1
|
Chen W, Zhang T, Zhang H. Causal relationship between type 2 diabetes and glioblastoma: bidirectional Mendelian randomization analysis. Sci Rep 2024; 14:16544. [PMID: 39020091 PMCID: PMC11255221 DOI: 10.1038/s41598-024-67341-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
As the prevalence of Type 2 Diabetes Mellitus (T2DM) and Glioblastoma (GBM) rises globally, the relationship between T2DM and GBM remains controversial. This study aims to investigate whether genetically predicted T2DM is causally associated with GBM. We performed bidirectional Mendelian randomization (MR) analysis using data from genome-wide studies on T2DM (N = 62,892) and GBM (N = 218,792) in European populations. The results of the inverse-variance weighted (IVW) approach served as the primary outcomes. We applied Cochran's Q test and MR-Egger regression for heterogeneity assessment. Leave-one-out analysis was used to evaluate whether any single SNP significantly influenced the observed effect. Our findings reveal a significant causal association between T2DM and an increased risk of GBM (OR [95% CI] 1.70 [1.09, 2.65], P = 0.019). Conversely, the reverse association between T2DM and GBM was insignificant (OR [95% CI] 1.00 [0.99, 1.01], P = 0.408) (P > 0.40). Furthermore, the results from Cochran's Q-test and funnel plots in the MR-Egger method indicated no evidence of pleiotropy between the SNPs and GBM. Additionally, we mapped causal SNPs to genes and identified 10 genes, including MACF1, C1orf185, PTGFRN, NOTCH2, ABCB10, GCKR, THADA, RBMS1, SPHKAP, and PPARG, located on chromosomes 1, 2, and 3. These genes are involved in key biological processes such as the BMP signaling pathway and various metabolic pathways relevant to both conditions. This study provides robust evidence of a significant causal relationship between T2DM and an increased risk of GBM. The identified SNP-mapped genes highlight potential biological mechanisms underlying this association.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurosurgery, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710100, Shaanxi, China
| | - Taoyuan Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Hui Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
2
|
Martinez-Morga M, Garrigos D, Rodriguez-Montero E, Pombero A, Garcia-Lopez R, Martinez S. Pericytes Are Immunoregulatory Cells in Glioma Genesis and Progression. Int J Mol Sci 2024; 25:5072. [PMID: 38791110 PMCID: PMC11120873 DOI: 10.3390/ijms25105072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Vascular co-option is a consequence of the direct interaction between perivascular cells, known as pericytes (PCs), and glioblastoma multiforme (GBM) cells (GBMcs). This process is essential for inducing changes in the pericytes' anti-tumoral and immunoreactive phenotypes. Starting from the initial stages of carcinogenesis in GBM, PCs conditioned by GBMcs undergo proliferation, acquire a pro-tumoral and immunosuppressive phenotype by expressing and secreting immunosuppressive molecules, and significantly hinder the activation of T cells, thereby facilitating tumor growth. Inhibiting the pericyte (PC) conditioning mechanisms in the GBM tumor microenvironment (TME) results in immunological activation and tumor disappearance. This underscores the pivotal role of PCs as a key cell in the TME, responsible for tumor-induced immunosuppression and enabling GBM cells to evade the immune system. Other cells within the TME, such as tumor-associated macrophages (TAMs) and microglia, have also been identified as contributors to this immunomodulation. In this paper, we will review the role of these three cell types in the immunosuppressive properties of the TME. Our conclusion is that the cellular heterogeneity of immunocompetent cells within the TME may lead to the misinterpretation of cellular lineage identification due to different reactive stages and the identification of PCs as TAMs. Consequently, novel therapies could be developed to disrupt GBM-PC interactions and/or PC conditioning through vascular co-option, thereby exposing GBMcs to the immune system.
Collapse
Affiliation(s)
- Marta Martinez-Morga
- Instituto de Neurociencias, Universidad Miguel Hernández–CSIC, Excellence Center Severo Ochoa, Campus de San Juan, Avda. Ramón y Cajal sn, 03550 Alicante, Spain; (M.M.-M.); (D.G.); (E.R.-M.); (A.P.); (R.G.-L.)
| | - Daniel Garrigos
- Instituto de Neurociencias, Universidad Miguel Hernández–CSIC, Excellence Center Severo Ochoa, Campus de San Juan, Avda. Ramón y Cajal sn, 03550 Alicante, Spain; (M.M.-M.); (D.G.); (E.R.-M.); (A.P.); (R.G.-L.)
| | - Elena Rodriguez-Montero
- Instituto de Neurociencias, Universidad Miguel Hernández–CSIC, Excellence Center Severo Ochoa, Campus de San Juan, Avda. Ramón y Cajal sn, 03550 Alicante, Spain; (M.M.-M.); (D.G.); (E.R.-M.); (A.P.); (R.G.-L.)
| | - Ana Pombero
- Instituto de Neurociencias, Universidad Miguel Hernández–CSIC, Excellence Center Severo Ochoa, Campus de San Juan, Avda. Ramón y Cajal sn, 03550 Alicante, Spain; (M.M.-M.); (D.G.); (E.R.-M.); (A.P.); (R.G.-L.)
| | - Raquel Garcia-Lopez
- Instituto de Neurociencias, Universidad Miguel Hernández–CSIC, Excellence Center Severo Ochoa, Campus de San Juan, Avda. Ramón y Cajal sn, 03550 Alicante, Spain; (M.M.-M.); (D.G.); (E.R.-M.); (A.P.); (R.G.-L.)
| | - Salvador Martinez
- Instituto de Neurociencias, Universidad Miguel Hernández–CSIC, Excellence Center Severo Ochoa, Campus de San Juan, Avda. Ramón y Cajal sn, 03550 Alicante, Spain; (M.M.-M.); (D.G.); (E.R.-M.); (A.P.); (R.G.-L.)
- Centro de Investigación Biomédica en Red en Salud Mental, CIBERSAM-ISCIII, 46010 Valencia, Spain
| |
Collapse
|
3
|
Liouta E, Kalyvas AV, Komaitis S, Drosos E, Koutsarnakis C, García-Gómez JM, Juan-Albarracín J, Katsaros V, Kalamatianos T, Argyrakos T, Stranjalis G. Response to letter regarding "Assessing the association between preoperative neurocognitive status and IDH1 mutation status in high-grade gliomas: A deeper look into potential confounding variables.". Neurooncol Pract 2023; 10:597-598. [PMID: 38009118 PMCID: PMC10666807 DOI: 10.1093/nop/npad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023] Open
Affiliation(s)
- Evangelia Liouta
- Department of Neurosurgery, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
- Athens Microneurosurgery Laboratory
- Hellenic Center for Neurosurgical Research “Prof. Petros Kokkalis”, Athens, Greece
| | - Aristotelis V Kalyvas
- Department of Neurosurgery, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Spyridon Komaitis
- Department of Neurosurgery, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
- Athens Microneurosurgery Laboratory
| | - Evangelos Drosos
- Department of Neurosurgery, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
- Athens Microneurosurgery Laboratory
| | - Christos Koutsarnakis
- Department of Neurosurgery, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
- Athens Microneurosurgery Laboratory
| | - Juan M García-Gómez
- Grupo de Informática Biomédica (IBIME), Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Valencia, Spain
| | - Javier Juan-Albarracín
- Grupo de Informática Biomédica (IBIME), Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Valencia, Spain
| | - Vasileios Katsaros
- Department of Radiology, General Anti-Cancer and Oncological Hospital of Athens “St. Savvas,”Athens, Greece
| | - Theodosis Kalamatianos
- Department of Neurosurgery, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
- Hellenic Center for Neurosurgical Research “Prof. Petros Kokkalis”, Athens, Greece
| | | | - George Stranjalis
- Department of Neurosurgery, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, Greece
- Athens Microneurosurgery Laboratory
- Hellenic Center for Neurosurgical Research “Prof. Petros Kokkalis”, Athens, Greece
| |
Collapse
|
4
|
Andrews LJ, Davies P, Herbert C, Kurian KM. Pre-diagnostic blood biomarkers for adult glioma. Front Oncol 2023; 13:1163289. [PMID: 37265788 PMCID: PMC10229864 DOI: 10.3389/fonc.2023.1163289] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/25/2023] [Indexed: 06/03/2023] Open
Abstract
Glioma is one of the most common malignant primary brain tumours in adults, of which, glioblastoma is the most prevalent and malignant entity. Glioma is often diagnosed at a later stage of disease progression, which means it is associated with significant mortality and morbidity. Therefore, there is a need for earlier diagnosis of these tumours, which would require sensitive and specific biomarkers. These biomarkers could better predict glioma onset to improve diagnosis and therapeutic options for patients. While liquid biopsies could provide a cheap and non-invasive test to improve the earlier detection of glioma, there is little known on pre-diagnostic biomarkers which predate disease detection. In this review, we examine the evidence in the literature for pre-diagnostic biomarkers in glioma, including metabolomics and proteomics. We also consider the limitations of these approaches and future research directions of pre-diagnostic biomarkers for glioma.
Collapse
Affiliation(s)
- Lily J. Andrews
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Cancer Research Integrative Cancer Epidemiology Programme, University of Bristol, Bristol, United Kingdom
| | - Philippa Davies
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Cancer Research Integrative Cancer Epidemiology Programme, University of Bristol, Bristol, United Kingdom
| | - Christopher Herbert
- Bristol Haematology and Oncology Centre, University Hospitals Bristol National Health Service (NHS) Foundation Trust, Bristol, United Kingdom
| | - Kathreena M. Kurian
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Cancer Research Integrative Cancer Epidemiology Programme, University of Bristol, Bristol, United Kingdom
- Brain Tumour Research Centre, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
5
|
Howell AE, Relton C, Martin RM, Zheng J, Kurian KM. Role of DNA methylation in the relationship between glioma risk factors and glioma incidence: a two-step Mendelian randomization study. Sci Rep 2023; 13:6590. [PMID: 37085538 PMCID: PMC10121678 DOI: 10.1038/s41598-023-33621-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 04/15/2023] [Indexed: 04/23/2023] Open
Abstract
Genetic evidence suggests glioma risk is altered by leukocyte telomere length, allergic disease (asthma, hay fever or eczema), alcohol consumption, childhood obesity, low-density lipoprotein cholesterol (LDLc) and triglyceride levels. DNA methylation (DNAm) variation influences many of these glioma-related traits and is an established feature of glioma. Yet the causal relationship between DNAm variation with both glioma incidence and glioma risk factors is unknown. We applied a two-step Mendelian randomization (MR) approach and several sensitivity analyses (including colocalization and Steiger filtering) to assess the association of DNAm with glioma risk factors and glioma incidence. We used data from a recently published catalogue of germline genetic variants robustly associated with DNAm variation in blood (32,851 participants) and data from a genome-wide association study of glioma risk (12,488 cases and 18,169 controls, sub-divided into 6191 glioblastoma cases and 6305 non-glioblastoma cases). MR evidence indicated that DNAm at 3 CpG sites (cg01561092, cg05926943, cg01584448) in one genomic region (HEATR3) had a putative association with glioma and glioblastoma risk (False discovery rate [FDR] < 0.05). Steiger filtering provided evidence against reverse causation. Colocalization presented evidence against genetic confounding and suggested that differential DNAm at the 3 CpG sites and glioma were driven by the same genetic variant. MR provided little evidence to suggest that DNAm acts as a mediator on the causal pathway between risk factors previously examined and glioma onset. To our knowledge, this is the first study to use MR to appraise the causal link of DNAm with glioma risk factors and glioma onset. Subsequent analyses are required to improve the robustness of our results and rule out horizontal pleiotropy.
Collapse
Affiliation(s)
- Amy E Howell
- Brain Tumour Research Centre, Institute of Clinical Neurosciences, University of Bristol, Bristol, UK
| | - Caroline Relton
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Richard M Martin
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- National Institute for Health Research (NIHR) Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Jie Zheng
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK.
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Kathreena M Kurian
- Brain Tumour Research Centre, Institute of Clinical Neurosciences, University of Bristol, Bristol, UK.
| |
Collapse
|
6
|
The Influence of Ethnicity on Survival from Malignant Primary Brain Tumours in England: A Population-Based Cohort Study. Cancers (Basel) 2023; 15:cancers15051464. [PMID: 36900254 PMCID: PMC10000771 DOI: 10.3390/cancers15051464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND In recent years, the completeness of ethnicity data in the English cancer registration data has greatly improved. Using these data, this study aims to estimate the influence of ethnicity on survival from primary malignant brain tumours. METHODS Demographic and clinical data on adult patients diagnosed with malignant primary brain tumour from 2012 to 2017 were obtained (n = 24,319). Univariate and multivariate Cox proportional hazards regression analyses were used to estimate hazard ratios (HR) for the survival of the ethnic groups up to one year following diagnosis. Logistic regressions were then used to estimate odds ratios (OR) for different ethnic groups of (1) being diagnosed with pathologically confirmed glioblastoma, (2) being diagnosed through a hospital stay that included an emergency admission, and (3) receiving optimal treatment. RESULTS After an adjustment for known prognostic factors and factors potentially affecting access to healthcare, patients with an Indian background (HR 0.84, 95% CI 0.72-0.98), Any Other White (HR 0.83, 95% CI 0.76-0.91), Other Ethnic Group (HR 0.70, 95% CI 0.62-0.79), and Unknown/Not Stated Ethnicity (HR 0.81, 95% CI 0.75-0.88) had better one-year survivals than the White British Group. Individuals with Unknown ethnicity are less likely be diagnosed with glioblastoma (OR 0.70, 95% CI 0.58-0.84) and less likely to be diagnosed through a hospital stay that included an emergency admission (OR 0.61, 95% CI 0.53-0.69). CONCLUSION The demonstrated ethnic variations associated with better brain tumour survival suggests the need to identify risk or protective factors that may underlie these differences in patient outcomes.
Collapse
|
7
|
Sang H, Cho YK, Han K, Koh EH. Impact of abdominal obesity on the risk of glioma development in patients with diabetes: A nationwide population-based cohort study in Korea. PLoS One 2023; 18:e0283023. [PMID: 36928679 PMCID: PMC10019701 DOI: 10.1371/journal.pone.0283023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Abdominal obesity has been suggested as a risk factor for glioma; however, it is unclear whether this association applies to people with diabetes. This study examined the association between abdominal obesity and the risk of developing gliomas in diabetic patients. METHODS We conducted a retrospective cohort study using the National Health Insurance System of South Korea from 2009 to 2012. The primary outcome was the incidence of newly diagnosed gliomas according to waist circumference (WC), and subgroup analyses were performed according to demographic characteristics and diabetes status including disease duration, number of oral hypoglycemic agents, and insulin use. RESULTS Of a total of 1,893,057 participants, 1,846 (0.10%) cases of gliomas occurred. After adjusting for confounding factors, WC ≥90 cm (men)/85 cm (women) was associated with significantly higher risks of gliomas (adjusted HR [95% CI]; 1.279 [1.053, 1.554], 1.317 [1.048, 1.655], and 1.369 [1.037, 1.807] in the WC <95 cm (men)/90 cm (women) group, WC <100 cm (men)/95 cm (women) group, and WC ≥100 cm (men)/95 cm (women) group, respectively). Subgroup analysis showed that patients with larger WC had a consistently higher incidence of glioma than their lean counterparts, except for insulin users (insulin user vs. nonuser, P for interaction = .03). CONCLUSIONS Abdominal obesity was associated with the development of gliomas in diabetic patients in a nationwide population-based database. Further study is needed in diabetic patients to stratify the risk for glioma development according to WC and to establish the underlying mechanism of carcinogenesis.
Collapse
Affiliation(s)
- Hyunji Sang
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Diabetes Center, Asan Medical Center, Seoul, Republic of Korea
| | - Yun Kyung Cho
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Diabetes Center, Asan Medical Center, Seoul, Republic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
- * E-mail: (EHK); (KH)
| | - Eun Hee Koh
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Diabetes Center, Asan Medical Center, Seoul, Republic of Korea
- * E-mail: (EHK); (KH)
| |
Collapse
|
8
|
Hu F, Liu L, Liu Z, Cao M, Li G, Zhang X. Meta-analysis of the characteristic expression of circulating microRNA in type 2 diabetes mellitus with acute ischemic cerebrovascular disease. Front Endocrinol (Lausanne) 2023; 14:1129860. [PMID: 36864836 PMCID: PMC9971585 DOI: 10.3389/fendo.2023.1129860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
OBJECTIVE To comprehensively evaluate the characteristics of the circulating microRNA expression profile in type 2 diabetic patients with acute ischemic cerebrovascular disease by systematic evaluation and meta-analysis. METHODS The literatures up to March 2022 related to circulating microRNA and acute ischemic cerebrovascular disease in type 2 diabetes mellitus were searched and screened from multiple databases. The NOS quality assessment scale was used to evaluate methodological quality. Heterogeneity tests and statistical analyses of all data were performed by Stata 16.0. The differences in microRNA levels between groups were illustrated by the standardized mean difference (SMD) and 95% confidence interval (95% CI). RESULTS A total of 49 studies on 12 circulating miRNAs were included in this study, including 486 cases of type 2 diabetes complicated with acute ischemic cerebrovascular disease and 855 controls. Compared with the control group (T2DM group), miR-200a, miR-144, and miR-503 were upregulated and positively correlated with acute ischemic cerebrovascular disease in type 2 diabetes mellitus patients. Their comprehensive SMD and 95% CI were 2.71 (1.64~3.77), 5.77 (4.28~7.26) and 0.73 (0.27~1.19), respectively. MiR-126 was downregulated and negatively correlated with acute ischemic cerebrovascular disease in type 2 diabetes mellitus patients, its comprehensive SMD and 95% CI were -3.64 (-5.56~-1.72). CONCLUSION In type 2 diabetes mellitus patients with acute ischemic cerebrovascular disease, the expression of serum miR-200a, miR-503, plasma and platelet miR-144 was upregulated and the expression of serum miR-126 was downregulated. It may have diagnostic value in the early identification of type 2 diabetes mellitus with acute ischemic cerebrovascular disease.
Collapse
Affiliation(s)
- Feifei Hu
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Lei Liu
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Zhijian Liu
- The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Mingfeng Cao
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Guanghong Li
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
- *Correspondence: Xinhuan Zhang, ; Guanghong Li,
| | - Xinhuan Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
- *Correspondence: Xinhuan Zhang, ; Guanghong Li,
| |
Collapse
|
9
|
Li J, Wang Z, Nan X, Yin M, Fang H. Hotspots and frontier trends of diabetic associated cognitive decline research based on rat and mouse models from 2012 to 2021: A bibliometric study. Front Neurol 2022; 13:1073224. [PMID: 36582609 PMCID: PMC9793002 DOI: 10.3389/fneur.2022.1073224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Background The establishment of rodent models, such as rat and mouse models, plays a critical role in the study of diabetic associated cognitive decline. With the continuous growth of relevant literature information, it is difficult for researchers to accurately and timely capture the topics in this field. Therefore, this study aims to explore the current status and frontier trends of diabetic associated cognitive decline research based on rat and mouse models through a bibliometric analysis. Methods We collected 701 original articles on this subject from the Science Citation Index Expanded of the Web of Science Core Collection from 2012 to 2021. Then we utilized CiteSpace and VOSviewer for plotting knowledge maps and evaluating hotpots and trends. Results During this decade, except for a slight decline in 2020, the number of annual outputs on diabetes associated cognitive decline research using rat and mouse models increased every year. China (country), China Pharmaceutical University (institution), Gao, Hongchang (the author from the School of Pharmacy of Wenzhou Medical University, China), and Metabolic Brain Disease (journal) published the most papers in this research field. The analysis results of co-cited references and co-occurrence keywords indicated that "mechanisms and prevention and treatment methods", especially "oxidative stress", "potential association with Alzheimer's disease" and "spatial memory" are research focuses in this subject area. The bursts detection of references and keywords implied that "cognitive impairment of type 1 diabetes" and "autophagy and diabetes associated cognitive decline" will be potential directions for future research in this subject area. Conclusion This study systematically assessed general information, current status and emerging trends of diabetic associated cognitive decline research using rat and mouse models in the past decade based on a bibliometric analysis. The number of publications was annually increasing although a slight decline was observed in 2020. Contributions from different countries/regions, institutions, authors, co-cited authors, journals and co-cited journals were evaluated, which may also be used to guide future research. Through the analysis of references and keywords, we predicted the future research hotspots and trends in this field.
Collapse
Affiliation(s)
- Jie Li
- Graduate School of Hebei Medical University, Shijiazhuang, China,Department of Endocrinology, Tangshan Workers' Hospital, Tangshan, China
| | - Zhen Wang
- Department of Orthopedics, Handan First Hospital, Handan, China
| | - Xinyu Nan
- Graduate School of Hebei Medical University, Shijiazhuang, China,Department of Endocrinology, Tangshan Workers' Hospital, Tangshan, China
| | - Mingjie Yin
- Graduate School of Hebei Medical University, Shijiazhuang, China,Department of Endocrinology, Tangshan Workers' Hospital, Tangshan, China
| | - Hui Fang
- Graduate School of Hebei Medical University, Shijiazhuang, China,Department of Endocrinology, Tangshan Workers' Hospital, Tangshan, China,*Correspondence: Hui Fang
| |
Collapse
|
10
|
Zhu B, Qu S. The Relationship Between Diabetes Mellitus and Cancers and Its Underlying Mechanisms. Front Endocrinol (Lausanne) 2022; 13:800995. [PMID: 35222270 PMCID: PMC8873103 DOI: 10.3389/fendo.2022.800995] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/12/2022] [Indexed: 12/27/2022] Open
Abstract
Epidemiological studies suggest associations between diabetes mellitus and some cancers. The risk of a number of cancers appears to be increased in diabetes mellitus. On the other hand, some cancer and cancer therapies could lead to diabetes mellitus. Genetic factors, obesity, inflammation, oxidative stress, hyperglycemia, hyperinsulinemia, cancer therapies, insulin and some oral hypoglycemic drugs appear to play a role in the crosstalk between diabetes mellitus and cancers. This review summarized the associations between various types of diabetes and cancers and updated available evidence of underlying mechanisms between diabetes and cancers.
Collapse
Affiliation(s)
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
11
|
Sheikhhossein F, Shayanfar M, Mohammad-Shirazi M, Sharifi G, Aminianfar A, Esmaillzadeh A. Association between dietary glycemic index and glycemic load and glioma: a case-control study. Nutr Neurosci 2021; 25:2507-2516. [PMID: 34633902 DOI: 10.1080/1028415x.2021.1980844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Although glycemic index (GI) and load (GL) have been linked with several health outcomes, no information is available linking dietary GI and GL with glioma. This study aimed to investigate the relationship between dietary GI and GL and odds of glioma. METHODS This hospital-based case-control study was conducted between November 2009 and September 2011 in the hospital affiliated to Shahid Beheshti University of Medical Sciences. We recruited 128 newly diagnosed cases of glioma and 256 age- and sex-matched controls. All cases were pathologically diagnosed with glioma patients, with no history of any type of other pathologically confirmed cancers and chemotherapy or radiotherapy (due to cancers). Dietary GI and GL were measured by using a validated, self-administered, dish-based, semi-quantitative food-frequency questionnaire. RESULT A significant positive association was found between dietary GI and glioma (OR: 3.01; 95% CI: 1.75-5.17, P < 0.001); such that after considering for potential confounders, participants in the highest tertile of dietary GI had 3.51 times greater risk of glioma than those in the lowest tertile (OR: 3.51; 95% CI: 1.69-7.28, Ptrend = 0.001). Furthermore, we observed a significant positive association between dietary and glioma (OR: 3.74; 95% CI: 1.97-6.11, Ptrend < 0.001). This association remained significant even after further controlling for potential confounders (OR: 2.42; 95% CI: 1.02-5.69, Ptrend = 0.04). DISCUSSION We observed a significant positive association between dietary GI and GL and risk of glioma in adults. However, prospective cohort studies are required to confirm this association.
Collapse
Affiliation(s)
- Fatemeh Sheikhhossein
- Sttudents' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shayanfar
- Department of Clinical Nutrition and Dietetics, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Minoo Mohammad-Shirazi
- Department of Clinical Nutrition and Dietetics, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Giuve Sharifi
- Department of Clinical Nutrition and Dietetics, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Aminianfar
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Ahmad Esmaillzadeh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.,Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Community Nutrition, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Pearson-Stuttard J, Papadimitriou N, Markozannes G, Cividini S, Kakourou A, Gill D, Rizos EC, Monori G, Ward HA, Kyrgiou M, Gunter MJ, Tsilidis KK. Type 2 Diabetes and Cancer: An Umbrella Review of Observational and Mendelian Randomization Studies. Cancer Epidemiol Biomarkers Prev 2021; 30:1218-1228. [PMID: 33737302 PMCID: PMC9398112 DOI: 10.1158/1055-9965.epi-20-1245] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/22/2020] [Accepted: 02/25/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) has been associated with an increased risk of developing several common cancers, but it is unclear whether this association is causal. We aimed to summarize the evidence on T2DM and cancer and evaluate the validity of associations from both observational and Mendelian randomization (MR) studies. METHODS We performed an umbrella review of the evidence across meta-analyses of observational studies that examined associations of T2DM with risk of developing or dying from site-specific cancers, and MR studies that explored the potential causal association of T2DM and associated biomarkers with cancer risk. RESULTS We identified eligible observational meta-analyses that assessed associations between T2DM and cancer incidence for 18 cancer sites, cancer mortality for seven sites, and cancer incidence or mortality for four sites. Positive associations between T2DM and six cancers reached strong or highly suggestive evidence. We found eight MR studies assessing the association of genetically predicted T2DM and seven and eight studies assessing the association of genetically predicted fasting insulin or fasting glucose concentrations, respectively, upon site-specific cancers. Positive associations were found between genetically predicted T2DM and fasting insulin and risk of six cancers. There was no association between genetically predicted fasting plasma glucose and cancer except for squamous cell lung carcinoma. CONCLUSIONS We found robust observational evidence for the association between T2DM and colorectal, hepatocellular, gallbladder, breast, endometrial, and pancreatic cancers. IMPACT Potential causal associations were identified for genetically predicted T2DM and fasting insulin concentrations and risk of endometrial, pancreas, kidney, breast, lung, and cervical cancers.
Collapse
Affiliation(s)
- Jonathan Pearson-Stuttard
- Department of Epidemiology and Biostatistics, MRC-PHE Center for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom.
| | - Nikos Papadimitriou
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Georgios Markozannes
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Sofia Cividini
- Department of Health Data Science, University of Liverpool, Liverpool, United Kingdom
| | - Artemisia Kakourou
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Evangelos C Rizos
- Department of Internal Medicine, University Hospital of Ioannina, Ioannina, Greece
- School of Medicine, European University of Cyprus, Nicosia, Cyprus
| | - Grace Monori
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Heather A Ward
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Maria Kyrgiou
- Department of Gut, Metabolism and Reproduction, and Surgery and Cancer, IRDB, Imperial College London, London, United Kingdom
- West London Gynecological Cancer Center, Imperial NHS Trust, London, United Kingdom
| | - Marc J Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Konstantinos K Tsilidis
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| |
Collapse
|
13
|
Eslahi M, Dana PM, Asemi Z, Hallajzadeh J, Mansournia MA, Yousefi B. The effects of chitosan-based materials on glioma: Recent advances in its applications for diagnosis and treatment. Int J Biol Macromol 2020; 168:124-129. [PMID: 33275978 DOI: 10.1016/j.ijbiomac.2020.11.180] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 07/05/2020] [Accepted: 11/25/2020] [Indexed: 12/20/2022]
Abstract
Glioma is known as the most common primary brain tumor occurring in adolescents and is considered as a lethal disease worldwide. Despite the advancements in presently available therapeutic approaches (i.e. radiation therapy and chemotherapy), the rate of amelioration in glioma patients is still low. In this regard, it seems that there is a need for reconsidering and enhancing current therapies and/or discovering novel therapeutic platforms. Chitosan is a natural polysaccharide with several beneficial characteristics, including biocompatibility, biodegradability, and low toxicity. Without causing toxic effects on healthy cells, chitosan nanoparticles are attractive targets in cancer therapy which lead to the sustained release and enhanced internalization of chemotherapeutic drugs as well as higher cytotoxicity for cancer cells. Hence, these properties turn it into a suitable candidate for the treatment of various cancers, including glioma. In the viewpoint of glioma, cancer inhibition is possible through targeting glioma-associated signaling pathways and molecules such as MMP-9, VEGF, TRAIL and nuclear factor-κB by chitosan and its derivatives. Moreover, it has been acknowledged that chitosan and its derivatives can be applied as a delivery system for carrying a diverse range of therapeutic agents to the tumor site. Besides the anti-glioma effects of chitosan and its derivatives, these molecules can be utilized for culturing glioma cancer cells; providing a better understanding of glioma pathogenesis. Furthermore, it is documented that 3D chitosan scaffolds are potential targets that offer advantageous drug screening platforms. Herein, we summarized the anti-glioma effects of chitosan and also its utilization as drug delivery systems in the treatment of glioma.
Collapse
Affiliation(s)
- Masoumeh Eslahi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran.
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran and Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran.
| |
Collapse
|
14
|
Montemurro N, Perrini P, Rapone B. Clinical Risk and Overall Survival in Patients with Diabetes Mellitus, Hyperglycemia and Glioblastoma Multiforme. A Review of the Current Literature. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8501. [PMID: 33212778 PMCID: PMC7698156 DOI: 10.3390/ijerph17228501] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/11/2020] [Accepted: 11/15/2020] [Indexed: 12/15/2022]
Abstract
The relationship between type 2 diabetes mellitus (DM2) and hyperglycemia with cancer patients remains controversial also in the setting of patients with glioblastoma multiforme (GBM), the most common and aggressive form of astrocytoma with a short overall survival (OS) and poor prognosis. A systematic search of two databases was performed for studies published up to 19 August 2020, reporting the OS of patients with DM2 or high blood sugar level and GBM and the clinical risk of diabetic patients for development of GBM. According to PRISMA guidelines, we included a total of 20 papers reporting clinical data of patients with GBM and diabetes and/or hyperglycemia. The aim of this review was to investigate the effect of DM2, hyperglycemia and metformin on OS of patients with GBM. In addition, we evaluated the effect of these factors on the risk of development of GBM. This review supports accumulating evidence that hyperglycemia, rather than DM2, and elevated BMI are independent risk factors for poor outcome and shorter OS in patients with GBM. GBM patients with normal weight compared to obese, and diabetic patients on metformin compared to other therapies, seems to have a longer OS. Further studies are needed to understand better these associations.
Collapse
Affiliation(s)
- Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliera Universitaria Pisana (AOUP), 56126 Pisa, Italy;
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Paolo Perrini
- Department of Neurosurgery, Azienda Ospedaliera Universitaria Pisana (AOUP), 56126 Pisa, Italy;
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Biagio Rapone
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, “Aldo Moro” University of Bari, 70121 Bari, Italy;
| |
Collapse
|
15
|
Howell AE, Robinson JW, Wootton RE, McAleenan A, Tsavachidis S, Ostrom QT, Bondy M, Armstrong G, Relton C, Haycock P, Martin RM, Zheng J, Kurian KM. Testing for causality between systematically identified risk factors and glioma: a Mendelian randomization study. BMC Cancer 2020; 20:508. [PMID: 32493226 PMCID: PMC7268455 DOI: 10.1186/s12885-020-06967-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/17/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Whilst epidemiological studies have provided evidence of associations between certain risk factors and glioma onset, inferring causality has proven challenging. Using Mendelian randomization (MR), we assessed whether associations of 36 reported glioma risk factors showed evidence of a causal relationship. METHODS We performed a systematic search of MEDLINE from inception to October 2018 to identify candidate risk factors and conducted a meta-analysis of two glioma genome-wide association studies (5739 cases and 5501 controls) to form our exposure and outcome datasets. MR analyses were performed using genetic variants to proxy for candidate risk factors. We investigated whether risk factors differed by subtype diagnosis (either glioblastoma (n = 3112) or non-glioblastoma (n = 2411)). MR estimates for each risk factor were determined using multiplicative random effects inverse-variance weighting (IVW). Sensitivity analyses investigated potential pleiotropy using MR-Egger regression, the weighted median estimator, and the mode-based estimator. To increase power, trait-specific polygenic risk scores were used to test the association of a genetically predicated increase in each risk factor with glioma onset. RESULTS Our systematic search identified 36 risk factors that could be proxied using genetic variants. Using MR, we found evidence that four genetically predicted traits increased risk of glioma, glioblastoma or non-glioblastoma: longer leukocyte telomere length, liability to allergic disease, increased alcohol consumption and liability to childhood extreme obesity (> 3 standard deviations from the mean). Two traits decreased risk of non-glioblastoma cancers: increased low-density lipoprotein cholesterol (LDLc) and triglyceride levels. Our findings were similar across sensitivity analyses that made allowance for pleiotropy (genetic confounding). CONCLUSIONS Our comprehensive investigation provides evidence of a causal link between both genetically predicted leukocyte telomere length, allergic disease, alcohol consumption, childhood extreme obesity, and LDLc and triglyceride levels, and glioma. The findings from our study warrant further research to uncover mechanisms that implicate these traits in glioma onset.
Collapse
Affiliation(s)
- A E Howell
- Brain Tumour Research Centre, Institute of Clinical Neurosciences, University of Bristol, Bristol, UK
| | - J W Robinson
- Brain Tumour Research Centre, Institute of Clinical Neurosciences, University of Bristol, Bristol, UK
| | - R E Wootton
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- School of Psychological Science, University of Bristol, Bristol, UK
- NIHR Biomedical Research Centre at the University Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, BS8 2BN, UK
| | - A McAleenan
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - S Tsavachidis
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, UK
| | - Q T Ostrom
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, UK
| | - M Bondy
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, UK
| | - G Armstrong
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, UK
| | - C Relton
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - P Haycock
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - R M Martin
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- The National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - J Zheng
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK.
| | - K M Kurian
- Brain Tumour Research Centre, Institute of Clinical Neurosciences, University of Bristol, Bristol, UK.
| |
Collapse
|
16
|
Zhang IY, Zhou H, Liu H, Zhang L, Gao H, Liu S, Song Y, Alizadeh D, Yin HH, Pillai R, Badie B. Local and Systemic Immune Dysregulation Alters Glioma Growth in Hyperglycemic Mice. Clin Cancer Res 2020; 26:2740-2753. [PMID: 32019861 DOI: 10.1158/1078-0432.ccr-19-2520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/08/2020] [Accepted: 01/31/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Unlike most cancers, no clear epidemiological correlation between diabetes (Db) and malignant glioma progression exists. Because hyperglycemia activates proinflammatory pathways through the receptor for advanced glycation endproducts (RAGE), we hypothesized that Db can also promote malignant glioma progression. EXPERIMENTAL DESIGN We compared the growth of two phenotypically diverse syngeneic glioma models in control and diabetic mice. Tumor growth and antitumor immune responses were evaluated in orthotopic and heterotopic models and correlated to RAGE and RAGE ligand expression. RESULTS Irrespective of tumor implantation site, growth of a "classical" glioma model, GL261, increased in hyperglycemic mice and was mediated by upregulation of RAGE and its ligand, HMGB1. However, growth of a "mesenchymal" glioma subtype, K-Luc, depended on tumor implantation site. Whereas heterotopic K-Luc tumors progressed rapidly in Db mice, intracranial K-Luc tumors grew slower. We further showed that hyperglycemia inhibited the innate antitumor inflammatory responses in both models. Although this contributed to the accelerated growth of heterotopic tumors, suppression of tumor inflammatory responses dampened the growth of orthotopic K-Luc gliomas. CONCLUSIONS Hyperglycemia may enhance glioma growth through promotion of RAGE expression and suppression of antitumor immune responses. However, abrogation of the proinflammatory milieu in tumors may also dampen the growth of inflammatory glioma subtypes in the brains of diabetic mice. This dichotomy in glioma growth response to hyperglycemia may partly explain why conflicting epidemiological studies show both an increased risk and a protective effect of Db in patients with malignant gliomas.
Collapse
Affiliation(s)
- Ian Y Zhang
- Division of Neurosurgery, City of Hope Beckman Research Institute, Duarte, California
| | - Hui Zhou
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, P.R. China
| | - Huili Liu
- Division of Neurosurgery, City of Hope Beckman Research Institute, Duarte, California
| | - Leying Zhang
- Division of Neurosurgery, City of Hope Beckman Research Institute, Duarte, California
| | - Hang Gao
- Department of Bone and Joint Surgery, No. 1 Hospital of Jilin University, Changchun, Jilin Province, P.R. China
| | - Shunan Liu
- Department of Pharmacology, The Pharmacy School of Jilin University, Changchun, Jilin Province, P.R. China
| | - Yanyan Song
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, Jilin Province, P.R. China
| | - Darya Alizadeh
- Division of Neurosurgery, City of Hope Beckman Research Institute, Duarte, California
| | - Hongwei Holly Yin
- Department of Pathology, City of Hope Beckman Research Institute, Duarte, California
| | - Raju Pillai
- Department of Pathology, City of Hope Beckman Research Institute, Duarte, California
| | - Behnam Badie
- Division of Neurosurgery, City of Hope Beckman Research Institute, Duarte, California. .,Department of Cancer Immunotherapeutics and Tumor Immunology, City of Hope Beckman Research Institute, Duarte, California
| |
Collapse
|
17
|
Anssar TM, Leitzmann MF, Linker RA, Meier C, Becker C, Jick S, Sahm K, Platten M, Hau P, Seliger C. Autoimmune diseases and immunosuppressive therapy in relation to the risk of glioma. Cancer Med 2019; 9:1263-1275. [PMID: 31821741 PMCID: PMC6997055 DOI: 10.1002/cam4.2767] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/07/2019] [Accepted: 11/24/2019] [Indexed: 12/11/2022] Open
Abstract
Effectors from the immune system can modulate the course and possibly the early development of gliomas. We, therefore, hypothesized that autoimmune diseases associated with increased immune‐surveillance may also modulate the risk of human glioma. To test this hypothesis, we used data from the well‐validated Clinical Practice Research Datalink (CPRD) GOLD from the UK to analyze the association of immune‐related disorders or use of immunosuppressive drugs and the risk of glioma. We identified 3112 incident glioma cases diagnosed between 1995 and 2017. We randomly selected up to 10 controls, matching them to glioma cases on age, sex, index date, general practice, and number of years of active history in the database prior to the index date. We performed conditional logistic regression analyses to estimate Odds Ratios (ORs) of glioma among those exposed to allergies, autoimmune diseases, and immunosuppressive drugs. Overall, we found no materially altered association between a history of any autoimmune disease (OR 0.98, 95% CI 0.86‐1.11), allergy (OR 0.97, 95% CI 0.89‐1.05), or use of immunosuppressive drugs and the risk of glioma. However, subgroup analyses among younger patients found a statistically significant increased risk of glioma in patients with a history of inflammatory bowel disease (IBD) (OR 2.59, 95% CI 1.31‐5.12). There was also an inverse association between asthma and risk of glioma in patients with longer survival (OR 0.73, 95% CI 0.58‐0.91) and between long‐term duration diabetes and risk of glioma (OR 0.71, 95% CI 0.53‐0.96).
Collapse
Affiliation(s)
- Tareq M Anssar
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, Regensburg University Hospital, Regensburg, Germany
| | - Michael F Leitzmann
- Institute of Epidemiology and Preventive Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Ralf A Linker
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, Regensburg University Hospital, Regensburg, Germany
| | - Christoph Meier
- Basel Pharmacoepidemiology Unit, Division of Clinical Pharmacy and Epidemiology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.,Boston Collaborative Drug Surveillance Program, Lexington, United States.,Hospital Pharmacy, University Hospital Basel, Basel, Switzerland
| | - Claudia Becker
- Basel Pharmacoepidemiology Unit, Division of Clinical Pharmacy and Epidemiology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.,Hospital Pharmacy, University Hospital Basel, Basel, Switzerland
| | - Susan Jick
- Boston Collaborative Drug Surveillance Program, Lexington, United States.,Boston University School of Public Health, Lexington, United States
| | - Katharina Sahm
- Department of Neurology, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany.,DKTK CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Michael Platten
- Department of Neurology, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany.,DKTK CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Peter Hau
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, Regensburg University Hospital, Regensburg, Germany
| | - Corinna Seliger
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, Regensburg University Hospital, Regensburg, Germany.,Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
18
|
Wang B, Zhong Y, Li Q, Cui L, Huang G. Autophagy of macrophages is regulated by PI3k/Akt/mTOR signalling in the development of diabetic encephalopathy. Aging (Albany NY) 2019; 10:2772-2782. [PMID: 30346929 PMCID: PMC6224253 DOI: 10.18632/aging.101586] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/26/2018] [Indexed: 01/14/2023]
Abstract
The development of diabetic encephalopathy (DE) is enhanced by inflammatory macrophages, and is suppressed by macrophage autophagy. However, the molecular signaling that controls macrophage autophagy in DE remains ill-defined. Here, DE is induced in rats that received intraperitoneal injection of streptozotocin (STZ). In macrophages isolated from the brain of the rats, we detected downregulated autophagy activity and enhanced PI3k/Akt/mTOR/S6K1 signaling. In order to examine the role of autophagy and PI3k/Akt/mTOR signaling in DE development, an mTOR inhibitor, rapamycin, or an autophagy inhibitor, chloroquine (CQ), were administered to the rats that that received STZ. We found that rapamycin significantly enhanced DE development through mTOR suppression-induced augmentation of macrophage autophagy, while CQ significantly decreased DE development through suppression of macrophage autophagy. Together, our data suggest that PI3k/Akt/mTOR signaling may promote the development of DE through suppression of macrophage autophagy.
Collapse
Affiliation(s)
- Beiyun Wang
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yuan Zhong
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Qinjie Li
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Liang Cui
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Gaozhong Huang
- Department of Priority Ward, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
19
|
Calastri MCJ, Hattori G, Rodrigues NLTO, Gregorio ML, Brancati CIFO, Zanovelo EM, Ferraz Filho JRL, Neiva CM, Rodrigues Junior ACP, de Godoy MF, Lancellotti CLP, Tognola WA, Souza DRS. Genetic Variants Related to Cell Cycle and Stability of Telomere in Patients with Glioma. Asian Pac J Cancer Prev 2019; 20:2345-2351. [PMID: 31450905 PMCID: PMC6852820 DOI: 10.31557/apjcp.2019.20.8.2345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Indexed: 12/27/2022] Open
Abstract
Background: Glioma, most common primary malignant brain tumor in adults, is highly aggressive and associated with a poor prognosis. Evaluate the association of polymorphisms related of to the cell cycle, integrity and DNA repair with gliomas, as well as lifestyle habits, comorbidities, survival and response to treatment. Methods: Were studied 303 individuals distributed into: Study Group - 100 patients with gliomas, regardless of the degree of malignancy, and Control Group - 203 individuals without clinical signs of the disease. These polymorphisms were genotyped by TaqMan® SNP Genotyping Assay. Significance level was set at 5%. Results: Smoking, alcohol consumption, systemic arterial hypertension (SAH) and diabetes mellitus (DM) prevailed in patients, compared to controls (P=0.0088, P=0.0001, P=0.0001, P=0.0011, respectively). In the logistic regression analysis, alcohol consumption and SAH were identified as independent risk factors for gliomas (P=0.0001, P=0.0027, respectively). Patients with low-grade gliomas showed survival in one year (92.0±6.8%), compared to patients with high-grade gliomas (24.0±5.3; P=0.011). Conclusion: Polymorphisms involved in cell cycle, telomere protection and stability and DNA repair are not associated with gliomas. On the other hand, alcohol consumption and SAH stand out as independent risk factors for the disease. Low-grade gliomas, response to treatment and the combination of chemotherapy with Temozolomide and radiation therapy show increased survival of patients.
Collapse
Affiliation(s)
- Maria Clara Jessica Calastri
- Department of Biochemistry and Molecular Biology, Faculty of Medicine , São José do Rio Preto, São Paulo, Brazil.
| | - Gabriela Hattori
- Department of Biochemistry and Molecular Biology, Faculty of Medicine , São José do Rio Preto, São Paulo, Brazil.
| | | | - Michele Lima Gregorio
- Department of Biochemistry and Molecular Biology, Faculty of Medicine , São José do Rio Preto, São Paulo, Brazil.
| | | | - Eliane Milharcix Zanovelo
- Departament of Patology of the Hospital de Base University Hospital of the Medical School of São José do Rio Preto - HB/FAMERP, Brazil
| | - José Roberto Lopes Ferraz Filho
- Departament of Patology of the Hospital de Base University Hospital of the Medical School of São José do Rio Preto - HB/FAMERP, Brazil
| | - Cassiano Merussi Neiva
- Department of Physical Education of the Sao Paulo State University- "Júlio de Mesquita Filho" Campus- UNESP/Campos de Bauru, Brazil
| | | | - Moacir Fernandes de Godoy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine , São José do Rio Preto, São Paulo, Brazil.
| | | | - Waldir Antonio Tognola
- Departament of Neurology of the Medical School of São José do Rio Preto - FAMERP, Brazil
| | - Dorotéia Rossi Silva Souza
- Department of Biochemistry and Molecular Biology, Faculty of Medicine , São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
20
|
Icariin Inhibits AGE-Induced Injury in PC12 Cells by Directly Targeting Apoptosis Regulator Bax. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7940808. [PMID: 31178973 PMCID: PMC6501163 DOI: 10.1155/2019/7940808] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/31/2019] [Accepted: 03/03/2019] [Indexed: 02/07/2023]
Abstract
Diabetic encephalopathy (DE) is a serious complication caused by long-term cognitive impairment in diabetic patients. At present, there is no effective treatment for DE. Icariin (ICA) is a bioactive ingredient isolated from Epimedium. Previous research indicated that ICA was neuroprotective against Aβ-induced PC12 cell insult; however, the effect of ICA on an advanced glycosylation end product- (AGE-) induced neural injury model has not been studied. In this study, we investigated the neuroprotective effects of ICA on AGE-induced injury in PC12 cells. Our findings revealed that ICA could effectively protect PC12 cells from AGE-induced cell apoptosis by suppressing oxidative stress. Moreover, we observed that ICA could significantly protect against mitochondrial depolarization following AGE stimulation and inactivate the mitochondria-dependent caspase-9/3 apoptosis pathway. Most notably, we identified the direct target protein of ICA as apoptosis regulator Bax by a pulldown assay. We found that ICA could specifically target Bax protein and inhibit Bax dimer formation and migration to mitochondria. Furthermore, a siRNA knockdown experiment revealed that ICA could inhibit PC12 cell apoptosis and oxidative stress through targeting Bax. Taken together, our findings demonstrated that ICA could attenuate AGE-induced oxidative stress and mitochondrial apoptosis by specifically targeting Bax and further regulating the biological function of Bax on mitochondria.
Collapse
|
21
|
Alarcón S, Niechi I, Toledo F, Sobrevia L, Quezada C. Glioma progression in diabesity. Mol Aspects Med 2019; 66:62-70. [PMID: 30822432 DOI: 10.1016/j.mam.2019.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/12/2019] [Accepted: 02/19/2019] [Indexed: 12/29/2022]
|
22
|
Wang Y, Sun Y, Tang J, Zhou W, Liu X, Bi Y, Zhang ZJ. Does diabetes decrease the risk of glioma? A systematic review and meta-analysis of observational studies. Ann Epidemiol 2019; 30:22-29.e3. [PMID: 30545764 DOI: 10.1016/j.annepidem.2018.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/02/2018] [Accepted: 11/18/2018] [Indexed: 01/11/2023]
Abstract
PURPOSE Increasing epidemiologic evidence suggests that diabetes mellitus (DM) may be associated with a decreased risk of glioma. This systematic review assessed whether DM was associated with glioma risk. METHODS Electronic searches were performed in PubMed, Web of Science, EMBASE, and Cochrane Library databases up to August 30, 2018. A random-effects model was performed to calculate summary effect size with corresponding 95% confidence intervals (CIs). RESULTS In total, 10 studies (eight case-control studies and two cohort studies) matched the inclusion criteria. Meta-analyses of case-control studies showed that DM decreased the risk of glioma by 23% (odds ratio: 0.77, 95% CI: 0.61-0.96; P = .02, I2 = 82.0%). However, no such effect was observed in cohort studies (relative risk: 0.71, 95% CI: 0.10-4.80; P = .72, I2 = 61.6%). In the subgroup analyses, DM was associated with a decreased risk of glioma in Caucasians but not in Asians; the inverse association was slightly higher in males than in females. CONCLUSIONS Our results indicate that DM decreases the risk of glioma, but the inverse association may vary in subgroups. The present conclusions should be confirmed with further studies.
Collapse
Affiliation(s)
- Yongbo Wang
- Department of Epidemiology and Biostatistics, School of Health Sciences, Wuhan University, Wuhan, China
| | - Yi Sun
- Department of Epidemiology and Biostatistics, School of Health Sciences, Wuhan University, Wuhan, China
| | - Juan Tang
- Department of Epidemiology and Biostatistics, School of Health Sciences, Wuhan University, Wuhan, China
| | - Wei Zhou
- Department of Epidemiology and Biostatistics, School of Health Sciences, Wuhan University, Wuhan, China
| | - Xiaoxue Liu
- Department of Epidemiology and Biostatistics, School of Health Sciences, Wuhan University, Wuhan, China
| | - Yongyi Bi
- Department of Epidemiology and Biostatistics, School of Health Sciences, Wuhan University, Wuhan, China
| | - Zhi-Jiang Zhang
- Department of Epidemiology and Biostatistics, School of Health Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
23
|
Howell AE, Zheng J, Haycock PC, McAleenan A, Relton C, Martin RM, Kurian KM. Use of Mendelian Randomization for Identifying Risk Factors for Brain Tumors. Front Genet 2018; 9:525. [PMID: 30483309 PMCID: PMC6240585 DOI: 10.3389/fgene.2018.00525] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/19/2018] [Indexed: 02/06/2023] Open
Abstract
Gliomas are a group of primary brain tumors, the most common and aggressive subtype of which is glioblastoma. Glioblastoma has a median survival of just 15 months after diagnosis. Only previous exposure to ionizing radiation and particular inherited genetic syndromes are accepted risk factors for glioma; the vast majority of cases are thought to occur spontaneously. Previous observational studies have described associations between several risk factors and glioma, but studies are often conflicting and whether these associations reflect true casual relationships is unclear because observational studies may be susceptible to confounding, measurement error and reverse causation. Mendelian randomization (MR) is a form of instrumental variable analysis that can be used to provide supporting evidence for causal relationships between exposures (e.g., risk factors) and outcomes (e.g., disease onset). MR utilizes genetic variants, such as single nucleotide polymorphisms (SNPs), that are robustly associated with an exposure to determine whether there is a causal effect of the exposure on the outcome. MR is less susceptible to confounding, reverse causation and measurement errors as it is based on the random inheritance during conception of genetic variants that can be relatively accurately measured. In previous studies, MR has implicated a genetically predicted increase in telomere length with an increased risk of glioma, and found little evidence that obesity related factors, vitamin D or atopy are causal in glioma risk. In this review, we describe MR and its potential use to discover and validate novel risk factors, mechanistic factors, and therapeutic targets in glioma.
Collapse
Affiliation(s)
- Amy Elizabeth Howell
- Brain Tumour Research Centre, Institute of Clinical Neurosciences, University of Bristol, Bristol, United Kingdom
| | - Jie Zheng
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Philip C. Haycock
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Alexandra McAleenan
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Caroline Relton
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Richard M. Martin
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Kathreena M. Kurian
- Brain Tumour Research Centre, Institute of Clinical Neurosciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
24
|
Sacerdote C, Ricceri F. Epidemiological dimensions of the association between type 2 diabetes and cancer: A review of observational studies. Diabetes Res Clin Pract 2018; 143:369-377. [PMID: 29596949 DOI: 10.1016/j.diabres.2018.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes (T2D) is a major cause of complications and death in many countries. The possible causal relation between T2D and cancer has been the aim of many research investigations. In view of the importance of the topic we carried out a narrative review of observational studies to summarize the available evidence of the association between T2D and cancer. To deal with the problem of abundance of published studies, we reviewed up to December 2017, the literature of meta-analyses of observational studies first, then we reviewed cohort studies not reported in meta-analyses because of more recent publication. We found that the association of T2D with risk of colorectal cancer was robust, whereas the evidence of the associations with other cancer sites was lower. Some of the observed associations could be overestimated, due to publication bias, unmeasured confounders (such as obesity) and surveillance bias. In conclusion a probable causal association of T2D with risk of colorectal cancer was confirmed. A possible causal association with pancreatic, endometrial, hepatocellular and gallbladder carcinoma was also found. Substantial uncertainty exists for other cancer sites.
Collapse
Affiliation(s)
- Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital and Center for Cancer Prevention (CPO), Turin, Italy.
| | - Fulvio Ricceri
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy; Unit of Epidemiology, Regional Health Service ASL TO3, Grugliasco, Turin, Italy
| |
Collapse
|
25
|
Abstract
BACKGROUND Obesity and related factors have been implicated as possible aetiological factors for the development of glioma in epidemiological observation studies. We used genetic markers in a Mendelian randomisation framework to examine whether obesity-related traits influence glioma risk. This methodology reduces bias from confounding and is not affected by reverse causation. METHODS Genetic instruments were identified for 10 key obesity-related risk factors, and their association with glioma risk was evaluated using data from a genome-wide association study of 12,488 glioma patients and 18,169 controls. The estimated odds ratio of glioma associated with each of the genetically defined obesity-related traits was used to infer evidence for a causal relationship. RESULTS No convincing association with glioma risk was seen for genetic instruments for body mass index, waist-to-hip ratio, lipids, type-2 diabetes, hyperglycaemia or insulin resistance. Similarly, we found no evidence to support a relationship between obesity-related traits with subtypes of glioma-glioblastoma (GBM) or non-GBM tumours. CONCLUSIONS This study provides no evidence to implicate obesity-related factors as causes of glioma.
Collapse
|
26
|
Wang B, Huang J, Li J, Zhong Y. Control of macrophage autophagy by miR-384-5p in the development of diabetic encephalopathy. Am J Transl Res 2018; 10:511-518. [PMID: 29511445 PMCID: PMC5835816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 11/06/2017] [Indexed: 06/08/2023]
Abstract
The molecular development of diabetic encephalopathy remains ill-defined. Recently, we reported that elimination of inflammatory macrophages alleviated the progress and severity of diabetic encephalopathy. Here, we studied the underlying mechanism. Inflammatory macrophages were isolated from the brain of the mice that received i.p. injection of streptozotocin (STZ) to develop diabetes 6 weeks before, and showed enhanced autophagy activity, seemingly through augmentation of Beclin-1 levels. However, the increases in Beclin-1 levels did not result from enhanced gene transcription, but appeared to result from suppression of a Beclin-1-inhibitory microRNA, miR-384-5p. Overexpression of miR-384-5p in the inflammatory macrophages through an adeno-associated virus mediated gene transfer system significantly reduced inflammatory macrophages in the diabetic brain, resulting in attenuation of the STZ-induced decreases in brain malondialdehyde, catalase and superoxidase anion-positive cells, and the STZ-induced increases in brain nitric oxide. Thus, these data suggest that downregulation of miR-384-5p in the inflammatory macrophages may enhance macrophage autophagy and contribute to the development of diabetic encephalopathy, which may be suppressed by re-expression of miR-384-5p in macrophages.
Collapse
Affiliation(s)
- Beiyun Wang
- Department of Gerontology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiaotong UniversityShanghai 200233, China
| | - Jing Huang
- Department of Gerontology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiaotong UniversityShanghai 200233, China
| | - Jingbo Li
- Department of Cardiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiaotong UniversityShanghai 200233, China
| | - Yuan Zhong
- Department of Gerontology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiaotong UniversityShanghai 200233, China
| |
Collapse
|
27
|
Deleskog A, den Hoed M, Tettamanti G, Carlsson S, Ljung R, Feychting M, Brooke HL. Maternal diabetes and incidence of childhood cancer - a nationwide cohort study and exploratory genetic analysis. Clin Epidemiol 2017; 9:633-642. [PMID: 29238226 PMCID: PMC5716336 DOI: 10.2147/clep.s147188] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background The etiology of childhood cancer is not well understood, but may be linked to prenatal and perinatal factors, such as maternal diabetes. However, this association has not been examined in depth. We aimed to determine if maternal diabetes is associated with risk of childhood brain tumor (CBT), leukemia (all types combined and acute lymphoblastic leukemia [ALL] separately), and lymphoma. Methods All children born in Sweden between 1973 and 2014 (n=4,239,965) were followed from birth until first cancer diagnosis, age 15 years, or December 31, 2015. Data on maternal diabetes, childhood cancer, and covariates were obtained from nationwide health registers. Incidence rate ratios (IRRs) and 95% confidence intervals (CIs) were calculated using Cox regression adjusted for potential confounders/mediators. Additionally, we performed an exploratory analysis using results from published genome-wide association studies and functional annotation. Results Maternal diabetes was associated with lower risk of CBT (adjusted IRR [95% CI]: 0.56 [0.35-0.91]) and higher risk of leukemia (adjusted IRR: 1.47 [1.13-1.92] for all leukemia combined and 1.64 [1.23-2.18] for ALL). These associations were similar for both maternal type 1 diabetes and gestational diabetes. Associations of five previously identified genetic loci were compatible with a causal effect of diabetes traits on neuroblastoma and common Hodgkin's lymphoma. Conclusion Children whose mother had diabetes had lower risk of CBT and higher risk of leukemia, compared with children whose mother did not have diabetes. Our results are compatible with a role of prenatal and perinatal glycemic environment in childhood cancer etiology.
Collapse
Affiliation(s)
- Anna Deleskog
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm
| | - Marcel den Hoed
- Department of Immunology, Genetics and Pathology.,Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Giorgio Tettamanti
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm
| | - Sofia Carlsson
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm
| | - Rickard Ljung
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm
| | - Maria Feychting
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm
| | - Hannah L Brooke
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm
| |
Collapse
|
28
|
Hepatitis B virus infection and decreased risk of stroke: a meta-analysis. Oncotarget 2017; 8:59658-59665. [PMID: 28938669 PMCID: PMC5601765 DOI: 10.18632/oncotarget.19609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/13/2017] [Indexed: 12/13/2022] Open
Abstract
Several studies have reported that hepatitis B virus (HBV) infection may decrease the risk of stroke. However, its association is controversial. Thus, we conducted a systematic review and meta-analysis to investigate the relationship between hepatitis B virus (HBV) infection and the risk of stroke. Relevant studies published before May 2017 were identified by searching PubMed, EMBASE, and ISI Web of Science. The relationships between HBV infection and the risk of stroke were assessed using odds ratio (OR)/risk ratio (RR) values and the corresponding 95% confidence intervals (CIs). We used the random effects model proposed by DerSimonian and Laird to quantify the relationship. Five articles, including 834,75 HBV-infected patients and 593,949 uninfected controls, were included in the meta-analysis. The risk of stroke was significantly lower in HBV-infected patients than in uninfected controls (summary OR = 0.78; 95% CI = 0.70–0.86; I2 = 0%). However, this inverse relationship was only observed in cohort studies (OR = 0.77; 95% CI = 0.69–0.86), rather than cross-sectional study (OR = 1.10; 95% CI = 0.55–2.19). In summary, HBV infection was associated with lower risk of developing stroke.
Collapse
|
29
|
Barami K, Lyon L, Conell C. Type 2 Diabetes Mellitus and Glioblastoma Multiforme-Assessing Risk and Survival: Results of a Large Retrospective Study and Systematic Review of the Literature. World Neurosurg 2017; 106:300-307. [PMID: 28698089 DOI: 10.1016/j.wneu.2017.06.164] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Despite studies showing a positive correlation between type 2 diabetes mellitus (DM2), a modifiable risk factor, and various cancer types, the link remains controversial in the setting of glioblastoma multiforme (GBM). In this study, we assessed whether DM2 and DM2-associated factors were associated with a higher risk of developing GBM and also determined if DM2 affected the survival of patients with GBM. METHODS A cross-sectional case-control study of 1144 GBM cases diagnosed between 2000 and 2013 of which 969 patients matched for age and sex was performed to assess the association between DM2, hyperlipidemia, and obesity with the incidence of GBM. A longitudinal study of the patients with GBM was also performed to assess the association between the effect of DM2 and GBM survival. RESULTS No association was seen between DM2, hyperlipidemia, obesity, and GBM. DM2 was associated with poorer survival in univariate testing yet not in multivariate testing. Diabetic patients with GBM had good glycemic control. Older patients had poorer survival and overall survival improved over years of study. CONCLUSIONS DM2, hyperlipidemia, and obesity were not associated with increased risk of developing GBM, and DM2 itself does not seem to influence survival among these patients. This finding might be related to good glycemic control in this cohort. Survey of the literature consistently shows that hyperglycemia is associated with poorer survival. Our findings suggest that rather than the presence or absence of DM2, glycemic control seems to be more important in the survival of patients with GBM, which warrants future investigation.
Collapse
Affiliation(s)
- Kaveh Barami
- Department of Neurosurgery, Kaiser Permanente Northern California, Sacramento, California, USA.
| | - Liisa Lyon
- The Kaiser Permanente Northern California Division of Research, Oakland, California, USA
| | - Carol Conell
- The Kaiser Permanente Northern California Division of Research, Oakland, California, USA
| |
Collapse
|
30
|
Eberhardt O, Topka H. Neurological outcomes of antidiabetic therapy: What the neurologist should know. Clin Neurol Neurosurg 2017; 158:60-66. [PMID: 28477558 DOI: 10.1016/j.clineuro.2017.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 03/05/2017] [Accepted: 04/15/2017] [Indexed: 02/09/2023]
Abstract
Considering the causative or contributory effects of diabetes mellitus on common neurological diseases such as polyneuropathy, stroke and dementia, modern antidiabetic drugs may be expected to reduce incidence or progression of these conditions. Nevertheless, most observed benefits have been small, except in the context of therapy for diabetes mellitus type I and new-onset polyneuropathy. Recently, semaglutide, a GLP-1 analog, has been shown to significantly reduce stroke incidence in a randomized controlled trial. Beneficial effects of antidiabetic drugs on stroke severity or outcome have been controversial, though. The level of risk conferred by diabetes mellitus, the complex pathophysiology of neurological diseases, issues of trial design, side-effects of antidiabetic drugs as well as co-medication might be interacting factors that determine the performance of antidiabetic therapy with respect to neurological outcomes. It might be speculated that early treatment of prediabetes might prevent cerebral arteriosclerosis, cognitive decline or polyneuropathy more effectively, but this remains to be demonstrated.
Collapse
Affiliation(s)
- Olaf Eberhardt
- Department for Neurology, Clinical Neurophysiology, Clinical Neuropsychology and Stroke Unit, Klinikum Bogenhausen Englschalkinger Str. 77, München, 81925, Germany.
| | - Helge Topka
- Department for Neurology, Clinical Neurophysiology, Clinical Neuropsychology and Stroke Unit, Klinikum Bogenhausen Englschalkinger Str. 77, München, 81925, Germany
| |
Collapse
|
31
|
Schwartzbaum J, Edlinger M, Zigmont V, Stattin P, Rempala GA, Nagel G, Hammar N, Ulmer H, Föger B, Walldius G, Manjer J, Malmström H, Feychting M. Associations between prediagnostic blood glucose levels, diabetes, and glioma. Sci Rep 2017; 7:1436. [PMID: 28469238 PMCID: PMC5431098 DOI: 10.1038/s41598-017-01553-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/31/2017] [Indexed: 12/11/2022] Open
Abstract
Previous literature indicates that pre-diagnostic diabetes and blood glucose levels are inversely related to glioma risk. To replicate these findings and determine whether they could be attributed to excess glucose consumption by the preclinical tumour, we used data from the Apolipoprotein MOrtality RISk (AMORIS) (n = 528,580) and the Metabolic syndrome and Cancer project (Me-Can) cohorts (n = 269,365). We identified individuals who were followed for a maximum of 15 years after their first blood glucose test until glioma diagnosis, death, emigration or the end of follow-up. Hazard ratios (HRs), 95% confidence intervals (CIs) and their interactions with time were estimated using Cox time-dependent regression. As expected, pre-diagnostic blood glucose levels were inversely related to glioma risk (AMORIS, Ptrend = 0.002; Me-Can, Ptrend = 0.04) and pre-diagnostic diabetes (AMORIS, HR = 0.30, 95% CI 0.17 to 0.53). During the year before diagnosis, blood glucose was inversely associated with glioma in the AMORIS (HR = 0.78, 95% CI 0.66 to 0.93) but not the Me-Can cohort (HR = 0.99, 95% CI 0.63 to 1.56). This AMORIS result is consistent with our hypothesis that excess glucose consumption by the preclinical tumour accounts for the inverse association between blood glucose and glioma. We discuss additional hypothetical mechanisms that may explain our paradoxical findings.
Collapse
Affiliation(s)
- Judith Schwartzbaum
- Division of Epidemiology, College of Public Health, Ohio State University, Columbus, Ohio, 43210, United States of America. .,Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, 43210, United States of America.
| | - Michael Edlinger
- Department of Medical Statistics, Informatics, and Health Economics, Medical University, Innsbruck, Austria.
| | - Victoria Zigmont
- Division of Epidemiology, College of Public Health, Ohio State University, Columbus, Ohio, 43210, United States of America.,Department of Public Health, Southern Connecticut State University, New Haven, CT, 06515, United States of America
| | - Pär Stattin
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå, Sweden
| | - Grzegorz A Rempala
- Division of Epidemiology, College of Public Health, Ohio State University, Columbus, Ohio, 43210, United States of America.,Division of Biostatistics, College of Public Health, Ohio State University, Columbus, Ohio, 43210, United States of America.,Mathematical Biosciences Institute, Columbus, Ohio, 43210, United States of America
| | - Gabriele Nagel
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany.,Agency for Preventive and Social Medicine, Bregenz, Austria
| | - Niklas Hammar
- Medical Evidence & Observational Research, Global Medical Affairs, Astra Zeneca R&D, Mölndal, 43150, Sweden.,Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, SE-17177, Stockholm, Sweden
| | - Hanno Ulmer
- Department of Medical Statistics, Informatics, and Health Economics, Medical University, Innsbruck, Austria
| | - Bernhard Föger
- Agency for Preventive and Social Medicine, Bregenz, Austria
| | - Göran Walldius
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, SE-17177, Stockholm, Sweden
| | - Jonas Manjer
- Department of Surgery, Skåne University Hospital, Malmö, Sweden
| | - Håkan Malmström
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, SE-17177, Stockholm, Sweden
| | - Maria Feychting
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, SE-17177, Stockholm, Sweden
| |
Collapse
|
32
|
Yao XY, Jiang CQ, Jia GL, Chen G. Diabetes mellitus and the risk of aneurysmal subarachnoid haemorrhage: A systematic review and meta-analysis of current evidence. J Int Med Res 2016; 44:1141-1155. [PMID: 28322094 PMCID: PMC5536738 DOI: 10.1177/0300060516666426] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Objective This systematic review aimed to define the relationship between diabetes mellitus (DM) and the risk of aneurysmal subarachnoid haemorrhage (aSAH). Methods Studies associated with DM and aSAH published until March 2016 were retrieved from Pubmed, Embase, Web of Science, and Cochrane Library databases. A random-effects model was used to calculate the relative risks (RRs) with 95% confidence intervals (CIs). Results Eighteen observational studies were retrieved. The overall RRs for DM and aSAH were RRs = 0.59 (0.44, 0.79), with moderate heterogeneity (I2 = 55.7%, Pheterogeneity = 0.000). Subgroup analysis by study quality revealed a reduced association between DM and aSAH risk in high quality studies only (RRs = 0.40, 95% CI: 0.29, 0.56; I2 = 0.0%, Pheterogeneity = 0.549), therefore study quality may be a source of heterogeneity. Conclusion A potential decreased risk of aSAH in DM patients was found in high quality studies. Further studies are required to confirm this causal relationship and to investigate the biological mechanisms.
Collapse
Affiliation(s)
- Xi-Yang Yao
- 1 Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Cai-Qi Jiang
- 2 Department of Neurosurgery, Suzhou Xiangcheng People's Hospital, Suzhou, China
| | - Gen-Lai Jia
- 3 Department of Neurosurgery, The People's Hospital of Rugao, Jiangsu Rugao, China
| | - Gang Chen
- 1 Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|