1
|
Alors-Pérez E, Pedraza-Arevalo S, Blázquez-Encinas R, García-Vioque V, Agraz-Doblas A, Yubero-Serrano EM, Sánchez-Frías ME, Serrano-Blanch R, Gálvez-Moreno MÁ, Gracia-Navarro F, Gahete MD, Arjona-Sánchez Á, Luque RM, Ibáñez-Costa A, Castaño JP. Altered CELF4 splicing factor enhances pancreatic neuroendocrine tumors aggressiveness influencing mTOR and everolimus response. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102090. [PMID: 38187140 PMCID: PMC10767201 DOI: 10.1016/j.omtn.2023.102090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024]
Abstract
Pancreatic neuroendocrine tumors (PanNETs) comprise a heterogeneous group of tumors with growing incidence. Recent molecular analyses provided a precise picture of their genomic and epigenomic landscape. Splicing dysregulation is increasingly regarded as a novel cancer hallmark influencing key tumor features. We have previously demonstrated that splicing machinery is markedly dysregulated in PanNETs. Here, we aimed to elucidate the molecular and functional implications of CUGBP ELAV-like family member 4 (CELF4), one of the most altered splicing factors in PanNETs. CELF4 expression was determined in 20 PanNETs, comparing tumor and non-tumoral adjacent tissue. An RNA sequencing (RNA-seq) dataset was analyzed to explore CELF4-linked interrelations among clinical features, gene expression, and splicing events. Two PanNET cell lines were employed to assess CELF4 function in vitro and in vivo. PanNETs display markedly upregulated CELF4 expression, which is closely associated with malignancy features, altered expression of key tumor players, and distinct splicing event profiles. Modulation of CELF4 influenced proliferation in vitro and reduced in vivo xenograft tumor growth. Interestingly, functional assays and RNA-seq analysis revealed that CELF4 silencing altered mTOR signaling pathway, enhancing the effect of everolimus. We demonstrate that CELF4 is dysregulated in PanNETs, where it influences tumor development and aggressiveness, likely by modulating the mTOR pathway, suggesting its potential as therapeutic target.
Collapse
Affiliation(s)
- Emilia Alors-Pérez
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Sergio Pedraza-Arevalo
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Ricardo Blázquez-Encinas
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Víctor García-Vioque
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Antonio Agraz-Doblas
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Elena M. Yubero-Serrano
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Unidad de Gestión Clinica Medicina Interna, Lipids and Atherosclerosis Unit, Department of Internal Medicine, Reina Sofia University Hospital, Córdoba, Spain
| | - Marina E. Sánchez-Frías
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Pathology Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Raquel Serrano-Blanch
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Medical Oncology Service, Reina Sofia University Hospital, Córdoba, Spain
| | - María Ángeles Gálvez-Moreno
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Francisco Gracia-Navarro
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Manuel D. Gahete
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Álvaro Arjona-Sánchez
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- Surgery Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Raúl M. Luque
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Alejandro Ibáñez-Costa
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Justo P. Castaño
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| |
Collapse
|
2
|
Leupe H, Ahenkorah S, Dekervel J, Unterrainer M, Van Cutsem E, Verslype C, Cleeren F, Deroose CM. 18F-Labeled Somatostatin Analogs as PET Tracers for the Somatostatin Receptor: Ready for Clinical Use. J Nucl Med 2023:jnumed.123.265622. [PMID: 37169533 DOI: 10.2967/jnumed.123.265622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/24/2023] [Indexed: 05/13/2023] Open
Abstract
Molecular imaging of the somatostatin receptor plays a key role in the clinical management of neuroendocrine tumors. PET imaging with somatostatin analogs (SSAs) labeled with 68Ga or 64Cu is currently the gold standard in clinical practice. However, widespread implementation of 68Ga imaging is often hampered by practical and economic issues related to 68Ge/68Ga generators. 18F offers several advantages to tackle these issues. Recent developments in radiochemistry have allowed a shift from 68Ga toward 18F labeling, leading to promising clinical translations of 18F-labeled SSAs, such as Gluc-Lys-[18F]FP-TOCA, [18F]F-FET-βAG-TOCA, [18F]AlF-NOTA-octreotide, [18F]SiTATE, and [18F]AlF-NOTA-JR11. This review gives an update of currently available clinical data regarding 18F-labeled SSA tracers and provides justification for the clinical application of this class of tracers.
Collapse
Affiliation(s)
- Hannes Leupe
- Nuclear Medicine, University Hospitals Leuven, and Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University of Leuven, Leuven, Belgium
| | - Stephen Ahenkorah
- Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, University of Leuven, Leuven, Belgium
| | - Jeroen Dekervel
- Digestive Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Marcus Unterrainer
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany; and
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Eric Van Cutsem
- Digestive Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Chris Verslype
- Digestive Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Frederik Cleeren
- Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, University of Leuven, Leuven, Belgium
| | - Christophe M Deroose
- Nuclear Medicine, University Hospitals Leuven, and Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University of Leuven, Leuven, Belgium;
| |
Collapse
|
3
|
Blázquez-Encinas R, Moreno-Montilla MT, García-Vioque V, Gracia-Navarro F, Alors-Pérez E, Pedraza-Arevalo S, Ibáñez-Costa A, Castaño JP. The uprise of RNA biology in neuroendocrine neoplasms: altered splicing and RNA species unveil translational opportunities. Rev Endocr Metab Disord 2023; 24:267-282. [PMID: 36418657 PMCID: PMC9685014 DOI: 10.1007/s11154-022-09771-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
Neuroendocrine neoplasms (NENs) comprise a highly heterogeneous group of tumors arising from the diffuse neuroendocrine system. NENs mainly originate in gastrointestinal, pancreatic, and pulmonary tissues, and despite being rare, show rising incidence. The molecular mechanisms underlying NEN development are still poorly understood, although recent studies are unveiling their genomic, epigenomic and transcriptomic landscapes. RNA was originally considered as an intermediary between DNA and protein. Today, compelling evidence underscores the regulatory relevance of RNA processing, while new RNA molecules emerge with key functional roles in core cell processes. Indeed, correct functioning of the interrelated complementary processes comprising RNA biology, its processing, transport, and surveillance, is essential to ensure adequate cell homeostasis, and its misfunction is related to cancer at multiple levels. This review is focused on the dysregulation of RNA biology in NENs. In particular, we survey alterations in the splicing process and available information implicating the main RNA species and processes in NENs pathology, including their role as biomarkers, and their functionality and targetability. Understanding how NENs precisely (mis)behave requires a profound knowledge at every layer of their heterogeneity, to help improve NEN management. RNA biology provides a wide spectrum of previously unexplored processes and molecules that open new avenues for NEN detection, classification and treatment. The current molecular biology era is rapidly evolving to facilitate a detailed comprehension of cancer biology and is enabling the arrival of personalized, predictive and precision medicine to rare tumors like NENs.
Collapse
Affiliation(s)
- Ricardo Blázquez-Encinas
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - María Trinidad Moreno-Montilla
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Víctor García-Vioque
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Francisco Gracia-Navarro
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Emilia Alors-Pérez
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Sergio Pedraza-Arevalo
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Alejandro Ibáñez-Costa
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.
- Hospital Universitario Reina Sofía, Córdoba, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain.
| | - Justo P Castaño
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.
- Hospital Universitario Reina Sofía, Córdoba, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain.
| |
Collapse
|
4
|
Pedraza-Arevalo S, Alors-Pérez E, Blázquez-Encinas R, Herrera-Martínez AD, Jiménez-Vacas JM, Fuentes-Fayos AC, Reyes Ó, Ventura S, Sánchez-Sánchez R, Ortega-Salas R, Serrano-Blanch R, Gálvez-Moreno MA, Gahete MD, Ibáñez-Costa A, Luque RM, Castaño JP. Spliceosomic dysregulation unveils NOVA1 as a candidate actionable therapeutic target in pancreatic neuroendocrine tumors. Transl Res 2023; 251:63-73. [PMID: 35882361 DOI: 10.1016/j.trsl.2022.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 02/09/2023]
Abstract
Dysregulation of the splicing machinery is emerging as a hallmark in cancer due to its association with multiple dysfunctions in tumor cells. Inappropriate function of this machinery can generate tumor-driving splicing variants and trigger oncogenic actions. However, its role in pancreatic neuroendocrine tumors (PanNETs) is poorly defined. In this study we aimed to characterize the expression pattern of a set of splicing machinery components in PanNETs, and their relationship with aggressiveness features. A qPCR-based array was first deployed to determine the expression levels of components of the major (n = 13) and minor spliceosome (n = 4) and associated splicing factors (n = 27), using a microfluidic technology in 20 PanNETs and non-tumoral adjacent samples. Subsequently, in vivo and in vitro models were applied to explore the pathophysiological role of NOVA1. Expression analysis revealed that a substantial proportion of splicing machinery components was altered in tumors. Notably, key splicing factors were overexpressed in PanNETs samples, wherein their levels correlated with clinical and malignancy features. Using in vivo and in vitro assays, we demonstrate that one of those altered factors, NOVA1, is tightly related to cell proliferation, alters pivotal signaling pathways and interferes with responsiveness to drug treatment in PanNETs, suggesting a role for this factor in the aggressiveness of these tumors and its suitability as therapeutic target. Altogether, our results unveil a severe alteration of the splicing machinery in PanNETs and identify the putative relevance of NOVA1 in tumor development/progression, which could provide novel avenues to develop diagnostic biomarkers and therapeutic tools for this pathology.
Collapse
Affiliation(s)
- Sergio Pedraza-Arevalo
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain; Reina Sofia University Hospital, Córdoba, Spain
| | - Emilia Alors-Pérez
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain; Reina Sofia University Hospital, Córdoba, Spain
| | - Ricardo Blázquez-Encinas
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain; Reina Sofia University Hospital, Córdoba, Spain
| | - Aura D Herrera-Martínez
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Endocrinology and Nutrition Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Juan M Jiménez-Vacas
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain; Reina Sofia University Hospital, Córdoba, Spain
| | - Antonio C Fuentes-Fayos
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain; Reina Sofia University Hospital, Córdoba, Spain
| | - Óscar Reyes
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Department of Computer Sciences, University of Córdoba, Córdoba, Spain
| | - Sebastián Ventura
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Department of Computer Sciences, University of Córdoba, Córdoba, Spain
| | - Rafael Sánchez-Sánchez
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Pathology Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Rosa Ortega-Salas
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Pathology Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Raquel Serrano-Blanch
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Medical Oncology Service, Reina Sofia University Hospital, Córdoba, Spain
| | - María A Gálvez-Moreno
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Endocrinology and Nutrition Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain; Reina Sofia University Hospital, Córdoba, Spain
| | - Alejandro Ibáñez-Costa
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain; Reina Sofia University Hospital, Córdoba, Spain.
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain; Reina Sofia University Hospital, Córdoba, Spain.
| | - Justo P Castaño
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain; Reina Sofia University Hospital, Córdoba, Spain.
| |
Collapse
|
5
|
Gahete MD, Herman-Sanchez N, Fuentes-Fayos AC, Lopez-Canovas JL, Luque RM. Dysregulation of splicing variants and spliceosome components in breast cancer. Endocr Relat Cancer 2022; 29:R123-R142. [PMID: 35728261 DOI: 10.1530/erc-22-0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/16/2022] [Indexed: 12/26/2022]
Abstract
The dysregulation of the splicing process has emerged as a novel hallmark of metabolic and tumor pathologies. In breast cancer (BCa), which represents the most diagnosed cancer type among women worldwide, the generation and/or dysregulation of several oncogenic splicing variants have been described. This is the case of the splicing variants of HER2, ER, BRCA1, or the recently identified by our group, In1-ghrelin and SST5TMD4, which exhibit oncogenic roles, increasing the malignancy, poor prognosis, and resistance to treatment of BCa. This altered expression of oncogenic splicing variants has been closely linked with the dysregulation of the elements belonging to the macromolecular machinery that controls the splicing process (spliceosome components and the associated splicing factors). In this review, we compile the current knowledge demonstrating the altered expression of splicing variants and spliceosomal components in BCa, showing the existence of a growing body of evidence supporting the close implication of the alteration in the splicing process in mammary tumorigenesis.
Collapse
Affiliation(s)
- Manuel D Gahete
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofía University Hospital, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, Spain
| | - Natalia Herman-Sanchez
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofía University Hospital, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, Spain
| | - Antonio C Fuentes-Fayos
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofía University Hospital, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, Spain
| | - Juan L Lopez-Canovas
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofía University Hospital, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, Spain
| | - Raúl M Luque
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofía University Hospital, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, Spain
| |
Collapse
|
6
|
Somatostatin Receptor Splicing Variant sst5TMD4 Overexpression in Glioblastoma Is Associated with Poor Survival, Increased Aggressiveness Features, and Somatostatin Analogs Resistance. Int J Mol Sci 2022; 23:ijms23031143. [PMID: 35163067 PMCID: PMC8835306 DOI: 10.3390/ijms23031143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/29/2021] [Accepted: 01/17/2022] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant and lethal brain tumor. Current standard treatment consists of surgery followed by radiotherapy/chemotherapy; however, this is only a palliative approach with a mean post-operative survival of scarcely ~12-15 months. Thus, the identification of novel therapeutic targets to treat this devastating pathology is urgently needed. In this context, the truncated splicing variant of the somatostatin receptor subtype 5 (sst5TMD4), which is produced by aberrant alternative splicing, has been demonstrated to be overexpressed and associated with increased aggressiveness features in several tumors. However, the presence, functional role, and associated molecular mechanisms of sst5TMD4 in GBM have not been yet explored. Therefore, we performed a comprehensive analysis to characterize the expression and pathophysiological role of sst5TMD4 in human GBM. sst5TMD4 was significantly overexpressed (at mRNA and protein levels) in human GBM tissue compared to non-tumor (control) brain tissue. Remarkably, sst5TMD4 expression was significantly associated with poor overall survival and recurrent tumors in GBM patients. Moreover, in vitro sst5TMD4 overexpression (by specific plasmid) increased, whereas sst5TMD4 silencing (by specific siRNA) decreased, key malignant features (i.e., proliferation and migration capacity) of GBM cells (U-87 MG/U-118 MG models). Furthermore, sst5TMD4 overexpression in GBM cells altered the activity of multiple key signaling pathways associated with tumor aggressiveness/progression (AKT/JAK-STAT/NF-κB/TGF-β), and its silencing sensitized GBM cells to the antitumor effect of pasireotide (a somatostatin analog). Altogether, these results demonstrate that sst5TMD4 is overexpressed and associated with enhanced malignancy features in human GBMs and reveal its potential utility as a novel diagnostic/prognostic biomarker and putative therapeutic target in GBMs.
Collapse
|
7
|
Pedraza-Arevalo S, Ibáñez-Costa A, Blázquez-Encinas R, Branco MR, Vázquez-Borrego MC, Herrera-Martínez AD, Venegas-Moreno E, Serrano-Blanch R, Arjona-Sánchez Á, Gálvez-Moreno MA, Korbonits M, Soto-Moreno A, Gahete MD, Charalambous M, Luque RM, Castaño JP. Epigenetic and post-transcriptional regulation of somatostatin receptor subtype 5 (SST 5 ) in pituitary and pancreatic neuroendocrine tumors. Mol Oncol 2021; 16:764-779. [PMID: 34601790 PMCID: PMC8807362 DOI: 10.1002/1878-0261.13107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 08/19/2021] [Accepted: 09/06/2021] [Indexed: 12/17/2022] Open
Abstract
Somatostatin receptor subtype 5 (SST5) is an emerging biomarker and actionable target in pituitary (PitNETs) and pancreatic (PanNETs) neuroendocrine tumors. Transcriptional and epigenetic regulation of SSTR5 gene expression and mRNA biogenesis is poorly understood. Recently, an overlapping natural antisense transcript, SSTR5‐AS1, potentially regulating SSTR5 expression, was identified. We aimed to elucidate whether epigenetic processes contribute to the regulation of SSTR5 expression in PitNETs (somatotropinomas) and PanNETs. We analyzed the SSTR5/SSTR5‐AS1 human locus in silico to identify CpG islands. SSTR5 and SSTR5‐AS1 expression was assessed by quantitative real‐time PCR (qPCR) in 27 somatotropinomas, 11 normal pituitaries (NPs), and 15 PanNETs/paired adjacent (control) samples. We evaluated methylation grade in four CpG islands in the SSTR5/SSTR5‐AS1 genes. Results revealed that SSTR5 and SSTR5‐AS1 were directly correlated in NP, somatotropinoma, and PanNET samples. Interestingly, selected CpG islands were differentially methylated in somatotropinomas compared with NPs. In PanNETs cell lines, SSTR5‐AS1 silencing downregulated SSTR5 expression, altered aggressiveness features, and influenced pasireotide response. These results provide evidence that SSTR5 expression in PitNETs and PanNETs can be epigenetically regulated by the SSTR5‐AS1 antisense transcript and, indirectly, by DNA methylation, which may thereby impact tumor behavior and treatment response.
Collapse
Affiliation(s)
- Sergio Pedraza-Arevalo
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.,Reina Sofia University Hospital, Córdoba, Spain
| | - Alejandro Ibáñez-Costa
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.,Reina Sofia University Hospital, Córdoba, Spain
| | - Ricardo Blázquez-Encinas
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.,Reina Sofia University Hospital, Córdoba, Spain
| | - Miguel R Branco
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mari C Vázquez-Borrego
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.,Reina Sofia University Hospital, Córdoba, Spain
| | - Aura D Herrera-Martínez
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Endocrinology and Nutrition Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Eva Venegas-Moreno
- Metabolism and Nutrition Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS), Sevilla, Spain
| | - Raquel Serrano-Blanch
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Medical Oncology Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Álvaro Arjona-Sánchez
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Surgery Service, Reina Sofia University Hospital, Córdoba, Spain
| | - María A Gálvez-Moreno
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Endocrinology and Nutrition Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Marta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Alfonso Soto-Moreno
- Metabolism and Nutrition Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS), Sevilla, Spain
| | - Manuel D Gahete
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.,Reina Sofia University Hospital, Córdoba, Spain
| | - Marika Charalambous
- Developmental Epigenetics group, Department of Medical and Molecular Genetics, King's College of London, London, UK
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.,Reina Sofia University Hospital, Córdoba, Spain
| | - Justo P Castaño
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.,Reina Sofia University Hospital, Córdoba, Spain
| |
Collapse
|
8
|
Somatostatin-Dopamine Chimeric Molecules in Neuroendocrine Neoplasms. J Clin Med 2021; 10:jcm10030501. [PMID: 33535394 PMCID: PMC7867079 DOI: 10.3390/jcm10030501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroendocrine neoplasms (NENs) are a widely heterogeneous family of neoplasms arising from neuroendocrine cells, which are interspersed throughout the body. Despite NENs are relatively rare, their incidence and prevalence are constantly increasing probably due to the improvement in earlier diagnosis and patients’ management. When surgery is not curative, particularly for patients with metastatic disease, several medical options are available. Somatostatin analogues (SSA) are the first-line medical therapy for well-differentiated NENs. Interestingly, the heterodimerization of somatostatin receptors (SSTs) with dopamine receptors (DRs) has been discovered in NENs. This phenomenon results in hybrid receptors with enhanced functional activity. On these bases, chimeric molecules embracing somatostatin and dopamine features have been recently developed. The aim of this review is to provide a comprehensive overview of the available preclinical and clinical data regarding chimeric somatostatin-dopamine agonists as a new class of “magic bullet” in the therapy of NENs.
Collapse
|
9
|
Albertelli M, Grillo F, Lo Calzo F, Puliani G, Rainone C, Colao AAL, Faggiano A. Pathology Reporting in Neuroendocrine Neoplasms of the Digestive System: Everything You Always Wanted to Know but Were Too Afraid to Ask. Front Endocrinol (Lausanne) 2021; 12:680305. [PMID: 33967966 PMCID: PMC8104083 DOI: 10.3389/fendo.2021.680305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022] Open
Abstract
During the 5th NIKE (Neuroendocrine tumors Innovation in Knowledge and Education) meeting, held in Naples, Italy, in May 2019, discussions centered on the understanding of pathology reports of gastroenetropancreactic neuroendocrine neoplasms. In particular, the main problem concerned the difficulty that clinicians experience in extrapolating relevant information from neuroendocrine tumor pathology reports. During the meeting, participants were asked to identify and rate issues which they have encountered, for which the input of an expert pathologist would have been appreciated. This article is a collection of the most rated questions and relative answers, focusing on three main topics: 1) morphology and classification; 2) Ki67 and grading; 3) immunohistochemistry. Patient management should be based on multidisciplinary decisions, taking into account clinical and pathology-related features with clear comprehension between all health care professionals. Indeed, pathologists require clinical details and laboratory findings when relevant, while clinicians require concise and standardized reports. In keeping with this last statement, the minimum requirements in pathology datasets are provided in this paper and should be a baseline for all neuroendocrine tumor professionals.
Collapse
Affiliation(s)
- Manuela Albertelli
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DiMI) and Centre of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Federica Grillo
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Anatomic Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Genova, Italy
- *Correspondence: Federica Grillo,
| | - Fabio Lo Calzo
- Department of Clinical Medicine and Surgery, Division of Endocrinology, Federico II University, Naples, Italy
- Internal Medicine Unit, Frangipane Hospital, Ariano Irpino, Italy
| | - Giulia Puliani
- Department of Experimental Medicine, Sapienza University of Rome, Roma, Italy
- Oncological Endocrinology Unit, Regina Elena National Cancer Institute, Roma, Italy
| | - Carmen Rainone
- Department of Clinical Medicine and Surgery, Division of Endocrinology, Federico II University, Naples, Italy
| | - Annamaria Anita Livia Colao
- Department of Clinical Medicine and Surgery, Division of Endocrinology, Federico II University, Naples, Italy
- UNESCO Chair for Health Education and Sustainable Development, Federico II University, Naples, Italy
| | - Antongiulio Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University of Rome, Roma, Italy
| | | |
Collapse
|
10
|
Smith SM. Molecular biology meets the endocrine pathologist: an appraisal of p27 in thyroid malignancy. DIAGNOSTIC HISTOPATHOLOGY 2020; 26:216-223. [DOI: 10.1016/j.mpdhp.2020.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
11
|
Jiménez-Vacas JM, Herrero-Aguayo V, Montero-Hidalgo AJ, Gómez-Gómez E, Fuentes-Fayos AC, León-González AJ, Sáez-Martínez P, Alors-Pérez E, Pedraza-Arévalo S, González-Serrano T, Reyes O, Martínez-López A, Sánchez-Sánchez R, Ventura S, Yubero-Serrano EM, Requena-Tapia MJ, Castaño JP, Gahete MD, Luque RM. Dysregulation of the splicing machinery is directly associated to aggressiveness of prostate cancer. EBioMedicine 2020; 51:102547. [PMID: 31902674 PMCID: PMC7000340 DOI: 10.1016/j.ebiom.2019.11.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/28/2019] [Accepted: 11/07/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Dysregulation of splicing variants (SVs) expression has recently emerged as a novel cancer hallmark. Although the generation of aberrant SVs (e.g. AR-v7/sst5TMD4/etc.) is associated to prostate-cancer (PCa) aggressiveness and/or castration-resistant PCa (CRPC) development, whether the molecular reason behind such phenomena might be linked to a dysregulation of the cellular machinery responsible for the splicing process [spliceosome-components (SCs) and splicing-factors (SFs)] has not been yet explored. METHODS Expression levels of 43 key SCs and SFs were measured in two cohorts of PCa-samples: 1) Clinically-localized formalin-fixed paraffin-embedded PCa-samples (n = 84), and 2) highly-aggressive freshly-obtained PCa-samples (n = 42). FINDINGS A profound dysregulation in the expression of multiple components of the splicing machinery (i.e. 7 SCs/19 SFs) were found in PCa compared to their non-tumor adjacent-regions. Notably, overexpression of SNRNP200, SRSF3 and SRRM1 (mRNA and/or protein) were associated with relevant clinical (e.g. Gleason score, T-Stage, metastasis, biochemical recurrence, etc.) and molecular (e.g. AR-v7 expression) parameters of aggressiveness in PCa-samples. Functional (cell-proliferation/migration) and mechanistic [gene-expression (qPCR) and protein-levels (western-blot)] assays were performed in normal prostate cells (PNT2) and PCa-cells (LNCaP/22Rv1/PC-3/DU145 cell-lines) in response to SNRNP200, SRSF3 and/or SRRM1 silencing (using specific siRNAs) revealed an overall decrease in proliferation/migration-rate in PCa-cells through the modulation of key oncogenic SVs expression levels (e.g. AR-v7/PKM2/XBP1s) and alteration of oncogenic signaling pathways (e.g. p-AKT/p-JNK). INTERPRETATION These results demonstrate that the spliceosome is drastically altered in PCa wherein SNRNP200, SRSF3 and SRRM1 could represent attractive novel diagnostic/prognostic and therapeutic targets for PCa and CRPC.
Collapse
Affiliation(s)
- Juan M Jiménez-Vacas
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Vicente Herrero-Aguayo
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Antonio J Montero-Hidalgo
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Enrique Gómez-Gómez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Urology Service, HURS/IMIBIC, Córdoba, Spain
| | - Antonio C Fuentes-Fayos
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Antonio J León-González
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Prudencio Sáez-Martínez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Emilia Alors-Pérez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Sergio Pedraza-Arévalo
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Teresa González-Serrano
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Anatomical Pathology Service, HURS, Córdoba, Spain
| | - Oscar Reyes
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Department of Computer Sciences, University of Córdoba, Córdoba, Spain
| | - Ana Martínez-López
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Anatomical Pathology Service, HURS, Córdoba, Spain
| | - Rafael Sánchez-Sánchez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Anatomical Pathology Service, HURS, Córdoba, Spain
| | - Sebastián Ventura
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Department of Computer Sciences, University of Córdoba, Córdoba, Spain
| | - Elena M Yubero-Serrano
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain; Lipids and Atherosclerosis Unit, Reina Sofia University Hospital, Córdoba, Spain
| | - María J Requena-Tapia
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Urology Service, HURS/IMIBIC, Córdoba, Spain
| | - Justo P Castaño
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain.
| |
Collapse
|
12
|
Jiménez-Vacas JM, Herrero-Aguayo V, Gómez-Gómez E, León-González AJ, Sáez-Martínez P, Alors-Pérez E, Fuentes-Fayos AC, Martínez-López A, Sánchez-Sánchez R, González-Serrano T, López-Ruiz DJ, Requena-Tapia MJ, Castaño JP, Gahete MD, Luque RM. Spliceosome component SF3B1 as novel prognostic biomarker and therapeutic target for prostate cancer. Transl Res 2019; 212:89-103. [PMID: 31344348 DOI: 10.1016/j.trsl.2019.07.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/19/2019] [Accepted: 07/05/2019] [Indexed: 12/27/2022]
Abstract
Prostate cancer (PCa) is one of the most common cancers types among men. Development and progression of PCa is associated with aberrant expression of oncogenic splicing-variants (eg, AR-v7), suggesting that dysregulation of the splicing process might represent a potential actionable target for PCa. Expression levels (mRNA and protein) of SF3B1, one of the main components of the splicing machinery, were analyzed in different cohorts of PCa patients (clinically localized [n = 84], highly aggressive PCa [n = 42], and TCGA dataset [n = 497]). Functional and mechanistic assays were performed in response to pladienolide-B in nontumor and tumor-derived prostate cells. Our results revealed that SF3B1 was overexpressed in PCa tissues and its levels were associated with clinically relevant PCa-aggressive features (eg, metastasis/AR-v7 expression). Moreover, inhibition of SF3B1 activity by pladienolide-B reduced functional parameters of aggressiveness (proliferation/migration/tumorspheres-formation/apoptosis) in PCa cell lines, irrespective of AR-v7 expression, and reduced viability of primary PCa cells. Antitumor actions of pladienolide-B involved: (1) inhibition of PI3K/AKT and JNK signaling pathways, (2) modulation of tumor markers and splicing variants (AR-v7/In1-ghrelin), and (3) regulation of key components of mRNA homeostasis-associated machineries (spliceosome/SURF/EJC). Altogether, our results demonstrated that SF3B1 is overexpressed and associated with malignant features in PCa, and its inhibition reduces PCa aggressiveness, suggesting that SF3B1 could represent a novel prognostic biomarker and a therapeutic target in PCa.
Collapse
Affiliation(s)
- Juan M Jiménez-Vacas
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Vicente Herrero-Aguayo
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Enrique Gómez-Gómez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Urology Service, HURS/IMIBIC, Córdoba, Spain
| | - Antonio J León-González
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Prudencio Sáez-Martínez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Emilia Alors-Pérez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Antonio C Fuentes-Fayos
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Ana Martínez-López
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Anatomical Pathology Service, HURS, Córdoba, Spain
| | - Rafael Sánchez-Sánchez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Anatomical Pathology Service, HURS, Córdoba, Spain
| | - Teresa González-Serrano
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Anatomical Pathology Service, HURS, Córdoba, Spain
| | - Daniel J López-Ruiz
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Radiology Service, HURS/IMIBIC
| | - María J Requena-Tapia
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Urology Service, HURS/IMIBIC, Córdoba, Spain
| | - Justo P Castaño
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Córdoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain.
| |
Collapse
|
13
|
Vázquez-Borrego MC, Fuentes-Fayos AC, Venegas-Moreno E, Rivero-Cortés E, Dios E, Moreno-Moreno P, Madrazo-Atutxa A, Remón P, Solivera J, Wildemberg LE, Kasuki L, López-Fernández JM, Gadelha MR, Gálvez-Moreno MA, Soto-Moreno A, Gahete MD, Castaño JP, Luque RM. Splicing Machinery is Dysregulated in Pituitary Neuroendocrine Tumors and is Associated with Aggressiveness Features. Cancers (Basel) 2019; 11:cancers11101439. [PMID: 31561558 PMCID: PMC6826715 DOI: 10.3390/cancers11101439] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/09/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022] Open
Abstract
Pituitary neuroendocrine tumors (PitNETs) constitute approximately 15% of all brain tumors, and most have a sporadic origin. Recent studies suggest that altered alternative splicing and, consequently, appearance of aberrant splicing variants, is a common feature of most tumor pathologies. Moreover, spliceosome is considered an attractive therapeutic target in tumor pathologies, and the inhibition of SF3B1 (e.g., using pladienolide-B) has been shown to exert antitumor effects. Therefore, we aimed to analyze the expression levels of selected splicing-machinery components in 261 PitNETs (somatotropinomas/non-functioning PitNETS/corticotropinomas/prolactinomas) and evaluated the direct effects of pladienolide-B in cell proliferation/viability/hormone secretion in human PitNETs cell cultures and pituitary cell lines (AtT-20/GH3). Results revealed a severe dysregulation of splicing-machinery components in all the PitNET subtypes compared to normal pituitaries and a unique fingerprint of splicing-machinery components that accurately discriminate between normal and tumor tissue in each PitNET subtype. Moreover, expression of specific components was associated with key clinical parameters. Interestingly, certain components were commonly dysregulated throughout all PitNET subtypes. Finally, pladienolide-B reduced cell proliferation/viability/hormone secretion in PitNET cell cultures and cell lines. Altogether, our data demonstrate a drastic dysregulation of the splicing-machinery in PitNETs that might be associated to their tumorigenesis, paving the way to explore the use of specific splicing-machinery components as novel diagnostic/prognostic and therapeutic targets in PitNETs.
Collapse
Affiliation(s)
- Mari C Vázquez-Borrego
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain.
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain.
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain.
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain.
| | - Antonio C Fuentes-Fayos
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain.
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain.
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain.
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain.
| | - Eva Venegas-Moreno
- Metabolism and Nutrition Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS), 41013 Sevilla, Spain.
| | - Esther Rivero-Cortés
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain.
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain.
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain.
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain.
| | - Elena Dios
- Metabolism and Nutrition Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS), 41013 Sevilla, Spain.
| | - Paloma Moreno-Moreno
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain.
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain.
- Service of Endocrinology and Nutrition, Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain.
| | - Ainara Madrazo-Atutxa
- Metabolism and Nutrition Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS), 41013 Sevilla, Spain.
| | - Pablo Remón
- Metabolism and Nutrition Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS), 41013 Sevilla, Spain.
| | - Juan Solivera
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain.
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain.
- Service of Neurosurgery, Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain.
| | - Luiz E Wildemberg
- Neuroendocrinology Research Center/Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil.
- Neuroendocrinology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil.
| | - Leandro Kasuki
- Neuroendocrinology Research Center/Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil.
- Neuroendocrinology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil.
| | - Judith M López-Fernández
- Service of Endocrinology and Nutrition, Hospital Universitario de Canarias, 38320 La Laguna, Santa Cruz de Tenerife, Spain.
| | - Mônica R Gadelha
- Neuroendocrinology Research Center/Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil.
- Neuroendocrinology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro 20231-092, Brazil.
| | - María A Gálvez-Moreno
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain.
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain.
- Service of Endocrinology and Nutrition, Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain.
| | - Alfonso Soto-Moreno
- Metabolism and Nutrition Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS), 41013 Sevilla, Spain.
| | - Manuel D Gahete
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain.
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain.
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain.
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain.
| | - Justo P Castaño
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain.
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain.
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain.
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain.
| | - Raúl M Luque
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain.
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain.
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain.
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain.
| |
Collapse
|
14
|
Peptides derived from the extracellular domain of the somatostatin receptor splicing variant SST5TMD4 increase malignancy in multiple cancer cell types. Transl Res 2019; 211:147-160. [PMID: 30904441 DOI: 10.1016/j.trsl.2019.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/06/2019] [Accepted: 02/26/2019] [Indexed: 12/19/2022]
Abstract
Extracellular fragments derived from plasma membrane receptors can play relevant roles in the development/progression of tumor pathologies, thereby offering novel diagnostic or therapeutic opportunities. The truncated variant of somatostatin receptor subtype-5, SST5TMD4, is an aberrantly spliced receptor with 4 transmembrane domains, highly overexpressed in several tumor types, whose C-terminal tail is exposed towards the extracellular matrix, and could therefore be the substrate for proteolytic enzymes. In silico analysis implemented herein predicted 2 possible cleavage sites for metalloproteases MMP2, 9, 14, and 16 in its sequence, which could generate 3 releasable peptides. Of note, expression of those MMPs was directly correlated with SST5TMD4 in several cancer-derived cell lines (ie neuroendocrine tumors and prostate, breast, and liver cancers). Moreover, incubation with SST5TMD4-derived peptides enhanced malignancy features in all cancer cell types tested (ie proliferation, migration, etc.) and blunted the antiproliferative response to somatostatin in QGP-1 cells, acting probably through PI3K/AKT and/or MEK/ERK signaling pathways and the modulation of key cancer-associated genes (eg MMPs, MKI67, ACTR2/3, CD24/44). These results suggest that SST5TMD4-derived peptides could contribute to the strong oncogenic role of SST5TMD4 observed in multiple tumor pathologies, and, therefore, represent potential candidates to identify novel diagnostic, prognostic, or therapeutic targets in cancer.
Collapse
|
15
|
Biological and Biochemical Basis of the Differential Efficacy of First and Second Generation Somatostatin Receptor Ligands in Neuroendocrine Neoplasms. Int J Mol Sci 2019; 20:ijms20163940. [PMID: 31412614 PMCID: PMC6720449 DOI: 10.3390/ijms20163940] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
Endogenous somatostatin shows anti-secretory effects in both physiological and pathological settings, as well as inhibitory activity on cell growth. Since somatostatin is not suitable for clinical practice, researchers developed synthetic somatostatin receptor ligands (SRLs) to overcome this limitation. Currently, SRLs represent pivotal tools in the treatment algorithm of neuroendocrine tumors (NETs). Octreotide and lanreotide are the first-generation SRLs developed and show a preferential binding affinity to somatostatin receptor (SST) subtype 2, while pasireotide, which is a second-generation SRL, has high affinity for multiple SSTs (SST5 > SST2 > SST3 > SST1). A number of studies demonstrated that first-generation and second-generation SRLs show distinct functional properties, besides the mere receptor affinity. Therefore, the aim of the present review is to critically review the current evidence on the biological effects of SRLs in pituitary adenomas and neuroendocrine tumors, by mainly focusing on the differences between first-generation and second-generation ligands.
Collapse
|
16
|
Stengel A, Taché Y. Central somatostatin signaling and regulation of food intake. Ann N Y Acad Sci 2019; 1455:98-104. [PMID: 31237362 DOI: 10.1111/nyas.14178] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/20/2019] [Accepted: 06/03/2019] [Indexed: 12/29/2022]
Abstract
The discovery of somatostatin (SST) in the hypothalamus implicated the peptide in the inhibition of growth hormone release. However, as observed for numerous neuropeptides, SST was neither restricted to this one brain site nor to this one function. Subsequent studies established a widespread but specific expression of SST in the central nervous system of rodents and humans along with the expression patterns of five receptors (sst1-5 ). Among biological actions, the activation of central SST signaling induced a robust stimulation of food and water intake, which is mediated by the sst2 as assessed using selective sst agonists. The past years have witnessed the identification of brain SST circuitries involved using chemogenetic and optogenetic approaches and further established a physiological orexigenic role of brain SST signaling. The present review will discuss these recent findings.
Collapse
Affiliation(s)
- Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
| | - Yvette Taché
- Department of Medicine, CURE: Digestive Diseases Research Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, California.,VA Greater Los Angeles Healthcare System, Los Angeles, California
| |
Collapse
|
17
|
Angiogenesis in Pancreatic Cancer: Pre-Clinical and Clinical Studies. Cancers (Basel) 2019; 11:cancers11030381. [PMID: 30889903 PMCID: PMC6468440 DOI: 10.3390/cancers11030381] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis is a crucial event in tumor development and progression, occurring by different mechanisms and it is driven by pro- and anti-angiogenic molecules. Pancreatic cancer vascularization is characterized by a high microvascular density, impaired microvessel integrity and poor perfused vessels with heterogeneous distribution. In this review article, after a brief introduction on pancreatic cancer classification and on angiogenesis mechanisms involved in its progression, the pre-clinical and clinical trials conducted in pancreatic cancer treatment using anti-angiogenic inhibitors will be described. Finally, we will discuss the anti-angiogenic therapy paradox between the advantage to abolish vessel supply to block tumor growth and the disadvantage due to reduction of drug delivery at the same time. The purpose is to identify new anti-angiogenic molecules that may enhance treatment regimen.
Collapse
|
18
|
Herrera-Martínez AD, Hofland LJ, Gálvez Moreno MA, Castaño JP, de Herder WW, Feelders RA. Neuroendocrine neoplasms: current and potential diagnostic, predictive and prognostic markers. Endocr Relat Cancer 2019; 26:R157-R179. [PMID: 30615596 DOI: 10.1530/erc-18-0354] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/03/2019] [Indexed: 12/13/2022]
Abstract
Some biomarkers for functioning and non-functioning neuroendocrine neoplasms (NENs) are currently available. Despite their application in clinical practice, results should be interpreted cautiously. Considering the variable sensitivity and specificity of these parameters, there is an unmet need for novel biomarkers to improve diagnosis and predict patient outcome. Nowadays, several new biomarkers are being evaluated and may become future tools for the management of NENs. These biomarkers include (1) peptides and growth factors; (2) DNA and RNA markers based on genomics analysis, for example, the so-called NET test, which has been developed for analyzing gene transcripts in circulating blood; (3) circulating tumor/endothelial/progenitor cells or cell-free tumor DNA, which represent minimally invasive methods that would provide additional information for monitoring treatment response and (4) improved imaging techniques with novel radiolabeled somatostatin analogs or peptides. Below we summarize some future directions in the development of novel diagnostic and predictive/prognostic biomarkers in NENs. This review is focused on circulating and selected tissue markers.
Collapse
Affiliation(s)
- Aura D Herrera-Martínez
- Division of Endocrinology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC); Reina Sofia University Hospital, Córdoba, Spain
| | - Leo J Hofland
- Division of Endocrinology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - María A Gálvez Moreno
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC); Reina Sofia University Hospital, Córdoba, Spain
| | - Justo P Castaño
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC); Reina Sofia University Hospital, Córdoba, Spain
| | - Wouter W de Herder
- Division of Endocrinology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Richard A Feelders
- Division of Endocrinology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
19
|
Günther T, Tulipano G, Dournaud P, Bousquet C, Csaba Z, Kreienkamp HJ, Lupp A, Korbonits M, Castaño JP, Wester HJ, Culler M, Melmed S, Schulz S. International Union of Basic and Clinical Pharmacology. CV. Somatostatin Receptors: Structure, Function, Ligands, and New Nomenclature. Pharmacol Rev 2019; 70:763-835. [PMID: 30232095 PMCID: PMC6148080 DOI: 10.1124/pr.117.015388] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Somatostatin, also known as somatotropin-release inhibitory factor, is a cyclopeptide that exerts potent inhibitory actions on hormone secretion and neuronal excitability. Its physiologic functions are mediated by five G protein-coupled receptors (GPCRs) called somatostatin receptor (SST)1-5. These five receptors share common structural features and signaling mechanisms but differ in their cellular and subcellular localization and mode of regulation. SST2 and SST5 receptors have evolved as primary targets for pharmacological treatment of pituitary adenomas and neuroendocrine tumors. In addition, SST2 is a prototypical GPCR for the development of peptide-based radiopharmaceuticals for diagnostic and therapeutic interventions. This review article summarizes findings published in the last 25 years on the physiology, pharmacology, and clinical applications related to SSTs. We also discuss potential future developments and propose a new nomenclature.
Collapse
Affiliation(s)
- Thomas Günther
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Giovanni Tulipano
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Pascal Dournaud
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Corinne Bousquet
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Zsolt Csaba
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Hans-Jürgen Kreienkamp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Márta Korbonits
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Justo P Castaño
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Hans-Jürgen Wester
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Michael Culler
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Shlomo Melmed
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| |
Collapse
|
20
|
Herrera-Martínez AD, Pedraza-Arevalo S, L-López F, Gahete MD, Gálvez-Moreno MA, Castaño JP, Luque RM. Type 2 Diabetes in Neuroendocrine Tumors: Are Biguanides and Statins Part of the Solution? J Clin Endocrinol Metab 2019; 104:57-73. [PMID: 30265346 DOI: 10.1210/jc.2018-01455] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/24/2018] [Indexed: 12/13/2022]
Abstract
CONTEXT Biguanides and statins exert beneficial effects on various cancer types. Their precise effects and underlying molecular mechanisms are poorly understood. MATERIALS AND METHODS We analyzed the relationship between metabolic syndrome and histological, epidemiological, and prognosis variables in two cohorts of patients with neuroendocrine tumors (NETs): those with lung carcinoids (LCs; n = 81) and those with gastroenteropancreatic NET (GEP-NET; n = 100). Biguanide and statin antitumor effects were investigated by evaluating proliferation, migration, secretion, gene expression, and involved molecular pathways in BON1/QGP1 cell cultures. RESULTS Pleura invasion was higher (LCs group; P < 0.05) and tumor diameter tended to be increased (GEP-NET group) in patients with type 2 diabetes (T2DM) than in those without. Somatostatin and ghrelin systems mRNA levels differed in tumor tissue of patients with T2DM taking metformin or not. Biguanides decreased proliferation rate in BON1/QGP1 cells; the effects of statins on proliferation rate depended on the statin and cell types, and time. Specifically, only simvastatin and atorvastatin decreased proliferation in BON1 cells, whereas all statins decreased proliferation rate in QGP1 cells. Metformin and simvastatin decreased migration capacity in BON1 cells; biguanides decreased serotonin secretion in BON1 cells. Phenformin increased apoptosis in BON1/QGP1 cells; simvastatin increased apoptosis in QGP1 cells. These antitumor effects likely involved altered expression of key genes related to cancer aggressiveness. CONCLUSION A clear inhibitory effect of biguanides and statins was seen on NET-cell aggressiveness. Our results invite additional exploration of the potential therapeutic role of these drugs in treatment of patients with NETs.
Collapse
Affiliation(s)
- Aura D Herrera-Martínez
- Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Sergio Pedraza-Arevalo
- Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| | - Fernando L-López
- Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| | - María A Gálvez-Moreno
- Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Justo P Castaño
- Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| |
Collapse
|
21
|
Chatzellis E, Kaltsas G. Somatostatin Receptor Expression in Gastrointestinal Tumors. ENCYCLOPEDIA OF ENDOCRINE DISEASES 2019:587-596. [DOI: 10.1016/b978-0-12-801238-3.64282-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
22
|
Prognostic and predictive biomarkers for somatostatin analogs, peptide receptor radionuclide therapy and serotonin pathway targets in neuroendocrine tumours. Cancer Treat Rev 2018; 70:209-222. [PMID: 30292979 DOI: 10.1016/j.ctrv.2018.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 12/28/2022]
Abstract
Neuroendocrine tumours (NETs) are a heterogeneous group of neoplasms regarding their molecular biology, clinical behaviour, prognosis and response to therapy. Several attempts to establish robust predictive biomarkers have failed. Neither tissue markers nor blood borne ones have proven to be successful yet. Circulating tumour cells (CTCs) as "liquid biopsies" could provide prognostic information at the time a therapeutic decision needs to be made and could be an attractive tool for tumour monitoring throughout the treatment period. However, "liquid biopsies" are far from becoming the standard biomarker in NETs. Promising results have been presented over the last few years using a novel biomarker candidate, a multianalyte algorithm analysis PCR-based test (NETest). New technologies will open the field to different ways of approaching the biomarker conundrum in NETs. However, the complications derived from being a heterogeneous group of malignancies will remain with us forever. In summary, there is an unmet need to incorporate new biomarker candidates into clinical research trials to obtain a robust prospective validation under the most demanding scenario.
Collapse
|
23
|
Stevenson M, Lines KE, Thakker RV. Molecular Genetic Studies of Pancreatic Neuroendocrine Tumors: New Therapeutic Approaches. Endocrinol Metab Clin North Am 2018; 47:525-548. [PMID: 30098714 PMCID: PMC7614857 DOI: 10.1016/j.ecl.2018.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreatic neuroendocrine tumors (PNETs) arise sporadically or as part of familial syndromes. Genetic studies of hereditary syndromes and whole exome sequencing analysis of sporadic NETs have revealed the roles of some genes involved in PNET tumorigenesis. The multiple endocrine neoplasia type 1 (MEN1) gene is most commonly mutated. Its encoded protein, menin, has roles in transcriptional regulation, genome stability, DNA repair, protein degradation, cell motility and adhesion, microRNA biogenesis, cell division, cell cycle control, and epigenetic regulation. Therapies targeting epigenetic regulation and MEN1 gene replacement have been reported to be effective in preclinical models.
Collapse
Affiliation(s)
- Mark Stevenson
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Headington, Oxford OX3 7LJ, UK
| | - Kate E Lines
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Headington, Oxford OX3 7LJ, UK
| | - Rajesh V Thakker
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Headington, Oxford OX3 7LJ, UK.
| |
Collapse
|
24
|
Dong H, Wei Y, Xie C, Zhu X, Sun C, Fu Q, Pan L, Wu M, Guo Y, Sun J, Shen H, Ye J. Structural and functional analysis of two novel somatostatin receptors identified from topmouth culter (Erythroculter ilishaeformis). Comp Biochem Physiol C Toxicol Pharmacol 2018; 210:18-29. [PMID: 29698686 DOI: 10.1016/j.cbpc.2018.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 12/14/2022]
Abstract
In the present study, we cloned and characterized two somatostatin (SS) receptors (SSTRs) from topmouth culter (Erythroculter ilishaeformis) designated as EISSTR6 and EISSTR7. Analysis of EISSTR6 and EISSTR7 signature motifs, 3D structures, and homology with the known members of the SSTR family indicated that the novel receptors had high similarity to the SSTRs of other vertebrates. EISSTR6 and EISSTR7 mRNA expression was detected in 17 topmouth culter tissues, and the highest level was observed in the pituitary. Luciferase reporter assay revealed that SS14 significantly inhibited forskolin-stimulated pCRE-luc promoter activity in HEK293 cells transiently expressing EISSTR6 and EISSTR7, indicating that the receptors can be activated by SS14. We also identified phosphorylation sites important for the functional activity of EISSTR6 and EISSTR7 by mutating Ser23, 43, 107, 196, 311 and Ser7, 29, 61, 222, 225 residues, respectively, to Ala, which significantly reduced the inhibitory effects of SS14 on the CRE promoter mediated by EISSTR6 and EISSTR7. Furthermore, treatment of juvenile topmouth culters with microcystin-LR or 17β-estradiol significantly affected EISSTR6 and EISSTR7 transcription in the brain, liver and spleen, suggesting that these receptors may be involved in the pathogenic mechanisms induced by endocrine disruptors. Our findings should contribute to the understanding of the structure-function relationship and evolution of the SSTR family.
Collapse
Affiliation(s)
- Haiyan Dong
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China; National-local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition of Chinese Academy of Fishery Sciences, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China.
| | - Yunhai Wei
- Department of Gastrointestinal Surgery, the Central Hospital of Huzhou, 198 Hongqi Road, Huzhou, Zhejiang 313000, PR China
| | - Chao Xie
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Xiaoxuan Zhu
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Chao Sun
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Qianwen Fu
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Lei Pan
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Mengting Wu
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Yinghan Guo
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Jianwei Sun
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Hong Shen
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Jinyun Ye
- National-local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition of Chinese Academy of Fishery Sciences, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China.
| |
Collapse
|
25
|
Luque RM, Kineman RD. Neuronostatin exerts actions on pituitary that are unique from its sibling peptide somatostatin. J Endocrinol 2018; 237:217-227. [PMID: 29615476 DOI: 10.1530/joe-18-0135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
Neuronostatin, a somatostatin gene-encoded peptide, exerts important physiological and metabolic actions in diverse tissues. However, the direct biological effects of neuronostatin on pituitary function of humans and primates are still unknown. This study used baboon (Papio anubis) primary pituitary cell cultures, a species that closely models human physiology, to demonstrate that neuronostatin inhibits basal, but not ghrelin-/GnRH-stimulated, growth hormone (GH) and luteinizing hormone (LH) secretion in a dose- and time-dependent fashion, without affecting the secretion of other pituitary hormones (prolactin, ACTH, FSH, thyroid-stimulating hormone (TSH)) or changing mRNA levels. Actions of neuronostatin differs from somatostatin which in this study reduced GH/PRL/ACTH/LH/TSH secretion and GH/PRL/POMC/LH gene expression. Remarkably, we found that inhibitory actions of neuronostatin are likely mediated through: (1) the orphan receptor GPCR107 (found to be highly expressed in pituitary compared to somatostatin-receptors), (2) common (i.e. adenylyl cyclase/protein kinase A/MAPK/extra-/intracellular Ca2+ mobilization, but not phospholipase C/protein kinase C/mTOR) and distinct (i.e. PI3K) signaling pathways than somatostatin and; (3) dissimilar molecular mechanisms than somatostatin (i.e. upregulation of GPCR107 and downregulation of GHS-R/Kiss1-R expression by neuronostatin and, upregulation of sst1-5 expression by somatostatin). Altogether, the results of this study provide the first evidence that there is a functional neuronostatin signaling circuit, unique from somatostatin, which may work in concert with somatostatin to fine-tune hormone release from somatostropes and gonadotropes.
Collapse
Affiliation(s)
- Raúl M Luque
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofia (HURS), Cordoba, Spain
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Rhonda D Kineman
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago and Research and Development Division, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| |
Collapse
|
26
|
Pedraza-Arévalo S, Gahete MD, Alors-Pérez E, Luque RM, Castaño JP. Multilayered heterogeneity as an intrinsic hallmark of neuroendocrine tumors. Rev Endocr Metab Disord 2018; 19:179-192. [PMID: 30293213 DOI: 10.1007/s11154-018-9465-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neuroendocrine tumors (NETs) comprise a complex and highly heterogeneous group of neoplasms that can arise all over the body, originating from neuroendocrine cells. NETs are characterized by a general lack of symptoms until they are in advanced phase, and early biomarkers are not as available and useful as required. Heterogeneity is an intrinsic, pivotal feature of NETs that derives from diverse causes and ultimately shapes tumor fate. The different layers that conform NET heterogeneity include a wide range of distinct characteristics, from the mere location of the tumor to its clinical and functional features, and from its cellular properties, to the core signaling and (epi)genetic components defining the molecular signature of the tumor. The importance of this heterogeneity resides in that it translates into a high variability among tumors and, hence, patients, which hinders a more precise diagnosis and prognosis and more efficacious treatment of these diseases. In this review, we highlight the significance of this heterogeneity as an intrinsic hallmark of NETs, its repercussion on clinical approaches and tumor management, and some of the possible factors associated to such heterogeneity, including epigenetic and genetic elements, post-transcriptional regulation, or splicing alterations. Notwithstanding, heterogeneity can also represent a valuable and actionable feature, towards improving medical approaches based on personalized medicine. We conclude that NETs can no longer be viewed as a single disease entity and that their diagnosis, prognosis and treatment must reflect and incorporate this heterogeneity.
Collapse
Affiliation(s)
- Sergio Pedraza-Arévalo
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Avenida Menéndez Pidal s/n, Edificio IMIBIC, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, Universidad de Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Agrifood Campus of International Excellence (ceiA3), Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Avenida Menéndez Pidal s/n, Edificio IMIBIC, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, Universidad de Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Agrifood Campus of International Excellence (ceiA3), Córdoba, Spain
| | - Emilia Alors-Pérez
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Avenida Menéndez Pidal s/n, Edificio IMIBIC, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, Universidad de Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Agrifood Campus of International Excellence (ceiA3), Córdoba, Spain
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Avenida Menéndez Pidal s/n, Edificio IMIBIC, 14004, Córdoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, Universidad de Córdoba, Córdoba, Spain.
- Reina Sofia University Hospital, Córdoba, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.
- Agrifood Campus of International Excellence (ceiA3), Córdoba, Spain.
| | - Justo P Castaño
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Avenida Menéndez Pidal s/n, Edificio IMIBIC, 14004, Córdoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, Universidad de Córdoba, Córdoba, Spain.
- Reina Sofia University Hospital, Córdoba, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.
- Agrifood Campus of International Excellence (ceiA3), Córdoba, Spain.
| |
Collapse
|
27
|
Herrera-Martínez AD, Gahete MD, Pedraza-Arevalo S, Sánchez-Sánchez R, Ortega-Salas R, Serrano-Blanch R, Luque RM, Gálvez-Moreno MA, Castaño JP. Clinical and functional implication of the components of somatostatin system in gastroenteropancreatic neuroendocrine tumors. Endocrine 2018; 59:426-437. [PMID: 29196939 DOI: 10.1007/s12020-017-1482-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 11/20/2017] [Indexed: 02/06/2023]
Abstract
PURPOSE Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) comprise a heterogeneous group of malignancies often presenting with metastasis at diagnosis and whose clinical outcome is difficult to predict. Somatostatin (SST) analogs (SSAs) provide a valuable pharmacological tool to palliate hormonal symptoms, and control progression in some NETs. However, many patients do not respond to SSAs or develop resistance, and there are many uncertainties regarding pathophysiology of SST and its receptors (sst1-sst5) in GEP-NETs. METHODS The expression of SST system components in GEP-NETs was determined, compared with that of non-tumor adjacent and normal tissues and correlated with clinical and histological characteristics. Specifically, 58 patients with GEP-NETs and 14 normal samples were included. Cell viability in NET cell lines was determined in response to specific SSAs. RESULTS Normal samples and non-tumor adjacent tissues presented a similar expression profile, with appreciable expression of sst2 and sst3, and a lower expression of the other receptors. In contrast, cortistatin, sst1, sst4, and sst5 were overexpressed in tumors, while sst3 and sst4 seemed overexpressed in less differentiated tumors. Some SST system components were related to vascular/nerve invasion and metastasis. In vitro, sst1 and sst3 agonists reduced viability in BON-1 cells, while they, similar to octreotide and pasireotide, increased viability in QGP-1 cells. CONCLUSIONS These results provide novel information on SST system pathophysiology in GEP-NETs, including relevant associations with clinical-histological parameters, which might help to better understand the intrinsic heterogeneity of NETs and to identify novel biomarkers and/or targets with potential prognostic and/or therapeutic value for GEP-NETs patients.
Collapse
Affiliation(s)
- Aura D Herrera-Martínez
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Campus de Excelencia Internacional Agroalimentario (ceiA3), Córdoba, Spain
| | - Sergio Pedraza-Arevalo
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Campus de Excelencia Internacional Agroalimentario (ceiA3), Córdoba, Spain
| | - Rafael Sánchez-Sánchez
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Pathology Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Rosa Ortega-Salas
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Pathology Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Raquel Serrano-Blanch
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Medical Oncology Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.
- Reina Sofia University Hospital, Córdoba, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.
- Campus de Excelencia Internacional Agroalimentario (ceiA3), Córdoba, Spain.
| | - María A Gálvez-Moreno
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, Córdoba, Spain.
| | - Justo P Castaño
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.
- Reina Sofia University Hospital, Córdoba, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.
- Campus de Excelencia Internacional Agroalimentario (ceiA3), Córdoba, Spain.
| |
Collapse
|
28
|
Hormaechea-Agulla D, Gahete MD, Jiménez-Vacas JM, Gómez-Gómez E, Ibáñez-Costa A, L-López F, Rivero-Cortés E, Sarmento-Cabral A, Valero-Rosa J, Carrasco-Valiente J, Sánchez-Sánchez R, Ortega-Salas R, Moreno MM, Tsomaia N, Swanson SM, Culler MD, Requena MJ, Castaño JP, Luque RM. The oncogenic role of the In1-ghrelin splicing variant in prostate cancer aggressiveness. Mol Cancer 2017; 16:146. [PMID: 28851363 PMCID: PMC5576296 DOI: 10.1186/s12943-017-0713-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 08/15/2017] [Indexed: 01/06/2023] Open
Abstract
Background The Ghrelin-system is a complex, pleiotropic family composed of several peptides, including native-ghrelin and its In1-ghrelin splicing variant, and receptors (GHSR 1a/b), which are dysregulated in various endocrine-related tumors, where they associate to pathophysiological features, but the presence, functional role, and mechanisms of actions of In1-ghrelin splicing variant in prostate-cancer (PCa), is completely unexplored. Herein, we aimed to determine the presence of key ghrelin-system components (native-ghrelin, In1-ghrelin, GHSR1a/1b) and their potential pathophysiological role in prostate cancer (PCa). Methods In1-ghrelin and native-ghrelin expression was evaluated by qPCR in prostate tissues from patients with high PCa-risk (n = 52; fresh-tumoral biopsies), and healthy-prostates (n = 12; from cystoprostatectomies) and correlated with clinical parameters using Spearman-test. In addition, In1-ghrelin and native-ghrelin was measured in plasma from an additional cohort of PCa-patients with different risk levels (n = 30) and control-healthy patients (n = 20). In vivo functional (proliferation/migration) and mechanistic (gene expression/signaling-pathways) assays were performed in PCa-cell lines in response to In1-ghrelin and native-ghrelin treatment, overexpression and/or silencing. Finally, tumor progression was monitored in nude-mice injected with PCa-cells overexpressing In1-ghrelin, native-ghrelin and empty vector (control). Results In1-ghrelin, but not native-ghrelin, was overexpressed in high-risk PCa-samples compared to normal-prostate (NP), and this expression correlated with that of PSA. Conversely, GHSR1a/1b expression was virtually absent. Remarkably, plasmatic In1-ghrelin, but not native-ghrelin, levels were also higher in PCa-patients compared to healthy-controls. Furthermore, In1-ghrelin treatment/overexpression, and to a much lesser extent native-ghrelin, increased aggressiveness features (cell-proliferation, migration and PSA secretion) of NP and PCa cells. Consistently, nude-mice injected with PC-3-cells stably-transfected with In1-ghrelin, but not native-ghrelin, presented larger tumors. These effects were likely mediated by ERK1/2-signaling activation and involved altered expression of key oncogenes/tumor suppressor genes. Finally, In1-ghrelin silencing reduced cell-proliferation and PSA secretion from PCa cells. Conclusions Altogether, our results indicate that In1-ghrelin levels (in tissue) and circulating levels (in plasma) are increased in PCa where it can regulate key pathophysiological processes, thus suggesting that In1-ghrelin may represent a novel biomarker and a new therapeutic target in PCa. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0713-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Hormaechea-Agulla
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofia University Hospital (HURS), Córdoba, Spain.,CIBERobn, Córdoba, Spain.,ceiA3, Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofia University Hospital (HURS), Córdoba, Spain.,CIBERobn, Córdoba, Spain.,ceiA3, Córdoba, Spain
| | - Juan M Jiménez-Vacas
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofia University Hospital (HURS), Córdoba, Spain.,CIBERobn, Córdoba, Spain.,ceiA3, Córdoba, Spain
| | - Enrique Gómez-Gómez
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Reina Sofia University Hospital (HURS), Córdoba, Spain.,Urology Service, HURS/IMIBIC, Córdoba, Spain
| | - Alejandro Ibáñez-Costa
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofia University Hospital (HURS), Córdoba, Spain.,CIBERobn, Córdoba, Spain.,ceiA3, Córdoba, Spain
| | - Fernando L-López
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofia University Hospital (HURS), Córdoba, Spain.,CIBERobn, Córdoba, Spain.,ceiA3, Córdoba, Spain
| | - Esther Rivero-Cortés
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofia University Hospital (HURS), Córdoba, Spain.,CIBERobn, Córdoba, Spain.,ceiA3, Córdoba, Spain
| | - André Sarmento-Cabral
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofia University Hospital (HURS), Córdoba, Spain.,CIBERobn, Córdoba, Spain.,ceiA3, Córdoba, Spain
| | - José Valero-Rosa
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Reina Sofia University Hospital (HURS), Córdoba, Spain.,Urology Service, HURS/IMIBIC, Córdoba, Spain
| | - Julia Carrasco-Valiente
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Reina Sofia University Hospital (HURS), Córdoba, Spain.,Urology Service, HURS/IMIBIC, Córdoba, Spain
| | - Rafael Sánchez-Sánchez
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Reina Sofia University Hospital (HURS), Córdoba, Spain.,Anatomical Pathology Service, HURS/IMIBIC, Córdoba, Spain
| | - Rosa Ortega-Salas
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Reina Sofia University Hospital (HURS), Córdoba, Spain.,Anatomical Pathology Service, HURS/IMIBIC, Córdoba, Spain
| | - María M Moreno
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Reina Sofia University Hospital (HURS), Córdoba, Spain.,Anatomical Pathology Service, HURS/IMIBIC, Córdoba, Spain
| | | | - Steve M Swanson
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | | | - María J Requena
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Reina Sofia University Hospital (HURS), Córdoba, Spain.,Urology Service, HURS/IMIBIC, Córdoba, Spain
| | - Justo P Castaño
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain. .,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain. .,Reina Sofia University Hospital (HURS), Córdoba, Spain. .,CIBERobn, Córdoba, Spain. .,ceiA3, Córdoba, Spain.
| | - Raúl M Luque
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain. .,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain. .,Reina Sofia University Hospital (HURS), Córdoba, Spain. .,CIBERobn, Córdoba, Spain. .,ceiA3, Córdoba, Spain.
| |
Collapse
|
29
|
Hormaechea-Agulla D, Jiménez-Vacas JM, Gómez-Gómez E, L-López F, Carrasco-Valiente J, Valero-Rosa J, Moreno MM, Sánchez-Sánchez R, Ortega-Salas R, Gracia-Navarro F, Culler MD, Ibáñez-Costa A, Gahete MD, Requena MJ, Castaño JP, Luque RM. The oncogenic role of the spliced somatostatin receptor sst5TMD4 variant in prostate cancer. FASEB J 2017; 31:4682-4696. [PMID: 28705809 DOI: 10.1096/fj.201601264rrr] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 06/27/2017] [Indexed: 12/17/2022]
Abstract
sst5TMD4, a splice variant of the sst5 gene, is overexpressed and associated with aggressiveness in various endocrine-related tumors, but its presence, functional role, and mechanisms of actions in prostate cancer (PCa)-the most common cancer type in males-is completely unexplored. In this study, formalin-fixed, paraffin-embedded prostate pieces from patients with localized PCa, which included tumoral and nontumoral adjacent regions (n = 45), fresh biopsies from patients with high-risk PCa (n = 52), and healthy fresh prostates from cystoprostatectomies (n = 14) were examined. In addition, PCa cell lines and xenograft models were used to determine the presence and functional role of sst5TMD4. Results demonstrated that sst5TMD4 is overexpressed (mRNA/protein) in PCa samples, and this is especially drastic in metastatic and/or high Gleason score tumor samples. Remarkably, sst5TMD4 expression was associated with an altered frequency of 2 single-nucleotide polymorphisms: rs197055 and rs12599155. In addition, PCa cell lines and xenograft models were used to demonstrate that sst5TMD4 overexpression increases cell proliferation and migration in PCa cells and induces larger tumors in nude mice, whereas its silencing decreased proliferation and migration. Remarkably, sst5TMD4 overexpression activated multiple intracellular pathways (ERK/JNK, MYC/MAX, WNT, retinoblastoma), altered oncogenes and tumor suppressor gene expression, and disrupted the normal response to somatostatin analogs in PCa cells. Altogether, we demonstrate that sst5TMD4 is overexpressed in PCa, especially in those patients with a worse prognosis, and plays an important pathophysiologic role in PCa, which suggesting its potential as a biomarker and/or therapeutic target.-Hormaechea-Agulla, D., Jiménez-Vacas, J. M., Gómez-Gómez, E., L.-López, F., Carrasco-Valiente, J., Valero-Rosa, J., Moreno, M. M., Sánchez-Sánchez, R., Ortega-Salas, R., Gracia-Navarro, F., Culler, M. D., Ibáñez-Costa, A., Gahete, M. D., Requena, M. J., Castaño, J. P., Luque, R. M. The oncogenic role of the spliced somatostatin receptor sst5TMD4 variant in prostate cancer.
Collapse
Affiliation(s)
- Daniel Hormaechea-Agulla
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.,Hospital Universitario Reina Sofia (HURS), Cordoba, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain.,Campus de Excelencia Internacional Agroalimentario (CEIA3), Cordoba, Spain
| | - Juan M Jiménez-Vacas
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.,Hospital Universitario Reina Sofia (HURS), Cordoba, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain.,Campus de Excelencia Internacional Agroalimentario (CEIA3), Cordoba, Spain
| | - Enrique Gómez-Gómez
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.,Hospital Universitario Reina Sofia (HURS), Cordoba, Spain.,Urology Service, Hospital Universitario Reina Sofia (HURS)/Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
| | - Fernando L-López
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.,Hospital Universitario Reina Sofia (HURS), Cordoba, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain.,Campus de Excelencia Internacional Agroalimentario (CEIA3), Cordoba, Spain
| | - Julia Carrasco-Valiente
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain.,Hospital Universitario Reina Sofia (HURS), Cordoba, Spain.,Urology Service, Hospital Universitario Reina Sofia (HURS)/Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
| | - José Valero-Rosa
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain.,Hospital Universitario Reina Sofia (HURS), Cordoba, Spain.,Urology Service, Hospital Universitario Reina Sofia (HURS)/Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
| | - María M Moreno
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain.,Hospital Universitario Reina Sofia (HURS), Cordoba, Spain.,Anatomical Pathology Service, Hospital Universitario Reina Sofia (HURS), Cordoba, Spain
| | - Rafael Sánchez-Sánchez
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain.,Hospital Universitario Reina Sofia (HURS), Cordoba, Spain.,Anatomical Pathology Service, Hospital Universitario Reina Sofia (HURS), Cordoba, Spain
| | - Rosa Ortega-Salas
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain.,Hospital Universitario Reina Sofia (HURS), Cordoba, Spain.,Anatomical Pathology Service, Hospital Universitario Reina Sofia (HURS), Cordoba, Spain
| | - Francisco Gracia-Navarro
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.,Hospital Universitario Reina Sofia (HURS), Cordoba, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain.,Campus de Excelencia Internacional Agroalimentario (CEIA3), Cordoba, Spain
| | | | - Alejandro Ibáñez-Costa
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.,Hospital Universitario Reina Sofia (HURS), Cordoba, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain.,Campus de Excelencia Internacional Agroalimentario (CEIA3), Cordoba, Spain
| | - Manuel D Gahete
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.,Hospital Universitario Reina Sofia (HURS), Cordoba, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain.,Campus de Excelencia Internacional Agroalimentario (CEIA3), Cordoba, Spain
| | - María J Requena
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain.,Hospital Universitario Reina Sofia (HURS), Cordoba, Spain.,Urology Service, Hospital Universitario Reina Sofia (HURS)/Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain
| | - Justo P Castaño
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; .,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.,Hospital Universitario Reina Sofia (HURS), Cordoba, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain.,Campus de Excelencia Internacional Agroalimentario (CEIA3), Cordoba, Spain
| | - Raúl M Luque
- Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; .,Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.,Hospital Universitario Reina Sofia (HURS), Cordoba, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain.,Campus de Excelencia Internacional Agroalimentario (CEIA3), Cordoba, Spain
| |
Collapse
|
30
|
The components of somatostatin and ghrelin systems are altered in neuroendocrine lung carcinoids and associated to clinical-histological features. Lung Cancer 2017; 109:128-136. [PMID: 28577942 DOI: 10.1016/j.lungcan.2017.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/02/2017] [Accepted: 05/07/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Lung carcinoids (LCs) are rare tumors that comprise 1-5% of lung malignancies but represent 20-30% of neuroendocrine tumors. Their incidence is progressively increasing and a better characterization of these tumors is required. Alterations in somatostatin (SST)/cortistatin (CORT) and ghrelin systems have been associated to development/progression of various endocrine-related cancers, wherein they may become useful diagnostic, prognostic and therapeutic biomarkers. OBJECTIVES We aimed to evaluate the expression levels of ghrelin and SST/CORT system components in LCs, as well as to explore their putative relationship with histological/clinical characteristics. PATIENTS AND METHODS An observational retrospective study was performed; 75 LC patients with clinical/histological characteristics were included. Samples from 46 patients were processed to isolate mRNA from tumor and adjacent non-tumor region, and the expression levels of SST/CORT and ghrelin systems components, determined by quantitative-PCR, were compared to those of 7 normal lung tissues. RESULTS Patient cohort was characterized by mean age 53±15 years, 48% males, 34% with tobacco exposure; 71.4/28.6% typical/atypical carcinoids, 21.7% incidental tumors, 4.3% functioning tumors, 17.7% with metastasis. SST/CORT and ghrelin system components were expressed at variable levels in a high proportion of tumors, as well as in adjacent non-tumor tissues, while a lower proportion of normal lung samples also expressed these molecules. A gradation was observed from normal non-neoplastic lung tissues, non-tumor adjacent tissue and LCs, being SST, sst4, sst5, GHS-R1a and GHS-R1b overexpressed in tumor tissue compared to normal tissue. Importantly, several SST/CORT and ghrelin system components displayed significant correlations with relevant clinical parameters, such as necrosis, peritumoral and vascular invasion, or metastasis. CONCLUSION Altogether, these data reveal a prominent, widespread expression of key SST/CORT/ghrelin system components in LCs, where they display clinical-histological correlations, which could provide novel, valuable markers for NET patient management.
Collapse
|
31
|
Translational research in neuroendocrine tumors: pitfalls and opportunities. Oncogene 2017; 36:1899-1907. [PMID: 27641330 DOI: 10.1038/onc.2016.316] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/19/2016] [Accepted: 07/22/2016] [Indexed: 12/16/2022]
Abstract
Interest in research on neuroendocrine tumors (NETs) has grown in the past 10 years, coinciding with improvements in our understanding of the molecular pathogenesis of NETs. In addition, NETs have become one of the most exciting settings for drug development. Two targeted agents for the management of advanced pancreatic NETs have been approved, but the development of targeted agents for NETs is limited by problems with both patient selection and demonstration of activity. In this review, we analyze these limitations and discuss ways to increase the predictive value of preclinical models for target discovery and drug development. The role of translational research and 'omics' methodologies is emphasized, with the final aim of developing personalized medicine. Because NETs usually grow slowly and metastatic tumors are found at easily accessible locations, and owing to improvements in techniques for liquid biopsies, NETs provide a unique opportunity to obtain tumor samples at all stages of the evolution of the disease and to adapt treatment to changes in tumor biology. Combining clinical and translational research is essential to achieve progress in the NET field. Slow growth and genetic stability limit and challenge both the availability and further development of preclinical models of NETs, one of the most crucial unmet research needs in the field. Finally, we suggest some useful approaches for improving clinical drug development for NETs: moving from classical RECIST-based response end points to survival parameters; searching for different criteria to define response rates (for example, antiangiogenic effects and metabolic responses); implementing randomized phase II studies to avoid single-arm phase II studies that produce limited data on drug efficacy; and using predictive biomarkers for patient selection.
Collapse
|
32
|
L-López F, Sarmento-Cabral A, Herrero-Aguayo V, Gahete MD, Castaño JP, Luque RM. Obesity and metabolic dysfunction severely influence prostate cell function: role of insulin and IGF1. J Cell Mol Med 2017; 21:1893-1904. [PMID: 28244645 PMCID: PMC5571563 DOI: 10.1111/jcmm.13109] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/01/2017] [Indexed: 12/13/2022] Open
Abstract
Obesity is a major health problem that courses with severe comorbidities and a drastic impairment of homeostasis and function of several organs, including the prostate gland (PG). The endocrine–metabolic regulatory axis comprising growth hormone (GH), insulin and IGF1, which is drastically altered under extreme metabolic conditions such as obesity, also plays relevant roles in the development, modulation and homeostasis of the PG. However, its implication in the pathophysiological interplay between obesity and prostate function is still to be elucidated. To explore this association, we used a high fat–diet obese mouse model, as well as in vitro primary cultures of normal‐mouse PG cells and human prostate cancer cell lines. This approach revealed that most of the components of the GH/insulin/IGF1 regulatory axis are present in PGs, where their expression pattern is altered under obesity conditions and after an acute insulin treatment (e.g. Igfbp3), which might have some pathophysiological implications. Moreover, our results demonstrate, for the first time, that the PG becomes severely insulin resistant under diet‐induced obesity in mice. Finally, use of in vitro approaches served to confirm and expand the conception that insulin and IGF1 play a direct, relevant role in the control of normal and pathological PG cell function. Altogether, these results uncover a fine, germane crosstalk between the endocrine–metabolic status and the development and homeostasis of the PG, wherein key components of the GH, insulin and IGF1 axes could play a relevant pathophysiological role.
Collapse
Affiliation(s)
- Fernando L-López
- Maimónides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofía University Hospital, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain.,International Campus of Excellence on Agrifood, CeiA3, Cordoba, Spain
| | - André Sarmento-Cabral
- Maimónides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofía University Hospital, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain.,International Campus of Excellence on Agrifood, CeiA3, Cordoba, Spain
| | - Vicente Herrero-Aguayo
- Maimónides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofía University Hospital, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain.,International Campus of Excellence on Agrifood, CeiA3, Cordoba, Spain
| | - Manuel D Gahete
- Maimónides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofía University Hospital, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain.,International Campus of Excellence on Agrifood, CeiA3, Cordoba, Spain
| | - Justo P Castaño
- Maimónides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofía University Hospital, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain.,International Campus of Excellence on Agrifood, CeiA3, Cordoba, Spain
| | - Raúl M Luque
- Maimónides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofía University Hospital, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain.,International Campus of Excellence on Agrifood, CeiA3, Cordoba, Spain
| |
Collapse
|
33
|
Abstract
Aggressive GH-secreting pituitary adenomas (GHPAs) represent an important clinical problem in patients with acromegaly. Surgical therapy, although often the mainstay of treatment for GHPAs, is less effective in aggressive GHPAs due to their invasive and destructive growth patterns, and their proclivity for infrasellar invasion. Medical therapies for GHPAs, including somatostatin analogues and GH receptor antagonists, are becoming increasingly important adjuncts to surgical intervention. Stereotactic radiosurgery serves as an important fallback therapy for tumors that cannot be cured with surgery and medications. Data suggests that patients with aggressive and refractory GHPAs are best treated at dedicated tertiary pituitary centers with multidisciplinary teams of neuroendocrinologists, neurosurgeons, radiation oncologists and other specialists who routinely provide advanced care to GHPA patients. Future research will help clarify the defining features of "aggressive" and "atypical" PAs, likely based on tumor behavior, preoperative imaging characteristics, histopathological characteristics, and molecular markers.
Collapse
Affiliation(s)
- Daniel A Donoho
- Department of Neurological Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, USA
| | - Namrata Bose
- Division of Endocrinology, Department of Medicine, Keck School of Medicine of the University of Southern California, USC Pituitary Center, 1520 San Pablo Street #3800, Los Angeles, CA, 90033, USA
| | - Gabriel Zada
- Department of Neurological Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, USA
| | - John D Carmichael
- Division of Endocrinology, Department of Medicine, Keck School of Medicine of the University of Southern California, USC Pituitary Center, 1520 San Pablo Street #3800, Los Angeles, CA, 90033, USA.
| |
Collapse
|
34
|
Pavel ME, Sers C. WOMEN IN CANCER THEMATIC REVIEW: Systemic therapies in neuroendocrine tumors and novel approaches toward personalized medicine. Endocr Relat Cancer 2016; 23:T135-T154. [PMID: 27649723 DOI: 10.1530/erc-16-0370] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 12/19/2022]
Abstract
Neuroendocrine tumors (NETs) are a group of heterogenous neoplasms. Evidence-based treatment options for antiproliferative therapy include somatostatin analogues, the mTOR inhibitor everolimus, the multiple tyrosine kinase inhibitor sunitinib and peptide receptor radionuclide therapy with 177-Lu-octreotate. In the absence of definite predictive markers, therapeutic decision making follows clinical and pathological criteria. As objective response rates with targeted drugs are rather low, and response duration is limited in most patients, numerous combination therapies targeting multiple pathways have been explored in the field. Upfront combination of drugs, however, is associated with increasing toxicity and has shown little benefit. Major advancements in the molecular understanding of NET based on genomic, epigenomic and transcriptomic analysis have been achieved with prognostic and therapeutic impact. New insight into molecular alterations has paved the way to biomarker-driven clinical trials and may facilitate treatment stratification toward personalized medicine in the near future. However, an improved understanding of the complexity of pathway interactions is required for successful treatment. A systems biology approach is one of the tools that may help to achieve this endeavor.
Collapse
Affiliation(s)
- Marianne E Pavel
- Medical DepartmentDivision of Hepatology and Gastroenterology including Metabolic Diseases, Campus Virchow Klinikum, Charité University Medicine, Berlin, Germany
| | - Christine Sers
- Institute of PathologyCharité University Medicine, Berlin, Germany
| |
Collapse
|