1
|
Xia W, Goff M, Schiavone C, Singh N, Huang J, Need E, Cave J, Gillespie DL, Jensen RL, Pagel MD, Dogra P, Shi S, Goel S. Image-Guided Targeting of Mitochondrial Metabolism Sensitizes Pediatric Malignant Rhabdoid Tumors to Low Dose Radiotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607364. [PMID: 39211061 PMCID: PMC11361026 DOI: 10.1101/2024.08.09.607364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Tumor hypoxia leads to radioresistance and markedly worse clinical outcomes for pediatric malignant rhabdoid tumors (MRT). Our transcriptomics and bioenergetic profiling data reveal that mitochondrial oxidative phosphorylation (OXPHOS) is a metabolic vulnerability of MRT and can be exploited to overcome consumptive hypoxia by repurposing an FDA-approved anti-malarial drug, Atovaquone (AVO). We then establish the utility of Oxygen-Enhanced-Multispectral Optoacoustic Tomography (OE-MSOT), a label-free, ionizing radiation-free imaging modality, to visualize and quantify spatiotemporal changes in tumor hypoxia in response to AVO. We show a potent but transient increase in tumor oxygenation upon AVO treatment which results in complete elimination of tumors in all tested mice when combined with 10 Gy radiotherapy, a dose several times lower than the current clinic standard. Finally, we use translational mathematical modeling for systematic evaluation of dosing regimens, administration timing, and therapeutic synergy in a virtual clinical patient population. Together, our work establishes a framework for safe and pediatric patient-friendly image-guided metabolic radiosensitization of rhabdoid tumors.
Collapse
|
2
|
Wang D, Chen J, Ying Y, Zhao X, Mei N, Li X, Zhu Y, Cui J, Wu PY, Lu Y, Yin B. Assessment of hypoxia and its dynamic evolution in glioblastoma via qBOLD MRI: a comparative study with metformin treatment. Eur Radiol Exp 2024; 8:134. [PMID: 39621211 PMCID: PMC11612089 DOI: 10.1186/s41747-024-00533-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/08/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND To investigate the accuracy of quantitative blood oxygen level-dependent (qBOLD) magnetic resonance imaging (MRI) in identifying hypoxia within glioblastoma and explore dynamic changes in oxygenation status of glioblastoma with and without metformin administration. METHODS Three healthy and seven C6-bearing rats underwent 7-T qBOLD MRI. Oxygen extraction fraction (OEF) and cerebral metabolism rate of O2 (CMRO2) were calculated from qBOLD data. Tumor tissues were stained using hypoxia-inducible factor-1 α (HIF-1 α ) and pimonidazole. The correlation between the hypoxia markers and corresponding qBOLD-based parameters was analyzed. Six C6-bearing rats were divided into metformin-treated and control groups for a longitudinal study of qBOLD imaging changes, with scans conducted on the 12th, 15th, and 18th day post-tumor implantation. RESULTS In healthy rats, gray matter showed higher values than white matter in T2, T2*, cerebral blood volume (CBV), and cerebral blood flow (CBF), whereas OEF was lower. Glioblastoma tissues exhibited elevated T2, T2*, CBV, and CBF but decreased OEF and CMRO2 relative to normal-appearing white matter. No significant correlation was found between staining scores from HIF-1 α and pimonidazole. T2* and T2 values were negatively correlated with pimonidazole scores in tumor regions. As the tumor progressed, OEF values increased with intra-tissue variations, whereas CMRO2 decreased. Metformin delayed the reduction of T2 and T2* values, with significant differences in OEF and CMRO2 values compared to controls on day 18. CONCLUSION T2* and T2 values were significantly associated with the hypoxia status in glioma. Metformin could potentially mitigate the progression of hypoxia in glioblastoma, which can be tracked by qBOLD parameters. RELEVANCE STATEMENT This study demonstrates the potential of qBOLD parameters in assessing glioma dynamic oxygen metabolism and the efficacy of metformin as an anti-hypoxic agent, providing insights into improving glioblastoma treatment strategies. KEY POINTS The study investigated qBOLD imaging's accuracy in identifying hypoxia status within glioblastoma. qBOLD effectively assesses hypoxia and its dynamic evolution in glioblastoma. qBOLD parameters assist in identifying a suitable patient demographic for metformin treatment.
Collapse
Affiliation(s)
- Dongdong Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Chen
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yinwei Ying
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinxin Zhao
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Mei
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuanxuan Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuqi Zhu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jin Cui
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | | | - Yiping Lu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Bo Yin
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Dhas Y, Biswas N, M R D, Jones LD, Ashili S. Repurposing metabolic regulators: antidiabetic drugs as anticancer agents. MOLECULAR BIOMEDICINE 2024; 5:40. [PMID: 39333445 PMCID: PMC11436690 DOI: 10.1186/s43556-024-00204-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/26/2024] [Indexed: 09/29/2024] Open
Abstract
Drug repurposing in cancer taps into the capabilities of existing drugs, initially designed for other ailments, as potential cancer treatments. It offers several advantages over traditional drug discovery, including reduced costs, reduced development timelines, and a lower risk of adverse effects. However, not all drug classes align seamlessly with a patient's condition or long-term usage. Hence, repurposing of chronically used drugs presents a more attractive option. On the other hand, metabolic reprogramming being an important hallmark of cancer paves the metabolic regulators as possible cancer therapeutics. This review emphasizes the importance and offers current insights into the repurposing of antidiabetic drugs, including metformin, sulfonylureas, sodium-glucose cotransporter 2 (SGLT2) inhibitors, dipeptidyl peptidase 4 (DPP-4) inhibitors, glucagon-like peptide-1 receptor agonists (GLP-1RAs), thiazolidinediones (TZD), and α-glucosidase inhibitors, against various types of cancers. Antidiabetic drugs, regulating metabolic pathways have gained considerable attention in cancer research. The literature reveals a complex relationship between antidiabetic drugs and cancer risk. Among the antidiabetic drugs, metformin may possess anti-cancer properties, potentially reducing cancer cell proliferation, inducing apoptosis, and enhancing cancer cell sensitivity to chemotherapy. However, other antidiabetic drugs have revealed heterogeneous responses. Sulfonylureas and TZDs have not demonstrated consistent anti-cancer activity, while SGLT2 inhibitors and DPP-4 inhibitors have shown some potential benefits. GLP-1RAs have raised concerns due to possible associations with an increased risk of certain cancers. This review highlights that further research is warranted to elucidate the mechanisms underlying the potential anti-cancer effects of these drugs and to establish their efficacy and safety in clinical settings.
Collapse
Affiliation(s)
- Yogita Dhas
- Rhenix Lifesciences, Hyderabad, 500038, Telangana, India
| | - Nupur Biswas
- Rhenix Lifesciences, Hyderabad, 500038, Telangana, India.
- CureScience, 5820 Oberlin Dr, Suite 202, San Diego, CA, 92121, USA.
| | | | - Lawrence D Jones
- CureScience, 5820 Oberlin Dr, Suite 202, San Diego, CA, 92121, USA
| | | |
Collapse
|
4
|
Kovale L, Singh MK, Kim J, Ha J. Role of Autophagy and AMPK in Cancer Stem Cells: Therapeutic Opportunities and Obstacles in Cancer. Int J Mol Sci 2024; 25:8647. [PMID: 39201332 PMCID: PMC11354724 DOI: 10.3390/ijms25168647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Cancer stem cells represent a resilient subset within the tumor microenvironment capable of differentiation, regeneration, and resistance to chemotherapeutic agents, often using dormancy as a shield. Their unique properties, including drug resistance and metastatic potential, pose challenges for effective targeting. These cells exploit certain metabolic processes for their maintenance and survival. One of these processes is autophagy, which generally helps in energy homeostasis but when hijacked by CSCs can help maintain their stemness. Thus, it is often referred as an Achilles heel in CSCs, as certain cancers tend to depend on autophagy for survival. Autophagy, while crucial for maintaining stemness in cancer stem cells (CSCs), can also serve as a vulnerability in certain contexts, making it a complex target for therapy. Regulators of autophagy like AMPK (5' adenosine monophosphate-activated protein kinase) also play a crucial role in maintaining CSCs stemness by helping CSCs in metabolic reprogramming in harsh environments. The purpose of this review is to elucidate the interplay between autophagy and AMPK in CSCs, highlighting the challenges in targeting autophagy and discussing therapeutic strategies to overcome these limitations. This review focuses on previous research on autophagy and its regulators in cancer biology, particularly in CSCs, addresses the remaining unanswered questions, and potential targets for therapy are also brought to attention.
Collapse
Affiliation(s)
- Lochana Kovale
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (L.K.); (M.K.S.)
| | - Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (L.K.); (M.K.S.)
| | - Joungmok Kim
- Department of Oral Biochemistry and Molecular Biology, College of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (L.K.); (M.K.S.)
| |
Collapse
|
5
|
Wang Q, Wei X. Research Progress on the Use of Metformin in Leukemia Treatment. Curr Treat Options Oncol 2024; 25:220-236. [PMID: 38286894 PMCID: PMC10873432 DOI: 10.1007/s11864-024-01179-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 01/31/2024]
Abstract
OPINION STATEMENT Metformin is a first-line drug in the clinical treatment of type 2 diabetes. Its main molecular mechanism involves the activation of adenosine 5'-monophosphate-activated protein kinase (AMPK), which regulates cell energy metabolism. Many clinical studies have shown that metformin can reduce the incidence and mortality of cancer in patients with or without diabetes. In vitro studies also confirmed that metformin can inhibit proliferation, promote apoptosis, and enhance the response of cells to chemical drugs and other anticancer effects on a variety of leukemia cells. In recent years, leukemia has become one of the most common malignant diseases. Although great progress has been made in therapeutic approaches for leukemia, novel drugs and better treatments are still needed to improve the therapeutic efficacy of these treatments. This article reviews the application status and possible mechanism of metformin in the treatment of leukemia to further understand the anticancer mechanism of metformin and expand its clinical application.
Collapse
Affiliation(s)
- Qian Wang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Xudong Wei
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
6
|
Shojaeian A, Nakhaie M, Amjad ZS, Boroujeni AK, Shokri S, Mahmoudvand S. Leveraging metformin to combat hepatocellular carcinoma: its therapeutic promise against hepatitis viral infections. JOURNAL OF CANCER METASTASIS AND TREATMENT 2024. [DOI: 10.20517/2394-4722.2023.147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Hepatocellular carcinoma (HCC) is categorized among the most common primary malignant liver cancer and a primary global cause of death from cancer. HCC tends to affect males 2-4 times more than females in many nations. The main factors that raise the incidence of HCC are chronic liver diseases, hepatotropic viruses like hepatitis B (HBV) and C (HCV), non-alcoholic fatty liver disease, exposure to toxins like aflatoxin, and non-alcoholic steatohepatitis (NASH). Among these, hepatitis B and C are the most prevalent causes of chronic hepatitis globally. Metformin, which is made from a naturally occurring compound called galegine, derived from the plant Galega officinalis (G. officinalis ), has been found to exhibit antitumor effects in a wide range of malignancies, including HCC. In fact, compared to patients on sulphonylureas or insulin, studies have demonstrated that metformin treatment significantly lowers the risk of HCC in patients with chronic liver disease. This article will first describe the molecular mechanism of hepatitis B and C viruses in the development of HCC. Then, we will provide detailed explanations about metformin, followed by a discussion of the association between metformin and hepatocellular carcinoma caused by the viruses mentioned above.
Collapse
|
7
|
Ghosh S, Garige M, Haggerty PR, Norris A, Chou CK, Wu WW, Shen RF, Sourbier C. Impact of sunitinib resistance on clear cell renal cell carcinoma therapeutic sensitivity in vitro. Cell Cycle 2024; 23:43-55. [PMID: 38263737 PMCID: PMC11005810 DOI: 10.1080/15384101.2024.2306760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/01/2022] [Indexed: 01/25/2024] Open
Abstract
Sunitinib resistance creates a major clinical challenge for the treatment of advanced clear cell renal cell carcinoma (ccRCC) and functional and metabolic changes linked to sunitinib resistance are not fully understood. We sought to characterize the molecular and metabolic changes induced by the development of sunitinib resistance in ccRCC by developing and characterizing two human ccRCC cell lines resistant to sunitinib. Consistent with the literature, sunitinib-resistant ccRCC cell lines presented an aberrant overexpression of Axl and PD-L1, as well as a metabolic rewiring characterized by enhanced OXPHOS and glutamine metabolism. Therapeutic challenges of sunitinib-resistant ccRCC cell lines in vitro using small molecule inhibitors targeting Axl, AMPK and p38, as well as using PD-L1 blocking therapeutic antibodies, showed limited CTL-mediated cytotoxicity in a co-culture model. However, the AMPK activator metformin appears to sensitize the effect of PD-L1 blocking therapeutic antibodies and to enhance CTLs' cytotoxic effects on ccRCC cells. These effects were not broadly observed with the Axl and the p38 inhibitors. Taken together, these data suggest that targeting certain pathways aberrantly activated by sunitinib resistance such as the AMPK/PDL1 axis might sensitize ccRCC to immunotherapies as a second-line therapeutic approach.
Collapse
Affiliation(s)
- Susmita Ghosh
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Mamatha Garige
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Patrick R. Haggerty
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Alexis Norris
- Division of Animal Bioengineering and Cellular Therapies, Office of New Animal Drug Evaluation, Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, MD, USA
| | - Chao-Kai Chou
- Facility for Biotechnology Resources, Center for Biologicals Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Wells W. Wu
- Facility for Biotechnology Resources, Center for Biologicals Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Rong-Fong Shen
- Facility for Biotechnology Resources, Center for Biologicals Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Carole Sourbier
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
8
|
Ruan G, Wu F, Shi D, Sun H, Wang F, Xu C. Metformin: update on mechanisms of action on liver diseases. Front Nutr 2023; 10:1327814. [PMID: 38192642 PMCID: PMC10773879 DOI: 10.3389/fnut.2023.1327814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Substantial attention has been paid to the various effects of metformin on liver diseases; the liver is the targeted organ where metformin exerts its antihyperglycemic properties. In non-alcoholic fatty liver disease (NAFLD), studies have shown that metformin affects the ATP/AMP ratio to activate AMPK, subsequently governing lipid metabolism. The latest research showed that low-dose metformin targets the lysosomal AMPK pathway to decrease hepatic triglyceride levels through the PEN2-ATP6AP1 axis in an AMP-independent manner. Metformin regulates caspase-3, eukaryotic initiation factor-2a (eIF2a), and insulin receptor substrate-1 (IRS-1) in palmitate-exposed HepG2 cells, alleviating endoplasmic reticulum (ER) stress. Recent observations highlighted the critical association with intestinal flora, as confirmed by the finding that metformin decreased the relative abundance of Bacteroides fragilis while increasing Akkermansia muciniphila and Bifidobacterium bifidum. The suppression of intestinal farnesoid X receptor (FXR) and the elevation of short-chain fatty acids resulted in the upregulation of tight junction protein and the alleviation of hepatic inflammation induced by lipopolysaccharide (LPS). Additionally, metformin delayed the progression of cirrhosis by regulating the activation and proliferation of hepatic stellate cells (HSCs) via the TGF-β1/Smad3 and succinate-GPR91 pathways. In hepatocellular carcinoma (HCC), metformin impeded the cell cycle and enhanced the curative effect of antitumor medications. Moreover, metformin protects against chemical-induced and drug-induced liver injury (DILI) against hepatotoxic drugs. These findings suggest that metformin may have pharmacological efficacy against liver diseases.
Collapse
Affiliation(s)
- Gaoyi Ruan
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fangquan Wu
- Department of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, China
| | - Dibang Shi
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongxia Sun
- Department of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, China
| | - Fangyan Wang
- Department of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, China
| | - Changlong Xu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Lin H, Ao H, Guo G, Liu M. The Role and Mechanism of Metformin in Inflammatory Diseases. J Inflamm Res 2023; 16:5545-5564. [PMID: 38026260 PMCID: PMC10680465 DOI: 10.2147/jir.s436147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
Metformin is a classical drug used to treat type 2 diabetes. With the development of research on metformin, it has been found that metformin also has several advantages aside from its hypoglycemic effect, such as anti-inflammatory, anti-aging, anti-cancer, improving intestinal flora, and other effects. The prevention of inflammation is critical because chronic inflammation is associated with numerous diseases of considerable public health. Therefore, there has been growing interest in the role of metformin in treating various inflammatory conditions. However, the precise anti-inflammatory mechanisms of metformin were inconsistent in the reported studies. Thus, this review aims to summarize various currently known possible mechanisms of metformin involved in inflammatory diseases and provide references for the clinical application of metformin.
Collapse
Affiliation(s)
- Huan Lin
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Haiyong Ao
- Jiangxi Key Laboratory of Nanobiomaterials & School of Materials Science and Engineering, East China Jiaotong University, Nanchang, Jiangxi, People’s Republic of China
| | - Guanghua Guo
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Mingzhuo Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
10
|
Drzał A, Dziurman G, Hoła P, Lechowski J, Delalande A, Swakoń J, Pichon C, Elas M. Murine Breast Cancer Radiosensitization Using Oxygen Microbubbles and Metformin: Vessels Are the Key. Int J Mol Sci 2023; 24:12156. [PMID: 37569531 PMCID: PMC10418665 DOI: 10.3390/ijms241512156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Radiotherapy is a cornerstone of cancer treatment, but tumor hypoxia and resistance to radiation remain significant challenges. Vascular normalization has emerged as a strategy to improve oxygenation and enhance therapeutic outcomes. In this study, we examine the radiosensitization potential of vascular normalization using metformin, a widely used anti-diabetic drug, and oxygen microbubbles (OMBs). We investigated the synergistic action of metformin and OMBs and the impact of this therapeutic combination on the vasculature, oxygenation, invasiveness, and radiosensitivity of murine 4T1 breast cancer. We employed in vivo Doppler ultrasonographic imaging for vasculature analysis, electron paramagnetic resonance oximetry, and immunohistochemical assessment of microvessels, perfusion, and invasiveness markers. Our findings demonstrate that both two-week metformin therapy and oxygen microbubble treatment normalize abnormal cancer vasculature. The combination of metformin and OMB yielded more pronounced and sustained effects than either treatment alone. The investigated therapy protocols led to nearly twice the radiosensitivity of 4T1 tumors; however, no significant differences in radiosensitivity were observed between the various treatment groups. Despite these improvements, resistance to treatment inevitably emerged, leading to the recurrence of hypoxia and an increased incidence of metastasis.
Collapse
Affiliation(s)
- Agnieszka Drzał
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics and Cancer Biology, Jagiellonian University, 30-387 Krakow, Poland; (A.D.); (G.D.); (P.H.); (J.L.)
| | - Gabriela Dziurman
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics and Cancer Biology, Jagiellonian University, 30-387 Krakow, Poland; (A.D.); (G.D.); (P.H.); (J.L.)
- Doctoral School of Exact and Natural Sciences, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics and Cancer Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Paweł Hoła
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics and Cancer Biology, Jagiellonian University, 30-387 Krakow, Poland; (A.D.); (G.D.); (P.H.); (J.L.)
| | - Jakub Lechowski
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics and Cancer Biology, Jagiellonian University, 30-387 Krakow, Poland; (A.D.); (G.D.); (P.H.); (J.L.)
| | - Anthony Delalande
- UFR Sciences and Techniques, University of Orleans, 45067 Orleans, France; (A.D.); (C.P.)
- Center for Molecular Biophysics, CNRS Orleans, 45071 Orleans, France
| | - Jan Swakoń
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland;
| | - Chantal Pichon
- UFR Sciences and Techniques, University of Orleans, 45067 Orleans, France; (A.D.); (C.P.)
- Center for Molecular Biophysics, CNRS Orleans, 45071 Orleans, France
- Institut Universitaire de France, 75231 Paris, France
| | - Martyna Elas
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics and Cancer Biology, Jagiellonian University, 30-387 Krakow, Poland; (A.D.); (G.D.); (P.H.); (J.L.)
| |
Collapse
|
11
|
Kao TW, Bai GH, Wang TL, Shih IM, Chuang CM, Lo CL, Tsai MC, Chiu LY, Lin CC, Shen YA. Novel cancer treatment paradigm targeting hypoxia-induced factor in conjunction with current therapies to overcome resistance. J Exp Clin Cancer Res 2023; 42:171. [PMID: 37460927 DOI: 10.1186/s13046-023-02724-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/29/2023] [Indexed: 07/20/2023] Open
Abstract
Chemotherapy, radiotherapy, targeted therapy, and immunotherapy are established cancer treatment modalities that are widely used due to their demonstrated efficacy against tumors and favorable safety profiles or tolerability. Nevertheless, treatment resistance continues to be one of the most pressing unsolved conundrums in cancer treatment. Hypoxia-inducible factors (HIFs) are a family of transcription factors that regulate cellular responses to hypoxia by activating genes involved in various adaptations, including erythropoiesis, glucose metabolism, angiogenesis, cell proliferation, and apoptosis. Despite this critical function, overexpression of HIFs has been observed in numerous cancers, leading to resistance to therapy and disease progression. In recent years, much effort has been poured into developing innovative cancer treatments that target the HIF pathway. Combining HIF inhibitors with current cancer therapies to increase anti-tumor activity and diminish treatment resistance is one strategy for combating therapeutic resistance. This review focuses on how HIF inhibitors could be applied in conjunction with current cancer treatments, including those now being evaluated in clinical trials, to usher in a new era of cancer therapy.
Collapse
Affiliation(s)
- Ting-Wan Kao
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
| | - Geng-Hao Bai
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei City, 100225, Taiwan
| | - Tian-Li Wang
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans StreetRoom 306, Baltimore, MD, CRB221231, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ie-Ming Shih
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans StreetRoom 306, Baltimore, MD, CRB221231, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chi-Mu Chuang
- Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei, 112304, Taiwan
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
- Department of Midwifery and Women Health Care, National Taipei University of Nursing and Health Sciences, Taipei, 112303, Taiwan
| | - Chun-Liang Lo
- Department of Biomedical Engineering, National Yang-Ming Chiao Tung University, Taipei, 112304, Taiwan
- Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Meng-Chen Tsai
- Department of General Medicine, Taipei Medical University Hospital, Taipei, 110301, Taiwan
| | - Li-Yun Chiu
- Department of General Medicine, Mackay Memorial Hospital, Taipei, 104217, Taiwan
| | - Chu-Chien Lin
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- School of Medicine, College of Medicine, Taipei Medical University, Taipei City, 110301, Taiwan
| | - Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan.
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan.
| |
Collapse
|
12
|
Zhao W, Zhuang P, Chen Y, Wu Y, Zhong M, Lun Y. "Double-edged sword" effect of reactive oxygen species (ROS) in tumor development and carcinogenesis. Physiol Res 2023; 72:301-307. [PMID: 37449744 PMCID: PMC10669002 DOI: 10.33549/physiolres.935007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/15/2023] [Indexed: 08/26/2023] Open
Abstract
Reactive oxygen species (ROS) are small reactive molecules produced by cellular metabolism and regulate various physiological and pathological functions. Many studies have shown that ROS plays an essential role in the proliferation and inhibition of tumor cells. Different concentrations of ROS can have a "double-edged sword" effect on the occurrence and development of tumors. A certain concentration of ROS can activate growth-promoting signals, enhance the proliferation and invasion of tumor cells, and cause damage to biomacromolecules such as proteins and nucleic acids. However, ROS can enhance the body's antitumor signal at higher levels by initiating oxidative stress-induced apoptosis and autophagy in tumor cells. This review analyzes ROS's unique bidirectional regulation mechanism on tumor cells, focusing on the key signaling pathways and regulatory factors that ROS affect the occurrence and development of tumors and providing ideas for an in-depth understanding of the mechanism of ROS action and its clinical application.
Collapse
Affiliation(s)
- W Zhao
- Key Laboratory of Medical Microecology (Putian University), Fujian Province University, School of Pharmacy and Medical Technology, Putian University, Putian, China.
| | | | | | | | | | | |
Collapse
|
13
|
Zhang LY, Yin YH, Wang XJ. Advances in the mechanism of action of metformin in pituitary tumors. World J Meta-Anal 2023; 11:144-150. [DOI: 10.13105/wjma.v11.i5.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 04/14/2023] [Indexed: 06/16/2023] Open
Abstract
Pituitary tumors are common intracranial tumors, but when faced with drug-resistant or aggressive tumors, existing medical measures may not provide good control, leading to progression and deterioration. Metformin, a traditional hypoglycemic drug, has recently been discovered to have multiple functions including antitumor effects. There have been studies on the mechanism of metformin for the treatment of pituitary tumors, but it is uncertain whether it will provide new adjuvant or alternative therapies for the treatment of these tumors. We analyzed the potential mechanisms of action of metformin with respect to the inhibition of pituitary tumor growth and hormone secretion by reviewing the available literature.
Collapse
Affiliation(s)
- Long-Yao Zhang
- Department of Neurosurgery, The Affiliated Hospital 2 to Nantong University, Nantong 226000, Jiangsu Province, China
| | - Yu-Hua Yin
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University, Shanghai 226000, China
| | - Xue-Jian Wang
- Department of Neurosurgery, The Affiliated Hospital 2 to Nantong University, Nantong 226000, Jiangsu Province, China
| |
Collapse
|
14
|
Zhang Y, Zhou F, Guan J, Zhou L, Chen B. Action Mechanism of Metformin and Its Application in Hematological Malignancy Treatments: A Review. Biomolecules 2023; 13:250. [PMID: 36830619 PMCID: PMC9953052 DOI: 10.3390/biom13020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
Hematologic malignancies (HMs) mainly include acute and chronic leukemia, lymphoma, myeloma and other heterogeneous tumors that seriously threaten human life and health. The common effective treatments are radiotherapy, chemotherapy and hematopoietic stem cell transplantation (HSCT), which have limited options and are prone to tumor recurrence and (or) drug resistance. Metformin is the first-line drug for the treatment of type 2 diabetes (T2DM). Recently, studies identified the potential anti-cancer ability of metformin in both T2DM patients and patients that are non-diabetic. The latest epidemiological and preclinical studies suggested a potential benefit of metformin in the prevention and treatment of patients with HM. The mechanism may involve the activation of the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway by metformin as well as other AMPK-independent pathways to exert anti-cancer properties. In addition, combining current conventional anti-cancer drugs with metformin may improve the efficacy and reduce adverse drug reactions. Therefore, metformin can also be used as an adjuvant therapeutic agent for HM. This paper highlights the anti-hyperglycemic effects and potential anti-cancer effects of metformin, and also compiles the in vitro and clinical trials of metformin as an anti-cancer and chemosensitizing agent for the treatment of HM. The need for future research on the use of metformin in the treatment of HM is indicated.
Collapse
Affiliation(s)
| | | | | | | | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
15
|
Kim AH, Kolesnikova M, Ngo WK, Tsang SH. Effects of medications on hypoxia-inducible factor in the retina: A review. Clin Exp Ophthalmol 2023; 51:205-216. [PMID: 36594241 DOI: 10.1111/ceo.14161] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 01/04/2023]
Abstract
Hypoxia-inducible factor (HIF) plays a critical role in the mechanisms that allow cells to adapt to various oxygen levels in the environment. Specifically, HIF-1⍺ has shown to be widely involved in cellular repair, survival, and energy metabolism. HIF-1⍺ has also been found in increased levels in cancer cells, highlighting the importance of balance in the hypoxic response. Promoting HIF-1⍺ activity as a potential therapy for degenerative diseases and inhibiting HIF-1⍺ as a therapy for pathologies with overactive cell proliferation are actively being explored. Digoxin and metformin, HIF-1⍺ inhibitors, and deferoxamine and ⍺-ketoglutarate analogues, HIF-1⍺ activators, are being studied for application in age-related macular degeneration, diabetic retinopathy, and retinitis pigmentosa. However, these same medications have retinal toxicities that must be assessed before implementation of therapeutic care. Herein, we highlight the duality of therapeutic and toxic potential of HIF-1⍺ that must be carefully assessed prior to its clinical application in retinal disorders.
Collapse
Affiliation(s)
- Angela H Kim
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, New York-Presbyterian Hospital, New York, New York, USA.,Edward S. Harkness Eye Institute, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, New York, USA.,SUNY Downstate Medical School, Brooklyn, New York, USA
| | - Masha Kolesnikova
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, New York-Presbyterian Hospital, New York, New York, USA.,Edward S. Harkness Eye Institute, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, New York, USA.,SUNY Downstate Medical School, Brooklyn, New York, USA
| | - Wei Kiong Ngo
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, New York-Presbyterian Hospital, New York, New York, USA.,Edward S. Harkness Eye Institute, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, New York, USA.,National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
| | - Stephen H Tsang
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, New York-Presbyterian Hospital, New York, New York, USA.,Edward S. Harkness Eye Institute, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, New York, USA.,Departments of Pathology & Cell Biology, Columbia Stem Cell Initiative, New York, New York, USA.,Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
16
|
Santarsiero A, Pappalardo I, Rosa GM, Pisano I, Superchi S, Convertini P, Todisco S, Scafato P, Infantino V. Mitochondrial Role in Intrinsic Apoptosis Induced by a New Synthesized Chalcone in Hepatocellular Carcinoma Cells. Biomedicines 2022; 10:3120. [PMID: 36551876 PMCID: PMC9775964 DOI: 10.3390/biomedicines10123120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer and the fourth cause of cancer-related deaths worldwide. Presently, a few drugs are available for HCC treatment and prevention, including both natural and synthetic compounds. In this study, a new chalcone, (E)-1-(2,4,6-triethoxyphenyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (ETTC), was synthesized and its effects and mechanisms of action over human hepatoma cells were investigated. Cytotoxic activity was revealed in HCC cells, while no effects were observed in normal hepatocytes. In HCC cells, ETTC caused subG1 cell cycle arrest and apoptosis, characterized by nuclear fragmentation. The activation of caspases 3/7 and 9, the increase in pro-apoptotic BAX, and the decrease in anti-apoptotic BCL-2 suggest the activation of the intrinsic pathway of apoptosis. ETTC mitochondrial targeting is confirmed by the reduction in mitochondrial membrane potential and Complex I activity together with levels of superoxide anion increasing. Our outcomes prove the potential mitochondria-mediated antitumor effect of newly synthesized chalcone ETTC in HCC.
Collapse
Affiliation(s)
- Anna Santarsiero
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Ilaria Pappalardo
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | | | - Isabella Pisano
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Stefano Superchi
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Paolo Convertini
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Simona Todisco
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Patrizia Scafato
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Vittoria Infantino
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
17
|
Zhao L, Tang X, Huang R, Liu Q, Liao L, Hu Y, He K, Zhang X, Guo J, Chen S, Yang S. Acute hypoxia promotes the liver angiogenesis of largemouth bass (Micropterus salmoides) by HIF - Dependent pathway. FISH & SHELLFISH IMMUNOLOGY 2022; 131:264-273. [PMID: 35940542 DOI: 10.1016/j.fsi.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
A 24-h hypoxia exposure experiment was conducted to determine how hypoxia exposure induce liver angiogenesis in largemouth bass. Nitrogen (N2) was pumped into water to exclude dissolved oxygen into 1.2 ± 0.2 mg/L, and liver tissues were sampled during hypoxia exposure of 0 h, 4 h, 8 h, 12 h, 24 h and re-oxygenation for 12 h. Firstly, the results showed that hypoxia exposure promoted the angiogenesis occurrence by immunohistochemical analysis of vascular endothelial growth factor receptor 2 (VEGFR2). Secondly, the concentration of vasodilation factor increased and it's activity was elevated during 8 h exposure, such as nitric oxide (NO) and nitric oxide synthase (NOS) (p < 0.05). Thirdly, hypoxia exposure promoted angiogenesis through up-regulation the expression of matrix metalloproteinase 2 (MMP-2), jagged, protein kinase B (AKT), phosphoinositide-3-kinase (PI3K), mitogen-activated protein kinase (MAPK) at 4 h; contrarily, the expression of inhibiting angiogenesis genes presented up-regulated at 8 h (p < 0.05), such as matrix metalloproteinase inhibitor-2 (TIMP-2), matrix metalloproteinase inhibitor-3 (TIMP-3). Finally, the genes and proteins that regulate angiogenesis presented obvious chronological order. Parts of them promoted the budding and extension of blood vessels were up-regulated during 4 h-8 h (p < 0.05), such as vascular endothelial growth factor a (VEGFA), VEGFR2, monocarboxylic acid transporter 1 (MCT1), CD147, prolyl hydroxylase (PHD), nuclear factor kappa-B (NF-κB); other part of them promoted blood vessel maturation were highly expressed during 12 h-24 h (p < 0.05), such as angiogenin-1 (Ang-1) and angiogenin-2 (Ang-2). In short, acute hypoxia can promote the liver angiogenesis of largemouth bass by HIF - dependent pathway.
Collapse
Affiliation(s)
- Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Xiaohong Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Fish Resources and Environment in the Lpper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu, Sichuan, 610011, China.
| | - Rui Huang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Lei Liao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Yifan Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Kuo He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Xin Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Jiazhong Guo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Shiyi Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
18
|
Mostafavi S, Zalpoor H, Hassan ZM. The promising therapeutic effects of metformin on metabolic reprogramming of cancer-associated fibroblasts in solid tumors. Cell Mol Biol Lett 2022; 27:58. [PMID: 35869449 PMCID: PMC9308248 DOI: 10.1186/s11658-022-00356-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/22/2022] [Indexed: 12/12/2022] Open
Abstract
Tumor-infiltrated lymphocytes are exposed to many toxic metabolites and molecules in the tumor microenvironment (TME) that suppress their anti-tumor activity. Toxic metabolites, such as lactate and ketone bodies, are produced mainly by catabolic cancer-associated fibroblasts (CAFs) to feed anabolic cancer cells. These catabolic and anabolic cells make a metabolic compartment through which high-energy metabolites like lactate can be transferred via the monocarboxylate transporter channel 4. Moreover, a decrease in molecules, including caveolin-1, has been reported to cause deep metabolic changes in normal fibroblasts toward myofibroblast differentiation. In this context, metformin is a promising drug in cancer therapy due to its effect on oncogenic signal transduction pathways, leading to the inhibition of tumor proliferation and downregulation of key oncometabolites like lactate and succinate. The cross-feeding and metabolic coupling of CAFs and tumor cells are also affected by metformin. Therefore, the importance of metabolic reprogramming of stromal cells and also the pivotal effects of metformin on TME and oncometabolites signaling pathways have been reviewed in this study.
Collapse
|
19
|
Metformin administration is associated with enhanced response to transarterial chemoembolization for hepatocellular carcinoma in type 2 diabetes patients. Sci Rep 2022; 12:14482. [PMID: 36008432 PMCID: PMC9411109 DOI: 10.1038/s41598-022-18341-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/09/2022] [Indexed: 12/09/2022] Open
Abstract
Transarterial chemoembolization (TACE) is often used as a locoregional therapy for early hepatocellular carcinoma (HCC) when local ablation or resection are not feasible, but incomplete response and recurrence are commonly observed. In this study, we sought to determine the association between metformin administration and TACE outcomes for single nodular HCC in patients with type 2 diabetes mellitus (T2DM). The retrospective cohort analysis included 164 T2DM patients with single nodular HCC who underwent TACE as an initial treatment, and 91 were exposed to metformin before and after TACE. Propensity score (PS) matching was used to balance covariates. Logistic regression analysis was used to determine the predictors of tumor response after TACE, and Cox regression analysis assessed independent predictors of local tumor recurrence (LTR) in patients with complete response after TACE. Metformin use was associated with significantly higher objective response rate (ORR) in the overall and PS-matched cohort (79.1% vs. 60.3 and 78.7% vs. 57.5%; p = 0.008 and p = 0.029, respectively). Logistic regression analysis showed that metformin use was an independent predictor of ORR in all and PS-matched patients (odds ratio = 2.65 and 3.06; p = 0.016 and 0.034, respectively). Cox regression analysis showed metformin administration was an independent predictor for lower LTR in all and PS-matched patients (hazard ratio = 0.28 and 0.27; p = 0.001 and 0.007, respectively). Metformin administration is associated with better initial response and lower local recurrence after TACE for single nodular HCC in T2DM.
Collapse
|
20
|
Kim H, Kim D, Kim W, Kim E, Jang WI, Kim MS. The Efficacy of Radiation is Enhanced by Metformin and Hyperthermia Alone or Combined Against FSaII Fibrosarcoma in C3H Mice. Radiat Res 2022; 198:190-199. [DOI: 10.1667/rade-21-00231.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/16/2022] [Indexed: 11/03/2022]
Affiliation(s)
- Hyunkyung Kim
- Clinical Translational Research Team, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Dohyeon Kim
- Clinical Translational Research Team, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Wonwoo Kim
- Clinical Translational Research Team, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - EunJi Kim
- Department of Radiation Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Won Il Jang
- Department of Radiation Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Mi-Sook Kim
- Department of Radiation Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| |
Collapse
|
21
|
Кузнецов КО, Сафина ЭР, Гаймакова ДВ, Фролова ЯС, Оганесян ИЮ, Садертдинова АГ, Назмиева КА, Исламгулов АХ, Каримова АР, Галимова АМ, Ризванова ЭВ. [Metformin and malignant neoplasms: a possible mechanism of antitumor action and prospects for use in practice]. PROBLEMY ENDOKRINOLOGII 2022; 68:45-55. [PMID: 36337018 PMCID: PMC9762452 DOI: 10.14341/probl13097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 06/16/2023]
Abstract
Metformin is a first-line antidiabetic drug for the treatment of type 2 diabetes mellitus (DM2); its molecular target is AMP-activated protein kinase (AMPK), which is involved in many metabolic processes. Metformin not only reduces blood glucose levels and improves insulin sensitivity, but also inhibits lipolysis and reduces cardiovascular risk in patients with DM2. In recent years, it has been proven that metformin slows down the aging process, stimulates hair growth, eliminates cognitive impairment, and also has an antitumor effect. Most basic studies have shown that metformin inhibits the growth of tumor cells and promotes cellular apoptosis, while clinical studies show contradictory results. This discrepancy can be explained by the difference in the concentration of metformin between basic and clinical studies. The maximum daily dose of metformin for patients with DM2 is 2500 mg / day, and the dose used in basic research was much higher. Metformin directly activates the AMPK signaling pathway, inhibits the production of reactive oxygen species, induces the activation of mTORC1, inhibits cyclin D1, which leads to a reduction in the risk of the occurrence and development of malignant neoplasms. In addition, metformin indirectly inhibits tumor growth, proliferation, invasion and metastasis by reducing the concentration of glucose in the blood, insulin resistance, as well as by reducing inflammation and affecting the tumor microenvironment. Glycolysis plays an important role in the energy metabolism of tumors, and metformin is able to have an inhibitory effect on it. Currently, studies of the mechanism of antitumor effects of metformin are becoming more extensive and in-depth, but there are still some contradictions.
Collapse
Affiliation(s)
- К. О. Кузнецов
- Российский национальный исследовательский медицинский университет им. Н.И. Пирогова
| | - Э. Р. Сафина
- Башкирский государственный медицинский университет
| | | | - Я. С. Фролова
- Первый Московский государственный медицинский университет им. И.М. Сеченова
| | - И. Ю. Оганесян
- Первый Московский государственный медицинский университет им. И.М. Сеченова
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
BACKGROUND Peritoneal adhesion formation is common after abdominal surgery and results in severe complications. Tissue hypoxia is one of the main drivers of peritoneal adhesions. Thus, we determined the clinical role of hypoxia-inducible factor (HIF)-1 signaling in peritoneal adhesions and investigated whether the biguanide antidiabetic drug metformin shows HIF-inhibitory effects and could be repurposed to prevent adhesion formation. STUDY DESIGN As part of the ReLap study (DRKS00013001), adhesive tissue from patients undergoing relaparotomy was harvested and graded using the adhesion grade score. HIF-1 signaling activity within tissue biopsies was determined and correlated with adhesion severity. The effect of metformin on HIF-1 activity was analyzed by quantification of HIF target gene expression and HIF-1 protein stabilization in human mesothelial cells and murine fibroblast under normoxia and hypoxia. Mice were treated with vehicle or metformin 3 days before and until 7 days after induction of peritoneal adhesions; alternatively, metformin treatment was discontinued 48 hours before induction of peritoneal adhesions. RESULTS HIF-1 signaling activity correlated with adhesion severity in patient biopsies. Metformin significantly mitigated HIF-1 activity in vitro and in vivo. Oral treatment with metformin markedly prevented adhesion formation in mice even when the treatment was discontinued 48 hours before surgery. Although metformin treatment did not alter macrophage polarization, metformin reduced proinflammatory leucocyte infiltration and attenuated hypoxia-induced profibrogenic expression patterns and myofibroblast activation. CONCLUSIONS Metformin mitigates adhesion formation by inhibiting HIF-1-dependent (myo)fibroblast activation, conferring an antiadhesive microenvironment after abdominal surgery. Repurposing the clinically approved drug metformin might be useful to prevent or treat postoperative adhesions.
Collapse
|
23
|
Xiong S, Liu W. Role of metformin in the diagnosis, prevention, and treatment of hepatocellular carcinoma. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:364-373. [PMID: 35545330 PMCID: PMC10930065 DOI: 10.11817/j.issn.1672-7347.2022.210118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Indexed: 06/15/2023]
Abstract
Hepatocellular carcinoma is one of the most common malignant tumors in the world. Although there are many options for the treatment of hepatocellular carcinoma, such as surgical resection, interventional therapy, radiotherapy, chemotherapy, targeted therapy and liver transplantation, the poor therapeutic effect seriously reduces the quality of life for patients and also increases the social and economic burden. Metformin is originally used as the first-line drug for type 2 diabetes, but it has been found to play a certain effect in the prevention and treatment of malignant tumor. The potential roles of metformin against hepatocellular carcinoma, such as regulation of the microenvironment, proliferation signal pathway, metabolism, invasion and metastasis, apoptosis, autophagy, and epigenetics of hepatoma cells. It provides a new choice for the prevention and treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Shize Xiong
- First College of Clinical Medical Science, China Three Gorges University; Institute of Digestive Disease, China Three Gorges University; Department of Gastroenterology, Yichang Central People's Hospital, Yichang Hubei 443000, China.
| | - Wei Liu
- First College of Clinical Medical Science, China Three Gorges University; Institute of Digestive Disease, China Three Gorges University; Department of Gastroenterology, Yichang Central People's Hospital, Yichang Hubei 443000, China.
| |
Collapse
|
24
|
Trujillo-Del Río C, Tortajada-Pérez J, Gómez-Escribano AP, Casterá F, Peiró C, Millán JM, Herrero MJ, Vázquez-Manrique RP. Metformin to treat Huntington disease: a pleiotropic drug against a multi-system disorder. Mech Ageing Dev 2022; 204:111670. [DOI: 10.1016/j.mad.2022.111670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/17/2022]
|
25
|
Meireles CG, Lourenço de Lima C, Martins de Paula Oliveira M, Abe da Rocha Miranda R, Romano L, Yo-Stella Brashaw T, Neves da Silva Guerra E, de Assis Rocha Neves F, Chapple JP, Simeoni LA, Lofrano-Porto A. Antiproliferative effects of metformin in cellular models of pheochromocytoma. Mol Cell Endocrinol 2022; 539:111484. [PMID: 34637881 DOI: 10.1016/j.mce.2021.111484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 12/20/2022]
Abstract
Pheochromocytomas (PCCs) are rare neuroendocrine tumors derived from adrenal medulla chromaffin cells. Malignancy and recurrence are rare but demand effective treatment. Metformin exerts antiproliferative effects in several cancer cell lines. We thus evaluated the effects of metformin on cell viability and proliferation, cellular respiration and AMPK-AKT-mTOR-HIFA proliferation pathway on a rat PCC cell line (PC12-Adh). We then addressed metformin's effects on the AMPK-AKT-mTOR-HIFA pathway on two human primary cultures: one from a VHL-mutant PCC and other from a sporadic PCC. Metformin (20 mM) inhibited PC12-Adh cell proliferation, and decreased oxygen consumption, ATP production and proton leak, in addition to loss of mitochondrial membrane potential. Further, metformin induced AMPK phosphorylation and impaired AMPK-PI3k-AKT-mTOR pathway activation. The mTOR pathway was also inhibited in human VHL-related PCC cells, however, in an AMPK-independent manner. Metformin-induced decrease of HIF1A levels was likely mediated by proteasomal degradation. Altogether our results suggest that metformin impairs PCC cellular proliferation.
Collapse
Affiliation(s)
- Cinthia Gabriel Meireles
- Molecular Pharmacology Laboratory, School of Health Sciences, University of Brasília, Brasília, Brazil.
| | - Caroline Lourenço de Lima
- Molecular Pharmacology Laboratory, School of Health Sciences, University of Brasília, Brasília, Brazil; Laboratory of Oral Histopathology, School of Health Sciences, University of Brasília, Brasília, Brazil
| | | | | | - Lisa Romano
- Center of Endocrinology, Queen Mary University of London, William Harvey Research Institute, London, England, United Kingdom
| | - Teisha Yo-Stella Brashaw
- Center of Endocrinology, Queen Mary University of London, William Harvey Research Institute, London, England, United Kingdom
| | | | | | - J Paul Chapple
- Center of Endocrinology, Queen Mary University of London, William Harvey Research Institute, London, England, United Kingdom
| | - Luiz Alberto Simeoni
- Molecular Pharmacology Laboratory, School of Health Sciences, University of Brasília, Brasília, Brazil
| | - Adriana Lofrano-Porto
- Molecular Pharmacology Laboratory, School of Health Sciences, University of Brasília, Brasília, Brazil; Gonadal and Adrenal Diseases Clinics, University Hospital of Brasília, University of Brasília, Brasília, Brazil
| |
Collapse
|
26
|
Schadler P, Lohberger B, Stündl N, Stradner MH, Glänzer D, Sadoghi P, Leithner A, Steinecker-Frohnwieser B. The Effect of Body Mass Index and Metformin on Matrix Gene Expression in Arthritic Primary Human Chondrocytes. Cartilage 2021; 13:1004S-1018S. [PMID: 33025801 PMCID: PMC8804722 DOI: 10.1177/1947603520962558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Obesity is a known risk factor for knee osteoarthritis (OA). Diabetes has been associated with progression of OA and metformin is the first-line treatment in type 2 diabetes. The effect of the body mass index (BMI) and metformin on the expression of certain matrix genes in human chondrocytes is unclear. The purpose of this study was to investigate the effect of BMI and metformin on the expression of matrix genes in primary human chondrocytes. DESIGN Adult female patients undergoing knee arthroplasty for end-stage OA were enrolled. Primary chondrocytes were cultivated and stimulated with metformin. Matrix gene expression was analyzed using polymerase chain reaction. Clinical data were used in multivariable regression models to assess the influence of BMI and metformin stimulation on gene expression. RESULTS A total of 14 patients were analyzed. BMI was a predictor of increased expression in ADAMTS5 (β = -0.11, P = 0.03). Metformin slightly reduced expression in ADAMTS5 (β = 0.34, P = 0.04), HIF-1a (β = 0.39, P = 0.04), IL4 (β = 0.30, P = 0.02), MMP1 (β = 0.47, P < 0.01), and SOX9 (β = 0.37, P = 0.03). The hip-knee-ankle angle and proton pump inhibitors (PPIs) intake were associated with reduced SOX9 expression (β = 0.23, P < 0.01; β = 2.39, P < 0.01). Higher C-reactive protein (CRP) levels were associated with increased MMP1 expression (β = -0.16, P = 0.02). CONCLUSION We found that BMI exerts a destructive effect via induction of ADAMTS5. Metformin reduced the expression of catabolic genes ADAMTS5 and MMP1 and might play a role in disease prevention. Limb malalignment and PPI intake was associated with a reduced expression of SOX9, and higher CRP levels correlated with increased MMP1 expression, indicating a destructive process.
Collapse
Affiliation(s)
- Paul Schadler
- Department of Orthopaedics and Trauma,
Medical University of Graz, Graz, Austria,Paul Schadler, Department of Orthopaedics
and Trauma, Medical University of Graz, Auenbruggerplatz 5-7, Graz, 8036,
Austria.
| | - Birgit Lohberger
- Department of Orthopaedics and Trauma,
Medical University of Graz, Graz, Austria
| | - Nicole Stündl
- Department of Orthopaedics and Trauma,
Medical University of Graz, Graz, Austria,Department for Rehabilitation, Ludwig
Boltzmann Institute for Arthritis and Rehabilitation, Gröbming, Austria
| | - Martin Helmut Stradner
- Department for Rehabilitation, Ludwig
Boltzmann Institute for Arthritis and Rehabilitation, Gröbming, Austria
| | - Dietmar Glänzer
- Department of Orthopaedics and Trauma,
Medical University of Graz, Graz, Austria,Department for Rehabilitation, Ludwig
Boltzmann Institute for Arthritis and Rehabilitation, Gröbming, Austria
| | - Patrick Sadoghi
- Department of Orthopaedics and Trauma,
Medical University of Graz, Graz, Austria
| | - Andreas Leithner
- Department of Orthopaedics and Trauma,
Medical University of Graz, Graz, Austria
| | | |
Collapse
|
27
|
Cory TJ, Emmons RS, Yarbro JR, Davis KL, Pence BD. Metformin Suppresses Monocyte Immunometabolic Activation by SARS-CoV-2 Spike Protein Subunit 1. Front Immunol 2021; 12:733921. [PMID: 34858397 PMCID: PMC8631967 DOI: 10.3389/fimmu.2021.733921] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022] Open
Abstract
A hallmark of COVID-19 is a hyperinflammatory state associated with severity. Monocytes undergo metabolic reprogramming and produce inflammatory cytokines when stimulated with SARS-CoV-2. We hypothesized that binding by the viral spike protein mediates this effect, and that drugs which regulate immunometabolism could inhibit the inflammatory response. Monocytes stimulated with recombinant SARS-CoV-2 spike protein subunit 1 showed a dose-dependent increase in glycolytic metabolism associated with production of pro-inflammatory cytokines. This response was dependent on hypoxia-inducible factor-1α, as chetomin inhibited glycolysis and cytokine production. Inhibition of glycolytic metabolism by 2-deoxyglucose (2-DG) or glucose deprivation also inhibited the glycolytic response, and 2-DG strongly suppressed cytokine production. Glucose-deprived monocytes rescued cytokine production by upregulating oxidative phosphorylation, an effect which was not present in 2-DG-treated monocytes due to the known effect of 2-DG on suppressing mitochondrial metabolism. Finally, pre-treatment of monocytes with metformin strongly suppressed spike protein-mediated cytokine production and metabolic reprogramming. Likewise, metformin pre-treatment blocked cytokine induction by SARS-CoV-2 strain WA1/2020 in direct infection experiments. In summary, the SARS-CoV-2 spike protein induces a pro-inflammatory immunometabolic response in monocytes that can be suppressed by metformin, and metformin likewise suppresses inflammatory responses to live SARS-CoV-2. This has potential implications for the treatment of hyperinflammation during COVID-19.
Collapse
Affiliation(s)
- Theodore J. Cory
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Russell S. Emmons
- College of Health Sciences, University of Memphis, Memphis, TN, United States
| | - Johnathan R. Yarbro
- College of Health Sciences, University of Memphis, Memphis, TN, United States
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Kierstin L. Davis
- College of Health Sciences, University of Memphis, Memphis, TN, United States
| | - Brandt D. Pence
- College of Health Sciences, University of Memphis, Memphis, TN, United States
- Center for Nutraceutical and Dietary Supplement Research, University of Memphis, Memphis, TN, United States
| |
Collapse
|
28
|
Luna Yolba R, Visentin V, Hervé C, Chiche J, Ricci J, Méneyrol J, Paillasse MR, Alet N. EVT-701 is a novel selective and safe mitochondrial complex 1 inhibitor with potent anti-tumor activity in models of solid cancers. Pharmacol Res Perspect 2021; 9:e00854. [PMID: 34478236 PMCID: PMC8415080 DOI: 10.1002/prp2.854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/01/2022] Open
Abstract
Targeting the first protein complex of the mitochondrial electron transport chain (MC1) in cancer has become an attractive therapeutic approach in the recent years, given the metabolic vulnerabilities of cancer cells. The anticancer effect exerted by the pleiotropic drug metformin and the associated reduction in hypoxia-inducible factor 1α (HIF-1α) levels putatively mediated by MC1 inhibition led to the development of HIF-1α inhibitors, such as BAY87-2243, with a more specific MC1 targeting. However, the development of BAY87-2243 was stopped early in phase 1 due to dose-independent emesis and thus there is still no clinical proof of concept for the approach. Given the importance of mitochondrial metabolism during cancer progression, there is still a strong therapeutic need to develop specific and safe MC1 inhibitors. We recently reported the synthesis of compounds with a novel chemotype and potent action on HIF-1α degradation and MC1 inhibition. We describe here the selectivity, safety profile and anti-cancer activity in solid tumors of lead compound EVT-701. In addition, using murine models of lung cancer and of Non-Hodgkin's B cell lymphoma we demonstrated that EVT-701 reduced tumor growth and lymph node invasion when used as a single agent therapy. LKB1 deficiency in lung cancer was identified as a potential indicator of accrued sensitivity to EVT-701, allowing stratification and selection of patients in clinical trials. Altogether these results support further evaluation of EVT-701 alone or in combination in preclinical models and eventually in patients.
Collapse
Affiliation(s)
| | | | | | - Johanna Chiche
- C3MINSERMUniversité Côte d'Azur, Equipe labellisée Ligue Contre le CancerNiceFrance
| | - Jean‐Ehrland Ricci
- C3MINSERMUniversité Côte d'Azur, Equipe labellisée Ligue Contre le CancerNiceFrance
| | | | | | | |
Collapse
|
29
|
New Insight into the Effects of Metformin on Diabetic Retinopathy, Aging and Cancer: Nonapoptotic Cell Death, Immunosuppression, and Effects beyond the AMPK Pathway. Int J Mol Sci 2021; 22:ijms22179453. [PMID: 34502359 PMCID: PMC8430477 DOI: 10.3390/ijms22179453] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Under metabolic stress conditions such as hypoxia and glucose deprivation, an increase in the AMP:ATP ratio activates the AMP-activated protein kinase (AMPK) pathway, resulting in the modulation of cellular metabolism. Metformin, which is widely prescribed for type 2 diabetes mellitus (T2DM) patients, regulates blood sugar by inhibiting hepatic gluconeogenesis and promoting insulin sensitivity to facilitate glucose uptake by cells. At the molecular level, the most well-known mechanism of metformin-mediated cytoprotection is AMPK pathway activation, which modulates metabolism and protects cells from degradation or pathogenic changes, such as those related to aging and diabetic retinopathy (DR). Recently, it has been revealed that metformin acts via AMPK- and non-AMPK-mediated pathways to exert effects beyond those related to diabetes treatment that might prevent aging and ameliorate DR. This review focuses on new insights into the anticancer effects of metformin and its potential modulation of several novel types of nonapoptotic cell death, including ferroptosis, pyroptosis, and necroptosis. In addition, the antimetastatic and immunosuppressive effects of metformin and its hypothesized mechanism are also discussed, highlighting promising cancer prevention strategies for the future.
Collapse
|
30
|
Suppression of Pyruvate Dehydrogenase Kinase by Dichloroacetate in Cancer and Skeletal Muscle Cells Is Isoform Specific and Partially Independent of HIF-1α. Int J Mol Sci 2021; 22:ijms22168610. [PMID: 34445316 PMCID: PMC8395311 DOI: 10.3390/ijms22168610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 02/01/2023] Open
Abstract
Inhibition of pyruvate dehydrogenase kinase (PDK) emerged as a potential strategy for treatment of cancer and metabolic disorders. Dichloroacetate (DCA), a prototypical PDK inhibitor, reduces the abundance of some PDK isoenzymes. However, the underlying mechanisms are not fully characterized and may differ across cell types. We determined that DCA reduced the abundance of PDK1 in breast (MDA-MB-231) and prostate (PC-3) cancer cells, while it suppressed both PDK1 and PDK2 in skeletal muscle cells (L6 myotubes). The DCA-induced PDK1 suppression was partially dependent on hypoxia-inducible factor-1α (HIF-1α), a transcriptional regulator of PDK1, in cancer cells but not in L6 myotubes. However, the DCA-induced alterations in the mRNA and the protein levels of PDK1 and/or PDK2 did not always occur in parallel, implicating a role for post-transcriptional mechanisms. DCA did not inhibit the mTOR signaling, while inhibitors of the proteasome or gene silencing of mitochondrial proteases CLPP and AFG3L2 did not prevent the DCA-induced reduction of the PDK1 protein levels. Collectively, our results suggest that DCA reduces the abundance of PDK in an isoform-dependent manner via transcriptional and post-transcriptional mechanisms. Differential response of PDK isoenzymes to DCA might be important for its pharmacological effects in different types of cells.
Collapse
|
31
|
Luna-Yolba R, Marmoiton J, Gigo V, Marechal X, Boet E, Sahal A, Alet N, Abramovich I, Gottlieb E, Visentin V, Paillasse MR, Sarry JE. Disrupting Mitochondrial Electron Transfer Chain Complex I Decreases Immune Checkpoints in Murine and Human Acute Myeloid Leukemic Cells. Cancers (Basel) 2021; 13:3499. [PMID: 34298712 PMCID: PMC8306173 DOI: 10.3390/cancers13143499] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/05/2022] Open
Abstract
Oxidative metabolism is crucial for leukemic stem cell (LSC) function and drug resistance in acute myeloid leukemia (AML). Mitochondrial metabolism also affects the immune system and therefore the anti-tumor response. The modulation of oxidative phosphorylation (OxPHOS) has emerged as a promising approach to improve the therapy outcome for AML patients. However, the effect of mitochondrial inhibitors on the immune compartment in the context of AML is yet to be explored. Immune checkpoints such as ectonucleotidase CD39 and programmed dead ligand 1 (PD-L1) have been reported to be expressed in AML and linked to chemo-resistance and a poor prognosis. In the present study, we first demonstrated that a novel selective electron transfer chain complex (ETC) I inhibitor, EVT-701, decreased the OxPHOS metabolism of murine and human cytarabine (AraC)-resistant leukemic cell lines. Furthermore, we showed that while AraC induced an immune response regulation by increasing CD39 expression and by reinforcing the interferon-γ/PD-L1 axis, EVT-701 reduced CD39 and PD-L1 expression in vitro in a panel of both murine and human AML cell lines, especially upon AraC treatment. Altogether, this work uncovers a non-canonical function of ETCI in controlling CD39 and PD-L1 immune checkpoints, thereby improving the anti-tumor response in AML.
Collapse
Affiliation(s)
- Raquel Luna-Yolba
- EVOTEC, Campus Curie, 31100 Toulouse, France; (R.L.-Y.); (J.M.); (V.G.); (X.M.); (N.A.); (V.V.)
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, 31100 Toulouse, France; (E.B.); (A.S.)
- LabEx Toucan, 31100 Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, 31100 Toulouse, France
| | - Justine Marmoiton
- EVOTEC, Campus Curie, 31100 Toulouse, France; (R.L.-Y.); (J.M.); (V.G.); (X.M.); (N.A.); (V.V.)
| | - Véronique Gigo
- EVOTEC, Campus Curie, 31100 Toulouse, France; (R.L.-Y.); (J.M.); (V.G.); (X.M.); (N.A.); (V.V.)
| | - Xavier Marechal
- EVOTEC, Campus Curie, 31100 Toulouse, France; (R.L.-Y.); (J.M.); (V.G.); (X.M.); (N.A.); (V.V.)
| | - Emeline Boet
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, 31100 Toulouse, France; (E.B.); (A.S.)
- LabEx Toucan, 31100 Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, 31100 Toulouse, France
| | - Ambrine Sahal
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, 31100 Toulouse, France; (E.B.); (A.S.)
- LabEx Toucan, 31100 Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, 31100 Toulouse, France
| | - Nathalie Alet
- EVOTEC, Campus Curie, 31100 Toulouse, France; (R.L.-Y.); (J.M.); (V.G.); (X.M.); (N.A.); (V.V.)
| | - Ifat Abramovich
- Technion—Israel Institute of Technology, Haifa 32000, Israel; (I.A.); (E.G.)
| | - Eyal Gottlieb
- Technion—Israel Institute of Technology, Haifa 32000, Israel; (I.A.); (E.G.)
| | - Virgile Visentin
- EVOTEC, Campus Curie, 31100 Toulouse, France; (R.L.-Y.); (J.M.); (V.G.); (X.M.); (N.A.); (V.V.)
| | - Michael R. Paillasse
- EVOTEC, Campus Curie, 31100 Toulouse, France; (R.L.-Y.); (J.M.); (V.G.); (X.M.); (N.A.); (V.V.)
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, 31100 Toulouse, France; (E.B.); (A.S.)
- LabEx Toucan, 31100 Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, 31100 Toulouse, France
| |
Collapse
|
32
|
Shirai Y, Chow CCT, Kambe G, Suwa T, Kobayashi M, Takahashi I, Harada H, Nam JM. An Overview of the Recent Development of Anticancer Agents Targeting the HIF-1 Transcription Factor. Cancers (Basel) 2021; 13:cancers13112813. [PMID: 34200019 PMCID: PMC8200185 DOI: 10.3390/cancers13112813] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023] Open
Abstract
Hypoxia, a characteristic feature of solid tumors, is associated with the malignant phenotype and therapy resistance of cancers. Hypoxia-inducible factor 1 (HIF-1), which is responsible for the metazoan adaptive response to hypoxia, has been recognized as a rational target for cancer therapy due to its critical functions in hypoxic regions. In order to efficiently inhibit its activity, extensive efforts have been made to elucidate the molecular mechanism underlying the activation of HIF-1. Here, we provide an overview of relevant research, particularly on a series of HIF-1 activators identified so far and the development of anticancer drugs targeting them.
Collapse
Affiliation(s)
- Yukari Shirai
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto 606-8501, Japan; (Y.S.); (C.C.T.C.); (G.K.); (T.S.); (M.K.); (I.T.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Christalle C. T. Chow
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto 606-8501, Japan; (Y.S.); (C.C.T.C.); (G.K.); (T.S.); (M.K.); (I.T.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Gouki Kambe
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto 606-8501, Japan; (Y.S.); (C.C.T.C.); (G.K.); (T.S.); (M.K.); (I.T.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Tatsuya Suwa
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto 606-8501, Japan; (Y.S.); (C.C.T.C.); (G.K.); (T.S.); (M.K.); (I.T.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto 606-8501, Japan; (Y.S.); (C.C.T.C.); (G.K.); (T.S.); (M.K.); (I.T.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Itsuki Takahashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto 606-8501, Japan; (Y.S.); (C.C.T.C.); (G.K.); (T.S.); (M.K.); (I.T.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto 606-8501, Japan; (Y.S.); (C.C.T.C.); (G.K.); (T.S.); (M.K.); (I.T.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto 606-8501, Japan
- Correspondence: (H.H.); (J.-M.N.); Tel.: +81-75-753-7560 (H.H.); +81-75-753-7567 (J.-M.N.)
| | - Jin-Min Nam
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto 606-8501, Japan; (Y.S.); (C.C.T.C.); (G.K.); (T.S.); (M.K.); (I.T.)
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto 606-8501, Japan
- Correspondence: (H.H.); (J.-M.N.); Tel.: +81-75-753-7560 (H.H.); +81-75-753-7567 (J.-M.N.)
| |
Collapse
|
33
|
Metformin treatment response is dependent on glucose growth conditions and metabolic phenotype in colorectal cancer cells. Sci Rep 2021; 11:10487. [PMID: 34006970 PMCID: PMC8131751 DOI: 10.1038/s41598-021-89861-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/30/2021] [Indexed: 12/27/2022] Open
Abstract
Cancer cells exhibit altered metabolism, a phenomenon described a century ago by Otto Warburg. However, metabolic drug targeting is considered an underutilized and poorly understood area of cancer therapy. Metformin, a metabolic drug commonly used to treat type 2 diabetes, has been associated with lower cancer incidence, although studies are inconclusive concerning effectiveness of the drug in treatment or cancer prevention. The aim of this study was to determine how glucose concentration influences cancer cells' response to metformin, highlighting why metformin studies are inconsistent. We used two colorectal cancer cell lines with different growth rates and clinically achievable metformin concentrations. We found that fast growing SW948 are more glycolytic in terms of metabolism, while the slower growing SW1116 are reliant on mitochondrial respiration. Both cell lines show inhibitory growth after metformin treatment under physiological glucose conditions, but not in high glucose conditions. Furthermore, SW1116 converges with SW948 at a more glycolytic phenotype after metformin treatment. This metabolic shift is supported by changed GLUT1 expression. Thus, cells having different metabolic phenotypes, show a clear differential response to metformin treatment based on glucose concentration. This demonstrates the importance of growth conditions for experiments or clinical studies involving metabolic drugs such as metformin.
Collapse
|
34
|
van Gisbergen MW, Zwilling E, Dubois LJ. Metabolic Rewiring in Radiation Oncology Toward Improving the Therapeutic Ratio. Front Oncol 2021; 11:653621. [PMID: 34041023 PMCID: PMC8143268 DOI: 10.3389/fonc.2021.653621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
To meet the anabolic demands of the proliferative potential of tumor cells, malignant cells tend to rewire their metabolic pathways. Although different types of malignant cells share this phenomenon, there is a large intracellular variability how these metabolic patterns are altered. Fortunately, differences in metabolic patterns between normal tissue and malignant cells can be exploited to increase the therapeutic ratio. Modulation of cellular metabolism to improve treatment outcome is an emerging field proposing a variety of promising strategies in primary tumor and metastatic lesion treatment. These strategies, capable of either sensitizing or protecting tissues, target either tumor or normal tissue and are often focused on modulating of tissue oxygenation, hypoxia-inducible factor (HIF) stabilization, glucose metabolism, mitochondrial function and the redox balance. Several compounds or therapies are still in under (pre-)clinical development, while others are already used in clinical practice. Here, we describe different strategies from bench to bedside to optimize the therapeutic ratio through modulation of the cellular metabolism. This review gives an overview of the current state on development and the mechanism of action of modulators affecting cellular metabolism with the aim to improve the radiotherapy response on tumors or to protect the normal tissue and therefore contribute to an improved therapeutic ratio.
Collapse
Affiliation(s)
- Marike W van Gisbergen
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands.,Department of Dermatology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Emma Zwilling
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
35
|
Hypoxia-Induced Suppression of Antiapoptotic Bcl-2 Expression in Human Bladder Tumor Cells Is Regulated by Caveolin-1-Dependent Adenosine Monophosphate-Activated Protein Kinase Activity. Int Neurourol J 2021; 25:137-149. [PMID: 33752282 PMCID: PMC8255828 DOI: 10.5213/inj.2040444.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/28/2021] [Indexed: 11/08/2022] Open
Abstract
Purpose Adenosine monophosphate-activated protein kinase (AMPK) is thought to inhibit cell proliferation or promote cell death, but the details remain unclear. In this study, we propose that AMPK inhibits the expression of anti-apoptotic B-cell lymphoma 2 (Bcl-2) by relying on the hypoxia-inducible factor 1 alpha (HIF-1α)-induced caveolin-1 (Cav-1) expression pathway in noninvasive human bladder tumor (RT4) cells. Methods In cells exposed to a hypoxic environment (0.5% oxygen), the levels of expression and phospho-activity of the relevant signaling enzymes were examined via Western blots and reverse transcription-polymerase chain reaction. Cell proliferation was assessed using a Cell Counting Kit-8 assay. Results The level of expression of Cav-1 was very low or undetectable in RT4 cells. Hypoxia was associated with significantly decreased cell growth, along with marked induction of HIF-1α and Cav-1 expression; additionally, it suppressed the expression of the antiapoptotic marker Bcl-2 while leaving AMPK activity unchanged. Under hypoxic conditions, HIF-1α acts as a transcription factor for Cav-1 mRNA gene expression. The cell growth and Bcl-2 expression suppressed under hypoxia were reversed along with decreases in the induced HIF-1α and Cav-1 levels by AMPK activation with metformin (1mM) or phenformin (0.1mM). In addition, pretreatment with AMPK small interfering RNA not only increased the hypoxia-induced expression of HIF-1α and Cav-1, but also reversed the suppression of Bcl-2 expression. These results suggest that HIF-1α and Cav-1 expression in hypoxic environments is regulated by basal AMPK activity; therefore, the inhibition of Bcl-2 expression cannot be expected when AMPK activity is suppressed, even if Cav-1 expression is elevated. Conclusions For the first time, we find that AMPK activation can regulate HIF-1α induction as well as HIF-1α-induced Cav1 expression, and the hypoxia-induced inhibitory effect on the antiapoptotic pathway in RT4 cells is due to Cav-1-dependent AMPK activity.
Collapse
|
36
|
Anticancer potential of metformin: focusing on gastrointestinal cancers. Cancer Chemother Pharmacol 2021; 87:587-598. [PMID: 33744985 DOI: 10.1007/s00280-021-04256-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 03/08/2021] [Indexed: 12/15/2022]
Abstract
Gastrointestinal cancers are one of the most common types of cancer that have high annual mortality; therefore, identification and introduction of safe drugs in the control and prevention of these cancers are of particular importance. Metformin, a lipophilic biguanide, is the most commonly prescribed agent for type 2 diabetes management. In addition to its great effects on lowering the blood glucose concentrations, the anti-cancer properties of this drug have been reported in many types of cancers such as gastrointestinal cancers. Hence the effects of this agent as a safe drug on the reduction of gastrointestinal cancer risk and suppression of these types of cancers have been studied in different clinical trials. Furthermore, the proposed mechanisms of metformin in preventing the growth of these cancers have been investigated in several studies. In this review, we discuss recent advances in elucidating the molecular mechanisms that are relevant for metformin use in gastrointestinal cancer treatment.
Collapse
|
37
|
Yang J, Fang HJ, Cao Q, Mao ZW. The design of cyclometalated iridium(iii)-metformin complexes for hypoxic cancer treatment. Chem Commun (Camb) 2021; 57:1093-1096. [PMID: 33434260 DOI: 10.1039/d0cc07104h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modulating the hypoxic microenvironment is the priority for tumor treatment. Cytometalated iridium(iii)-metformin conjugates were synthesized for treating hypoxic cancer cells for the first time, which alleviate hypoxia via mitochondria respiration inhibition, thus displaying 10-fold higher cytotoxicity, emerging anti-metastasis and anti-inflammatory activities than a metformin-free Ir(iii) complex and cisplatin against hypoxic cancer cells.
Collapse
Affiliation(s)
- Jing Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| | | | | | | |
Collapse
|
38
|
Leng W, Jiang J, Chen B, Wu Q. Metformin and Malignant Tumors: Not Over the Hill. Diabetes Metab Syndr Obes 2021; 14:3673-3689. [PMID: 34429626 PMCID: PMC8380287 DOI: 10.2147/dmso.s326378] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/06/2021] [Indexed: 12/11/2022] Open
Abstract
Malignant tumors are a major cause of death, and their incidence is increasing worldwide. Although the survival rate for some cancers has improved, treatments for other malignant tumors are limited, and their mortality rate continues to increase. People with type 2 diabetes have a higher risk of malignant tumors and a higher mortality rate than those without diabetes. Metformin is a commonly used hypoglycemic drug. In recent years, a growing number of studies have indicated that metformin has antitumor effects and increases the sensitivity of malignant tumors to chemotherapy. However, the effect of metformin on different tumors is currently controversial, and the mechanism of metformin's antitumor action is not fully understood. Insights into the effect of metformin on malignant tumors and the possible mechanism may contribute to the development of antitumor drugs.
Collapse
Affiliation(s)
- Weiling Leng
- Endocrinology Department, The First Affiliated Hospital of the Third Military Medical University (Army Medical University), Chongqing, People’s Republic of China
| | - Juan Jiang
- Endocrinology and Nephrology Department, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, People’s Republic of China
| | - Bing Chen
- Endocrinology Department, The First Affiliated Hospital of the Third Military Medical University (Army Medical University), Chongqing, People’s Republic of China
- Bing Chen Endocrinology Department, The First Affiliated Hospital of the Third Military Medical University (Army Medical University), Chongqing, People’s Republic of China Email
| | - Qinan Wu
- Endocrinology Department, Dazu Hospital of Chongqing Medical University, The People’s Hospital of Dazu, Chongqing, People’s Republic of China
- Correspondence: Qinan Wu Endocrinology Department, Dazu Hospital of Chongqing Medical University, The People’s Hospital of Dazu, Chongqing, People’s Republic of China Email
| |
Collapse
|
39
|
Cioce M, Pulito C, Strano S, Blandino G, Fazio VM. Metformin: Metabolic Rewiring Faces Tumor Heterogeneity. Cells 2020; 9:E2439. [PMID: 33182253 PMCID: PMC7695274 DOI: 10.3390/cells9112439] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/13/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor heterogeneity impinges on all the aspects of tumor history, from onset to metastasis and relapse. It is growingly recognized as a propelling force for tumor adaptation to environmental and micro-environmental cues. Metabolic heterogeneity perfectly falls into this process. It strongly contributes to the metabolic plasticity which characterizes cancer cell subpopulations-capable of adaptive switching under stress conditions, between aerobic glycolysis and oxidative phosphorylation-in both a convergent and divergent modality. The mitochondria appear at center-stage in this adaptive process and thus, targeting mitochondria in cancer may prove of therapeutic value. Metformin is the oldest and most used anti-diabetic medication and its relationship with cancer has witnessed rises and falls in the last 30 years. We believe it is useful to revisit the main mechanisms of action of metformin in light of the emerging views on tumor heterogeneity. We first analyze the most consolidated view of its mitochondrial mechanism of action and then we frame the latter in the context of tumor adaptive strategies, cancer stem cell selection, metabolic zonation of tumors and the tumor microenvironment. This may provide a more critical point of view and, to some extent, may help to shed light on some of the controversial evidence for metformin's anticancer action.
Collapse
Affiliation(s)
- Mario Cioce
- Department of Medicine, R.U. in Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, 00128 Rome, Italy;
| | - Claudio Pulito
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.P.); (G.B.)
| | - Sabrina Strano
- SAFU Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.P.); (G.B.)
| | - Vito Michele Fazio
- Department of Medicine, R.U. in Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, 00128 Rome, Italy;
- Institute of Translation Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy
| |
Collapse
|
40
|
Kirtonia A, Sethi G, Garg M. The multifaceted role of reactive oxygen species in tumorigenesis. Cell Mol Life Sci 2020; 77:4459-4483. [PMID: 32358622 PMCID: PMC11105050 DOI: 10.1007/s00018-020-03536-5] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/29/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
Abstract
Redox homeostasis is an essential requirement of the biological systems for performing various normal cellular functions including cellular growth, differentiation, senescence, survival and aging in humans. The changes in the basal levels of reactive oxygen species (ROS) are detrimental to cells and often lead to several disease conditions including cardiovascular, neurological, diabetes and cancer. During the last two decades, substantial research has been done which clearly suggests that ROS are essential for the initiation, progression, angiogenesis as well as metastasis of cancer in several ways. During the last two decades, the potential of dysregulated ROS to enhance tumor formation through the activation of various oncogenic signaling pathways, DNA mutations, immune escape, tumor microenvironment, metastasis, angiogenesis and extension of telomere has been discovered. At present, surgery followed by chemotherapy and/or radiotherapy is the major therapeutic modality for treating patients with either early or advanced stages of cancer. However, the majority of patients relapse or did not respond to initial treatment. One of the reasons for recurrence/relapse is the altered levels of ROS in tumor cells as well as in cancer-initiating stem cells. One of the critical issues is targeting the intracellular/extracellular ROS for significant antitumor response and relapse-free survival. Indeed, a large number of FDA-approved anticancer drugs are efficient to eliminate cancer cells and drug resistance by increasing ROS production. Thus, the modulation of oxidative stress response might represent a potential approach to eradicate cancer in combination with FDA-approved chemotherapies, radiotherapies as well as immunotherapies.
Collapse
Affiliation(s)
- Anuradha Kirtonia
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Campus, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Campus, Sector-125, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
41
|
Simon TG, Chan AT. Lifestyle and Environmental Approaches for the Primary Prevention of Hepatocellular Carcinoma. Clin Liver Dis 2020; 24:549-576. [PMID: 33012445 PMCID: PMC7536356 DOI: 10.1016/j.cld.2020.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Patients with chronic liver disease are at increased risk of developing hepatocellular carcinoma (HCC). Most patients diagnosed with HCC have limited treatment options and a poor overall prognosis, with a 5-year survival less than 15%. Preventing the development of HCC represents the most important strategy. However, current guidelines lack specific recommendations for primary prevention. Lifestyle factors may be central in the pathogenesis of HCC, and primary prevention strategies focused on lifestyle modification could represent an important approach to the prevention of HCC. Both experimental and epidemiologic studies have identified promising chemopreventive agents for the primary prevention of HCC.
Collapse
Affiliation(s)
- Tracey G. Simon
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA,Harvard Medical School, Boston, MA,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA
| | - Andrew T. Chan
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA,Harvard Medical School, Boston, MA,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA,Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston MA,Broad Institute, Boston MA,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston MA
| |
Collapse
|
42
|
Kim K, Yang WH, Jung YS, Cha JH. A new aspect of an old friend: the beneficial effect of metformin on anti-tumor immunity. BMB Rep 2020. [PMID: 32731915 PMCID: PMC7607149 DOI: 10.5483/bmbrep.2020.53.10.149] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
T-cell-based cancer immunotherapies, such as immune checkpoint blockers (ICBs) and chimeric antigen receptor (CAR)-T-cells, have significant anti-tumor effects against certain types of cancer, providing a new paradigm for cancer treatment. However, the activity of tumor infiltrating T-cells (TILs) can be effectively neutralized in the tumor microenvironment (TME) of most solid tumors, rich in various immunosuppressive factors and cells. Therefore, to improve the clinical outcomes of established T-cell-based immunotherapy, adjuvants that can comprehensively relieve multiple immunosuppressive mechanisms of TME are needed. In this regard, recent studies have revealed that metformin has several beneficial effects on anti-tumor immunity. In this mini-review, we understand the immunosuppressive properties of TME and how metformin comprehensively enhances anti-tumor immunity. Finally, we will discuss this old friend’s potential as an adjuvant for cancer immunotherapy.
Collapse
Affiliation(s)
- KyeongJin Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22212, Korea
| | - Wen-Hao Yang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Youn-Sang Jung
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Jong-ho Cha
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22212, Korea
| |
Collapse
|
43
|
Li T, Mao C, Wang X, Shi Y, Tao Y. Epigenetic crosstalk between hypoxia and tumor driven by HIF regulation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:224. [PMID: 33109235 PMCID: PMC7592369 DOI: 10.1186/s13046-020-01733-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Hypoxia is the major influence factor in physiological and pathological courses which are mainly mediated by hypoxia-inducible factors (HIFs) in response to low oxygen tensions within solid tumors. Under normoxia, HIF signaling pathway is inhibited due to HIF-α subunits degradation. However, in hypoxic conditions, HIF-α is activated and stabilized, and HIF target genes are successively activated, resulting in a series of tumour-specific activities. The activation of HIFs, including HIF-1α, HIF-2α and HIF-3α, subsequently induce downstream target genes which leads to series of responses, the resulting abnormal processes or metabolites in turn affect HIFs stability. Given its functions in tumors progression, HIFs have been regarded as therapeutic targets for improved treatment efficacy. Epigenetics refers to alterations in gene expression that are stable between cell divisions, and sometimes between generations, but do not involve changes in the underlying DNA sequence of the organism. And with the development of research, epigenetic regulation has been found to play an important role in the development of tumors, which providing accumulating basic or clinical evidences for tumor treatments. Here, given how little has been reported about the overall association between hypoxic tumors and epigenetics, we made a more systematic review from epigenetic perspective in hope of helping others better understand hypoxia or HIF pathway, and providing more established and potential therapeutic strategies in tumors to facilitate epigenetic studies of tumors.
Collapse
Affiliation(s)
- Tiansheng Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Chao Mao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiang Wang
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Ying Shi
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| | - Yongguang Tao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China. .,Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
44
|
Overcoming acquired resistance to PD-1 inhibitor with the addition of metformin in small cell lung cancer (SCLC). Cancer Immunol Immunother 2020; 70:961-965. [PMID: 33084943 DOI: 10.1007/s00262-020-02703-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/15/2020] [Indexed: 10/23/2022]
Abstract
Metformin has been widely used as the treatment of type II diabetes mellitus for its anti-hyperglycemic effect. In recent years, it has also been extensively studied for its anti-cancer effect as it diminishes immune exhaustion of CD8 + tumor-infiltrating lymphocytes (TILs). It decreases apoptosis of CD8 + TILs, thereby enhancing T cell-mediated immune response to tumor cells. Here, we present a unique case of a patient with small cell lung cancer (SCLC) who exhibited an overall partial response as per Response Evaluation Criteria in Solid Tumors, version 1.1 (RECIST 1.1) since starting metformin in combination with nivolumab therapy. Our patient had been treated with nivolumab monotherapy for 2 years until she had progression of disease. After she was started on metformin along with nivolumab therapy, she has shown a significant durable response for over 6 months. Many patients develop resistance to immunotherapy such as antibodies against cytotoxic T lymphocyte-associated protein 4 (CTLA-4), programmed cell death 1 (PD-1), and programmed cell death ligand 1 (PD-L1). Tumor hypoxia is one of the resistance factors. Signals activated by hypoxic environments in tumors are associated with decreased sensitivity to the PD-1 blockade. Metformin inhibits oxygen consumption in tumor cells in vitro and in vivo, reducing intratumoral hypoxia. These data suggest that metformin can improve susceptibility to anti-PD-1 treatment. To the best of our knowledge, our case is the first reported example demonstrating a proof-of-concept that metformin can contribute to overcoming acquired resistance to PD-1 inhibitors.
Collapse
|
45
|
Zhang D, Xu X, Ye Q. Metabolism and immunity in breast cancer. Front Med 2020; 15:178-207. [PMID: 33074528 DOI: 10.1007/s11684-020-0793-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Breast cancer is one of the most common malignancies that seriously threaten women's health. In the process of the malignant transformation of breast cancer, metabolic reprogramming and immune evasion represent the two main fascinating characteristics of cancer and facilitate cancer cell proliferation. Breast cancer cells generate energy through increased glucose metabolism. Lipid metabolism contributes to biological signal pathways and forms cell membranes except energy generation. Amino acids act as basic protein units and metabolic regulators in supporting cell growth. For tumor-associated immunity, poor immunogenicity and heightened immunosuppression cause breast cancer cells to evade the host's immune system. For the past few years, the complex mechanisms of metabolic reprogramming and immune evasion are deeply investigated, and the genes involved in these processes are used as clinical therapeutic targets for breast cancer. Here, we review the recent findings related to abnormal metabolism and immune characteristics, regulatory mechanisms, their links, and relevant therapeutic strategies.
Collapse
Affiliation(s)
- Deyu Zhang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Xiaojie Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China.
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China.
| |
Collapse
|
46
|
Khan H, Anshu A, Prasad A, Roy S, Jeffery J, Kittipongdaja W, Yang DT, Schieke SM. Metabolic Rewiring in Response to Biguanides Is Mediated by mROS/HIF-1a in Malignant Lymphocytes. Cell Rep 2020; 29:3009-3018.e4. [PMID: 31801069 DOI: 10.1016/j.celrep.2019.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/11/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022] Open
Abstract
Metabolic flexibility allows cells to adapt to various environments and limits the efficacy of metabolic drugs. Therapeutic targeting of cancer metabolism relies on defining limiting requirements and vulnerabilities in the highly dynamic metabolic network. Here, we characterize the metabolic reprogramming and identify cancer-specific metabolic vulnerabilities in response to the pharmacological inhibition of mitochondrial complex I. Our work reveals the adaptation mechanism in malignant lymphocytes providing resistance against the biguanides phenformin and metformin by transcriptionally reprogramming glucose metabolism. Metabolic adaptation to complex I inhibition is mediated by mitochondrial reactive oxygen species (mROS) serving as a mitochondrial stress signal activating hypoxia-inducible factor-1a (HIF-1a). Inhibition of the mROS/HIF-1a axis through antioxidants or direct suppression of HIF-1a selectively disrupts metabolic adaptation and survival during complex I dysfunction in malignant lymphocytes. Our results identify HIF-1a signaling as a critical factor in resistance against biguanide-induced mitochondrial dysfunction, allowing selective targeting of metabolic pathways in leukemia and lymphoma.
Collapse
Affiliation(s)
- Hamidullah Khan
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ashish Anshu
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Aman Prasad
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sushmita Roy
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Justin Jeffery
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - David T Yang
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Stefan M Schieke
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI 53706, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA.
| |
Collapse
|
47
|
Calvo Tardón M, Marinari E, Migliorini D, Bes V, Tankov S, Charrier E, McKee TA, Dutoit V, Dietrich PY, Cosset E, Walker PR. An Experimentally Defined Hypoxia Gene Signature in Glioblastoma and Its Modulation by Metformin. BIOLOGY 2020; 9:biology9090264. [PMID: 32887267 PMCID: PMC7563149 DOI: 10.3390/biology9090264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor, characterized by a high degree of intertumoral heterogeneity. However, a common feature of the GBM microenvironment is hypoxia, which can promote radio- and chemotherapy resistance, immunosuppression, angiogenesis, and stemness. We experimentally defined common GBM adaptations to physiologically relevant oxygen gradients, and we assessed their modulation by the metabolic drug metformin. We directly exposed human GBM cell lines to hypoxia (1% O2) and to physioxia (5% O2). We then performed transcriptional profiling and compared our in vitro findings to predicted hypoxic areas in vivo using in silico analyses. We observed a heterogenous hypoxia response, but also a common gene signature that was induced by a physiologically relevant change in oxygenation from 5% O2 to 1% O2. In silico analyses showed that this hypoxia signature was highly correlated with a perinecrotic localization in GBM tumors, expression of certain glycolytic and immune-related genes, and poor prognosis of GBM patients. Metformin treatment of GBM cell lines under hypoxia and physioxia reduced viable cell number, oxygen consumption rate, and partially reversed the hypoxia gene signature, supporting further exploration of targeting tumor metabolism as a treatment component for hypoxic GBM.
Collapse
Affiliation(s)
- Marta Calvo Tardón
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland; (M.C.T.); (E.M.); (V.B.); (S.T.); (E.C.); (V.D.); (P.-Y.D.); (E.C.)
| | - Eliana Marinari
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland; (M.C.T.); (E.M.); (V.B.); (S.T.); (E.C.); (V.D.); (P.-Y.D.); (E.C.)
| | - Denis Migliorini
- Department of Oncology, Clinical Research Unit, Dubois Ferrière Dinu Lipatti Research Foundation, Geneva University Hospitals, 1205 Geneva, Switzerland;
| | - Viviane Bes
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland; (M.C.T.); (E.M.); (V.B.); (S.T.); (E.C.); (V.D.); (P.-Y.D.); (E.C.)
| | - Stoyan Tankov
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland; (M.C.T.); (E.M.); (V.B.); (S.T.); (E.C.); (V.D.); (P.-Y.D.); (E.C.)
| | - Emily Charrier
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland; (M.C.T.); (E.M.); (V.B.); (S.T.); (E.C.); (V.D.); (P.-Y.D.); (E.C.)
| | - Thomas A McKee
- Division of Clinical Pathology, Geneva University Hospitals, 1211 Geneva, Switzerland;
| | - Valérie Dutoit
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland; (M.C.T.); (E.M.); (V.B.); (S.T.); (E.C.); (V.D.); (P.-Y.D.); (E.C.)
| | - Pierre-Yves Dietrich
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland; (M.C.T.); (E.M.); (V.B.); (S.T.); (E.C.); (V.D.); (P.-Y.D.); (E.C.)
| | - Erika Cosset
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland; (M.C.T.); (E.M.); (V.B.); (S.T.); (E.C.); (V.D.); (P.-Y.D.); (E.C.)
| | - Paul R Walker
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland; (M.C.T.); (E.M.); (V.B.); (S.T.); (E.C.); (V.D.); (P.-Y.D.); (E.C.)
- Correspondence: ; Tel.: +41-223795079
| |
Collapse
|
48
|
Sulaiman A, McGarry S, Chambers J, Al-Kadi E, Phan A, Li L, Mediratta K, Dimitroulakos J, Addison C, Li X, Wang L. Targeting Hypoxia Sensitizes TNBC to Cisplatin and Promotes Inhibition of Both Bulk and Cancer Stem Cells. Int J Mol Sci 2020; 21:ijms21165788. [PMID: 32806648 PMCID: PMC7461107 DOI: 10.3390/ijms21165788] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 01/16/2023] Open
Abstract
Development of targeted therapies for triple-negative breast cancer (TNBC) is an unmet medical need. Cisplatin has demonstrated its promising potential for the treatment of TNBC in clinical trials; however, cisplatin treatment is associated with hypoxia that, in turn, promotes cancer stem cell (CSC) enrichment and drug resistance. Therapeutic approaches to attenuate this may lead to increased cisplatin efficacy in the clinic for the treatment of TNBC. In this report we analyzed clinical datasets of TNBC and found that TNBC patients possessed higher levels of EGFR and hypoxia gene expression. A similar expression pattern was also observed in cisplatin-resistant ovarian cancer cells. We, thus, developed a new therapeutic approach to inhibit EGFR and hypoxia by combination treatment with metformin and gefitinib that sensitized TNBC cells to cisplatin and led to the inhibition of both CD44+/CD24− and ALDH+ CSCs. We demonstrated a similar inhibition efficacy on organotypic cultures of TNBC patient samples ex vivo. Since these drugs have already been used frequently in the clinic; this study illustrates a novel, clinically translatable therapeutic approach to treat patients with TNBC.
Collapse
Affiliation(s)
- Andrew Sulaiman
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (A.S.); (S.M.); (J.C.); (E.A.-K.); (A.P.); (L.L.); (K.M.); (J.D.); (C.A.); (X.L.)
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Department of Basic Science, Kansas City University of Medicine and Bioscience, 1750 Independence Ave, Kansas City, MO 64106, USA
| | - Sarah McGarry
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (A.S.); (S.M.); (J.C.); (E.A.-K.); (A.P.); (L.L.); (K.M.); (J.D.); (C.A.); (X.L.)
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Jason Chambers
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (A.S.); (S.M.); (J.C.); (E.A.-K.); (A.P.); (L.L.); (K.M.); (J.D.); (C.A.); (X.L.)
| | - Emil Al-Kadi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (A.S.); (S.M.); (J.C.); (E.A.-K.); (A.P.); (L.L.); (K.M.); (J.D.); (C.A.); (X.L.)
| | - Alexandra Phan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (A.S.); (S.M.); (J.C.); (E.A.-K.); (A.P.); (L.L.); (K.M.); (J.D.); (C.A.); (X.L.)
| | - Li Li
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (A.S.); (S.M.); (J.C.); (E.A.-K.); (A.P.); (L.L.); (K.M.); (J.D.); (C.A.); (X.L.)
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Karan Mediratta
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (A.S.); (S.M.); (J.C.); (E.A.-K.); (A.P.); (L.L.); (K.M.); (J.D.); (C.A.); (X.L.)
| | - Jim Dimitroulakos
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (A.S.); (S.M.); (J.C.); (E.A.-K.); (A.P.); (L.L.); (K.M.); (J.D.); (C.A.); (X.L.)
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Christina Addison
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (A.S.); (S.M.); (J.C.); (E.A.-K.); (A.P.); (L.L.); (K.M.); (J.D.); (C.A.); (X.L.)
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Xuguang Li
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (A.S.); (S.M.); (J.C.); (E.A.-K.); (A.P.); (L.L.); (K.M.); (J.D.); (C.A.); (X.L.)
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Sir Frederick G. Banting Research Centre, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (A.S.); (S.M.); (J.C.); (E.A.-K.); (A.P.); (L.L.); (K.M.); (J.D.); (C.A.); (X.L.)
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Correspondence: ; Tel.: +1-613-562-5624
| |
Collapse
|
49
|
Yan X, Qu X, Tian R, Xu L, Jin X, Yu S, Zhao Y, Ma J, Liu Y, Sun L, Su J. Hypoxia-induced NAD + interventions promote tumor survival and metastasis by regulating mitochondrial dynamics. Life Sci 2020; 259:118171. [PMID: 32738362 DOI: 10.1016/j.lfs.2020.118171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 02/08/2023]
Abstract
Hypoxia, an important feature of the tumor microenvironment, is responsible for the chemo-resistance and metastasis of malignant solid tumors. Recent studies indicated that mitochondria undergo morphological transitions as an adaptive response to maintain self-stability and connectivity under hypoxic conditions. NAD+ may not only provide reducing equivalents for biosynthetic reactions and in determining energy production, but also functions as a signaling molecule in mitochondrial dynamics regulation. In this review, we describe the upregulated KDAC deacetylase expression in the mitochondria and cytoplasm of tumor cells that results from sensing the changes in NAD+ to control mitochondrial dynamics and distribution, which is responsible for survival and metastasis in hypoxia.
Collapse
Affiliation(s)
- Xiaoyu Yan
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xianzhi Qu
- Department of Hepatobiliary & Pancreatic Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, China
| | - Rui Tian
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Long Xu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xue Jin
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Sihang Yu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yuanxin Zhao
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jiaoyan Ma
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yanan Liu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Liankun Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| | - Jing Su
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
50
|
Abstract
The oxygen levels organ and tissue microenvironments vary depending on the distance of their vasculature from the left ventricle of the heart. For instance, the oxygen levels of lymph nodes and the spleen are significantly lower than that in atmospheric air. Cellular detection of oxygen and their response to low oxygen levels can exert a significant impact on virus infection. Generally, viruses that naturally infect well-oxygenated organs are less able to infect cells under hypoxic conditions. Conversely, viruses that infect organs under lower oxygen tensions thrive under hypoxic conditions. This suggests that in vitro experiments performed exclusively under atmospheric conditions ignores oxygen-induced modifications in both host and viral responses. Here, we review the mechanisms of how cells adapt to low oxygen tensions and its impact on viral infections. With growing evidence supporting the role of oxygen microenvironments in viral infections, this review highlights the importance of factoring oxygen concentrations into in vitro assay conditions. Bridging the gap between in vitro and in vivo oxygen tensions would allow for more physiologically representative insights into viral pathogenesis.
Collapse
Affiliation(s)
- Esther Shuyi Gan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
| | - Eng Eong Ooi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.,Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| |
Collapse
|