1
|
Wang C, Xie C. Unveiling the power of mitochondrial transfer in cancer progression: a perspective in ovarian cancer. J Ovarian Res 2024; 17:233. [PMID: 39580453 PMCID: PMC11585251 DOI: 10.1186/s13048-024-01560-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024] Open
Abstract
Mitochondria are dynamic organelles integral to metabolic processes, coordination of essential biological pathways, and oncogenesis and tumor progression. Recent studies have revealed that mitochondria can be transferred between cells via multiple mechanisms, implicating their involvement in the pathogenesis and progression of ovarian cancer. This review provides a comprehensive analysis of intercellular mitochondrial transfer within the context of ovarian cancer and its tumor microenvironment. We also propose targeted pathways and therapeutic strategies that could be utilized to modulate diseases associated with mitochondrial transfer therapy. Finally, we examine recent advancements in this field and identify several unresolved questions.
Collapse
Affiliation(s)
- Caixia Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan Province, China
| | - Chuan Xie
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, P.R. China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan Province, China.
| |
Collapse
|
2
|
Yi JM. Epigenetic regulation of HERVs: Implications for cancer immunotherapy. Genes Genomics 2024; 46:1303-1312. [PMID: 39088189 DOI: 10.1007/s13258-024-01546-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/07/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Human endogenous retroviruses (HERVs), integrated into the human genome during primate evolution, constitute approximately 8% of the human genome. Although most HERVs are non-protein-coding owing to mutations, insertions, deletions, and truncations, recent research has revealed their diverse roles in biological processes, including disease pathogenesis. OBJECTIVE Although many HERVs remain inactive, they have been implicated in various diseases, particularly cancer, prompting an increased interest in harnessing HERVs for therapeutic purposes. This review explores the recent advancements in our understanding of the biological roles of HERVs, emphasizing their clinical relevance in cancer treatment. METHODS Here, we discuss how the detection of transposable elements (TEs), including HERVs, by the immune system triggers innate immune responses in human cancers. CONCLUSION Additionally, we outline recent progress in elucidating the implications of HERV activation in cancer and how targeting HERVs holds promise for anti-cancer treatments by modulating epigenetic plasticity and disrupting cancer initiation and progression.
Collapse
Affiliation(s)
- Joo Mi Yi
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan, 47392, South Korea.
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Bloomington, IN, 47405, USA.
| |
Collapse
|
3
|
Lai TJ, Sun L, Li K, Prins TJ, Treger J, Li T, Sun MZ, Nathanson DA, Liau LM, Lai A, Prins RM, Everson RG. Epigenetic Induction of Cancer-Testis Antigens and Endogenous Retroviruses at Single-Cell Level Enhances Immune Recognition and Response in Glioma. CANCER RESEARCH COMMUNICATIONS 2024; 4:1834-1849. [PMID: 38856710 PMCID: PMC11275559 DOI: 10.1158/2767-9764.crc-23-0566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/22/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Glioblastoma (GBM) is the most common malignant primary brain tumor and remains incurable. Previous work has shown that systemic administration of Decitabine (DAC) induces sufficient expression of cancer-testis antigens (CTA) in GBM for targeting by adoptive T-cell therapy in vivo. However, the mechanisms by which DAC enhances immunogenicity in GBM remain to be elucidated. Using New York esophageal squamous cell carcinoma 1 (NY-ESO-1) as a representative inducible CTA, we demonstrate in patient tissue, immortalized glioma cells, and primary patient-derived gliomaspheres that basal CTA expression is restricted by promoter hypermethylation in gliomas. DAC treatment of glioma cells specifically inhibits DNA methylation silencing to render NY-ESO-1 and other CTA into inducible tumor antigens at single-cell resolution. Functionally, NY-ESO-1 T-cell receptor-engineered effector cell targeting of DAC-induced antigen in primary glioma cells promotes specific and polyfunctional T-cell cytokine profiles. In addition to induction of CTA, DAC concomitantly reactivates tumor-intrinsic human endogenous retroviruses, interferon response signatures, and MHC-I. Overall, we demonstrate that DAC induces targetable tumor antigen and enhances T-cell functionality against GBM, ultimately contributing to the improvement of targeted immune therapies in glioma. SIGNIFICANCE This study dissects the tumor-intrinsic epigenetic and transcriptional mechanisms underlying enhanced T-cell functionality targeting decitabine-induced cancer-testis antigens in glioma. Our findings demonstrate concomitant induction of tumor antigens, reactivation of human endogenous retroviruses, and stimulation of interferon signaling as a mechanistic rationale to epigenetically prime human gliomas to immunotherapeutic targeting.
Collapse
Affiliation(s)
- Thomas J. Lai
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| | - Lu Sun
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| | - Kevin Li
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| | - Terry J. Prins
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| | - Janet Treger
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| | - Tie Li
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| | - Matthew Z. Sun
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| | - David A. Nathanson
- Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.
| | - Linda M. Liau
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
- Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.
| | - Albert Lai
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
- UCLA Neuro-Oncology Program, University of California, Los Angeles, Los Angeles, California.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.
| | - Robert M. Prins
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
- Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.
- Parker Institute for Cancer Immunotherapy, San Francisco, California.
| | - Richard G. Everson
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
4
|
Sieler M, Dörnen J, Dittmar T. How Much Do You Fuse? A Comparison of Cell Fusion Assays in a Breast Cancer Model. Int J Mol Sci 2024; 25:5668. [PMID: 38891857 PMCID: PMC11172233 DOI: 10.3390/ijms25115668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Cell fusion is a biological process that is crucial for the development and homeostasis of different tissues, but it is also pathophysiologically associated with tumor progression and malignancy. The investigation of cell fusion processes is difficult because there is no standardized marker. Many studies therefore use different systems to observe and quantify cell fusion in vitro and in vivo. The comparability of the results must be critically questioned, because both the experimental procedure and the assays differ between studies. The comparability of the fluorescence-based fluorescence double reporter (FDR) and dual split protein (DSP) assay was investigated as part of this study, in which general conditions were kept largely constant. In order to be able to induce both a high and a low cell fusion rate, M13SV1 breast epithelial cells were modified with regard to the expression level of the fusogenic protein Syncytin-1 and its receptor ASCT2 and were co-cultivated for 72 h with different breast cancer cell lines. A high number of fused cells was found in co-cultures with Syncytin-1-overexpressing M13SV1 cells, but differences between the assays were also observed. This shows that the quantification of cell fusion events in particular is highly dependent on the assay selected, but the influence of fusogenic proteins can be visualized very well.
Collapse
Affiliation(s)
- Mareike Sieler
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany; (M.S.); (J.D.)
| | - Jessica Dörnen
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany; (M.S.); (J.D.)
- Faculty of Medicine, Ruhr University Bochum, 44789 Bochum, Germany
| | - Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58453 Witten, Germany; (M.S.); (J.D.)
| |
Collapse
|
5
|
Rasouli S, Dakic A, Wang QE, Mitchell D, Blakaj DM, Putluri N, Li J, Liu X. Noncanonical functions of telomerase and telomeres in viruses-associated cancer. J Med Virol 2024; 96:e29665. [PMID: 38738582 DOI: 10.1002/jmv.29665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
The cause of cancer is attributed to the uncontrolled growth and proliferation of cells resulting from genetic changes and alterations in cell behavior, a phenomenon known as epigenetics. Telomeres, protective caps on the ends of chromosomes, regulate both cellular aging and cancer formation. In most cancers, telomerase is upregulated, with the telomerase reverse transcriptase (TERT) enzyme and telomerase RNA component (TERC) RNA element contributing to the maintenance of telomere length. Additionally, it is noteworthy that two viruses, human papillomavirus (HPV) and Epstein-Barr virus (EBV), utilize telomerase for their replication or persistence in infected cells. Also, TERT and TERC may play major roles in cancer not related to telomere biology. They are involved in the regulation of gene expression, signal transduction pathways, cellular metabolism, or even immune response modulation. Furthermore, the crosstalk between TERT, TERC, RNA-binding proteins, and microRNAs contributes to a greater extent to cancer biology. To understand the multifaceted roles played by TERT and TERC in cancer and viral life cycles, and then to develop effective therapeutic strategies against these diseases, are fundamental for this goal. By investigating deeply, the complicated mechanisms and relationships between TERT and TERC, scientists will open the doors to new therapies. In its analysis, the review emphasizes the significance of gaining insight into the multifaceted roles that TERT and TERC play in cancer pathogenesis, as well as their involvement in the viral life cycle for designing effective anticancer therapy approaches.
Collapse
Affiliation(s)
- Sara Rasouli
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Aleksandra Dakic
- Division of Neuroscience, National Institute of Aging, Bethesda, Maryland, USA
| | - Qi-En Wang
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
| | - Darrion Mitchell
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
| | - Dukagjin M Blakaj
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Jenny Li
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Xuefeng Liu
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
- Department of Pathology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
- Department of Urology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
6
|
Záveský L, Jandáková E, Weinberger V, Minář L, Kohoutová M, Slanař O. Human Endogenous Retroviruses in Breast Cancer: Altered Expression Pattern Implicates Divergent Roles in Carcinogenesis. Oncology 2024; 102:858-867. [PMID: 38408442 PMCID: PMC11449185 DOI: 10.1159/000538021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
INTRODUCTION Breast cancer is the most common cancer and the leading cause of cancer death in women. Recent research indicates that human endogenous retroviruses (HERVs) may be linked to carcinogenesis, but the data remain controversial. METHODS HERVs' expression was evaluated to show the differences between breast cancer and control samples, and their associations with clinicopathological parameters. Gene expression of 12 HERVs, i.e., ERVE-4, ERVW-1, ERVFRD-1, ERVV-1, ERV3-1, ERVH48-1, ERVMER34-1, ERVK-7, ERVK13-1, ERVK11-1, ERVK3-1, and HCP5, was analyzed by qPCR and/or TCGA datasets for breast cancer. RESULTS ERV3-1, ERVFRD-1, ERVH48-1, and ERVW-1 provided data to support their tumor suppressor roles in breast cancer. ERV3-1 evinced the best performing diagnostic data based on qPCR, i.e. , AUC 0.819 (p < 0.0001), sensitivity of 72.41%, and specificity of 89.66%. Lower levels of ERV3-1 were noted in advanced stage and higher grades, and significant negative association was found in relation to Ki-67 levels. Oncogenic roles may be inferred for ERVK13-1, ERVV-1, and ERVMER34-1. Data for ERVK-7, ERVE-4, ERVK11-1, and HCP5 remain inconclusive. CONCLUSION Differential HERV expression may be applicable to evaluate novel biomarkers for breast cancer. However, more research is needed to reveal their real clinical impact, the biological roles, and regulatory mechanisms in breast carcinogenesis.
Collapse
Affiliation(s)
- Luděk Záveský
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Eva Jandáková
- Department of Pathology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Vít Weinberger
- Department of Obstetrics and Gynecology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Luboš Minář
- Department of Obstetrics and Gynecology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Milada Kohoutová
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ondřej Slanař
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
7
|
Lykoskoufis NMR, Planet E, Ongen H, Trono D, Dermitzakis ET. Transposable elements mediate genetic effects altering the expression of nearby genes in colorectal cancer. Nat Commun 2024; 15:749. [PMID: 38272908 PMCID: PMC10811328 DOI: 10.1038/s41467-023-42405-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 10/10/2023] [Indexed: 01/27/2024] Open
Abstract
Transposable elements (TEs) are prevalent repeats in the human genome, play a significant role in the regulome, and their disruption can contribute to tumorigenesis. However, TE influence on gene expression in cancer remains unclear. Here, we analyze 275 normal colon and 276 colorectal cancer samples from the SYSCOL cohort, discovering 10,231 and 5,199 TE-expression quantitative trait loci (eQTLs) in normal and tumor tissues, respectively, of which 376 are colorectal cancer specific eQTLs, likely due to methylation changes. Tumor-specific TE-eQTLs show greater enrichment of transcription factors, compared to shared TE-eQTLs suggesting specific regulation of their expression in tumor. Bayesian networks reveal 1,766 TEs as mediators of genetic effects, altering the expression of 1,558 genes, including 55 known cancer driver genes and show that tumor-specific TE-eQTLs trigger the driver capability of TEs. These insights expand our knowledge of cancer drivers, deepening our understanding of tumorigenesis and presenting potential avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Nikolaos M R Lykoskoufis
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211, Geneva, Switzerland.
- Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211, Geneva, Switzerland.
- Swiss Institute of Bioinformatics, 1211, Geneva, Switzerland.
- NGS-AI JSR Life Sciences, Route de la Corniche 3, 1066, Epalinges, Switzerland.
| | - Evarist Planet
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Halit Ongen
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211, Geneva, Switzerland
- Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211, Geneva, Switzerland
- Swiss Institute of Bioinformatics, 1211, Geneva, Switzerland
| | - Didier Trono
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Emmanouil T Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211, Geneva, Switzerland.
- Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211, Geneva, Switzerland.
- Swiss Institute of Bioinformatics, 1211, Geneva, Switzerland.
| |
Collapse
|
8
|
Sieler M, Dittmar T. Cell Fusion and Syncytia Formation in Cancer. Results Probl Cell Differ 2024; 71:433-465. [PMID: 37996689 DOI: 10.1007/978-3-031-37936-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The natural phenomenon of cell-cell fusion does not only take place in physiological processes, such as placentation, myogenesis, or osteoclastogenesis, but also in pathophysiological processes, such as cancer. More than a century ago postulated, today the hypothesis that the fusion of cancer cells with normal cells leads to the formation of cancer hybrid cells with altered properties is in scientific consensus. Some studies that have investigated the mechanisms and conditions for the fusion of cancer cells with other cells, as well as studies that have characterized the resulting cancer hybrid cells, are presented in this review. Hypoxia and the cytokine TNFα, for example, have been found to promote cell fusion. In addition, it has been found that both the protein Syncytin-1, which normally plays a role in placentation, and phosphatidylserine signaling on the cell membrane are involved in the fusion of cancer cells with other cells. In human cancer, cancer hybrid cells were detected not only in the primary tumor, but also in the circulation of patients as so-called circulating hybrid cells, where they often correlated with a worse outcome. Although some data are available, the questions of how and especially why cancer cells fuse with other cells are still not fully answered.
Collapse
Affiliation(s)
- Mareike Sieler
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Witten, Germany.
| | - Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Witten, Germany
| |
Collapse
|
9
|
Boeke JD, Burns KH, Chiappinelli KB, Classon M, Coffin JM, DeCarvalho DD, Dukes JD, Greenbaum B, Kassiotis G, Knutson SK, Levine AJ, Nath A, Papa S, Rios D, Sedivy J, Ting DT. Proceedings of the inaugural Dark Genome Symposium: November 2022. Mob DNA 2023; 14:18. [PMID: 37990347 PMCID: PMC10664479 DOI: 10.1186/s13100-023-00306-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023] Open
Abstract
In November 2022 the first Dark Genome Symposium was held in Boston, USA. The meeting was hosted by Rome Therapeutics and Enara Bio, two biotechnology companies working on translating our growing understanding of this vast genetic landscape into therapies for human disease. The spirit and ambition of the meeting was one of shared knowledge, looking to strengthen the network of researchers engaged in the field. The meeting opened with a welcome from Rosana Kapeller and Kevin Pojasek followed by a first session of field defining talks from key academics in the space. A series of panels, bringing together academia and industry views, were then convened covering a wide range of pertinent topics. Finally, Richard Young and David Ting gave their views on the future direction and promise for patient impact inherent in the growing understanding of the Dark Genome.
Collapse
Affiliation(s)
- Jef D Boeke
- Institute for Systems Genetics, NYU Langone Health, New York, NY, 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, 11201, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, 10016, USA
| | - Kathleen H Burns
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Marie Classon
- Pfizer Centre for Therapeutic Innovation, San Diego, USA
| | - John M Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, 02111, USA
| | - Daniel D DeCarvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Joseph D Dukes
- Enara Bio Limited, Magdalen Centre, 1 Robert Robinson Avenue, The Oxford Science Park, Oxford, OX4 4GA, UK
| | - Benjamin Greenbaum
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - George Kassiotis
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, UK
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Sarah K Knutson
- Rome Therapeutics, 201 Brookline Avenue, Suite 1001, Boston, MA, USA
| | - Arnold J Levine
- Simons Center for Systems Biology, Institute for Advanced Study, Princeton, NJ, USA
| | - Avindra Nath
- Section for Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sophie Papa
- Enara Bio Limited, Magdalen Centre, 1 Robert Robinson Avenue, The Oxford Science Park, Oxford, OX4 4GA, UK.
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| | - Daniel Rios
- Rome Therapeutics, 201 Brookline Avenue, Suite 1001, Boston, MA, USA
| | - John Sedivy
- Center on the Biology of Aging, Brown University, Providence, RI, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - David T Ting
- Department of Medical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Wang Q, Shi Y, Bian Q, Zhang N, Wang M, Wang J, Li X, Lai L, Zhao Z, Yu H. Molecular mechanisms of syncytin-1 in tumors and placental development related diseases. Discov Oncol 2023; 14:104. [PMID: 37326913 DOI: 10.1007/s12672-023-00702-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023] Open
Abstract
Human endogenous retroviruses (HERVs) have evolved from exogenous retroviruses and account for approximately 8% of the human genome. A growing number of findings suggest that the abnormal expression of HERV genes is associated with schizophrenia, multiple sclerosis, endometriosis, breast cancer, bladder cancer and other diseases. HERV-W env (syncytin-1) is a membrane glycoprotein which plays an important role in placental development. It includes embryo implantation, fusion of syncytiotrophoblasts and of fertilized eggs, and immune response. The abnormal expression of syncytin-1 is related to placental development-related diseases such as preeclampsia, infertility, and intrauterine growth restriction, as well as tumors such as neuroblastoma, endometrial cancer, and endometriosis. This review mainly focused on the molecular interactions of syncytin-1 in placental development-related diseases and tumors, to explore whether syncytin-1 can be an emerging biological marker and potential therapeutic target.
Collapse
Affiliation(s)
- Qianqian Wang
- Department of Biochemistry, Jining Medical University, 133 Hehua Road, Jining, 272067, Shandong, People's Republic of China
| | - Ying Shi
- Department of Biochemistry, Jining Medical University, 133 Hehua Road, Jining, 272067, Shandong, People's Republic of China
| | - Qiang Bian
- Collaborative Innovation Center, Jining Medical University, Jining, 272067, Shandong, People's Republic of China
- Department of Pathophysiology, Weifang Medical University, Weifang, 261053, Shandong, People's Republic of China
| | - Naibin Zhang
- Department of Biochemistry, Jining Medical University, 133 Hehua Road, Jining, 272067, Shandong, People's Republic of China
| | - Meng Wang
- Department of Biochemistry, Jining Medical University, 133 Hehua Road, Jining, 272067, Shandong, People's Republic of China
| | - Jianing Wang
- Department of Biochemistry, Jining Medical University, 133 Hehua Road, Jining, 272067, Shandong, People's Republic of China
| | - Xuan Li
- Department of Biochemistry, Jining Medical University, 133 Hehua Road, Jining, 272067, Shandong, People's Republic of China
| | - Luhao Lai
- Collaborative Innovation Center, Jining Medical University, Jining, 272067, Shandong, People's Republic of China
| | - Zhankui Zhao
- The Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, 272029, Shandong, People's Republic of China.
| | - Honglian Yu
- Department of Biochemistry, Jining Medical University, 133 Hehua Road, Jining, 272067, Shandong, People's Republic of China.
- Collaborative Innovation Center, Jining Medical University, Jining, 272067, Shandong, People's Republic of China.
| |
Collapse
|
11
|
Liu J, Min S, Kim D, Park J, Park E, Koh Y, Shin DY, Kim TK, Byun JM, Yoon SS, Hong J. Epigenetic priming improves salvage chemotherapy in diffuse large B-cell lymphoma via endogenous retrovirus-induced cGAS-STING activation. Clin Epigenetics 2023; 15:75. [PMID: 37138342 PMCID: PMC10155448 DOI: 10.1186/s13148-023-01493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Although most patients with diffuse large B-cell lymphoma (DLBCL) achieve complete remission after first-line rituximab-containing immunochemotherapy, up to 40% of patients relapse and require salvage therapy. Among those patients, a substantial proportion remain refractory to salvage therapy due to insufficient efficacy or intolerance of toxicities. A hypomethylating agent, 5-azacytidine, showed a chemosensitizing effect when primed before chemotherapy in lymphoma cell lines and newly diagnosed DLBCL patients. However, its potential to improve outcomes of salvage chemotherapy in DLBCL has not been investigated. RESULTS In this study, we demonstrated the mechanism of 5-azacytidine priming as a chemosensitizer in a platinum-based salvage regimen. This chemosensitizing effect was associated with endogenous retrovirus (ERV)-induced viral mimicry responses via the cGAS-STING axis. We found deficiency of cGAS impaired the chemosensitizing effect of 5-azacytidine. Furthermore, combining vitamin C and 5-azacytidine to synergistically activate STING could be a potential remedy for insufficient priming induced by 5-azacytidine alone. CONCLUSIONS Taken together, the chemosensitizing effect of 5-azacytidine could be exploited to overcome the limitations of the current platinum-containing salvage chemotherapy in DLBCL and the status of cGAS-STING has the potential to predict the efficacy of 5-azacytidine priming.
Collapse
Affiliation(s)
- Jun Liu
- College of Medicine, Zhejiang University, Hangzhou, China
- Center for Medical Innovation, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Suji Min
- Center for Medical Innovation, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dongchan Kim
- Center for Medical Innovation, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jihyun Park
- Center for Medical Innovation, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eunchae Park
- Center for Medical Innovation, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Youngil Koh
- Center for Medical Innovation, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong-Yeop Shin
- Center for Medical Innovation, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tae Kon Kim
- Division of Hematology/Oncology, Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ja Min Byun
- Center for Medical Innovation, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung-Soo Yoon
- Center for Medical Innovation, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Junshik Hong
- Center for Medical Innovation, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Biomedical Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Stricker E, Peckham-Gregory EC, Scheurer ME. HERVs and Cancer-A Comprehensive Review of the Relationship of Human Endogenous Retroviruses and Human Cancers. Biomedicines 2023; 11:936. [PMID: 36979914 PMCID: PMC10046157 DOI: 10.3390/biomedicines11030936] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Genomic instability and genetic mutations can lead to exhibition of several cancer hallmarks in affected cells such as sustained proliferative signaling, evasion of growth suppression, activated invasion, deregulation of cellular energetics, and avoidance of immune destruction. Similar biological changes have been observed to be a result of pathogenic viruses and, in some cases, have been linked to virus-induced cancers. Human endogenous retroviruses (HERVs), once external pathogens, now occupy more than 8% of the human genome, representing the merge of genomic and external factors. In this review, we outline all reported effects of HERVs on cancer development and discuss the HERV targets most suitable for cancer treatments as well as ongoing clinical trials for HERV-targeting drugs. We reviewed all currently available reports of the effects of HERVs on human cancers including solid tumors, lymphomas, and leukemias. Our review highlights the central roles of HERV genes, such as gag, env, pol, np9, and rec in immune regulation, checkpoint blockade, cell differentiation, cell fusion, proliferation, metastasis, and cell transformation. In addition, we summarize the involvement of HERV long terminal repeat (LTR) regions in transcriptional regulation, creation of fusion proteins, expression of long non-coding RNAs (lncRNAs), and promotion of genome instability through recombination.
Collapse
Affiliation(s)
- Erik Stricker
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77047, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77047, USA
| | | | - Michael E. Scheurer
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77047, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77047, USA
| |
Collapse
|
13
|
A comprehensive investigation of human endogenous retroviral syncytin proteins and their receptors in men with normozoospermia and impaired semen quality. J Assist Reprod Genet 2023; 40:97-111. [PMID: 36469256 PMCID: PMC9734899 DOI: 10.1007/s10815-022-02673-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/25/2022] [Indexed: 12/07/2022] Open
Abstract
PURPOSE The study aims to investigate first the presence of Syncytin 2 and its receptor, MFSD2, in human sperm, and second whether the expressions of Syncytin 1, Syncytin 2, and their receptors, SLC1A5 and MFSD2, differ between normozoospermic, asthenozoospermic, oligozoospermic, and oligoasthenozoospermic human sperm samples. METHODS The localization patterns and expression levels of syncytins and their receptors were evaluated in normozoospermic (concentration = 88.9 ± 5.5 × 106, motility = 79.2 ± 3.15%, n = 30), asthenozoospermic (concentration = 51.7 ± 7.18 × 106, motility = 24.0 ± 3.12%, n = 15), mild oligozoospermic (concentration = 13.5 ± 2.17 × 106, motility = 72.1 ± 6.5%, n = 15), moderate oligozoospermic (concentration = 8.4 ± 3.21 × 106, motility = 65.1 ± 8.9%, n = 15), severe oligozoospermic (concentration = 2.1 ± 1.01 × 106, motility = 67.5 ± 3.2%, n = 15), and oligoasthenozoospermic (concentration = 5.5 ± 3.21 × 106, motility = 18.5 ± 1.2%, n = 15) samples by immunofluorescence staining and western blot. RESULTS Syncytins and their receptors visualized by immunofluorescence showed similar staining patterns with slight staining of the tail in all spermatozoa regardless of normozoospermia, asthenozoospermia, oligozoospermia, or oligoasthenozoospermia. The localization patterns were categorized as equatorial segment, midpiece region, acrosome, and post-acrosomal areas. The combined staining patterns were also detected as acrosomal cap plus post acrosomal region, the midpiece plus equatorial segment, and midpiece plus acrosomal region. However, some sperm cells were categorized as non-stained. Both syncytin proteins were most intensely localized in the midpiece region, while their receptors were predominantly present in the midpiece plus acrosomal region. Conspicuously, syncytins and their receptors showed decreased expression in asthenozospermic, oligozoospermic, and oligoasthenozoospermic samples compared to normozoospermic samples. CONCLUSION The expression patterns of HERV-derived syncytins and their receptors were identical regardless of the spermatozoa in men with normozoospermia versus impaired semen quality. Further, asthenozoospermia, oligozoospermia, and oligoasthenozoospermia as male fertility issues are associated with decreased expression of both syncytins and their receptors.
Collapse
|
14
|
Kitsou K, Lagiou P, Magiorkinis G. Human endogenous retroviruses in cancer: Oncogenesis mechanisms and clinical implications. J Med Virol 2023; 95:e28350. [PMID: 36428242 PMCID: PMC10108094 DOI: 10.1002/jmv.28350] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/28/2022]
Abstract
Human Endogenous Retroviruses (HERVs) are viral sequences integrated into the human genome, resulting from the infection of human germ-line cells by ancient exogenous retroviruses. Despite losing their replication and retrotransposition abilities, HERVs appear to have been co-opted in human physiological functions while their aberrant expression is linked to human disease. The role of HERVs in multiple malignancies has been demonstrated, however, the extent to which HERV activation and expression participate in the development of cancer is not yet fully comprehended. In this review article, we discuss the presumed role of HERVs in carcinogenesis and their promising diagnostic and prognostic implications. Additionally, we explore recent data on the HERVs in cancer therapeutics, either through the manipulation of their expression, to induce antitumor innate immunity responses or as cancer immunotherapy targets. Finally, more precise and higher resolution high-throughput sequencing approaches will further elucidate HERV participation in human physiological and pathological processes.
Collapse
Affiliation(s)
- Konstantina Kitsou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian, University of Athens, Goudi, Greece
| | - Pagona Lagiou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian, University of Athens, Goudi, Greece
| | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian, University of Athens, Goudi, Greece
| |
Collapse
|
15
|
Zhuang X, Qian J, Xia X, Wang Y, Wang H, Jing L, Zhang Y, Zhang Y. Serum circulating free DNA of syncytin-1 as a novel molecular marker for early diagnosis of non-small-cell lung cancer. Biomark Med 2022; 16:1259-1268. [PMID: 36861469 DOI: 10.2217/bmm-2022-0499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Background: Liquid biopsy has been receiving attention as an emerging detection technology in the clinical application of non-small-cell lung cancer (NSCLC). Methods: We quantified serum circulating free DNA (cfDNA) of syncytin-1 in 126 patients and 106 controls, analyzed the correlation of level with pathological parameters and explored diagnostic utility. Results: The cfDNA of syncytin-1 levels in NSCLC patients were higher than healthy controls (p < 0.0001). These levels were associated with smoking history (p = 0.0393). The area under the curve of cfDNA of syncytin-1 was 0.802, and combination of cfDNA of syncytin-1/cytokeratin 19 fragment antigen 21-1/carcinoembryonic antigen markers improved diagnostic efficiency. Conclusion: The cfDNA of syncytin-1 was detected in NSCLC patients and can be used as a novel molecular marker for early diagnosis.
Collapse
Affiliation(s)
- Xuewei Zhuang
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, 250031, China
| | - Jingrong Qian
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, 250031, China
| | - Xiyan Xia
- Department of Microbial Immune, Jinan Vocational College of Nursing, Jinan, Shandong, 250102, China
| | - Yuanling Wang
- Department of Nursing, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, 250031, China
| | - Hongchun Wang
- Department of Clinical Laboratory, Shandong University Qilu Hospital, Jinan, Shandong, 250012, China
| | - Liping Jing
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, 250031, China
| | - Yanli Zhang
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, 250031, China
| | - Yong Zhang
- Department of Hepatobiliary Surgery, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, 250031, China
| |
Collapse
|
16
|
Sahu S, Singh B, Kumar Rai A. Human endogenous retrovirus regulates the initiation and progression of cancers (Review). Mol Clin Oncol 2022; 17:143. [PMID: 36157315 PMCID: PMC9468830 DOI: 10.3892/mco.2022.2576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/22/2022] [Indexed: 11/05/2022] Open
Abstract
The expression of genes is altered in various diseases and is responsible for the disease's initiation, progression and pathology. Several other genes, predominantly inactivated, may become activated in a given condition and contribute to the initiation and progression of the disease. Similarly, human endogenous viruses (HERVs) are an incomplete, non-productive and inactive viral sequence present in the heterochromatin of the human genome, and are often referred to as junk DNA. HERVs were inserted into the host genome millions of years ago. However, they were silenced due to multiple mutations and recombination that occurred over time. However, their expression is increased in cancers due to either epigenetic or transcriptional dysregulation. Some of the HERVs having intact open reading frames have been reported to express virus-like particles, functional peptides and proteins involved in tumorigenesis. To summarize, there is involvement of different HERVs in the initiation and progression of several cancers. The present review aims to provide concise information on HERV and its involvement in the initiation and progression of multiple types of cancer.
Collapse
Affiliation(s)
- Srishti Sahu
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh 211004, India
| | - Bharat Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh 211004, India
| | - Ambak Kumar Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh 211004, India
| |
Collapse
|
17
|
Zhang M, Zheng S, Liang JQ. Transcriptional and reverse transcriptional regulation of host genes by human endogenous retroviruses in cancers. Front Microbiol 2022; 13:946296. [PMID: 35928153 PMCID: PMC9343867 DOI: 10.3389/fmicb.2022.946296] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Human endogenous retroviruses (HERVs) originated from ancient retroviral infections of germline cells millions of years ago and have evolved as part of the host genome. HERVs not only retain the capacity as retroelements but also regulate host genes. The expansion of HERVs involves transcription by RNA polymerase II, reverse transcription, and re-integration into the host genome. Fast progress in deep sequencing and functional analysis has revealed the importance of domesticated copies of HERVs, including their regulatory sequences, transcripts, and proteins in normal cells. However, evidence also suggests the involvement of HERVs in the development and progression of many types of cancer. Here we summarize the current state of knowledge about the expression of HERVs, transcriptional regulation of host genes by HERVs, and the functions of HERVs in reverse transcription and gene editing with their reverse transcriptase.
Collapse
Affiliation(s)
- Mengwen Zhang
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Ministry of Education Key Laboratory of Cancer Prevention and Intervention, Second Affiliated Hospital, Cancer Institute, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu Zheng
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Ministry of Education Key Laboratory of Cancer Prevention and Intervention, Second Affiliated Hospital, Cancer Institute, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Shu Zheng,
| | - Jessie Qiaoyi Liang
- Department of Medicine and Therapeutics, Faculty of Medicine, Center for Gut Microbiota Research, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Jessie Qiaoyi Liang,
| |
Collapse
|
18
|
Alcazer V, Bonaventura P, Tonon L, Michel E, Mutez V, Fabres C, Chuvin N, Boulos R, Estornes Y, Maguer-Satta V, Geistlich K, Viari A, Metzeler KH, Hiddemann W, Batch AMN, Herold T, Caux C, Depil S. HERVs characterize normal and leukemia stem cells and represent a source of shared epitopes for cancer immunotherapy. Am J Hematol 2022; 97:1200-1214. [PMID: 35759575 PMCID: PMC9540360 DOI: 10.1002/ajh.26647] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/06/2022]
Abstract
Human endogenous retroviruses (HERVs) represent 8% of the human genome. The expression of HERVs and their immune impact have not been extensively studied in Acute Myeloid Leukemia (AML). In this study, we used a reference of 14,968 HERV functional units to provide a thorough analysis of HERV expression in normal and AML bone marrow cells. We show that the HERV retrotranscriptome accurately characterizes normal and leukemic cell subpopulations, including leukemia stem cells, in line with different epigenetic profiles. We then show that HERV expression delineates AML subtypes with different prognoses. We finally propose a method to select and prioritize CD8+ T cell epitopes derived from AML-specific HERVs and we show that lymphocytes infiltrating patient bone marrow at diagnosis contain naturally occurring CD8+ T cells against these HERV epitopes. We also provide in vitro data supporting the functionality of HERV-specific CD8+ T-cells against AML cells. These results show that HERVs represent an important source of genetic information that can help enhancing disease stratification or biomarker identification and an important reservoir of alternative tumor-specific T cell epitopes relevant for cancer immunotherapy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Vincent Alcazer
- Department of Hematology, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France.,Cancer Research Center of Lyon, INSERM U1052 and CNRS UMR5286, Lyon, France
| | - Paola Bonaventura
- Cancer Research Center of Lyon, INSERM U1052 and CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Laurie Tonon
- Synergie Lyon Cancer Foundation, Gilles Thomas Bioinformatics Center, Centre Léon Bérard, Lyon, France
| | - Emilie Michel
- Ervaccine Technologies, Centre Leon Bérard, Lyon, France
| | - Virginie Mutez
- Ervaccine Technologies, Centre Leon Bérard, Lyon, France
| | - Clémentine Fabres
- Cancer Research Center of Lyon, INSERM U1052 and CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Nicolas Chuvin
- Ervaccine Technologies, Centre Leon Bérard, Lyon, France
| | - Rasha Boulos
- Ervaccine Technologies, Centre Leon Bérard, Lyon, France
| | - Yann Estornes
- Ervaccine Technologies, Centre Leon Bérard, Lyon, France
| | | | - Kevin Geistlich
- Cancer Research Center of Lyon, INSERM U1052 and CNRS UMR5286, Lyon, France
| | - Alain Viari
- Synergie Lyon Cancer Foundation, Gilles Thomas Bioinformatics Center, Centre Léon Bérard, Lyon, France
| | - Klaus H Metzeler
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,Dept. of Hematology and Cell Therapy, University of Leipzig, Leipzig, Germany
| | - Wolfgang Hiddemann
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Aarif M N Batch
- Institute of Medical Data Processing, Biometrics and Epidemiology (IBE), Faculty of Medicine, LMU Munich, Munich, Germany.,Data Integration for Future Medicine (DiFuture, www.difuture.de), LMU Munich, Munich, Germany
| | - Tobias Herold
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Christophe Caux
- Cancer Research Center of Lyon, INSERM U1052 and CNRS UMR5286, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Stéphane Depil
- Cancer Research Center of Lyon, INSERM U1052 and CNRS UMR5286, Lyon, France.,Ervaccine Technologies, Centre Leon Bérard, Lyon, France.,Centre Léon Bérard, Lyon, France.,University Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
19
|
Grundy EE, Diab N, Chiappinelli KB. Transposable element regulation and expression in cancer. FEBS J 2022; 289:1160-1179. [PMID: 33471418 PMCID: PMC11577309 DOI: 10.1111/febs.15722] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022]
Abstract
Approximately 45% of the human genome is composed of transposable elements (TEs). Expression of these elements is tightly regulated during normal development. TEs may be expressed at high levels in embryonic stem cells but are epigenetically silenced in terminally differentiated cells. As part of the global 'epigenetic dysregulation' that cells undergo during transformation from normal to cancer, TEs can lose epigenetic silencing and become transcribed, and, in some cases, active. Here, we summarize recent advances detailing the consequences of TE activation in cancer and describe how these understudied residents of our genome can both aid tumorigenesis and potentially be harnessed for anticancer therapies.
Collapse
Affiliation(s)
- Erin E Grundy
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
- The GW Cancer Center, The George Washington University, Washington, DC, USA
- The Institute for Biomedical Sciences at The George Washington University, Washington, DC, USA
| | - Noor Diab
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
- The GW Cancer Center, The George Washington University, Washington, DC, USA
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
- The GW Cancer Center, The George Washington University, Washington, DC, USA
| |
Collapse
|
20
|
Zhang H, Ma H, Yang X, Fan L, Tian S, Niu R, Yan M, Zheng M, Zhang S. Cell Fusion-Related Proteins and Signaling Pathways, and Their Roles in the Development and Progression of Cancer. Front Cell Dev Biol 2022; 9:809668. [PMID: 35178400 PMCID: PMC8846309 DOI: 10.3389/fcell.2021.809668] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/22/2021] [Indexed: 12/16/2022] Open
Abstract
Cell fusion is involved in many physiological and pathological processes, including gamete binding, and cancer development. The basic processes of cell fusion include membrane fusion, cytoplasmic mixing, and nuclear fusion. Cell fusion is regulated by different proteins and signaling pathways. Syncytin-1, syncytin-2, glial cell missing 1, galectin-1 and other proteins (annexins, myomaker, myomerger etc.) involved in cell fusion via the cyclic adenosine-dependent protein kinase A, mitogen-activated protein kinase, wingless/integrase-1, and c-Jun N-terminal kinase signaling pathways. In the progression of malignant tumors, cell fusion is essential during the organ-specific metastasis, epithelial-mesenchymal transformation, the formation of cancer stem cells (CSCs), cancer angiogenesis and cancer immunity. In addition, diploid cells can be induced to form polyploid giant cancer cells (PGCCs) via cell fusion under many kinds of stimuli, including cobalt chloride, chemotherapy, radiotherapy, and traditional Chinese medicine. PGCCs have CSC-like properties, and the daughter cells derived from PGCCs have a mesenchymal phenotype and exhibit strong migration, invasion, and proliferation abilities. Therefore, exploring the molecular mechanisms of cell fusion can enable us better understand the development of malignant tumors. In this review, the basic process of cell fusion and its significance in cancer is discussed.
Collapse
Affiliation(s)
- Hao Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hong Ma
- Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Xiaohui Yang
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Linlin Fan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shifeng Tian
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Rui Niu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Man Yan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Minying Zheng
- Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Shiwu Zhang
- Tianjin Union Medical Center, Nankai University, Tianjin, China
| |
Collapse
|
21
|
Mao J, Zhang Q, Wang Y, Zhuang Y, Xu L, Ma X, Guan D, Zhou J, Liu J, Wu X, Liang Q, Wang M, Cong Y. TERT activates endogenous retroviruses to promote an immunosuppressive tumour microenvironment. EMBO Rep 2022; 23:e52984. [PMID: 35107856 PMCID: PMC8982579 DOI: 10.15252/embr.202152984] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 12/29/2021] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Telomerase plays a pivotal role in tumorigenesis by both telomere-dependent and telomere-independent activities, although the underlying mechanisms are not completely understood. Using single-sample gene set enrichment analysis (ssGSEA) across 9,264 tumour samples, we observe that expression of telomerase reverse transcriptase (TERT) is closely associated with immunosuppressive signatures. We demonstrate that TERT can activate a subclass of endogenous retroviruses (ERVs) independent of its telomerase activity to form double-stranded RNAs (dsRNAs), which are sensed by the RIG-1/MDA5-MAVS signalling pathway and trigger interferon signalling in cancer cells. Furthermore, we show that TERT-induced ERV/interferon signalling stimulates the expression of chemokines, including CXCL10, which induces the infiltration of suppressive T-cell populations with increased percentage of CD4+ and FOXP3+ cells. These data reveal an unanticipated role for telomerase as a transcriptional activator of ERVs and provide strong evidence that TERT-mediated ERV/interferon signalling contributes to immune suppression in tumours.
Collapse
Affiliation(s)
- Jian Mao
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceHangzhou Normal University School of Basic Medical SciencesHangzhouChina
| | - Qian Zhang
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceHangzhou Normal University School of Basic Medical SciencesHangzhouChina
| | - Yaxiang Wang
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceHangzhou Normal University School of Basic Medical SciencesHangzhouChina
| | - Yang Zhuang
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceHangzhou Normal University School of Basic Medical SciencesHangzhouChina
| | - Lu Xu
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceHangzhou Normal University School of Basic Medical SciencesHangzhouChina
| | - Xiaohe Ma
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceHangzhou Normal University School of Basic Medical SciencesHangzhouChina
| | - Di Guan
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceHangzhou Normal University School of Basic Medical SciencesHangzhouChina
| | - Junzhi Zhou
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceHangzhou Normal University School of Basic Medical SciencesHangzhouChina
| | - Jiang Liu
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceHangzhou Normal University School of Basic Medical SciencesHangzhouChina
| | - Xiaoying Wu
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceHangzhou Normal University School of Basic Medical SciencesHangzhouChina
| | - Qian Liang
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceHangzhou Normal University School of Basic Medical SciencesHangzhouChina
| | - Miao Wang
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceHangzhou Normal University School of Basic Medical SciencesHangzhouChina
| | - Yu‐Sheng Cong
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceHangzhou Normal University School of Basic Medical SciencesHangzhouChina
| |
Collapse
|
22
|
Müller MD, Holst PJ, Nielsen KN. A Systematic Review of Expression and Immunogenicity of Human Endogenous Retroviral Proteins in Cancer and Discussion of Therapeutic Approaches. Int J Mol Sci 2022; 23:1330. [PMID: 35163254 PMCID: PMC8836156 DOI: 10.3390/ijms23031330] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of ancient retroviral infections that have become fixed in the human genome. While HERV genes are typically silenced in healthy somatic cells, there are numerous reports of HERV transcription and translation across a wide spectrum of cancers, while T and B cell responses against HERV proteins have been detected in cancer patients. This review systematically categorizes the published evidence on the expression of and adaptive immune response against specific HERVs in distinct cancer types. A systematic literature search was performed using Medical Search Headings (MeSH) in the PubMed/Medline database. Papers were included if they described the translational activity of HERVs. We present multiple tables that pair the protein expression of specific HERVs and cancer types with information on the quality of the evidence. We find that HERV-K is the most investigated HERV. HERV-W (syncytin-1) is the second-most investigated, while other HERVs have received less attention. From a therapeutic perspective, HERV-K and HERV-E are the only HERVs with experimental demonstration of effective targeted therapies, but unspecific approaches using antiviral and demethylating agents in combination with chemo- and immunotherapies have also been investigated.
Collapse
Affiliation(s)
- Mikkel Dons Müller
- Institute of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark;
| | | | | |
Collapse
|
23
|
McDonald JI, Diab N, Arthofer E, Hadley M, Kanholm T, Rentia U, Gomez S, Yu A, Grundy EE, Cox O, Topper MJ, Xing X, Strissel PL, Strick R, Wang T, Baylin SB, Chiappinelli KB. Epigenetic Therapies in Ovarian Cancer Alter Repetitive Element Expression in a TP53-Dependent Manner. Cancer Res 2021; 81:5176-5189. [PMID: 34433584 PMCID: PMC8530980 DOI: 10.1158/0008-5472.can-20-4243] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/15/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022]
Abstract
Epithelial ovarian carcinomas are particularly deadly due to intratumoral heterogeneity, resistance to standard-of-care therapies, and poor response to alternative treatments such as immunotherapy. Targeting the ovarian carcinoma epigenome with DNA methyltransferase inhibitors (DNMTi) or histone deacetylase inhibitors (HDACi) increases immune signaling and recruits CD8+ T cells and natural killer cells to fight ovarian carcinoma in murine models. This increased immune activity is caused by increased transcription of repetitive elements (RE) that form double-stranded RNA (dsRNA) and trigger an IFN response. To understand which REs are affected by epigenetic therapies in ovarian carcinoma, we assessed the effect of DNMTi and HDACi on ovarian carcinoma cell lines and patient samples. Subfamily-level (TEtranscripts) and individual locus-level (Telescope) analysis of REs showed that DNMTi treatment upregulated more REs than HDACi treatment. Upregulated REs were predominantly LTR and SINE subfamilies, and SINEs exhibited the greatest loss of DNA methylation upon DNMTi treatment. Cell lines with TP53 mutations exhibited significantly fewer upregulated REs with epigenetic therapy than wild-type TP53 cell lines. This observation was validated using isogenic cell lines; the TP53-mutant cell line had significantly higher baseline expression of REs but upregulated fewer upon epigenetic treatment. In addition, p53 activation increased expression of REs in wild-type but not mutant cell lines. These data give a comprehensive, genome-wide picture of RE chromatin and transcription-related changes in ovarian carcinoma after epigenetic treatment and implicate p53 in RE transcriptional regulation. SIGNIFICANCE: This study identifies the repetitive element targets of epigenetic therapies in ovarian carcinoma and indicates a role for p53 in this process.
Collapse
Affiliation(s)
- James I McDonald
- The George Washington University Cancer Center (GWCC), Washington, D.C
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
| | - Noor Diab
- The George Washington University Cancer Center (GWCC), Washington, D.C
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
| | - Elisa Arthofer
- The George Washington University Cancer Center (GWCC), Washington, D.C
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
| | - Melissa Hadley
- The George Washington University Cancer Center (GWCC), Washington, D.C
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
| | - Tomas Kanholm
- The George Washington University Cancer Center (GWCC), Washington, D.C
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
- The Institute for Biomedical Sciences at the George Washington University, Washington, DC
| | - Uzma Rentia
- The George Washington University Cancer Center (GWCC), Washington, D.C
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
| | - Stephanie Gomez
- The George Washington University Cancer Center (GWCC), Washington, D.C
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
- The Institute for Biomedical Sciences at the George Washington University, Washington, DC
| | - Angela Yu
- The George Washington University Cancer Center (GWCC), Washington, D.C
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
| | - Erin E Grundy
- The George Washington University Cancer Center (GWCC), Washington, D.C
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
- The Institute for Biomedical Sciences at the George Washington University, Washington, DC
| | - Olivia Cox
- The George Washington University Cancer Center (GWCC), Washington, D.C
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
| | - Michael J Topper
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Xiaoyun Xing
- The Edison Family Center for Genome Sciences and Systems Biology, Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Pamela L Strissel
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Reiner Strick
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ting Wang
- The Edison Family Center for Genome Sciences and Systems Biology, Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Stephen B Baylin
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Katherine B Chiappinelli
- The George Washington University Cancer Center (GWCC), Washington, D.C.
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC
| |
Collapse
|
24
|
Frey TR, Akinyemi IA, Burton EM, Bhaduri-McIntosh S, McIntosh MT. An Ancestral Retrovirus Envelope Protein Regulates Persistent Gammaherpesvirus Lifecycles. Front Microbiol 2021; 12:708404. [PMID: 34434177 PMCID: PMC8381357 DOI: 10.3389/fmicb.2021.708404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) persist as life-long infections alternating between latency and lytic replication. Human endogenous retroviruses (HERVs), via integration into the host genome, represent genetic remnants of ancient retroviral infections. Both show similar epigenetic silencing while dormant, but can reactivate in response to cell signaling cues or triggers that, for gammaherpesviruses, result in productive lytic replication. Given their co-existence with humans and shared epigenetic silencing, we asked if HERV expression might be linked to lytic activation of human gammaherpesviruses. We found ERVW-1 mRNA, encoding the functional HERV-W envelope protein Syncytin-1, along with other repeat class elements, to be elevated upon lytic activation of EBV. Knockdown/knockout of ERVW-1 reduced lytic activation of EBV and KSHV in response to various lytic cycle triggers. In this regard, reduced expression of immediate early proteins ZEBRA and RTA for EBV and KSHV, respectively, places Syncytin-1's influence on lytic activation mechanistically upstream of the latent-to-lytic switch. Conversely, overexpression of Syncytin-1 enhanced lytic activation of EBV and KSHV in response to lytic triggers, though this was not sufficient to induce lytic activation in the absence of such triggers. Syncytin-1 is expressed in replicating B cell blasts and lymphoma-derived B cell lines where it appears to contribute to cell cycle progression. Together, human gammaherpesviruses and B cells appear to have adapted a dependency on Syncytin-1 that facilitates the ability of EBV and KSHV to activate lytic replication from latency, while promoting viral persistence during latency by contributing to B cell proliferation.
Collapse
Affiliation(s)
- Tiffany R. Frey
- Department of Pediatrics, Child Health Research Institute, University of Florida, Gainesville, FL, United States
| | - Ibukun A. Akinyemi
- Department of Pediatrics, Child Health Research Institute, University of Florida, Gainesville, FL, United States
| | - Eric M. Burton
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Sumita Bhaduri-McIntosh
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, FL, United States
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| | - Michael T. McIntosh
- Department of Pediatrics, Child Health Research Institute, University of Florida, Gainesville, FL, United States
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
25
|
Wieland L, Engel K, Volkmer I, Krüger A, Posern G, Kornhuber ME, Staege MS, Emmer A. Overexpression of Endogenous Retroviruses and Malignancy Markers in Neuroblastoma Cell Lines by Medium-Induced Microenvironmental Changes. Front Oncol 2021; 11:637522. [PMID: 34026614 PMCID: PMC8138558 DOI: 10.3389/fonc.2021.637522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
Neuroblastoma (NB) is the commonest solid tumor outside the central nervous system in infancy and childhood with a unique biological heterogeneity. In patients with advanced, metastasizing neuroblastoma, treatment failure and poor prognosis is often marked by resistance to chemo- or immunotherapy. Thus, identification of robust biomarkers seems essential for understanding tumor progression and developing effective therapy. Here, we have studied the expression of human endogenous retroviruses (HERV) as potential targets in NB cell lines during stem-cell medium-induced microenvironmental change. Quantitative PCR revealed that relative expression of the HERV-K family and HERV-W1 ENV were increased in all three NB cell lines after incubation in stem-cell medium. Virus transcriptome analyses revealed the transcriptional activation of three endogenous retrovirus elements: HERV-R ENV (ERV3-1), HERV-E1 and HERV-Fc2 ENV (ERVFC1-1). Known malignancy markers in NB, e.g. proto-oncogenic MYC or MYCN were expressed highly heterogeneously in the three investigated NB cell lines with up-regulation of MYC and MYCN upon medium-induced microenvironmental change. In addition, SiMa cells exclusively showed a phenotype switching from loosely-adherent monolayers to low proliferating grape-like cellular aggregates, which was accompanied by an enhanced CD133 expression. Interestingly, the overexpression of HERV was associated with a significant elevation of immune checkpoint molecule CD200 in both quantitative PCR and RNA-seq analysis suggesting tumor escape mechanism in NB cell lines after incubation in serum-free stem cell medium.
Collapse
Affiliation(s)
- Lisa Wieland
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany.,Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Kristina Engel
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Ines Volkmer
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Anna Krüger
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Guido Posern
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Malte E Kornhuber
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Martin S Staege
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Alexander Emmer
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
26
|
Weyerer V, Strissel PL, Stöhr C, Eckstein M, Wach S, Taubert H, Brandl L, Geppert CI, Wullich B, Cynis H, Beckmann MW, Seliger B, Hartmann A, Strick R. Endogenous Retroviral-K Envelope Is a Novel Tumor Antigen and Prognostic Indicator of Renal Cell Carcinoma. Front Oncol 2021; 11:657187. [PMID: 33968761 PMCID: PMC8100683 DOI: 10.3389/fonc.2021.657187] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Renal cell carcinoma (RCC) is one of the ten most common cancers for men and women with an approximate 75% overall 5-year survival. Sixteen histological tumor subtypes exist and the most common are papillary, chromophobe and clear cell renal cell carcinoma (ccRCC) representing 85% of all RCC. Although epigenetically silenced, endogenous retroviral (ERV) genes become activated in tumors and function to ignite immune responses. Research has intensified to understand ERV protein function and their role as tumor antigens and targets for cancer (immune) therapy. ERV-K env is overexpressed and implicated as a therapeutic target for breast cancer, however studies in RCC are limited. In this investigation a human RCC tissue microarray (TMA) (n=374) predominantly consisting of the most common histological tumor subtypes was hybridized with an ERV-K env antibody and correlated with patient clinical data. TMA results showed the highest amount of ERV-K env protein expression and the strongest significant membrane expression in ccRCC versus other RCC subtypes. High ERV-K env total protein expression of all tumor subtypes significantly correlated with low tumor grading and a longer disease specific survival using multivariable analyses. Cell proliferation and invasion were assayed using the kidney cell lines HEK293 with wild-type p53 and a ccRCC cell line MZ1257RC mutated for p53. Transfecting these cell lines with a codon optimized ERV-K113 env overexpressing CMV vector was performed with or without 5’-Aza-2’-deoxycytidine (Aza) treatment to sustain promoter de-methylation. MZ1257RC showed induction of ERV-K113 expression and significantly increased both proliferation and invasion in the presence or absence of Aza. HEK293 cells demonstrated a restriction of ERV-K113 env expression and invasion with no changes in proliferation in the absence of Aza. However, in the presence of Aza despite increased ERV-K113 env expression, an inhibition of HEK293 proliferation and a further restriction of invasion was found. This study supports ERV-K env as a single prognostic indicator for better survival of RCC, which we propose represents a new tumor antigen. In addition, ERV-K env significantly regulates proliferation and invasion depending on p53 status and Aza treatment.
Collapse
Affiliation(s)
- Veronika Weyerer
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Pamela L Strissel
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany.,Department of Gynecology and Obstetrics, University Hospital Erlangen, Comprehensive Cancer Center, European Metropolitan Area Erlangen-Nuremberg (CCC ER-EMN), Friedrich-Alexander-University Erlangen-Nuernberg, Erlangen, Germany.,Adjunct Affiliation With Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Christine Stöhr
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Markus Eckstein
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Sven Wach
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Helge Taubert
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Lisa Brandl
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Carol I Geppert
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Bernd Wullich
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Holger Cynis
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle, Germany
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Comprehensive Cancer Center, European Metropolitan Area Erlangen-Nuremberg (CCC ER-EMN), Friedrich-Alexander-University Erlangen-Nuernberg, Erlangen, Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Reiner Strick
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Comprehensive Cancer Center, European Metropolitan Area Erlangen-Nuremberg (CCC ER-EMN), Friedrich-Alexander-University Erlangen-Nuernberg, Erlangen, Germany.,Translational Research Centre (TRC), Erlangen, Germany
| |
Collapse
|
27
|
Motwani J, Rodger EJ, Stockwell PA, Baguley BC, Macaulay EC, Eccles MR. Genome-wide DNA methylation and RNA expression differences correlate with invasiveness in melanoma cell lines. Epigenomics 2021; 13:577-598. [PMID: 33781093 DOI: 10.2217/epi-2020-0440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aims & objectives: The aim of this study was to investigate the role of DNA methylation in invasiveness in melanoma cells. Materials & methods: The authors carried out genome-wide transcriptome (RNA sequencing) and reduced representation bisulfite sequencing methylome profiling between noninvasive (n = 4) and invasive melanoma cell lines (n = 5). Results: The integration of differentially expressed genes and differentially methylated fragments (DMFs) identified 12 DMFs (two in AVPI1, one in HMG20B, two in BCL3, one in NTSR1, one in SYNJ2, one in ROBO2 and four in HORMAD2) that overlapped with either differentially expressed genes (eight DMFs and six genes) or cis-targets of lncRNAs (five DMFs associated with cis-targets and four differentially expressed lncRNAs). Conclusions: DNA methylation changes are associated with a number of transcriptional differences observed in noninvasive and invasive phenotypes in melanoma.
Collapse
Affiliation(s)
- Jyoti Motwani
- Department of Pathology, Otago Medical School - Dunedin Campus, University of Otago, Dunedin 9054, New Zealand
| | - Euan J Rodger
- Department of Pathology, Otago Medical School - Dunedin Campus, University of Otago, Dunedin 9054, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| | - Peter A Stockwell
- Department of Pathology, Otago Medical School - Dunedin Campus, University of Otago, Dunedin 9054, New Zealand
| | - Bruce C Baguley
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand.,Auckland Cancer Society Research Centre, The University of Auckland, Auckland 1023, New Zealand
| | - Erin C Macaulay
- Department of Pathology, Otago Medical School - Dunedin Campus, University of Otago, Dunedin 9054, New Zealand
| | - Michael R Eccles
- Department of Pathology, Otago Medical School - Dunedin Campus, University of Otago, Dunedin 9054, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
28
|
Fu Y, Zhuang X, Xia X, Li X, Xiao K, Liu X. Correlation Between Promoter Hypomethylation and Increased Expression of Syncytin-1 in Non-Small Cell Lung Cancer. Int J Gen Med 2021; 14:957-965. [PMID: 33776474 PMCID: PMC7989540 DOI: 10.2147/ijgm.s294392] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/19/2021] [Indexed: 12/15/2022] Open
Abstract
Introduction Syncytin-1 is a human endogenous retroviral (HERVW) envelope protein, which has been implicated in trophoblast and cancer cell fusions as well as in immunomodulatory functions. We investigated syncytin-1 expression and promoter methylation in non-small cell lung cancer (NSCLC) and the adjacent, para-carcinoma tissues. In addition, the correlation to patient survival differentiation of between 5-year survival and death group was analyzed. Methods Survival ratio was calculated by Kaplan-Meier survival curve. Death risk assessment was executed by Cox risk regression model. The 5ʹ-LTR methylation level of HERVW promoter was detected by EpiTYPER method. Results Syncytin-1 expression in NSCLC tissue was found to be significantly higher than in para-carcinoma tissues. Moreover, the 5-year survival group has a lower syncytin-1 expression than the death group. Clinical stage and the percentage of syncytin-1 positive cells were top risk factors according to Cox ratio risk regression model analysis. While the methylation level of the 5ʹ-LTR in HERVW gene promoter was relatively lower in NSCLC than para-carcinoma tissues, the methylation status of a CpG-2 site overlapping the Oct-1 binding site was found to be an important element potentially involved in the epigenetic regulation of HERVW gene expression. Conclusion These findings suggest that syncytin-1 could be a biomarker for the diagnosis/prognosis of NSCLC, and further studies are required to elucidate the exact role of syncytin-1 in the development of NSCLC as well as the underlying molecular mechanism for syncytin-1 function and regulation.
Collapse
Affiliation(s)
- Yang Fu
- Department of Reproductive Medicine Center, Jinan Maternity and Child Care Hospital, Jinan, 250001, People's Republic of China
| | - Xuewei Zhuang
- Department of Clinical Laboratory Medicine, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250031, People's Republic of China.,Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Xiyan Xia
- Department of Microbial Immune, Jinan Vocational College of Nursing, Jinan, 250012, People's Republic of China
| | - Xiaohui Li
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Ke Xiao
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Xiaojing Liu
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| |
Collapse
|
29
|
Gao Y, Yu XF, Chen T. Human endogenous retroviruses in cancer: Expression, regulation and function. Oncol Lett 2020; 21:121. [PMID: 33552242 PMCID: PMC7798031 DOI: 10.3892/ol.2020.12382] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are the remnants of ancient retroviruses that infected human germline cells and became integrated into the human genome millions of years ago. Although most of these sequences are incomplete and silent, several potential pathological roles of HERVs have been observed in numerous diseases, such as multiple sclerosis and rheumatoid arthritis, and especially cancer, including breast cancer and pancreatic carcinoma. The present review investigates the expression signatures and complex regulatory mechanisms of HERVs in cancer. The long terminal repeats-driven transcriptional initiation of HERVs are regulated by transcription factors (such as Sp3) and epigenetic modifications (such as DNA methylation), and are influenced by environmental factors (such as ultraviolet radiation). In addition, this review focuses on the dual opposing effects of HERVs in cancer. HERVs can suppress cancer via immune activation; however, they can also promote cancer. HERV env gene serves a prime role in promoting carcinogenesis in certain malignant tumors, including breast cancer, pancreatic cancer, germ cell tumors, leukemia and Kaposi's sarcoma. Also, HERV ENV proteins can promote cancer via immune suppression. Targeting ENV proteins is a potential future antitumor treatment modality.
Collapse
Affiliation(s)
- Yuan Gao
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zheijang 310009, P.R. China
| | - Xiao-Fang Yu
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zheijang 310009, P.R. China
| | - Ting Chen
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zheijang 310009, P.R. China
| |
Collapse
|
30
|
Vergara Bermejo A, Ragonnaud E, Daradoumis J, Holst P. Cancer Associated Endogenous Retroviruses: Ideal Immune Targets for Adenovirus-Based Immunotherapy. Int J Mol Sci 2020; 21:ijms21144843. [PMID: 32650622 PMCID: PMC7402293 DOI: 10.3390/ijms21144843] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer is a major challenge in our societies, according to the World Health Organization (WHO) about 1/6 deaths were cancer related in 2018 and it is considered the second leading cause of death globally. Immunotherapies have changed the paradigm of oncologic treatment for several cancers where the field had fallen short in providing competent therapies. Despite the improvement, broadly acting and highly effective therapies capable of eliminating or preventing human cancers with insufficient mutated antigens are still missing. Adenoviral vector-based vaccines are a successful tool in the treatment of various diseases including cancer; however, their success has been limited. In this review we discuss the potential of adenovirus as therapeutic tools and the current developments to use them against cancer. More specifically, we examine how to use them to target endogenous retroviruses (ERVs). ERVs, comprising 8% of the human genome, have been detected in several cancers, while they remain silent in healthy tissues. Their low immunogenicity together with their immunosuppressive capacity aid cancer to escape immunosurveillance. In that regard, virus-like-vaccine (VLV) technology, combining adenoviral vectors and virus-like-particles (VLPs), can be ideal to target ERVs and elicit B-cell responses, as well as CD8+ and CD4+ T-cells responses.
Collapse
Affiliation(s)
- Amaia Vergara Bermejo
- InProTher, Bioinnovation Institute, Copenhagen Bio Science Park, 2200 Copenhagen, Denmark; (E.R.); (J.D.)
- Correspondence: (A.V.B.); (P.H.)
| | - Emeline Ragonnaud
- InProTher, Bioinnovation Institute, Copenhagen Bio Science Park, 2200 Copenhagen, Denmark; (E.R.); (J.D.)
| | - Joana Daradoumis
- InProTher, Bioinnovation Institute, Copenhagen Bio Science Park, 2200 Copenhagen, Denmark; (E.R.); (J.D.)
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Peter Holst
- InProTher, Bioinnovation Institute, Copenhagen Bio Science Park, 2200 Copenhagen, Denmark; (E.R.); (J.D.)
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence: (A.V.B.); (P.H.)
| |
Collapse
|
31
|
Marasca F, Gasparotto E, Polimeni B, Vadalà R, Ranzani V, Bodega B. The Sophisticated Transcriptional Response Governed by Transposable Elements in Human Health and Disease. Int J Mol Sci 2020; 21:ijms21093201. [PMID: 32366056 PMCID: PMC7247572 DOI: 10.3390/ijms21093201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 01/15/2023] Open
Abstract
Transposable elements (TEs), which cover ~45% of the human genome, although firstly considered as “selfish” DNA, are nowadays recognized as driving forces in eukaryotic genome evolution. This capability resides in generating a plethora of sophisticated RNA regulatory networks that influence the cell type specific transcriptome in health and disease. Indeed, TEs are transcribed and their RNAs mediate multi-layered transcriptional regulatory functions in cellular identity establishment, but also in the regulation of cellular plasticity and adaptability to environmental cues, as occurs in the immune response. Moreover, TEs transcriptional deregulation also evolved to promote pathogenesis, as in autoimmune and inflammatory diseases and cancers. Importantly, many of these findings have been achieved through the employment of Next Generation Sequencing (NGS) technologies and bioinformatic tools that are in continuous improvement to overcome the limitations of analyzing TEs sequences. However, they are highly homologous, and their annotation is still ambiguous. Here, we will review some of the most recent findings, questions and improvements to study at high resolution this intriguing portion of the human genome in health and diseases, opening the scenario to novel therapeutic opportunities.
Collapse
Affiliation(s)
- Federica Marasca
- Fondazione INGM, Istituto Nazionale di Genetica Molecolare “Enrica e Romeo Invernizzi”, 20122 Milan, Italy; (F.M.); (E.G.); (B.P.); (R.V.); (V.R.)
| | - Erica Gasparotto
- Fondazione INGM, Istituto Nazionale di Genetica Molecolare “Enrica e Romeo Invernizzi”, 20122 Milan, Italy; (F.M.); (E.G.); (B.P.); (R.V.); (V.R.)
| | - Benedetto Polimeni
- Fondazione INGM, Istituto Nazionale di Genetica Molecolare “Enrica e Romeo Invernizzi”, 20122 Milan, Italy; (F.M.); (E.G.); (B.P.); (R.V.); (V.R.)
| | - Rebecca Vadalà
- Fondazione INGM, Istituto Nazionale di Genetica Molecolare “Enrica e Romeo Invernizzi”, 20122 Milan, Italy; (F.M.); (E.G.); (B.P.); (R.V.); (V.R.)
- Translational and Molecular Medicine, DIMET, University of Milan-Bicocca, 20900 Monza, Italy
| | - Valeria Ranzani
- Fondazione INGM, Istituto Nazionale di Genetica Molecolare “Enrica e Romeo Invernizzi”, 20122 Milan, Italy; (F.M.); (E.G.); (B.P.); (R.V.); (V.R.)
| | - Beatrice Bodega
- Fondazione INGM, Istituto Nazionale di Genetica Molecolare “Enrica e Romeo Invernizzi”, 20122 Milan, Italy; (F.M.); (E.G.); (B.P.); (R.V.); (V.R.)
- Correspondence:
| |
Collapse
|
32
|
Moufarrij S, Srivastava A, Gomez S, Hadley M, Palmer E, Austin PT, Chisholm S, Diab N, Roche K, Yu A, Li J, Zhu W, Lopez-Acevedo M, Villagra A, Chiappinelli KB. Combining DNMT and HDAC6 inhibitors increases anti-tumor immune signaling and decreases tumor burden in ovarian cancer. Sci Rep 2020; 10:3470. [PMID: 32103105 PMCID: PMC7044433 DOI: 10.1038/s41598-020-60409-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Novel therapies are urgently needed for ovarian cancer, the deadliest gynecologic malignancy. Ovarian cancer has thus far been refractory to immunotherapies that stimulate the host immune system to recognize and kill cancer cells. This may be because of a suppressive tumor immune microenvironment and lack of recruitment and activation of immune cells that kill cancer cells. Our previous work showed that epigenetic drugs including DNA methyltransferase inhibitors and histone deacetylase 6 inhibitors (DNMTis and HDAC6is) individually increase immune signaling in cancer cells. We find that combining DNMTi and HDAC6i results in an amplified type I interferon response, leading to increased cytokine and chemokine expression and higher expression of the MHC I antigen presentation complex in human and mouse ovarian cancer cell lines. Treating mice bearing ID8 Trp53-/- ovarian cancer with HDAC6i/DNMTi led to an increase in tumor-killing cells such as IFNg+ CD8, NK, and NKT cells and a reversal of the immunosuppressive tumor microenvironment with a decrease in MDSCs and PD-1hi CD4 T cells, corresponding with an increase in survival. Thus combining the epigenetic modulators DNMTi and HDAC6i increases anti-tumor immune signaling from cancer cells and has beneficial effects on the ovarian tumor immune microenvironment.
Collapse
Affiliation(s)
- Sara Moufarrij
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA
- The Department of Obstetrics & Gynecology, The George Washington University, Washington, DC, USA
| | - Aneil Srivastava
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA
- The Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Stephanie Gomez
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA
- The Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
- The Institute for Biomedical Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Melissa Hadley
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA
- The Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Erica Palmer
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA
- The Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, USA
| | - Paul Tran Austin
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA
- The Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Sarah Chisholm
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA
- The Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Noor Diab
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA
| | - Kyle Roche
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA
- The Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Angela Yu
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA
- The Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Jing Li
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA
- The Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, USA
| | - Wenge Zhu
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA
- The Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, USA
| | - Micael Lopez-Acevedo
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA
- The Department of Obstetrics & Gynecology, The George Washington University, Washington, DC, USA
| | - Alejandro Villagra
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA.
- The Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, USA.
| | - Katherine B Chiappinelli
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA.
- The Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA.
| |
Collapse
|
33
|
Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov 2019; 18:197-218. [PMID: 30610226 DOI: 10.1038/s41573-018-0007-y] [Citation(s) in RCA: 2057] [Impact Index Per Article: 342.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunotherapies are the most rapidly growing drug class and have a major impact in oncology and on human health. It is increasingly clear that the effectiveness of immunomodulatory strategies depends on the presence of a baseline immune response and on unleashing of pre-existing immunity. Therefore, a general consensus emerged on the central part played by effector T cells in the antitumour responses. Recent technological, analytical and mechanistic advances in immunology have enabled the identification of patients who are more likely to respond to immunotherapy. In this Review, we focus on defining hot, altered and cold tumours, the complexity of the tumour microenvironment, the Immunoscore and immune contexture of tumours, and we describe approaches to treat such tumours with combination immunotherapies, including checkpoint inhibitors. In the upcoming era of combination immunotherapy, it is becoming critical to understand the mechanisms responsible for hot, altered or cold immune tumours in order to boost a weak antitumour immunity. The impact of combination therapy on the immune response to convert an immune cold into a hot tumour will be discussed.
Collapse
|
34
|
Effects of Bisphenol A on endogenous retroviral envelopes expression and trophoblast fusion in BeWo cells. Reprod Toxicol 2019; 89:35-44. [PMID: 31278978 DOI: 10.1016/j.reprotox.2019.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 06/19/2019] [Accepted: 07/02/2019] [Indexed: 12/23/2022]
Abstract
Placenta is a target organ of Bisphenol A (BPA). To investigate possible effects on syncytiotrophoblast, the exchanging surface between mother and fetus, we exposed a trophoblast model (BeWo) to BPA concentrations occurring in humans (1 and 50 nM). We assessed the gene and protein expression of three human endogenous retroviral envelopes, specifically expressed in placenta (ERVW-1, ERVFRD-1 and ERV3-1), the secretion of β-hCG, the extent of trophoblast fusion and the activity of apoptosis markers (caspases 8, 3, 9 and PARP); additionally, the gene expression of transcription factors regulating HERV expression (i.e. GCM1, PPARγ, ERα and ERβ) was evaluated. At 50 nM, BPA induced ERVW-1, ERVFRD-1 and the corresponding syncytin proteins, ERV3-1, PPARγ, ERα and ERβ expression, increased β-hCG secretion and BeWo cells fusion, thus promoting the syncytiotrophoblast phenotype. The results support placenta as a target organ of BPA. Possible implications on fetal and pregnancy health should be carefully considered.
Collapse
|
35
|
Miranda A, Hamilton PT, Zhang AW, Pattnaik S, Becht E, Mezheyeuski A, Bruun J, Micke P, de Reynies A, Nelson BH. Cancer stemness, intratumoral heterogeneity, and immune response across cancers. Proc Natl Acad Sci U S A 2019; 116:9020-9029. [PMID: 30996127 PMCID: PMC6500180 DOI: 10.1073/pnas.1818210116] [Citation(s) in RCA: 360] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Regulatory programs that control the function of stem cells are active in cancer and confer properties that promote progression and therapy resistance. However, the impact of a stem cell-like tumor phenotype ("stemness") on the immunological properties of cancer has not been systematically explored. Using gene-expression-based metrics, we evaluated the association of stemness with immune cell infiltration and genomic, transcriptomic, and clinical parameters across 21 solid cancers. We found pervasive negative associations between cancer stemness and anticancer immunity. This occurred despite high stemness cancers exhibiting increased mutation load, cancer-testis antigen expression, and intratumoral heterogeneity. Stemness was also strongly associated with cell-intrinsic suppression of endogenous retroviruses and type I IFN signaling, and increased expression of multiple therapeutically accessible immunosuppressive pathways. Thus, stemness is not only a fundamental process in cancer progression but may provide a mechanistic link between antigenicity, intratumoral heterogeneity, and immune suppression across cancers.
Collapse
Affiliation(s)
- Alex Miranda
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada
| | | | - Allen W Zhang
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 4E6, Canada
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Graduate Bioinformatics Training Program, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Swetansu Pattnaik
- The Kinghorn Cancer Centre and Cancer Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Etienne Becht
- Singapore Immunology Network, Agency for Science, Technology and Research, 138648 Singapore
| | - Artur Mezheyeuski
- Department of Immunology, Genetics, and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Jarle Bruun
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | - Patrick Micke
- Department of Immunology, Genetics, and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Aurélien de Reynies
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Brad H Nelson
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada;
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 3E6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
36
|
Close to the Bedside: A Systematic Review of Endogenous Retroviruses and Their Impact in Oncology. J Surg Res 2019; 240:145-155. [PMID: 30933828 DOI: 10.1016/j.jss.2019.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/22/2018] [Accepted: 02/04/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Human endogenous retroviruses (HERVs) are genetic elements in the human genome, which resulted from ancient retroviral germline infections. HERVs have strong transcriptional promoters and enhancers that affect a cell's transcriptome. They also encode proteins that can exert effects in human cells. This review examines how our increased understanding of HERVs have led to their potential use as biomarkers and immunologic targets. MATERIAL AND METHODS PubMed/Medline, Embase, Web of Science, and Cochrane databases were used in a systematic search to identify all articles studying the potential impact of HERVs on surgical diseases. The search included studies that involved clinical patient samples in diseases including cancer, inflammatory conditions, and autoimmune disease. Articles focused on conditions not routinely managed by surgeons were excluded. RESULTS Eighty six articles met inclusion and quality criteria for this review and were included. Breast cancer and melanoma have robust evidence regarding the use of HERVs as potential tumor markers and immunologic targets. Reported evidence of the activity of HERVs in colorectal cancer, pancreatic cancer, hepatocellular cancer, prostate and ovarian cancer, germ cell tumors as well as idiopathic pulmonary hypertension, and the inflammatory response in burns was also reviewed. CONCLUSIONS Increasingly convincing evidence indicates that HERVs may play a role in solid organ malignancy and present important biomarkers or immunologic targets in multiple cancers. Innovative investigation of HERVs is a valuable focus of translational research and can deepen our understanding of cellular physiology and the effects of endogenous retroviruses on human biology. As strategies for treatment continue to focus on genome-based interventions, understanding the impact of endogenous retroviruses on human disease will be critical.
Collapse
|
37
|
Liu C, Xu J, Wen F, Yang F, Li X, Geng D, Li L, Chen J, Zheng J. Upregulation of syncytin-1 promotes invasion and metastasis by activating epithelial-mesenchymal transition-related pathway in endometrial carcinoma. Onco Targets Ther 2018; 12:31-40. [PMID: 30588028 PMCID: PMC6301305 DOI: 10.2147/ott.s191041] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Endometrial carcinoma (EC) is the most common and lethal malignancy worldwide. Syncytin-1 is expressed in multiple types of cancer. However, the expression pattern and potential mechanism of syncytin-1 and its clinical significance in EC remain unclear. Materials and methods We analyzed 130 primary EC specimens from Binzhou Medical University to investigate the clinical role of syncytin-1 in EC by using different advanced pathological stages of EC tissues. Kaplan–Meier analysis was used to measure the overall survival of EC patients. Syncytin-1 expression was analyzed by Western blot assays in HECCL-1 and RL-95-2 cells. Cell proliferation, cycle, migration, and invasion abilities were detected by cell counting kit-8, flow cytometry, and transwell assays. AKT and epithelial-mesenchymal transition (EMT)-related genes were assessed by Western blot assays in HECCL-1 and RL-95-2 cells. Results Syncytin-1 was upregulated in EC tissues and cells and was related to clinical stages, expression of ER, Ki-67, and overall survival of EC. Functional research revealed that overexpression of syncytin-1 can promote cell proliferation, cell cycle progression, and the migration and invasion of EC cells. Suppression of syncytin-1 expression also inhibited cell proliferation and apoptosis in vitro. The expression of syncytin-1 substantially improved the expression levels of EMT-related genes (vimentin, E-cadherin, slug, and ZEB1) but significantly decreased those of epithelial markers (N-cadherin and snail). In addition, we found that syncytin-1 was not correlated with AKT-related genes (total-AKT, p-AKT, and vinculin). Conclusion Our results suggested that syncytin-1 may promote aggressive behavior and can serve as a novel prognostic biomarker for EC. Our study provides new insights into the regulatory mechanism of EMT signaling.
Collapse
Affiliation(s)
- Changmin Liu
- Department of Oncology, Binzhou Medical University Hospital, Binzhou 256603, Shandong, China
| | - Jiqin Xu
- Department of Obstetrics and Gynecology, Shuyang People's Hospital, Affiliated to Xuzhou Medical University, Jiangsu, China
| | - Feifei Wen
- Department of Pathology, Binzhou Medical University Hospital, Binzhou 256603, Shandong, China
| | - Fangfang Yang
- Department of Oncology, Binzhou Medical University Hospital, Binzhou 256603, Shandong, China
| | - Xiaoming Li
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Dianzhong Geng
- Department of Oncology, Binzhou Medical University Hospital, Binzhou 256603, Shandong, China
| | - Lei Li
- Department of Oncology, Binzhou Medical University Hospital, Binzhou 256603, Shandong, China
| | - Jiming Chen
- Department of Obstetrics and Gynecology, The Affiliated Changzhou No 2 People's Hospital of Nanjing Medical University, Changzhou 213000, Jiangsu, China,
| | - Jing Zheng
- Department of Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou 256603, Shandong, China,
| |
Collapse
|
38
|
Grandi N, Tramontano E. HERV Envelope Proteins: Physiological Role and Pathogenic Potential in Cancer and Autoimmunity. Front Microbiol 2018; 9:462. [PMID: 29593697 PMCID: PMC5861771 DOI: 10.3389/fmicb.2018.00462] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/27/2018] [Indexed: 12/29/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are relics of ancient infections accounting for about the 8% of our genome. Despite their persistence in human DNA led to the accumulation of mutations, HERVs are still contributing to the human transcriptome, and a growing number of findings suggests that their expression products may have a role in various diseases. Among HERV products, the envelope proteins (Env) are currently highly investigated for their pathogenic properties, which could likely be participating to several disorders with complex etiology, particularly in the contexts of autoimmunity and cancer. In fact, HERV Env proteins have been shown, on the one side, to trigger both innate and adaptive immunity, prompting inflammatory, cytotoxic and apoptotic reactions; and, on the other side, to prevent the immune response activation, presenting immunosuppressive properties and acting as immune downregulators. In addition, HERV Env proteins have been shown to induce abnormal cell-cell fusion, possibly contributing to tumor development and metastasizing processes. Remarkably, even highly defective HERV env genes and alternative env splicing variants can provide further mechanisms of pathogenesis. A well-known example is the HERV-K(HML2) env gene that, depending on the presence or the absence of a 292-bp deletion, can originate two proteins of different length (Np9 and Rec) proposed to have oncogenic properties. The understanding of their involvement in complex pathological disorders made HERV Env proteins potential targets for therapeutic interventions. Of note, a monoclonal antibody directed against a HERV-W Env is currently under clinical trial as therapeutic approach for multiple sclerosis, representing the first HERV-based treatment. The present review will focus on the current knowledge of the HERV Env expression, summarizing its role in human physiology and its possible pathogenic effects in various cancer and autoimmune disorders. It moreover analyzes HERV Env possible exploitation for the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Nicole Grandi
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Enzo Tramontano
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cagliari, Italy
| |
Collapse
|
39
|
Giebler M, Staege MS, Blauschmidt S, Ohm LI, Kraus M, Würl P, Taubert H, Greither T. Elevated HERV-K Expression in Soft Tissue Sarcoma Is Associated with Worsened Relapse-Free Survival. Front Microbiol 2018; 9:211. [PMID: 29487589 PMCID: PMC5816752 DOI: 10.3389/fmicb.2018.00211] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/30/2018] [Indexed: 01/22/2023] Open
Abstract
A wide variety of endogenous retroviral sequences has been demonstrated in the human genome so far, divided into several different families according to the sequence homology to viral strains. While increased expression of human endogenous retrovirus (HERV) elements has already been linked to unfavorable prognosis in hepatocellular carcinoma, breast cancer, and ovarian carcinoma yet less is known about the impact of the expression of different HERV elements on sarcomagenesis in general as well as the outcome of soft tissue sarcoma (STS) patients. Therefore, in this study the association between expression of HERV-K and HERV-F and the clinicopathological characteristics in a cohort of STSs as well as the patients’ prognosis was evaluated. HERV-K and HERV-F expression was assessed by quantitative real-time PCR in 120 patient specimens. HERV-K and HERV-F expression was significantly correlated (rS = 0.5; p = 6.4 × 10-9; Spearman’s rank bivariate correlation). Also, tumor diameter exhibited a significant negative association to HERV-K and HERV-F expression. Levels of several hypoxia-related RNAs like HIF-1α and miR-210 showed a significant positive correlation with both HERV-K and HERV-F expression. Although in survival analyses no impact of HERV expression on disease-specific survival could be detected, patients with elevated HERV-K expression had a significantly shorter relapse-free survival (p = 0.014, log-rank analysis). In conclusion, we provide evidence for the first time that the increased expression of HERV-K in tumors is associated with STS patients’ prognosis.
Collapse
Affiliation(s)
- Maria Giebler
- Center for Reproductive Medicine and Andrology, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Martin S Staege
- Department of Pediatrics I, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Sindy Blauschmidt
- Center for Reproductive Medicine and Andrology, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Lea I Ohm
- Department of Pediatrics I, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Matthias Kraus
- Center for Reproductive Medicine and Andrology, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Peter Würl
- Department of General, Visceral and Thoracic Surgery, Städtische Klinikum Dessau, Dessau-Roßlau, Germany
| | - Helge Taubert
- Division Molecular Urology, Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Greither
- Center for Reproductive Medicine and Andrology, Martin Luther University of Halle-Wittenberg, Halle, Germany
| |
Collapse
|
40
|
Bustamante Rivera YY, Brütting C, Schmidt C, Volkmer I, Staege MS. Endogenous Retrovirus 3 - History, Physiology, and Pathology. Front Microbiol 2018; 8:2691. [PMID: 29379485 PMCID: PMC5775217 DOI: 10.3389/fmicb.2017.02691] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/26/2017] [Indexed: 01/05/2023] Open
Abstract
Endogenous viral elements (EVE) seem to be present in all eukaryotic genomes. The composition of EVE varies between different species. The endogenous retrovirus 3 (ERV3) is one of these elements that is present only in humans and other Catarrhini. Conservation of ERV3 in most of the investigated Catarrhini and the expression pattern in normal tissues suggest a putative physiological role of ERV3. On the other hand, ERV3 has been implicated in the pathogenesis of auto-immunity and cancer. In the present review we summarize knowledge about this interesting EVE. We propose the model that expression of ERV3 (and probably other EVE loci) under pathological conditions might be part of a metazoan SOS response.
Collapse
Affiliation(s)
| | - Christine Brütting
- Department of Paediatrics I, Martin Luther University Halle-Wittenberg, Halle, Germany.,Department of Neurology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Caroline Schmidt
- Department of Paediatrics I, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Ines Volkmer
- Department of Paediatrics I, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Martin S Staege
- Department of Paediatrics I, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
41
|
Topper MJ, Vaz M, Chiappinelli KB, DeStefano Shields CE, Niknafs N, Yen RWC, Wenzel A, Hicks J, Ballew M, Stone M, Tran PT, Zahnow CA, Hellmann MD, Anagnostou V, Strissel PL, Strick R, Velculescu VE, Baylin SB. Epigenetic Therapy Ties MYC Depletion to Reversing Immune Evasion and Treating Lung Cancer. Cell 2017; 171:1284-1300.e21. [PMID: 29195073 DOI: 10.1016/j.cell.2017.10.022] [Citation(s) in RCA: 335] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 08/07/2017] [Accepted: 10/13/2017] [Indexed: 12/25/2022]
Abstract
Combining DNA-demethylating agents (DNA methyltransferase inhibitors [DNMTis]) with histone deacetylase inhibitors (HDACis) holds promise for enhancing cancer immune therapy. Herein, pharmacologic and isoform specificity of HDACis are investigated to guide their addition to a DNMTi, thus devising a new, low-dose, sequential regimen that imparts a robust anti-tumor effect for non-small-cell lung cancer (NSCLC). Using in-vitro-treated NSCLC cell lines, we elucidate an interferon α/β-based transcriptional program with accompanying upregulation of antigen presentation machinery, mediated in part through double-stranded RNA (dsRNA) induction. This is accompanied by suppression of MYC signaling and an increase in the T cell chemoattractant CCL5. Use of this combination treatment schema in mouse models of NSCLC reverses tumor immune evasion and modulates T cell exhaustion state towards memory and effector T cell phenotypes. Key correlative science metrics emerge for an upcoming clinical trial, testing enhancement of immune checkpoint therapy for NSCLC.
Collapse
Affiliation(s)
- Michael J Topper
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA; The Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michelle Vaz
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University Cancer Center, Washington, DC 20052, USA
| | - Christina E DeStefano Shields
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Noushin Niknafs
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Ray-Whay Chiu Yen
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Alyssa Wenzel
- The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jessica Hicks
- Department of Urologic Pathology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Matthew Ballew
- Department of Radiation Oncology & Molecular Radiation Sciences, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Meredith Stone
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA; The Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Phuoc T Tran
- Department of Radiation Oncology & Molecular Radiation Sciences, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Cynthia A Zahnow
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Matthew D Hellmann
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Valsamo Anagnostou
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Pamela L Strissel
- Department of Gynecology and Obstetrics, Laboratory for Molecular Medicine, University-Clinic Erlangen, 91054 Erlangen, Germany
| | - Reiner Strick
- Department of Gynecology and Obstetrics, Laboratory for Molecular Medicine, University-Clinic Erlangen, 91054 Erlangen, Germany
| | - Victor E Velculescu
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Stephen B Baylin
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA.
| |
Collapse
|
42
|
The Genes of Life and Death: A Potential Role for Placental-Specific Genes in Cancer. Bioessays 2017; 39. [DOI: 10.1002/bies.201700091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/20/2017] [Indexed: 12/17/2022]
|
43
|
HEMO, an ancestral endogenous retroviral envelope protein shed in the blood of pregnant women and expressed in pluripotent stem cells and tumors. Proc Natl Acad Sci U S A 2017; 114:E6642-E6651. [PMID: 28739914 DOI: 10.1073/pnas.1702204114] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Capture of retroviral envelope genes is likely to have played a role in the emergence of placental mammals, with evidence for multiple, reiterated, and independent capture events occurring in mammals, and be responsible for the diversity of present day placental structures. Here, we uncover a full-length endogenous retrovirus envelope protein, dubbed HEMO [human endogenous MER34 (medium-reiteration-frequency-family-34) ORF], with unprecedented characteristics, because it is actively shed in the blood circulation in humans via specific cleavage of the precursor envelope protein upstream of the transmembrane domain. At variance with previously identified retroviral envelope genes, its encoding gene is found to be transcribed from a unique CpG-rich promoter not related to a retroviral LTR, with sites of expression including the placenta as well as other tissues and rather unexpectedly, stem cells as well as reprogrammed induced pluripotent stem cells (iPSCs), where the protein can also be detected. We provide evidence that the associated retroviral capture event most probably occurred >100 Mya before the split of Laurasiatheria and Euarchontoglires, with the identified retroviral envelope gene encoding a full-length protein in all simians under purifying selection and with similar shedding capacity. Finally, a comprehensive screen of the expression of the gene discloses high transcript levels in several tumor tissues, such as germ cell, breast, and ovarian tumors, with in the latter case, evidence for a histotype dependence and specific protein expression in clear-cell carcinoma. Altogether, the identified protein could constitute a "stemness marker" of the normal cell and a possible target for immunotherapeutic approaches in tumors.
Collapse
|
44
|
Becker J, Pérot P, Cheynet V, Oriol G, Mugnier N, Mommert M, Tabone O, Textoris J, Veyrieras JB, Mallet F. A comprehensive hybridization model allows whole HERV transcriptome profiling using high density microarray. BMC Genomics 2017; 18:286. [PMID: 28390408 PMCID: PMC5385096 DOI: 10.1186/s12864-017-3669-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/28/2017] [Indexed: 02/07/2023] Open
Abstract
Background Human endogenous retroviruses (HERVs) have received much attention for their implications in the etiology of many human diseases and their profound effect on evolution. Notably, recent studies have highlighted associations between HERVs expression and cancers (Yu et al., Int J Mol Med 32, 2013), autoimmunity (Balada et al., Int Rev Immunol 29:351–370, 2010) and neurological (Christensen, J Neuroimmune Pharmacol 5:326–335, 2010) conditions. Their repetitive nature makes their study particularly challenging, where expression studies have largely focused on individual loci (De Parseval et al., J Virol 77:10414–10422, 2003) or general trends within families (Forsman et al., J Virol Methods 129:16–30, 2005; Seifarth et al., J Virol 79:341–352, 2005; Pichon et al., Nucleic Acids Res 34:e46, 2006). Methods To refine our understanding of HERVs activity, we introduce here a new microarray, HERV-V3. This work was made possible by the careful detection and annotation of genomic HERV/MaLR sequences as well as the development of a new hybridization model, allowing the optimization of probe performances and the control of cross-reactions. Results HERV-V3 offers an almost complete coverage of HERVs and their ancestors (mammalian apparent LTR-retrotransposons, MaLRs) at the locus level along with four other repertoires (active LINE-1 elements, lncRNA, a selection of 1559 human genes and common infectious viruses). We demonstrate that HERV-V3 analytical performances are comparable with commercial Affymetrix arrays, and that for a selection of tissue/pathological specific loci, the patterns of expression measured on HERV-V3 is consistent with those reported in the literature. Conclusions Given its large HERVs/MaLRs coverage and additional repertoires, HERV-V3 opens the door to multiple applications such as enhancers and alternative promoters identification, biomarkers identification as well as the characterization of genes and HERVs/MaLRs modulation caused by viral infection. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3669-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jérémie Becker
- Joint research unit, Hospice Civils de Lyon, bioMerieux, Centre Hospitalier Lyon Sud, 165 Chemin du Grand Revoyet, 69310, Pierre-Benite, France
| | - Philippe Pérot
- Joint research unit, Hospice Civils de Lyon, bioMerieux, Centre Hospitalier Lyon Sud, 165 Chemin du Grand Revoyet, 69310, Pierre-Benite, France
| | - Valérie Cheynet
- Joint research unit, Hospice Civils de Lyon, bioMerieux, Centre Hospitalier Lyon Sud, 165 Chemin du Grand Revoyet, 69310, Pierre-Benite, France
| | - Guy Oriol
- Joint research unit, Hospice Civils de Lyon, bioMerieux, Centre Hospitalier Lyon Sud, 165 Chemin du Grand Revoyet, 69310, Pierre-Benite, France
| | - Nathalie Mugnier
- Bioinformatics Research Department, bioMerieux, 376 Chemin de l'Orme, 69280, Marcy l'Etoile, France
| | - Marine Mommert
- Joint research unit, Hospice Civils de Lyon, bioMerieux, Centre Hospitalier Lyon Sud, 165 Chemin du Grand Revoyet, 69310, Pierre-Benite, France.,EA 7426 Pathophysiology of Injury-induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôpital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon Cedex 3, France
| | - Olivier Tabone
- EA 7426 Pathophysiology of Injury-induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôpital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon Cedex 3, France
| | - Julien Textoris
- EA 7426 Pathophysiology of Injury-induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôpital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon Cedex 3, France
| | - Jean-Baptiste Veyrieras
- Bioinformatics Research Department, bioMerieux, 376 Chemin de l'Orme, 69280, Marcy l'Etoile, France
| | - François Mallet
- Joint research unit, Hospice Civils de Lyon, bioMerieux, Centre Hospitalier Lyon Sud, 165 Chemin du Grand Revoyet, 69310, Pierre-Benite, France. .,EA 7426 Pathophysiology of Injury-induced Immunosuppression, University of Lyon1-Hospices Civils de Lyon-bioMérieux, Hôpital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon Cedex 3, France.
| |
Collapse
|
45
|
Wolff F, Leisch M, Greil R, Risch A, Pleyer L. The double-edged sword of (re)expression of genes by hypomethylating agents: from viral mimicry to exploitation as priming agents for targeted immune checkpoint modulation. Cell Commun Signal 2017; 15:13. [PMID: 28359286 PMCID: PMC5374693 DOI: 10.1186/s12964-017-0168-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/21/2017] [Indexed: 12/20/2022] Open
Abstract
Hypomethylating agents (HMAs) have been widely used over the last decade, approved for use in myelodysplastic syndrome (MDS), chronic myelomonocytic leukemia (CMML) and acute myeloid leukemia (AML). The proposed central mechanism of action of HMAs, is the reversal of aberrant methylation in tumor cells, thus reactivating CpG-island promoters and leading to (re)expression of tumor suppressor genes. Recent investigations into the mode of action of azacitidine (AZA) and decitabine (DAC) have revealed new molecular mechanisms that impinge on tumor immunity via induction of an interferon response, through activation of endogenous retroviral elements (ERVs) that are normally epigenetically silenced. Although the global demethylation of DNA by HMAs can induce anti-tumor effects, it can also upregulate the expression of inhibitory immune checkpoint receptors and their ligands, resulting in secondary resistance to HMAs. Recent studies have, however, suggested that this could be exploited to prime or (re)sensitize tumors to immune checkpoint inhibitor therapies. In recent years, immune checkpoints have been targeted by novel therapies, with the aim of (re)activating the host immune system to specifically eliminate malignant cells. Antibodies blocking checkpoint receptors have been FDA-approved for some solid tumors and a plethora of clinical trials testing these and other checkpoint inhibitors are under way. This review will discuss AZA and DAC novel mechanisms of action resulting from the re-expression of pathologically hypermethylated promoters of gene sets that are related to interferon signaling, antigen presentation and inflammation. We also review new insights into the molecular mechanisms of action of transient, low-dose HMAs on various tumor types and discuss the potential of new treatment options and combinations.
Collapse
Affiliation(s)
- Florian Wolff
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Michael Leisch
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, A-5020, Salzburg, Austria
| | - Richard Greil
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, A-5020, Salzburg, Austria.,Salzburg Cancer Research Institute - Center for Clinical Cancer and Immunology Trials, Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | - Angela Risch
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | - Lisa Pleyer
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, A-5020, Salzburg, Austria. .,Salzburg Cancer Research Institute - Center for Clinical Cancer and Immunology Trials, Salzburg, Austria. .,Cancer Cluster Salzburg, Salzburg, Austria.
| |
Collapse
|
46
|
Benešová M, Trejbalová K, Kovářová D, Vernerová Z, Hron T, Kučerová D, Hejnar J. DNA hypomethylation and aberrant expression of the human endogenous retrovirus ERVWE1/syncytin-1 in seminomas. Retrovirology 2017; 14:20. [PMID: 28302141 PMCID: PMC5356313 DOI: 10.1186/s12977-017-0342-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/03/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Syncytin-1 and 2, human fusogenic glycoproteins encoded by the env genes of the endogenous retroviral loci ERVWE1 and ERVFRDE1, respectively, contribute to the differentiation of multinucleated syncytiotrophoblast in chorionic villi. In non-trophoblastic cells, however, the expression of syncytins has to be suppressed to avoid potential pathogenic effects. Previously, we have shown that the transcriptional suppression of ERVWE1 promoter is controlled epigenetically by DNA methylation and chromatin modifications. In this study, we describe the aberrant expression of syncytin-1 in biopsies of testicular germ cell tumors. RESULTS We found efficient expression and splicing of syncytin-1 in seminomas and mixed germ cell tumors with seminoma component. Although another fusogenic gene, syncytin-2 was also derepressed in seminomas, its expression was significantly lower than that of syncytin-1. Neither the transcription factor GCM1 nor the increased copy number of ERVWE1 were sufficient for this aberrant expression of syncytin-1 in seminomas. In accordance with our recent finding of the highly increased expression of TET1 dioxygenase in most seminomas, the ERVWE1 promoter was significantly hypomethylated in comparison with the matched controls. In contrast, 5-hydroxymethylcytosine levels were not detectable at the ERVWE1 promoter. We further describe that another endogenous retroviral element adjacent to ERVWE1 remains transcriptionally suppressed and two additional HERV-W family members are only slightly upregulated in seminomas. CONCLUSIONS We conclude that DNA demethylation of the ERVWE1 promoter in seminomas is a prerequisite for syncytin-1 derepression. We propose the spliced syncytin-1 expression as a marker of seminoma and suggest that aberrant expression of endogenous retroviruses might be a correlate of the hypomethylated genome of seminomas.
Collapse
Affiliation(s)
- Martina Benešová
- Institute of Molecular Genetics, Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Kateřina Trejbalová
- Institute of Molecular Genetics, Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic.
| | - Denisa Kovářová
- Institute of Molecular Genetics, Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Zdenka Vernerová
- Department of Pathology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomáš Hron
- Institute of Molecular Genetics, Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Dana Kučerová
- Institute of Molecular Genetics, Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Jiří Hejnar
- Institute of Molecular Genetics, Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic.
| |
Collapse
|
47
|
A New Molecular Mechanism Underlying the Antitumor Effect of DNA Methylation Inhibitors via an Antiviral Immune Response. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 106:227-242. [DOI: 10.1016/bs.apcsb.2016.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Contribution of Syncytins and Other Endogenous Retroviral Envelopes to Human Placenta Pathologies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 145:111-162. [DOI: 10.1016/bs.pmbts.2016.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Soygur B, Sati L. The role of syncytins in human reproduction and reproductive organ cancers. Reproduction 2016; 152:R167-78. [PMID: 27486264 DOI: 10.1530/rep-16-0031] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 08/01/2016] [Indexed: 12/29/2022]
Abstract
Human life begins with sperm and oocyte fusion. After fertilization, various fusion events occur during human embryogenesis and morphogenesis. For example, the fusion of trophoblastic cells constitutes a key process for normal placental development. Fusion in the placenta is facilitated by syncytin 1 and syncytin 2. These syncytins arose from retroviral sequences that entered the primate genome 25 million and more than 40 million years ago respectively. About 8% of the human genome consists of similar human endogenous retroviral (HERVs) sequences. Many are inactive because of mutations or deletions. However, the role of the few that remain transcriptionally active has not been fully elucidated. Syncytin proteins maintain cell-cell fusogenic activity based on ENV: gene-mediated viral cell entry. In this review, we summarize how syncytins and their receptors are involved in fusion events during human reproduction. The significance of syncytins in tumorigenesis is also discussed.
Collapse
Affiliation(s)
- Bikem Soygur
- Department of Histology and EmbryologyAkdeniz University School of Medicine, Antalya, Turkey
| | - Leyla Sati
- Department of Histology and EmbryologyAkdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
50
|
Kozlov AP. Expression of evolutionarily novel genes in tumors. Infect Agent Cancer 2016; 11:34. [PMID: 27437030 PMCID: PMC4949931 DOI: 10.1186/s13027-016-0077-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/18/2016] [Indexed: 01/29/2023] Open
Abstract
The evolutionarily novel genes originated through different molecular mechanisms are expressed in tumors. Sometimes the expression of evolutionarily novel genes in tumors is highly specific. Moreover positive selection of many human tumor-related genes in primate lineage suggests their involvement in the origin of new functions beneficial to organisms. It is suggested to consider the expression of evolutionarily young or novel genes in tumors as a new biological phenomenon, a phenomenon of TSEEN (tumor specifically expressed, evolutionarily novel) genes.
Collapse
Affiliation(s)
- A. P. Kozlov
- The Biomedical Center and Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| |
Collapse
|