diseases, such as hepatic, cardiac, and pulmonary diseases. Although the influences of this modification still remain poorly understood, we are confident that further research into succinylation will provide an enhanced understanding of the complex machinery within the mitochondria, as well as the imposing consequences associated with its dysfunction.
Collapse
Affiliation(s)
- Matthew Alleyn
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Mason Breitzig
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Richard Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida , Tampa, Florida
| |
Collapse
|
35
|
Łuczaj W, Gęgotek A, Skrzydlewska E. Antioxidants and HNE in redox homeostasis. Free Radic Biol Med 2017; 111:87-101. [PMID: 27888001 DOI: 10.1016/j.freeradbiomed.2016.11.033] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 12/11/2022]
Abstract
Under physiological conditions, cells are in a stable state known as redox homeostasis, which is maintained by the balance between continuous ROS/RNS generation and several mechanisms involved in antioxidant activity. ROS overproduction results in alterations in the redox homeostasis that promote oxidative damage to major components of the cell, including the biomembrane phospholipids. Lipid peroxidation subsequently generates a diverse set of products, including α,β-unsaturated aldehydes. Of these products, 4-hydroxy-2-nonenal (HNE) is the most studied aldehyde on the basis of its involvement in cellular physiology and pathology. This review summarizes the current knowledge in the field of HNE generation, metabolism, and detoxification, as well as its interactions with various cellular macromolecules (protein, phospholipid, and nucleic acid). The formation of HNE-protein adducts enables HNE to participate in multi-step regulation of cellular metabolic pathways that include signaling and transcription of antioxidant enzymes, pro-inflammatory factors, and anti-apoptotic proteins. The most widely described roles for HNE in the signaling pathways are associated with its activation of kinases, as well as transcription factors that are responsible for redox homeostasis (Ref-1, Nrf2, p53, NFκB, and Hsf1). Depending on its level, HNE exerts harmful or protective effects associated with the induction of antioxidant defense mechanisms. These effects make HNE a key player in maintaining redox homeostasis, as well as producing imbalances in this system that participate in aging and the development of pathological conditions.
Collapse
Affiliation(s)
- Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland.
| |
Collapse
|
36
|
García-Arroyo FE, Tapia E, Blas-Marron MG, Gonzaga G, Silverio O, Cristóbal M, Osorio H, Arellano-Buendía AS, Zazueta C, Aparicio-Trejo OE, Reyes-García JG, Pedraza-Chaverri J, Soto V, Roncal-Jiménez C, Johnson RJ, Sánchez-Lozada LG. Vasopressin Mediates the Renal Damage Induced by Limited Fructose Rehydration in Recurrently Dehydrated Rats. Int J Biol Sci 2017; 13:961-975. [PMID: 28924378 PMCID: PMC5599902 DOI: 10.7150/ijbs.20074] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/26/2017] [Indexed: 12/26/2022] Open
Abstract
Recurrent dehydration and heat stress cause chronic kidney damage in experimental animals. The injury is exacerbated by rehydration with fructose-containing beverages. Fructose may amplify dehydration-induced injury by directly stimulating vasopressin release and also by acting as a substrate for the aldose reductase-fructokinase pathway, as both of these systems are active during dehydration. The role of vasopressin in heat stress associated injury has not to date been explored. Here we show that the amplification of renal damage mediated by fructose in thermal dehydration is mediated by vasopressin. Fructose rehydration markedly enhanced vasopressin (copeptin) levels and activation of the aldose reductase-fructokinase pathway in the kidney. Moreover, the amplification of the renal functional changes (decreased creatinine clearance and tubular injury with systemic inflammation, renal oxidative stress, and mitochondrial dysfunction) were prevented by the blockade of V1a and V2 vasopressin receptors with conivaptan. On the other hand, there are also other operative mechanisms when water is used as rehydration fluid that produce milder renal damage that is not fully corrected by vasopressin blockade. Therefore, we clearly showed evidence of the cross-talk between fructose, even at small doses, and vasopressin that interact to amplify the renal damage induced by dehydration. These data may be relevant for heat stress nephropathy as well as for other renal pathologies due to the current generalized consumption of fructose and deficient hydration habits.
Collapse
Affiliation(s)
| | - Edilia Tapia
- Laboratory of Renal Physiopathology. INC Ignacio Chávez. Mexico City. Mexico.,Dept. of Nephrology. INC Ignacio Chávez. Mexico City. Mexico
| | | | - Guillermo Gonzaga
- Laboratory of Renal Physiopathology. INC Ignacio Chávez. Mexico City. Mexico
| | - Octaviano Silverio
- Laboratory of Renal Physiopathology. INC Ignacio Chávez. Mexico City. Mexico
| | - Magdalena Cristóbal
- Laboratory of Renal Physiopathology. INC Ignacio Chávez. Mexico City. Mexico.,Dept. of Nephrology. INC Ignacio Chávez. Mexico City. Mexico
| | - Horacio Osorio
- Laboratory of Renal Physiopathology. INC Ignacio Chávez. Mexico City. Mexico.,Dept. of Nephrology. INC Ignacio Chávez. Mexico City. Mexico
| | - Abraham S Arellano-Buendía
- Laboratory of Renal Physiopathology. INC Ignacio Chávez. Mexico City. Mexico.,Dept. of Nephrology. INC Ignacio Chávez. Mexico City. Mexico
| | - Cecilia Zazueta
- Dept. of Cardiovascular Biomedicine. INC Ignacio Chávez. Mexico City. Mexico
| | | | - Juan G Reyes-García
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, IPN Mexico City. Mexico
| | | | - Virgilia Soto
- Dept. of Pathology. INC Ignacio Chávez. Mexico City. Mexico
| | | | | | - Laura G Sánchez-Lozada
- Laboratory of Renal Physiopathology. INC Ignacio Chávez. Mexico City. Mexico.,Dept. of Nephrology. INC Ignacio Chávez. Mexico City. Mexico
| |
Collapse
|
37
|
Ten VS. Mitochondrial dysfunction in alveolar and white matter developmental failure in premature infants. Pediatr Res 2017; 81:286-292. [PMID: 27901512 PMCID: PMC5671686 DOI: 10.1038/pr.2016.216] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/19/2016] [Indexed: 01/11/2023]
Abstract
At birth, some organs in premature infants are not developed enough to meet challenges of the extra-uterine life. Although growth and maturation continues after premature birth, postnatal organ development may become sluggish or even arrested, leading to organ dysfunction. There is no clear mechanistic concept of this postnatal organ developmental failure in premature neonates. This review introduces a concept-forming hypothesis: Mitochondrial bioenergetic dysfunction is a fundamental mechanism of organs maturation failure in premature infants. Data collected in support of this hypothesis are relevant to two major diseases of prematurity: white matter injury and broncho-pulmonary dysplasia. In these diseases, totally different clinical manifestations are defined by the same biological process, developmental failure of the main functional units-alveoli in the lungs and axonal myelination in the brain. Although molecular pathways regulating alveolar and white matter maturation differ, proper bioenergetic support of growth and maturation remains critical biological requirement for any actively developing organ. Literature analysis suggests that successful postnatal pulmonary and white matter development highly depends on mitochondrial function which can be inhibited by sublethal postnatal stress. In premature infants, sublethal stress results mostly in organ maturation failure without excessive cellular demise.
Collapse
Affiliation(s)
- Vadim S. Ten
- Department of Pediatrics, Division of Neonatology, Columbia University, New York, New York
| |
Collapse
|
38
|
The Protective Roles of ROS-Mediated Mitophagy on 125I Seeds Radiation Induced Cell Death in HCT116 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9460462. [PMID: 28119765 PMCID: PMC5227180 DOI: 10.1155/2016/9460462] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/18/2016] [Accepted: 11/24/2016] [Indexed: 11/17/2022]
Abstract
For many unresectable carcinomas and locally recurrent cancers (LRC), 125I seeds brachytherapy is a feasible, effective, and safe treatment. Several studies have shown that 125I seeds radiation exerts anticancer activity by triggering DNA damage. However, recent evidence shows mitochondrial quality to be another crucial determinant of cell fate, with mitophagy playing a central role in this control mechanism. Herein, we found that 125I seeds irradiation injured mitochondria, leading to significantly elevated mitochondrial and intracellular ROS (reactive oxygen species) levels in HCT116 cells. The accumulation of mitochondrial ROS increased the expression of HIF-1α and its target genes BINP3 and NIX (BINP3L), which subsequently triggered mitophagy. Importantly, 125I seeds radiation induced mitophagy promoted cells survival and protected HCT116 cells from apoptosis. These results collectively indicated that 125I seeds radiation triggered mitophagy by upregulating the level of ROS to promote cellular homeostasis and survival. The present study uncovered the critical role of mitophagy in modulating the sensitivity of tumor cells to radiation therapy and suggested that chemotherapy targeting on mitophagy might improve the efficiency of 125I seeds radiation treatment, which might be of clinical significance in tumor therapy.
Collapse
|
39
|
Missing evidence for toxicity of high PFAT5 levels in mixtures of lipids. CLINICAL NUTRITION EXPERIMENTAL 2016. [DOI: 10.1016/j.yclnex.2016.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Breitzig M, Bhimineni C, Lockey R, Kolliputi N. 4-Hydroxy-2-nonenal: a critical target in oxidative stress? Am J Physiol Cell Physiol 2016; 311:C537-C543. [PMID: 27385721 DOI: 10.1152/ajpcell.00101.2016] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/05/2016] [Indexed: 12/22/2022]
Abstract
In this perspective, we summarize and discuss critical advancements in the study of 4-hydroxy-2-nonenal (4-HNE) as it relates to diseases and clinical complications either caused or exacerbated by oxidative stress. Since its identification in 1980, 4-HNE has been extensively studied with an emphasis on its formation, its role in pathology, and its targets. As a reactive aldehyde, and a product of lipid peroxidation, studies corroborate its ability to disrupt signal transduction and protein activity, as well as induce inflammation and trigger cellular apoptosis in conditions of oxidative stress. Notably, we discuss the role of natural enzymes involved in the regulation of 4-HNE, and how they can be applied to its detoxification in various physiological conditions.
Collapse
Affiliation(s)
- Mason Breitzig
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Charishma Bhimineni
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Richard Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
41
|
Galam L, Rajan A, Failla A, Soundararajan R, Lockey RF, Kolliputi N. Deletion of P2X7 attenuates hyperoxia-induced acute lung injury via inflammasome suppression. Am J Physiol Lung Cell Mol Physiol 2016; 310:L572-81. [PMID: 26747786 DOI: 10.1152/ajplung.00417.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/05/2016] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence shows that hyperoxia is a serious complication of oxygen therapy in acutely ill patients that causes excessive production of free radicals leading to hyperoxia-induced acute lung injury (HALI). Our previous studies have shown that P2X7 receptor activation is required for inflammasome activation during HALI. However, the role of P2X7 in HALI is unclear. The main aim of this study was to determine the effect of P2X7 receptor gene deletion on HALI. Wild-type (WT) and P2X7 knockout (P2X7 KO) mice were exposed to 100% O2 for 72 h. P2X7 KO mice treated with hyperoxia had enhanced survival in 100% O2 compared with the WT mice. Hyperoxia-induced recruitment of inflammatory cells and elevation of IL-1β, TNF-α, monocyte chemoattractant protein-1, and IL-6 levels were attenuated in P2X7 KO mice. P2X7 deletion decreased lung edema and alveolar protein content, which are associated with enhanced alveolar fluid clearance. In addition, activation of the inflammasome was suppressed in P2X7-deficient alveolar macrophages and was associated with suppression of IL-1β release. Furthermore, P2X7-deficient alveolar macrophage in type II alveolar epithelial cells (AECs) coculture model abolished protein permeability across mouse type II AEC monolayers. Deletion of P2X7 does not lead to a decrease in epithelial sodium channel expression in cocultures of alveolar macrophages and type II AECs. Taken together, these findings show that deletion of P2X7 is a protective factor and therapeutic target for the amelioration of hyperoxia-induced lung injury.
Collapse
Affiliation(s)
- Lakshmi Galam
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Ashna Rajan
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Athena Failla
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Ramani Soundararajan
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Richard F Lockey
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|