1
|
Kaviyarasan V, Das A, Deka D, Saha B, Banerjee A, Sharma NR, Duttaroy AK, Pathak S. Advancements in immunotherapy for colorectal cancer treatment: a comprehensive review of strategies, challenges, and future prospective. Int J Colorectal Dis 2024; 40:1. [PMID: 39731596 DOI: 10.1007/s00384-024-04790-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2024] [Indexed: 12/30/2024]
Abstract
PURPOSE Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Metastatic colorectal cancer (mCRC) continues to present significant challenges, particularly in patients with proficient mismatch repair/microsatellite stable (pMMR/MSS) tumors. This narrative review aims to provide recent developments in immunotherapy for CRC treatment, focusing on its efficacy and challenges. METHODS This review discussed the various immunotherapeutic strategies for CRC treatment, including immune checkpoint inhibitors (ICIs) targeting PD-1 and PD-L1, combination therapies involving ICIs with other modalities, chimeric antigen receptor T-cell (CAR-T) cell therapy, and cancer vaccines. The role of the tumor microenvironment and immune evasion mechanisms was also explored to understand their impact on the effectiveness of these therapies. RESULTS This review provides a comprehensive update of recent advancements in immunotherapy for CRC, highlighting the potential of various immunotherapeutic approaches, including immune checkpoint inhibitors, combination therapies, CAR-T therapy, and vaccination strategies. The results of checkpoint inhibitors, particularly in patients with MSI-H/dMMR tumors, which have significant improvements in survival rates have been observed. Furthermore, this review also addresses the challenges faced in treating pMMR/MSS CRC, which remains resistant to immunotherapy. CONCLUSION Immunotherapy plays a significant role in the treatment of CRC, particularly in patients with MSI-H/dMMR tumors. However, many challenges remain, especially in treating pMMR/MSS CRC. This review discussed the need for further research into combination therapies, biomarker development, CAR-T cell therapy, and a deeper understanding of immune evasion mechanisms for CRC treatment.
Collapse
Affiliation(s)
- Vaishak Kaviyarasan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Alakesh Das
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Dikshita Deka
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Biki Saha
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India.
| | - Neeta Raj Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India.
| |
Collapse
|
2
|
van Weverwijk A, de Visser KE. Mechanisms driving the immunoregulatory function of cancer cells. Nat Rev Cancer 2023; 23:193-215. [PMID: 36717668 DOI: 10.1038/s41568-022-00544-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/13/2022] [Indexed: 01/31/2023]
Abstract
Tumours display an astonishing variation in the spatial distribution, composition and activation state of immune cells, which impacts their progression and response to immunotherapy. Shedding light on the mechanisms that govern the diversity and function of immune cells in the tumour microenvironment will pave the way for the development of more tailored immunomodulatory strategies for the benefit of patients with cancer. Cancer cells, by virtue of their paracrine and juxtacrine communication mechanisms, are key contributors to intertumour heterogeneity in immune contextures. In this Review, we discuss how cancer cell-intrinsic features, including (epi)genetic aberrations, signalling pathway deregulation and altered metabolism, play a key role in orchestrating the composition and functional state of the immune landscape, and influence the therapeutic benefit of immunomodulatory strategies. Moreover, we highlight how targeting cancer cell-intrinsic parameters or their downstream immunoregulatory pathways is a viable strategy to manipulate the tumour immune milieu in favour of antitumour immunity.
Collapse
Affiliation(s)
- Antoinette van Weverwijk
- Division of Tumour Biology & Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Karin E de Visser
- Division of Tumour Biology & Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands.
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands.
| |
Collapse
|
3
|
Wang YX, Jin YY, Wang J, Zhao ZC, Xue KW, Xiong H, Che HL, Ge YJ, Wu GS. Icaritin Derivative IC2 Induces Cytoprotective Autophagy of Breast Cancer Cells via SCD1 Inhibition. Molecules 2023; 28:1109. [PMID: 36770781 PMCID: PMC9920188 DOI: 10.3390/molecules28031109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Breast cancer is one of the most prevalent malignancies and the leading cause of cancer-associated mortality in China. Icaritin (ICT), a prenyl flavonoid derived from the Epimedium Genus, has been proven to inhibit the proliferation and stemness of breast cancer cells. Our previous study demonstrated that IC2, a derivative of ICT, could induce breast cancer cell apoptosis by Stearoyl-CoA desaturase 1 (SCD1) inhibition. The present study further investigated the mechanism of the inhibitory effects of IC2 on breast cancer cells in vitro and in vivo. Our results proved that IC2 could stimulate autophagy in breast cancer cells with the activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK) signaling and mitogen-activated protein kinase (MAPK) signaling. Combination treatment of the AMPK inhibitor decreased IC2-induced autophagy while it markedly enhanced IC2-induced apoptosis. In common with IC2-induced apoptosis, SCD1 overexpression or the addition of exogenous oleic acid (OA) could also alleviate IC2-induced autophagy. In vivo assays additionally demonstrated that IC2 treatment markedly inhibited tumor growth in a mouse breast cancer xenograft model. Overall, our study was the first to demonstrate that IC2 induced cytoprotective autophagy by SCD1 inhibition in breast cancer cells and that the autophagy inhibitor markedly enhanced the anticancer activity of IC2. Therefore, IC2 was a potential candidate compound in combination therapy for breast cancer.
Collapse
Affiliation(s)
- Yi-Xuan Wang
- Department of Basic Medical Science, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Yi-Yuan Jin
- Department of Basic Medical Science, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
- Taizhou Center for Disease Control and Prevention, Taizhou 318000, China
| | - Jie Wang
- Department of Basic Medical Science, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Zi-Cheng Zhao
- Department of Basic Medical Science, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Ke-Wen Xue
- Department of Basic Medical Science, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - He Xiong
- Department of Basic Medical Science, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Hui-Lian Che
- Department of Basic Medical Science, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Yun-Jun Ge
- Department of Basic Medical Science, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Guo-Sheng Wu
- Department of Basic Medical Science, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| |
Collapse
|
4
|
Sharma S, Tyagi K, Dang S. Use of nanotechnology in dry eye syndrome. NANOTECHNOLOGY IN OPHTHALMOLOGY 2023:227-246. [DOI: 10.1016/b978-0-443-15264-1.00010-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Engelsen AST, Lotsberg ML, Abou Khouzam R, Thiery JP, Lorens JB, Chouaib S, Terry S. Dissecting the Role of AXL in Cancer Immune Escape and Resistance to Immune Checkpoint Inhibition. Front Immunol 2022; 13:869676. [PMID: 35572601 PMCID: PMC9092944 DOI: 10.3389/fimmu.2022.869676] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
The development and implementation of Immune Checkpoint Inhibitors (ICI) in clinical oncology have significantly improved the survival of a subset of cancer patients with metastatic disease previously considered uniformly lethal. However, the low response rates and the low number of patients with durable clinical responses remain major concerns and underscore the limited understanding of mechanisms regulating anti-tumor immunity and tumor immune resistance. There is an urgent unmet need for novel approaches to enhance the efficacy of ICI in the clinic, and for predictive tools that can accurately predict ICI responders based on the composition of their tumor microenvironment. The receptor tyrosine kinase (RTK) AXL has been associated with poor prognosis in numerous malignancies and the emergence of therapy resistance. AXL is a member of the TYRO3-AXL-MERTK (TAM) kinase family. Upon binding to its ligand GAS6, AXL regulates cell signaling cascades and cellular communication between various components of the tumor microenvironment, including cancer cells, endothelial cells, and immune cells. Converging evidence points to AXL as an attractive molecular target to overcome therapy resistance and immunosuppression, supported by the potential of AXL inhibitors to improve ICI efficacy. Here, we review the current literature on the prominent role of AXL in regulating cancer progression, with particular attention to its effects on anti-tumor immune response and resistance to ICI. We discuss future directions with the aim to understand better the complex role of AXL and TAM receptors in cancer and the potential value of this knowledge and targeted inhibition for the benefit of cancer patients.
Collapse
Affiliation(s)
- Agnete S. T. Engelsen
- Centre for Cancer Biomarkers and Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Maria L. Lotsberg
- Centre for Cancer Biomarkers and Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Jean-Paul Thiery
- Centre for Cancer Biomarkers and Department of Biomedicine, University of Bergen, Bergen, Norway
- Guangzhou Laboratory, Guangzhou, China
- Inserm, UMR 1186, Integrative Tumor Immunology and Immunotherapy, Villejuif, France
| | - James B. Lorens
- Centre for Cancer Biomarkers and Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
- Inserm, UMR 1186, Integrative Tumor Immunology and Immunotherapy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Faculty of Medicine, University Paris Sud, Le Kremlin-Bicêtre, France
| | - Stéphane Terry
- Inserm, UMR 1186, Integrative Tumor Immunology and Immunotherapy, Villejuif, France
- Gustave Roussy, Villejuif, France
- Faculty of Medicine, University Paris Sud, Le Kremlin-Bicêtre, France
- Research Department, Inovarion, Paris, France
| |
Collapse
|
6
|
Understanding autophagy role in cancer stem cell development. Mol Biol Rep 2022; 49:6741-6751. [PMID: 35277787 DOI: 10.1007/s11033-022-07299-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 12/30/2022]
Abstract
Cancer stem cells (CSCs) are a small subpopulation of immature cells located in the tumor mass. These cells are responsible for tumor development, proliferation, resistance and spreading. CSCs are characterized by three unique features: the ability to self-renew, differentiation and tumor formation. CSCs are similar to stem cells, but they differ in the malignant phenotype. CSCs become immortal and survive harsh environmental conditions such as hypoxia, starvation and oxidative stress. However, this harsh tumor microenvironment induces the activation of autophagy, which further increases the CSCs stemness profile, and all these features further increase tumorigenicity and metastasis capacity. Autophagy is induced by the extracellular and cellular microenvironment. Hypoxia is one of the most common factors that highly increases the activity of autophagy in CSCs. Therefore, hypoxia-induced autophagy and CSCs proliferation should be elucidated in order to find a novel cure to defeat cancer cells (CSCs and non-CSCs). The remaining challenges to close the gap between the laboratory bench and the development of therapies, to use autophagy against CSCs in patients, could be addressed by adopting a 3D platform to better-mimic the natural environment in which these cells reside. Ultimately allowing to obtain the blueprints for bioprocess scaling up and to develop the production pipeline for safe and cost-effective autophagy-based novel biologics.
Collapse
|
7
|
Wilczyński JR, Wilczyński M, Paradowska E. Cancer Stem Cells in Ovarian Cancer-A Source of Tumor Success and a Challenging Target for Novel Therapies. Int J Mol Sci 2022; 23:ijms23052496. [PMID: 35269636 PMCID: PMC8910575 DOI: 10.3390/ijms23052496] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Ovarian cancer is the most lethal neoplasm of the female genital organs. Despite indisputable progress in the treatment of ovarian cancer, the problems of chemo-resistance and recurrent disease are the main obstacles for successful therapy. One of the main reasons for this is the presence of a specific cell population of cancer stem cells. The aim of this review is to show the most contemporary knowledge concerning the biology of ovarian cancer stem cells (OCSCs) and their impact on chemo-resistance and prognosis in ovarian cancer patients, as well as to present the treatment options targeted exclusively on the OCSCs. The review presents data concerning the role of cancer stem cells in general and then concentrates on OCSCs. The surface and intracellular OCSCs markers and their meaning both for cancer biology and clinical prognosis, signaling pathways specifically activated in OCSCs, the genetic and epigenetic regulation of OCSCs function including the recent studies on the non-coding RNA regulation, cooperation between OCSCs and the tumor microenvironment (ovarian cancer niche) including very specific environment such as ascites fluid, the role of shear stress, autophagy and metabolic changes for the function of OCSCs, and finally mechanisms of OCSCs escape from immune surveillance, are described and discussed extensively. The possibilities of anti-OCSCs therapy both in experimental settings and in clinical trials are presented, including the recent II phase clinical trials and immunotherapy. OCSCs are a unique population of cancer cells showing a great plasticity, self-renewal potential and resistance against anti-cancer treatment. They are responsible for the progression and recurrence of the tumor. Several completed and ongoing clinical trials have tested different anti-OCSCs drugs which, however, have shown unsatisfactory efficacy in most cases. We propose a novel approach to ovarian cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
- Correspondence:
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother’s Health Center—Research Institute, 281/289 Rzgowska Str., 93-338 Lodz, Poland;
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland;
| |
Collapse
|
8
|
Wilczyński JR. Cancer Stem Cells: An Ever-Hiding Foe. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:219-251. [PMID: 35165866 DOI: 10.1007/978-3-030-91311-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cancer stem cells are a population of cells enable to reproduce the original phenotype of the tumor and capable to self-renewal, which is crucial for tumor proliferation, differentiation, recurrence, and metastasis, as well as chemoresistance. Therefore, the cancer stem cells (CSCs) have become one of the main targets for anticancer therapy and many ongoing clinical trials test anti-CSCs efficacy of plenty of drugs. This chapter describes CSCs starting from general description of this cell population, through CSCs markers, signaling pathways, genetic and epigenetic regulation, role of epithelial-mesenchymal transition (EMT) transition and autophagy, cooperation with microenvironment (CSCs niche), and finally role of CSCs in escaping host immunosurveillance against cancer.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecologic Surgery and Gynecologic Oncology, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
9
|
Batool Z, Hu G, Xinyue H, Wu Y, Fu X, Cai Z, Huang X, Ma M. A comprehensive review on functional properties of preserved eggs as an excellent food ingredient with anti-inflammatory and anti-cancer aspects. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Abd El-Aziz YS, Gillson J, Jansson PJ, Sahni S. Autophagy: A promising target for triple negative breast cancers. Pharmacol Res 2021; 175:106006. [PMID: 34843961 DOI: 10.1016/j.phrs.2021.106006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 01/18/2023]
Abstract
Triple negative breast cancer (TNBC) is the most aggressive type of breast cancers which constitutes about 15% of all breast cancer cases and characterized by negative expression of hormonal receptors and human epidermal growth factor receptor 2 (HER2). Thus, endocrine and HER2 targeted therapies are not effective toward TNBCs, and they mainly rely on chemotherapy and surgery for treatment. Despite recent advances in chemotherapy, 40% of TNBC patients develop a metastatic relapse and recurrence. Therefore, understanding the molecular profile of TNBC is warranted to identify targets that can be selected for the development of a new and effective therapeutic approach. Autophagy is an internal defensive mechanism that allows the cells to survive under different stressors. It has been well known that autophagy exerts a crucial role in cancer progression. The critical role of autophagy in TNBC progression is emerging in recent years. This review will discuss autophagic pathway, how autophagy affects TNBC progression and recent therapeutic approaches that can target autophagy as a new treatment modality.
Collapse
Affiliation(s)
- Yomna S Abd El-Aziz
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Kolling Institute of Medical Research, St Leonards, NSW, Australia; Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Josef Gillson
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Kolling Institute of Medical Research, St Leonards, NSW, Australia
| | - Patric J Jansson
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Kolling Institute of Medical Research, St Leonards, NSW, Australia; Cancer Drug Resistance and Stem Cell Program, University of Sydney, Sydney, NSW 2006, Australia
| | - Sumit Sahni
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Kolling Institute of Medical Research, St Leonards, NSW, Australia.
| |
Collapse
|
11
|
Son J, Kim MJ, Lee JS, Kim JY, Chun E, Lee KY. Hepatitis B virus X Protein Promotes Liver Cancer Progression through Autophagy Induction in Response to TLR4 Stimulation. Immune Netw 2021; 21:e37. [PMID: 34796041 PMCID: PMC8568915 DOI: 10.4110/in.2021.21.e37] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/28/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatitis B virus X (HBx) protein has been reported as a key protein regulating the pathogenesis of HBV-induced hepatocellular carcinoma (HCC). Recent evidence has shown that HBx is implicated in the activation of autophagy in hepatic cells. Nevertheless, the precise molecular and cellular mechanism by which HBx induces autophagy is still controversial. Herein, we investigated the molecular and cellular mechanism by which HBx is involved in the TRAF6-BECN1-Bcl-2 signaling for the regulation of autophagy in response to TLR4 stimulation, therefore influencing the HCC progression. HBx interacts with BECN1 (Beclin 1) and inhibits the association of the BECN1-Bcl-2 complex, which is known to prevent the assembly of the pre-autophagosomal structure. Furthermore, HBx enhances the interaction between VPS34 and TRAF6-BECN1 complex, increases the ubiquitination of BECN1, and subsequently enhances autophagy induction in response to LPS stimulation. To verify the functional role of HBx in liver cancer progression, we utilized different HCC cell lines, HepG2, SK-Hep-1, and SNU-761. HBx-expressing HepG2 cells exhibited enhanced cell migration, invasion, and cell mobility in response to LPS stimulation compared to those of control HepG2 cells. These results were consistently observed in HBx-expressed SK-Hep-1 and HBx-expressed SNU-761 cells. Taken together, our findings suggest that HBx positively regulates the induction of autophagy through the inhibition of the BECN1-Bcl-2 complex and enhancement of the TRAF6-BECN1-VPS34 complex, leading to enhance liver cancer migration and invasion.
Collapse
Affiliation(s)
- Juhee Son
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Mi-Jeong Kim
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Ji Su Lee
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Ji Young Kim
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | | | - Ki-Young Lee
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| |
Collapse
|
12
|
Sauer S, Reed DR, Ihnat M, Hurst RE, Warshawsky D, Barkan D. Innovative Approaches in the Battle Against Cancer Recurrence: Novel Strategies to Combat Dormant Disseminated Tumor Cells. Front Oncol 2021; 11:659963. [PMID: 33987095 PMCID: PMC8111294 DOI: 10.3389/fonc.2021.659963] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer recurrence remains a great fear for many cancer survivors following their initial, apparently successful, therapy. Despite significant improvement in the overall survival of many types of cancer, metastasis accounts for ~90% of all cancer mortality. There is a growing understanding that future therapeutic practices must accommodate this unmet medical need in preventing metastatic recurrence. Accumulating evidence supports dormant disseminated tumor cells (DTCs) as a source of cancer recurrence and recognizes the need for novel strategies to target these tumor cells. This review presents strategies to target dormant quiescent DTCs that reside at secondary sites. These strategies aim to prevent recurrence by maintaining dormant DTCs at bay, or eradicating them. Various approaches are presented, including: reinforcing the niche where dormant DTCs reside in order to keep dormant DTCs at bay; promoting cell intrinsic mechanisms to induce dormancy; preventing the engagement of dormant DTCs with their supportive niche in order to prevent their reactivation; targeting cell-intrinsic mechanisms mediating long-term survival of dormant DTCs; sensitizing dormant DTCs to chemotherapy treatments; and, inhibiting the immune evasion of dormant DTCs, leading to their demise. Various therapeutic approaches, some of which utilize drugs that are already approved, or have been tested in clinical trials and may be considered for repurposing, will be discussed. In addition, clinical evidence for the presence of dormant DTCs will be reviewed, along with potential prognostic biomarkers to enable the identification and stratification of patients who are at high risk of recurrence, and who could benefit from novel dormant DTCs targeting therapies. Finally, we will address the shortcomings of current trial designs for determining activity against dormant DTCs and provide novel approaches.
Collapse
Affiliation(s)
- Scott Sauer
- Vuja De Sciences Inc., Hoboken, NJ, United States
| | - Damon R Reed
- Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States.,Adolescent and Young Adult Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Michael Ihnat
- Department of Pharmaceutical Sciences, College of Pharmacy, Oklahoma University Health Sciences Center, Oklahoma City, OK, United States
| | | | | | - Dalit Barkan
- Department of Human Biology and Medical Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
13
|
Jiang T, Chen X, Ren X, Yang JM, Cheng Y. Emerging role of autophagy in anti-tumor immunity: Implications for the modulation of immunotherapy resistance. Drug Resist Updat 2021; 56:100752. [PMID: 33765484 DOI: 10.1016/j.drup.2021.100752] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023]
Abstract
Immunotherapies such as CAR-T cell transfer and antibody-targeted therapy have produced promising clinical outcomes in patients with advanced and metastatic cancer that are resistant to conventional therapies. However, with increasing use of cancer immunotherapy in clinical treatment, multiple therapy-resistance mechanisms have gradually emerged. The tumor microenvironment (TME), an integral component of cancer, can significantly influence the therapeutic response. Thus, it is worth exploring the potential of TME in modulating therapy resistance, in the hope to devise novel strategies to reinforcing anti-cancer treatments such as immunotherapy. As a crucial recycling process in the complex TME, the role of autophagy in tumor immunity has been increasingly appreciated. Firstly, autophagy in tumor cells can affect their immune response through modulating MHC-I-antigen complexes, thus modulating immunogenic tumor cell death, changing functions of immune cells via secretory autophagy, reducing the NK- and CTL-mediated cell lysis and degradation of immune checkpoint proteins. Secondly, autophagy is critical for the differentiation, maturation and survival of immune cells in the TME and can significantly affect the immune function of these cells, thereby regulating the anti-tumor immune response. Thirdly, alteration of autophagic activity in stromal cells, especially in fibroblasts, can reconstruct the three-dimensional stromal environment and metabolic reprogramming in the TME. A number of studies have demonstrated that optimal induction or inhibition of autophagy may lead to effective therapeutic regimens when combined with immunotherapy. This review discusses the important roles of autophagy in tumor cells, immune cells and stromal cells in the context of tumor immunity, and the potential of combining the autophagy-based therapy with immunotherapy as novel therapeutic approaches against cancer.
Collapse
Affiliation(s)
- Ting Jiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xisha Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xingcong Ren
- Department of Toxicology and Cancer Biology, Department of Pharmacology, and Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Jin-Ming Yang
- Department of Toxicology and Cancer Biology, Department of Pharmacology, and Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA.
| | - Yan Cheng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
14
|
Xiao M, Benoit A, Hasmim M, Duhem C, Vogin G, Berchem G, Noman MZ, Janji B. Targeting Cytoprotective Autophagy to Enhance Anticancer Therapies. Front Oncol 2021; 11:626309. [PMID: 33718194 PMCID: PMC7951055 DOI: 10.3389/fonc.2021.626309] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/15/2021] [Indexed: 12/21/2022] Open
Abstract
Autophagy is a highly regulated multi-step process that occurs at the basal level in almost all cells. Although the deregulation of the autophagy process has been described in several pathologies, the role of autophagy in cancer as a cytoprotective mechanism is currently well established and supported by experimental and clinical evidence. Our understanding of the molecular mechanism of the autophagy process has largely contributed to defining how we can harness this process to improve the benefit of cancer therapies. While the role of autophagy in tumor resistance to chemotherapy is extensively documented, emerging data point toward autophagy as a mechanism of cancer resistance to radiotherapy, targeted therapy, and immunotherapy. Therefore, manipulating autophagy has emerged as a promising strategy to overcome tumor resistance to various anti-cancer therapies, and autophagy modulators are currently evaluated in combination therapies in several clinical trials. In this review, we will summarize our current knowledge of the impact of genetically and pharmacologically modulating autophagy genes and proteins, involved in the different steps of the autophagy process, on the therapeutic benefit of various cancer therapies. We will also briefly discuss the challenges and limitations to developing potent and selective autophagy inhibitors that could be used in ongoing clinical trials.
Collapse
Affiliation(s)
- Malina Xiao
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Alice Benoit
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Meriem Hasmim
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Caroline Duhem
- Department of Hemato-oncology, Centre Hospitalier du Luxembourg, Luxembourg City, Luxembourg
| | - Guillaume Vogin
- Université de Lorraine - UMR 7365, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Vandoeuvre-lès-Nancy, France.,Centre François Baclesse, Esch-sur-Alzette, Luxembourg
| | - Guy Berchem
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg.,Department of Hemato-oncology, Centre Hospitalier du Luxembourg, Luxembourg City, Luxembourg
| | - Muhammad Zaeem Noman
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| | - Bassam Janji
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg City, Luxembourg
| |
Collapse
|
15
|
Role of Hypoxia-Mediated Autophagy in Tumor Cell Death and Survival. Cancers (Basel) 2021; 13:cancers13030533. [PMID: 33573362 PMCID: PMC7866864 DOI: 10.3390/cancers13030533] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Programmed cell death or type I apoptosis has been extensively studied and its contribution to the pathogenesis of disease is well established. However, autophagy functions together with apoptosis to determine the overall fate of the cell. The cross talk between this active self-destruction process and apoptosis is quite complex and contradictory as well, but it is unquestionably decisive for cell survival or cell death. Autophagy can promote tumor suppression but also tumor growth by inducing cancer-cell development and proliferation. In this review, we will discuss how autophagy reprograms tumor cells in the context of tumor hypoxic stress. We will illustrate how autophagy acts as both a suppressor and a driver of tumorigenesis through tuning survival in a context dependent manner. We also shed light on the relationship between autophagy and immune response in this complex regulation. A better understanding of the autophagy mechanisms and pathways will undoubtedly ameliorate the design of therapeutics aimed at targeting autophagy for future cancer immunotherapies.
Collapse
|
16
|
You L, Wu W, Wang X, Fang L, Adam V, Nepovimova E, Wu Q, Kuca K. The role of hypoxia-inducible factor 1 in tumor immune evasion. Med Res Rev 2020; 41:1622-1643. [PMID: 33305856 DOI: 10.1002/med.21771] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/08/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022]
Abstract
Hypoxia-inducible factor 1 (HIF-1) plays an indispensable role in the hypoxic tumor microenvironment. Hypoxia and HIF-1 are involved in multiple aspects of tumor progression, such as metastasis, angiogenesis, and immune evasion. In innate and adaptive immune systems, malignant tumor cells avoid their recognition and destruction by HIF-1. Tumor immune evasion allows cancer cells to proliferate and metastasize and is associated with immunotherapy failure and chemoresistance. In the hypoxic tumor microenvironment, HIF-1 signaling suppresses the innate and adaptive immune systems to evade immune attack by inducing the expression of immunosuppressive factors and immune checkpoint molecules, including vascular endothelial growth factor, prostaglandin E2 , and programmed death-ligand 1/programmed death-1. Moreover, HIF-1 blocks tumor-associated antigen presentation via major histocompatibility complex class I chain-related/natural killer group 2, member D signaling. Tumor-associated autophagy and the release of tumor-derived exosomes contribute to HIF-1-mediated immune evasion. This review focuses on recent findings on the potential mechanism(s) underlying the effect of hypoxia and HIF-1 signaling on tumor immune evasion in the hypoxic tumor microenvironment. The effects of HIF-1 on immune checkpoint molecules, immunosuppressive molecules, autophagy, and exosomes have been described. Additionally, the potential role of HIF-1 in the regulation of tumor-derived exosomes, as well as the roles of HIF-1 and exosomes in tumor evasion, are discussed. This study will contribute to our understanding of HIF-1-mediated tumor immune evasion, leading to the development of effective HIF-1-targeting drugs and immunotherapies.
Collapse
Affiliation(s)
- Li You
- College of Life Science, Yangtze University, Jingzhou, China
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
17
|
Lee KL, Chen G, Chen TY, Kuo YC, Su YK. Effects of Cancer Stem Cells in Triple-Negative Breast Cancer and Brain Metastasis: Challenges and Solutions. Cancers (Basel) 2020; 12:cancers12082122. [PMID: 32751846 PMCID: PMC7463650 DOI: 10.3390/cancers12082122] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
A higher propensity of developing brain metastasis exists in triple-negative breast cancer (TNBC). Upon comparing the metastatic patterns of all breast cancer subtypes, patients with TNBC exhibited increased risks of the brain being the initial metastatic site, early brain metastasis development, and shortest brain metastasis-related survival. Notably, the development of brain metastasis differs from that at other sites owing to the brain-unique microvasculature (blood brain barrier (BBB)) and intracerebral microenvironment. Studies of brain metastases from TNBC have revealed the poorest treatment response, mostly because of the relatively backward strategies to target vast disease heterogeneity and poor brain efficacy. Moreover, TNBC is highly associated with the existence of cancer stem cells (CSCs), which contribute to circulating cancer cell survival before BBB extravasation, evasion from immune surveillance, and plasticity in adaptation to the brain-specific microenvironment. We summarized recent literature regarding molecules and pathways and reviewed the effects of CSC biology during the formation of brain metastasis in TNBC. Along with the concept of individualized cancer therapy, certain strategies, namely the patient-derived xenograft model to overcome the lack of treatment-relevant TNBC classification and techniques in BBB disruption to enhance brain efficacy has been proposed in the hope of achieving treatment success.
Collapse
Affiliation(s)
- Kha-Liang Lee
- Division of Neurosurgery, Department of Surgery, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan; (K.-L.L.); (G.C.); (T.-Y.C.)
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Gao Chen
- Division of Neurosurgery, Department of Surgery, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan; (K.-L.L.); (G.C.); (T.-Y.C.)
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Tai-Yuan Chen
- Division of Neurosurgery, Department of Surgery, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan; (K.-L.L.); (G.C.); (T.-Y.C.)
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Yung-Che Kuo
- Taipei Medical University (TMU) Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Yu-Kai Su
- Division of Neurosurgery, Department of Surgery, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan; (K.-L.L.); (G.C.); (T.-Y.C.)
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence:
| |
Collapse
|
18
|
Pietropaolo V, Prezioso C, Moens U. Merkel Cell Polyomavirus and Merkel Cell Carcinoma. Cancers (Basel) 2020; 12:E1774. [PMID: 32635198 PMCID: PMC7407210 DOI: 10.3390/cancers12071774] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022] Open
Abstract
Viruses are the cause of approximately 15% of all human cancers. Both RNA and DNA human tumor viruses have been identified, with Merkel cell polyomavirus being the most recent one to be linked to cancer. This virus is associated with about 80% of Merkel cell carcinomas, a rare, but aggressive cutaneous malignancy. Despite its name, the cells of origin of this tumor may not be Merkel cells. This review provides an update on the structure and life cycle, cell tropism and epidemiology of the virus and its oncogenic properties. Putative strategies to prevent viral infection or treat virus-positive Merkel cell carcinoma patients are discussed.
Collapse
Affiliation(s)
- Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (V.P.); (C.P.)
| | - Carla Prezioso
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (V.P.); (C.P.)
- IRCSS San Raffaele Pisana, Microbiology of Chronic Neuro-Degenerative Pathologies, 00166 Rome, Italy
| | - Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
19
|
Sylakowski K, Bradshaw A, Wells A. Mesenchymal Stem Cell/Multipotent Stromal Cell Augmentation of Wound Healing: Lessons from the Physiology of Matrix and Hypoxia Support. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1370-1381. [PMID: 32294456 PMCID: PMC7369572 DOI: 10.1016/j.ajpath.2020.03.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/28/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022]
Abstract
Cutaneous wounds requiring tissue replacement are often challenging to treat and result in substantial economic burden. Many of the challenges inherent to therapy-mediated healing are due to comorbidities of disease and aging that render many wounds as chronic or nonhealing. Repeated failure to resolve chronic wounds compromises the reserve or functioning of localized reparative cells. Transplantation of mesenchymal stem cells/multipotent stromal cells (MSCs) has been proposed to augment the reparative capacity of resident cells within the wound bed to overcome stalled wound healing. However, MSCs face a variety of challenges within the wound micro-environment that curtail their survival after transplantation. MSCs are naturally pro-angiogenic and proreparative, and thus numerous techniques have been attempted to improve their survival and efficacy after transplantation, many with little impact. These setbacks have prompted researchers to re-examine the normal wound bed physiology, resulting in new approaches to MSC transplantation using extracellular matrix proteins and hypoxia preconditioning. These studies have also led to new insights on associated intracellular mechanisms, particularly autophagy, which play key roles in further regulating MSC survival and paracrine signaling. This review provides a brief overview of cutaneous wound healing with discussion on how extracellular matrix proteins and hypoxia can be utilized to improve MSC retention and therapeutic outcome.
Collapse
Affiliation(s)
- Kyle Sylakowski
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; R&D Service, VA Pittsburgh Health System, Pittsburgh, Pennsylvania
| | - Andrew Bradshaw
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; R&D Service, VA Pittsburgh Health System, Pittsburgh, Pennsylvania; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; R&D Service, VA Pittsburgh Health System, Pittsburgh, Pennsylvania; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
20
|
Chu Y, Wang Y, Li K, Liu M, Zhang Y, Li Y, Hu X, Liu C, Zhou H, Zuo J, Peng W. Human omental adipose-derived mesenchymal stem cells enhance autophagy in ovarian carcinoma cells through the STAT3 signalling pathway. Cell Signal 2020; 69:109549. [PMID: 31987780 DOI: 10.1016/j.cellsig.2020.109549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Our previous study showed that human omental adipose-derived stem cells (ADSCs) promote ovarian cancer growth and metastasis. In this study, the role of autophagy in the ovarian cancer-promoting effects of omental ADSCs was further determined. METHODS The growth and invasion of ovarian cancer cells were detected by CCK-8 and Transwell assays, respectively. The autophagy of ovarian cancer cells transfected with MRFP-GFP-LC3 adenoviral vectors was evaluated by confocal microscopy and western blot assay. Transfection of STAT3 siRNA was used to inhibit the expression of STAT3. RESULTS Our results show that autophagy plays a vital role in ovarian cancer and is promoted by ADSCs. Specifically, we show that proliferation and invasion are correlated with autophagy induction by ADSCs in two ovarian cancer cell lines under hypoxic conditions. Mechanistically, ADSCs activate the STAT3 signalling pathway, thereby promoting autophagy. Knockdown of STAT3 expression using siRNA decreased hypoxia-induced autophagy and decreased the proliferation and metastasis of ovarian cancer cells. CONCLUSION Taken together, our data indicate that STAT3-mediated autophagy induced by ADSCs promotes ovarian cancer growth and metastasis.
Collapse
Affiliation(s)
- Yijing Chu
- Department of Obstetrics and Gynecology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Wang
- Department of Orthopaedic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kun Li
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meixin Liu
- Department of Obstetrics and Gynecology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Zhang
- Department of Obstetrics and Gynecology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Li
- Department of Obstetrics and Gynecology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoyu Hu
- Department of Obstetrics and Gynecology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chong Liu
- Department of Obstetrics and Gynecology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Huansheng Zhou
- Department of Obstetrics and Gynecology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jianxin Zuo
- Department of Obstetrics and Gynecology, the Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Wei Peng
- Department of Obstetrics and Gynecology, the Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
21
|
Tenovin-6 induces the SIRT-independent cell growth suppression and blocks autophagy flux in canine hemangiosarcoma cell lines. Exp Cell Res 2019; 388:111810. [PMID: 31891684 DOI: 10.1016/j.yexcr.2019.111810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 12/20/2022]
Abstract
Canine hemangiosarcoma (HSA) is a commonly occurring aggressive tumor stemming from the vascular endothelial cells and is considered to be a good model for a similar disease in humans, called angiosarcoma. In this study, we reviewed drug libraries to identify new signal transduction inhibitors that can suppress the cell growth of canine HSA in vitro. We observed that tenovin-6, a sirtuin (SIRT) inhibitor, inhibited cell proliferation and induced cell death in three canine HSA cell lines (JuB4, Re12, and Ud6). These effects were induced through G1 cell cycle arrest and caspase-3 activation. Although tenovin-6 is known as an inhibitor of SIRT1 and SIRT2, knockout (KO) of genes encoding SIRT1 and/or SIRT2 had no apparent impact on cell proliferation in canine HSA. In addition, tenovin-6 showed cell growth inhibition in SIRT KO cells, as well as parental cells. These results indicated the cytotoxicity of tenovin-6 was a SIRT-independent event. Instead, we found that tenovin-6 inhibited autophagy flux in canine HSA cells, as evidenced by the suppression of lysosomal proteolysis. These results suggested that tenovin-6 induces cell growth suppression in canine HSA cells by impairing the lysosomal function. Therefore, tenovin-6 could be used in a new therapeutic strategy to treat canine HSA.
Collapse
|
22
|
Abdel-Karim N, Gaber O, Eldessouki I, Bahassi EM, Morris J. Exosomes as a Surrogate Marker for Autophagy in Peripheral Blood, Correlative Data from Phase I Study of Chloroquine in Combination with Carboplatin/Gemcitabine in Advanced Solid Tumors. Asian Pac J Cancer Prev 2019; 20:3789-3796. [PMID: 31870123 PMCID: PMC7173380 DOI: 10.31557/apjcp.2019.20.12.3789] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Autophagy is a catabolic process, utilized constitutionally by body cells to recycle nutrients and to remove unwanted/damaged intracellular constituents. It is enhanced during periods of stress, such as starvation and hypoxia, aiding in cell survival and it is linked to major cellular processes, such as apoptosis and antigen expression. The process has been extensively studied in vitro models or tumor tissue samples with rare application on human subjects. METHODS Plasma samples from 24 advanced solid tumor patients were collected at different time points before and after chemotherapy. Their exosomes were isolate and blotted for microtubule-associated protein-1 light chain-3 (LC-3B) protein as a marker for autophagy. All the subjects received a standard chemotherapy regimen of carboplatin- gemcitabine with chloroquine (CQ)/ hydroxychloroquine (HCQ) in chronic doses throughout their treatment period as an autophagy modulator. CQ/HCQ was given in 50 mg increments as guided by their tolerability to treatment. RESULTS A total of 267 plasma samples were obtained for the 24 patients and processed. Each sample corresponds to a single time point. The first group included 6 patients, all received 50 mg of CQ with chemotherapy. LC-3B I was detected in their isolated exosomes, while LC3-BII was not detected in their samples. The second cohort of patients included 3 subjects who re-ceived 100mg of HCQ. They demonstrated both LC3-BI and II on day 15 after chemotherapy in one patient, and on third cycle after 24 hours in the second patient. The third cohort included 3 subjects who received 150 mg of HCQ. All cases demonstrated LC3-BI and II on first cycle of treatment after less than 24 hours. The last cohort included 8 subjects, who received a fixed dose of 100 mg of HCQ with treatment. In this cohort, we were able to detect both LC3-B isoforms on advanced time points of second and third cycles. CONCLUSION Detection of autophagy protein LC3-B in exosomes serves as a dynamic method to monitor autophagy. It can be utilized to study the effects of anti-neoplastic agents on autophagy and mechanisms of drug resistance, however, to standardize our results a larger specimen of patients should be included.
Collapse
Affiliation(s)
- Nagla Abdel-Karim
- Department of Hematology –Oncology, University of Cincinnati, U S A.
| | | | | | | | | |
Collapse
|
23
|
Breast Cancer Stem Cells as Drivers of Tumor Chemoresistance, Dormancy and Relapse: New Challenges and Therapeutic Opportunities. Cancers (Basel) 2019; 11:cancers11101569. [PMID: 31619007 PMCID: PMC6826533 DOI: 10.3390/cancers11101569] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most frequent cancer among women worldwide. Therapeutic strategies to prevent or treat metastatic disease are still inadequate although great progress has been made in treating early-stage breast cancer. Cancer stem-like cells (CSCs) that are endowed with high plasticity and self-renewal properties have been shown to play a key role in breast cancer development, progression, and metastasis. A subpopulation of CSCs that combines tumor-initiating capacity and a dormant/quiescent/slow cycling status is present throughout the clinical history of breast cancer patients. Dormant/quiescent/slow cycling CSCs are a key component of tumor heterogeneity and they are responsible for chemoresistance, tumor migration, and metastatic dormancy, defined as the ability of CSCs to survive in target organs and generate metastasis up to two decades after diagnosis. Understanding the strategies that are used by CSCs to resist conventional and targeted therapies, to interact with their niche, to escape immune surveillance, and finally to awaken from dormancy is of key importance to prevent and treat metastatic cancer. This review summarizes the current understanding of mechanisms involved in CSCs chemoresistance, dissemination, and metastasis in breast cancer, with a particular focus on dormant cells. Finally, we discuss how advancements in the detection, molecular understanding, and targeting of dormant CSCs will likely open new therapeutic avenues for breast cancer treatment.
Collapse
|
24
|
Joyce S, Nour AM. Blocking transmembrane219 protein signaling inhibits autophagy and restores normal cell death. PLoS One 2019; 14:e0218091. [PMID: 31220095 PMCID: PMC6586287 DOI: 10.1371/journal.pone.0218091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/24/2019] [Indexed: 02/04/2023] Open
Abstract
Autophagy plays a vital role in tumor therapy and survival of dormant tumor cells. Here we describe a novel function of a protein known as Transmembrane 219 (TM219) as an autophagy activator. TM219 is a small membrane protein expressed in all known human tissues except the thymus. We used biochemical approaches to identify calmodulin and calmodulin dependent protein kinase II as a part of TM219 protein complex. Then, we employed in vitro reconstitution system and fluorescence anisotropy to study the requirements of TM219 to bind calmodulin in vitro. We also used this system to study the effects of a synthetic peptide derived from the sequence of the short cytoplasmic tail of TM219 (SCTT) on calmodulin-TM219 receptor interactions. We conjugated SCTT peptide with a pH Low Insertion peptide (pHLIP) for optimal cellular delivery. We finally tested the effects of SCTT-pHLIP on triple negative human breast cancer cells in three dimension culture. Our data defined a novel function of TM219 protein and an efficient approach to inhibit it.
Collapse
Affiliation(s)
- Sean Joyce
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Adel M. Nour
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
25
|
Flynn ALB, Schiemann WP. Autophagy in breast cancer metastatic dormancy: Tumor suppressing or tumor promoting functions? ACTA ACUST UNITED AC 2019; 5. [PMID: 31431926 DOI: 10.20517/2394-4722.2019.13] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Breast cancer is the second leading cause of cancer-associated death in women in the United States, with more than 90% of those deaths attributed to metastasis. Breast cancer metastasis is incurable and possesses few treatment options and a poor overall prognosis due in part to confounding metastatic attributes, particularly the acquisition of dormancy-associated phenotypes. Dormant disseminated tumor cells (DTCs) can persist for years-to-decades before recurring as highly aggressive, secondary lesions. Dormancy-associated phenotypes are exhibited by breast cancer stem cells (BCSCs), which undergo tumor initiation and unlimited self-renewal. In addition to their specialized abilities to circumvent chemotherapeutic insults, BCSCs also upregulate autophagy during metastatic dormancy as a means to survive in nutrient poor conditions and environmental stress. As such, therapeutic targeting of autophagy is actively being pursued as an attractive strategy to alleviate metastatic disease and the recurrence of dormant BCSCs. Here we review the molecular and cellular features of autophagy, as well as its paradoxical role in both suppressing and promoting mammary tumor development and metastatic progression. Finally, we highlight the clinical challenges associated with therapeutic targeting of autophagy in metastatic breast cancers.
Collapse
Affiliation(s)
- Alyssa La Belle Flynn
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - William P Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
26
|
Bouhamdani N, Comeau D, Cormier K, Turcotte S. STF-62247 accumulates in lysosomes and blocks late stages of autophagy to selectively target von Hippel-Lindau-inactivated cells. Am J Physiol Cell Physiol 2019; 316:C605-C620. [DOI: 10.1152/ajpcell.00483.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Autophagy is a highly conserved, homeostatic process by which cytosolic components reach lysosomes for degradation. The roles played by different autophagic processes in cancer are complex and remain cancer type and stage dependent. Renal cell carcinoma (RCC) is the most common subtype of kidney cancer and is characterized by the inactivation of the von Hippel-Lindau (VHL) tumor suppressor. Our previous study identified a small compound, STF-62247, as an autophagy-modulating molecule causing selective cytotoxicity for VHL-inactivated cells. This present study investigates the effects of STF-62247 specifically on the macroautophagic flux to better characterize its mechanism of action in RCC. Our results clearly demonstrate that this compound is a potent blocker of late stages of autophagy. We show that inhibiting autophagy by CRISPR knockouts of autophagy-related genes rendered VHL-deficient cells insensitive to STF-62247, uncovering the importance of the autophagic pathway in STF-selective cell death. By exploiting the autofluorescence of STF-62247, we pinpointed its cellular localization to lysosomes. Finally, in response to prolonged STF treatments, we show that VHL-proficient cells are able to surmount the block in late stages of autophagy by restoring their lysosome numbers. Conversely, an increase in autophagic vesicles accompanied by a time-dependent decrease in lysosomes was observed in VHL-deficient cells. This is the first mechanistic study investigating STF-62447’s effects on the autophagic flux in RCC. Importantly, our study reclassifies STF-62247 as a blocker of later stages of autophagy and highlights the possibility of blocking this process through lysosome disruption in VHL-mutated RCCs.
Collapse
Affiliation(s)
- Nadia Bouhamdani
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | - Dominique Comeau
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | - Kevin Cormier
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | - Sandra Turcotte
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| |
Collapse
|
27
|
Liu Y, Zhang H, Wang Z, Wu P, Gong W. 5-Hydroxytryptamine1a receptors on tumour cells induce immune evasion in lung adenocarcinoma patients with depression via autophagy/pSTAT3. Eur J Cancer 2019; 114:8-24. [PMID: 31009821 DOI: 10.1016/j.ejca.2019.03.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/13/2019] [Accepted: 03/13/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Cancer patients frequently suffer from fatigue and depression. Dysregulation of the immune system, tumour recurrence and metastasis are more common in cancer patients with depression. 5-Hydroxytryptamine (5-HT), a neurotransmitter, contributes to immune evasion in lung adenocarcinoma patients by activating 5-HTRs, but the mechanism for this phenomenon is still unclear. In this study, we examined the function of 5-HT1a receptors (5-HT1aRs) in immune evasion in a mouse model and in samples from lung adenocarcinomas patients. EXPERIMENTAL DESIGN Sixty-four human lung adenocarcinoma patients with depression and 64 lung adenocarcinoma patients without depression were recruited for this study. The expression of 5-HT receptors on lung adenocarcinoma cells from tumour tissues were detected by using immunohistochemistry (IHC) and fluorescence-activated cell sorting (FACS). The depression models were established in vitro and in vivo. The effects of immunosuppression were evaluated by testing the function of cytotoxic lymphocyte (CTLs) and Tregs, measuring tumour weight or volume, assessing the survival of mice and staining of tissues by IHC. Changes in the expression of immunoregulatory factor genes were assessed to elucidate the mechanism of immune evasion induced by the 5- hydroxytryptamine receptor (HTRs). RESULTS Higher levels of 5-HT, increased expression of 5-HT1Rs and decreased overall survival were observed in lung adenocarcinomas patients with depression compared with those without depression. Moreover, 5-HT1aR, a critical factor for increasing the number of CD4+CD25+Foxp3+ Treg cells and decreasing the ratio of Th1/Th2 cells, which suggested immune system dysregulation. In addition, expression of 5-HT1aR on tumour cells was also negatively associated with CTL activity in both peripheral blood and tumour infiltrating lymphocytes. In a depressive state, 5-HT1aR activates p-signal transducer and activator of transcription 3 (STAT3) and autophagy, and programmed death ligand-1, a downstream gene of autophagy/p-STAT3 signalling, mediates an immunosuppressive environment. Moreover, in both the mouse model and lung adenocarcinoma patients, the activation of 5HT1aR and the elevated tumour autophagy/p-STAT3 axis were associated with reduced overall survival. CONCLUSIONS The 5-HT1aR/autophagy/p-STAT3 axis influences both tumour cells and immune cells, resulting in immunosuppression in lung adenocarcinomas patients with depression.
Collapse
Affiliation(s)
- Yi Liu
- Department of Medicinal Chemistry, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Hao Zhang
- Department of Cardiothoracic Surgery, XiangYang Central Hospital, Hubei University of Arts and Science, XiangYang 441021, China
| | - ZhiYong Wang
- Department of Neurosurgery, XiangYang Central Hospital, Hubei University of Arts and Science, XiangYang 441021, China
| | - Pin Wu
- Department of Medicinal Chemistry, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Wei Gong
- Department of Oncology, XiangYang Central Hospital, Hubei University of Arts and Science, XiangYang 441021, China.
| |
Collapse
|
28
|
Liu JR, Yu CW, Hung PY, Hsin LW, Chern JW. High-selective HDAC6 inhibitor promotes HDAC6 degradation following autophagy modulation and enhanced antitumor immunity in glioblastoma. Biochem Pharmacol 2019; 163:458-471. [PMID: 30885763 DOI: 10.1016/j.bcp.2019.03.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/14/2019] [Indexed: 01/03/2023]
Abstract
Glioblastoma is the most fatal type of primary brain cancer, and current treatments for glioblastoma are insufficient. HDAC6 is overexpressed in glioblastoma, and siRNA-mediated knockdown of HDAC6 inhibits glioma cell proliferation. Herein, we report a high-selective HDAC6 inhibitor, J22352, which has PROTAC (proteolysis-targeting chimeras)-like property resulted in both p62 accumulation and proteasomal degradation, leading to proteolysis of aberrantly overexpressed HDAC6 in glioblastoma. The consequences of decreased HDAC6 expression in response to J22352 decreased cell migration, increased autophagic cancer cell death and significant tumor growth inhibition. Notably, J22352 reduced the immunosuppressive activity of PD-L1, leading to the restoration of host anti-tumor activity. These results demonstrate that J22352 promotes HDAC6 degradation and induces anticancer effects by inhibiting autophagy and eliciting the antitumor immune response in glioblastoma. Therefore, this highly selective HDAC6 inhibitor can be considered a potential therapeutic for the treatment of glioblastoma and other cancers.
Collapse
Affiliation(s)
- Jia-Rong Liu
- School of Pharmacy, College of Medicine, National Taiwan University, No. 33, LinSen South Road, Taipei 100, Taiwan, ROC; Center for Innovative Therapeutics Discovery, National Taiwan University, No. 33, LinSen South Road, Taipei 100, Taiwan, ROC
| | - Chao-Wu Yu
- School of Pharmacy, College of Medicine, National Taiwan University, No. 33, LinSen South Road, Taipei 100, Taiwan, ROC; Center for Innovative Therapeutics Discovery, National Taiwan University, No. 33, LinSen South Road, Taipei 100, Taiwan, ROC; AnnJi Pharmaceutical Co., Ltd. No. 18, Siyuan St., Taipei 10087, Taiwan, ROC
| | - Pei-Yun Hung
- AnnJi Pharmaceutical Co., Ltd. No. 18, Siyuan St., Taipei 10087, Taiwan, ROC
| | - Ling-Wei Hsin
- School of Pharmacy, College of Medicine, National Taiwan University, No. 33, LinSen South Road, Taipei 100, Taiwan, ROC; Center for Innovative Therapeutics Discovery, National Taiwan University, No. 33, LinSen South Road, Taipei 100, Taiwan, ROC
| | - Ji-Wang Chern
- School of Pharmacy, College of Medicine, National Taiwan University, No. 33, LinSen South Road, Taipei 100, Taiwan, ROC; Center for Innovative Therapeutics Discovery, National Taiwan University, No. 33, LinSen South Road, Taipei 100, Taiwan, ROC.
| |
Collapse
|
29
|
Boutouja F, Stiehm CM, Platta HW. mTOR: A Cellular Regulator Interface in Health and Disease. Cells 2019; 8:cells8010018. [PMID: 30609721 PMCID: PMC6356367 DOI: 10.3390/cells8010018] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/25/2018] [Accepted: 01/01/2019] [Indexed: 12/19/2022] Open
Abstract
The mechanistic target of Rapamycin (mTOR) is a ubiquitously-conserved serine/threonine kinase, which has a central function in integrating growth signals and orchestrating their physiologic effects on cellular level. mTOR is the core component of differently composed signaling complexes that differ in protein composition and molecular targets. Newly identified classes of mTOR inhibitors are being developed to block autoimmune diseases and transplant rejections but also to treat obesity, diabetes, and different types of cancer. Therefore, the selective and context-dependent inhibition of mTOR activity itself might come into the focus as molecular target to prevent severe diseases and possibly to extend life span. This review provides a general introduction to the molecular composition and physiologic function of mTOR complexes as part of the Special Issue “2018 Select Papers by Cells’ Editorial Board Members”.
Collapse
Affiliation(s)
- Fahd Boutouja
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| | - Christian M Stiehm
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| | - Harald W Platta
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| |
Collapse
|
30
|
Jahangiri A, Dadmanesh M, Ghorban K. Suppression of STAT3 by S31-201 to reduce the production of immunoinhibitory cytokines in a HIF1-α-dependent manner: a study on the MCF-7 cell line. In Vitro Cell Dev Biol Anim 2018; 54:743-748. [PMID: 30315441 DOI: 10.1007/s11626-018-0299-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) interacts with many gene promoters and transcription factors such as hypoxia-induced factor 1α (HIF-1α). Recent evidences proposed that STAT3 and HIF-1α together are responsible for angiogenesis and immune response suppression. The main aim of this study was to inhibit STAT3 and HIF-1α and assess their effects on the expression of immunosuppressive cytokines. S31-201 and PX-478 were used to inhibit STAT3 and HIF-1α, respectively. In both hypoxic and normoxic conditions, intracellular levels of HIF-1α were evaluated by western blotting and flow cytometry. Supernatant levels were also measured for VEGF, IL-10, and TGF-β concentration. S31-201 suppressed proliferation of MCF-7 cells and led to reduced HIF-1α expression in both hypoxic and normoxic conditions. It also decreased production of the immunosuppressive cytokines. STAT3 inhibition suppressed tumor cell growth and cytokine production in a HIF-1α-dependent manner, and can be used as a promising target in cancer therapies.
Collapse
Affiliation(s)
- Amirhossein Jahangiri
- Department of Immunology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Maryam Dadmanesh
- Department of Infectious Diseases, School of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Khodayar Ghorban
- Department of Immunology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Yao C, Ni Z, Gong C, Zhu X, Wang L, Xu Z, Zhou C, Li S, Zhou W, Zou C, Zhu S. Rocaglamide enhances NK cell-mediated killing of non-small cell lung cancer cells by inhibiting autophagy. Autophagy 2018; 14:1831-1844. [PMID: 29969944 PMCID: PMC6135631 DOI: 10.1080/15548627.2018.1489946] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 05/24/2018] [Accepted: 06/11/2018] [Indexed: 01/02/2023] Open
Abstract
Targeting macroautophagy/autophagy is a novel strategy in cancer immunotherapy. In the present study, we showed that the natural product rocaglamide (RocA) enhanced natural killer (NK) cell-mediated lysis of non-small cell lung cancer (NSCLC) cells in vitro and tumor regression in vivo. Moreover, this effect was not related to the NK cell recognition of target cells or expressions of death receptors. Instead, RocA inhibited autophagy and restored the level of NK cell-derived GZMB (granzyme B) in NSCLC cells, therefore increasing their susceptibility to NK cell-mediated killing. In addition, we further identified that the target of RocA was ULK1 (unc-51 like autophagy activating kinase 1) that is required for autophagy initiation. Using firefly luciferase containing the 5´ untranslated region of ULK1, we found that RocA inhibited the protein translation of ULK1 in a sequence-specific manner. Taken together, RocA could block autophagic immune resistance to NK cell-mediated killing, and our data suggested that RocA was a promising therapeutic candidate in NK cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Chao Yao
- Laboratory of Integrative Medicine, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
- Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Zhongya Ni
- Laboratory of Integrative Medicine, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
- Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Chenyuan Gong
- Laboratory of Integrative Medicine, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Xiaowen Zhu
- Laboratory of Integrative Medicine, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Lixin Wang
- Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Zihang Xu
- Department of Internal Classic of Medicine, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Chunxian Zhou
- Department of Pathology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Suyun Li
- Department of Pathology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Wuxiong Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Chunpu Zou
- Department of Internal Classic of Medicine, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Shiguo Zhu
- Laboratory of Integrative Medicine, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
- Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| |
Collapse
|
32
|
Damgaci S, Ibrahim‐Hashim A, Enriquez‐Navas PM, Pilon‐Thomas S, Guvenis A, Gillies RJ. Hypoxia and acidosis: immune suppressors and therapeutic targets. Immunology 2018; 154:354-362. [PMID: 29485185 PMCID: PMC6002221 DOI: 10.1111/imm.12917] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 12/12/2022] Open
Abstract
Due to imbalances between vascularity and cellular growth patterns, the tumour microenvironment harbours multiple metabolic stressors including hypoxia and acidosis, which have significant influences on remodelling both tumour and peritumoral tissues. These stressors are also immunosuppressive and can contribute to escape from immune surveillance. Understanding these effects and characterizing the pathways involved can identify new targets for therapy and may redefine our understanding of traditional anti-tumour therapies. In this review, the effects of hypoxia and acidosis on tumour immunity will be summarized, and how modulating these parameters and their sequelae can be a useful tool for future therapeutic interventions is discussed.
Collapse
Affiliation(s)
- Sultan Damgaci
- Department of Cancer PhysiologyH. Lee Moffitt Cancer CenterTampaFLUSA
- Institute of Biomedical EngineeringBogazici UniversityIstanbulTurkey
| | | | | | - Shari Pilon‐Thomas
- Department of ImmunologyH. Lee Moffitt Cancer CenterTampaFLUSA
- Department of Cutaneous OncologyH. Lee Moffitt Cancer CenterTampaFLUSA
| | - Albert Guvenis
- Institute of Biomedical EngineeringBogazici UniversityIstanbulTurkey
| | - Robert J. Gillies
- Department of Cancer PhysiologyH. Lee Moffitt Cancer CenterTampaFLUSA
- Department of RadiologyH. Lee Moffitt Cancer CenterTampaFLUSA
| |
Collapse
|
33
|
The role of hypoxia in shaping the recruitment of proangiogenic and immunosuppressive cells in the tumor microenvironment. Contemp Oncol (Pozn) 2018; 22:7-13. [PMID: 29628788 PMCID: PMC5885081 DOI: 10.5114/wo.2018.73874] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hypoxia characterizes growing tumors and contributes significantly to their aggressiveness. Hypoxia-inducible factors (HIFs 1 and 2) are stabilized and act differentially as transcription factors on tumor growth and are responsible for important cancer hallmarks such as pathologic angiogenesis, cellular proliferation, apoptosis, differentiation and genetic instability as well as affecting tumor metabolism, tumor immune responses, invasion and metastasis. Taking into account the tumor tissue as a whole and considering the interplay of the various partners which react with hypoxia in the tumor site lead to reconsideration of the treatment strategies. Key limitations of treatment success result from the adaptation to the hypoxic milieu sustained by tumor anarchic angiogenesis. This raises immune tolerance by influencing the recruitment of immunosuppressive cells as bone marrow derived suppressor cells (MDSC) or by impairing the infiltration and killing of tumor cells by cytotoxic cells at the level of the endothelial cell wall of the hypoxic tumor vessels, as summarized in the schematic abstract.
Collapse
|
34
|
Park SH, Kang MK, Choi YJ, Kim YH, Antika LD, Kim DY, Lee EJ, Lim SS, Kang YH. α-Asarone blocks 7β-hydroxycholesterol-exposed macrophage injury through blocking elF2α phosphorylation and prompting beclin-1-dependent autophagy. Oncotarget 2018; 8:7370-7383. [PMID: 28088783 PMCID: PMC5352328 DOI: 10.18632/oncotarget.14566] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/02/2017] [Indexed: 12/27/2022] Open
Abstract
Macrophage apoptosis is salient in advanced atherosclerotic lesions and is induced by several stimuli including endoplasmic reticulum (ER) stress. This study examined that a-asarone present in purple perilla abrogated macrophage injury caused by oxysterols via ER stress- and autophagy-mediated mechanisms. Nontoxic a-asarone at 1-20 M attenuated 7β-hydroxycholesterol-induced activation of eukaryotic initiation factor 2a in macrophages leading to C/EBP homologous protein (CHOP) expression and apoptosis due to sustained ER stress. The a-asarone treatment increased the formation of autophagolysosomes localizing in perinuclear regions of 7β-hydroxycholesterol-exposed macrophages. Consistently, this compound promoted the induction of the key autophagic proteins of beclin-1, vacuolar protein sorting 34 and p150 responsible for vesicle nucleation, and prompted the conversion of microtubule-associated protein 1A/1B-light chain 3 and the induction of p62, neighbor of BRCA1 and autophagy-related (Atg) 12-Atg5-Atg16L conjugate involved in phagophore expansion and autophagosome formation. Additionally, a-asarone increased ER phosphorylation of bcl-2 facilitating beclin-1 entry to autophagic process. Furthermore, the deletion of Atg5 or beclin-1 gene enhanced apoptotic CHOP induction. Collectively, a-asarone-stimulated autophagy may be potential multi-targeted therapeutic avenues in treating ER stress-associated macrophage apoptosis.
Collapse
Affiliation(s)
- Sin-Hye Park
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Korea
| | - Min-Kyung Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Korea
| | - Yean-Jung Choi
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Korea
| | - Yun-Ho Kim
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Korea
| | - Lucia Dwi Antika
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Korea
| | - Dong Yeon Kim
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Korea
| | - Eun-Jung Lee
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Korea
| | - Soon Sung Lim
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Korea
| | - Young-Hee Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Korea
| |
Collapse
|
35
|
Xu C, Wang M, Song Z, Wang Z, Liu Q, Jiang P, Bai J, Li Y, Wang X. Pseudorabies virus induces autophagy to enhance viral replication in mouse neuro-2a cells in vitro. Virus Res 2018; 248:44-52. [PMID: 29452162 DOI: 10.1016/j.virusres.2018.02.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/02/2018] [Accepted: 02/08/2018] [Indexed: 12/19/2022]
Abstract
Autophagy of cytoplasmic components plays an essential role in the pathogenic infection process. Furthermore, research suggests that autophagy is an extremely important component of the innate immune response. Our study aimed to reveal the effect of virus-induced autophagy on pseudorabies virus (PRV) replication. Our results confirmed that light chain 3 (LC3)-I was converted into LC3-II after PRV infection; this transition is considered an important indicator of autophagy. Transmission electron microscopy (TEM) revealed that PRV infection could notably increase the number of autophagosomes in mouse neuro-2a (N2a) cells. In addition, LC3-II accumulated in response to chloroquine (CQ) treatment, indicating that PRV infection induced a complete autophagic flux response. Furthermore, our analyses verified differences in the magnitude of autophagy induction by two different PRV isolates, LA and ZJ01. Subsequent analysis showed that the induction of autophagy by rapamycin facilitated PRV replication, while inhibition of autophagy by 3-methyladenine (3-MA) reduced PRV replication. These results indicated that PRV induced autophagy via the classical Beclin-1-Atg7-Atg5 pathway to enhance viral replication in N2a cells in vitro.
Collapse
Affiliation(s)
- Changmeng Xu
- Key Laboratory of Animal Diseases Diagnosis and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Mi Wang
- Key Laboratory of Animal Diseases Diagnosis and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongbao Song
- Key Laboratory of Animal Diseases Diagnosis and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhijian Wang
- Key Laboratory of Animal Diseases Diagnosis and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Qianyu Liu
- Key Laboratory of Animal Diseases Diagnosis and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnosis and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnosis and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufeng Li
- Key Laboratory of Animal Diseases Diagnosis and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xianwei Wang
- Key Laboratory of Animal Diseases Diagnosis and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
36
|
Adams O, Dislich B, Berezowska S, Schläfli AM, Seiler CA, Kröll D, Tschan MP, Langer R. Prognostic relevance of autophagy markers LC3B and p62 in esophageal adenocarcinomas. Oncotarget 2018; 7:39241-39255. [PMID: 27250034 PMCID: PMC5129929 DOI: 10.18632/oncotarget.9649] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/13/2016] [Indexed: 12/12/2022] Open
Abstract
Esophageal adenocarcinomas (EAC) are aggressive tumors with considerable rates of chemoresistance. Autophagy is a lysosome-dependent degradation process, characterized by the formation of vesicles called autophagosomes, and has been implicated in cancer. Protein light chain 3 B (LC3B) and p62 are associated with autophagosomal membranes and degraded. We aimed to assess the impact of basal autophagy on EAC. In EAC cell lines, an increase in LC3B and p62 was observed with increasing concentrations of the autophagy inhibitor chloroquine, which indicates functional basal autophagy. LC3B and p62 immunohistochemistry was performed on primary resected EAC. High LC3B and p62 expression was associated with earlier tumor stages (p < 0.05). High nuclear and cytoplasmic p62 staining were associated with a better prognosis (p = 0.006; p = 0.028). Various combinations of p62 expression with or without LC3B expression identified different prognostic groups. Tumors with low total p62 (p = 0.007) or low LC3B/low p62 expression had the worst outcome (p = 0.007; p = 0.005). A combination score of dot-like/cytoplasmic p62 and nuclear p62 staining was an independent prognostic parameter (p = 0.033; HR = 0.6). This study highlights the potential significance of basal autophagy in EAC biology. Tumors with low LC3B and p62 expression show the most aggressive behavior and may be candidates for autophagy regulating therapeutics.
Collapse
Affiliation(s)
- Olivia Adams
- Institute of Pathology, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Bastian Dislich
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | | - Anna M Schläfli
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Christian A Seiler
- Department of Visceral Surgery and Medicine, Inselspital University Hospital Bern and University of Bern, Bern, Switzerland
| | - Dino Kröll
- Department of Visceral Surgery and Medicine, Inselspital University Hospital Bern and University of Bern, Bern, Switzerland
| | - Mario P Tschan
- Institute of Pathology, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Rupert Langer
- Institute of Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
37
|
Terry S, Buart S, Chouaib S. Hypoxic Stress-Induced Tumor and Immune Plasticity, Suppression, and Impact on Tumor Heterogeneity. Front Immunol 2017; 8:1625. [PMID: 29225600 PMCID: PMC5705542 DOI: 10.3389/fimmu.2017.01625] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/09/2017] [Indexed: 01/06/2023] Open
Abstract
The microenvironment of a developing tumor is composed of proliferating cancer cells, blood vessels, stromal cells, infiltrating inflammatory cells, and a variety of associated tissue cells. The crosstalk between stromal cells and malignant cells within this environment crucially determines the fate of tumor progression, its hostility, and heterogeneity. It is widely accepted that hypoxic stresses occur in most solid tumors. Moreover, cancer cells found within hypoxic regions are presumed to represent the most aggressive and therapy-resistant fractions of the tumor. Here, we review evidence that hypoxia regulates cell plasticity, resistance to cell-mediated cytotoxicity, and immune suppression. Exposure to hypoxia occurs as a consequence of insufficient blood supply. Hypoxic cells activate a number of adaptive responses coordinated by various cellular pathways. Accumulating data also suggest that hypoxic stress in the tumor microenvironment promotes tumor escape mechanisms through the emergence of immune-resistant tumor variants and immune suppression. Thus, solid tumors seem to build up a hostile hypoxic microenvironment that hampers cell-mediated immunity and dampen the efficacy of the immune response.
Collapse
Affiliation(s)
- Stéphane Terry
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine - Univ. Paris-Sud, University Paris-Saclay, Villejuif, France
| | - Stéphanie Buart
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine - Univ. Paris-Sud, University Paris-Saclay, Villejuif, France
| | - Salem Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine - Univ. Paris-Sud, University Paris-Saclay, Villejuif, France
| |
Collapse
|
38
|
Yuan H, He M, Cheng F, Bai R, da Silva SR, Aguiar RCT, Gao SJ. Tenovin-6 inhibits proliferation and survival of diffuse large B-cell lymphoma cells by blocking autophagy. Oncotarget 2017; 8:14912-14924. [PMID: 28118604 PMCID: PMC5362454 DOI: 10.18632/oncotarget.14741] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 01/10/2017] [Indexed: 12/15/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is one of the most aggressive non-Hodgkin lymphomas. It is curable but one-third of cases are refractory to therapy or relapse after initial response highlighting the urgent need for developing novel therapeutic approaches. Targeting sirtuins, particularly SIRT1 by genetic approaches or using pharmaceutical inhibitor tenovin-6, has shown promising therapeutic potential in various hematopoietic malignancies. However, it remains unknown whether these approaches are effective for DLBCL. In this study, we have found that tenovin-6 potently inhibits the proliferation and survival of DLBCL cells. Surprisingly, specific knockdown of SIRT1/2/3 has no effect on DLBCL. Mechanistically, tenovin-6 increases the level of microtubule-associated protein 1 light chain 3B (LC3B)-II in a SIRT1/2/3- and p53-independent manner in DLBCL cell lines. Tenovin-6-mediated increase of LC3B-II is through inhibition of classical autophagy pathway. Furthermore, inhibition of the autophagy pathway by using other inhibitors or by knocking down key genes in the pathway impairs cell proliferation and survival of DLBCL cells. These results indicate that targeting the autophagic pathway could be a novel therapeutic strategy for DLBCL and that precaution should be taken to interpret data where tenovin-6 was used as an inhibitor of sirtuins.
Collapse
Affiliation(s)
- Hongfeng Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Meilan He
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Fan Cheng
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rosemary Bai
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Suzane Ramos da Silva
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ricardo C T Aguiar
- Department of Medicine and Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,South Texas Veterans Health Care System, Audie Murphy VA Hospital, San Antonio, TX, USA
| | - Shou-Jiang Gao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
39
|
Gleisner MA, Navarrete M, Hofmann F, Salazar-Onfray F, Tittarelli A. Mind the Gaps in Tumor Immunity: Impact of Connexin-Mediated Intercellular Connections. Front Immunol 2017; 8:1067. [PMID: 28919895 PMCID: PMC5585150 DOI: 10.3389/fimmu.2017.01067] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/16/2017] [Indexed: 12/22/2022] Open
Abstract
Gap junctions (GJs)-mediated intercellular communications (GJICs) are connexin (Cx)-formed plasma membrane channels that allow for the passage of small molecules between adjacent cells, and are involved in several physiopathological processes, including immune responses against cancer. In general, tumor cells are poorly coupled through GJs, mainly due to low Cx expression or reduced channel activity, suggesting that Cxs may have tumor suppressor roles. However, more recent data indicate that Cxs and/or GJICs may also in some cases promote tumor progression. This dual role of Cx channels in tumor outcome may be due, at least partially, to the fact that GJs not only interconnect cells from the same type, such as cancer cells, but also promote the intercellular communication of tumor cells with different types of cells from their microenvironment, and such diverse intercellular interactions have distinctive impact on tumor development. For example, whereas GJ-mediated interactions among tumor cells and microglia have been implicated in promotion of tumor growth, tumor cells delivery to dendritic cells of antigenic peptides through GJs have been associated with enhanced immune-mediated tumor elimination. In this review, we provide an updated overview on the role of GJICs in tumor immunity, focusing on the pro-tumor and antitumor effect of GJs occurring among tumor and immune cells. Accumulated data suggest that GJICs may act as tumor suppressors or enhancers depending on whether tumor cells interact predominantly with antitumor immune cells or with stromal cells. The complex modulation of immune-tumor cell GJICs should be taken into consideration in order to potentiate current cancer immunotherapies.
Collapse
Affiliation(s)
- María Alejandra Gleisner
- Disciplinary Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Faculty of Medicine, Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| | - Mariela Navarrete
- Disciplinary Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Faculty of Medicine, Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| | - Francisca Hofmann
- Disciplinary Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Faculty of Medicine, Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| | - Flavio Salazar-Onfray
- Disciplinary Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Faculty of Medicine, Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| | - Andrés Tittarelli
- Disciplinary Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Faculty of Medicine, Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| |
Collapse
|
40
|
Li CJ, Liao WT, Wu MY, Chu PY. New Insights into the Role of Autophagy in Tumor Immune Microenvironment. Int J Mol Sci 2017; 18:ijms18071566. [PMID: 28753959 PMCID: PMC5536054 DOI: 10.3390/ijms18071566] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment is a complex system that is affected by various factors, including hypoxia, acidosis, and immune and inflammatory responses, which have significant effects on tumor adhesion, invasion, metastasis, angiogenesis, and autophagy. In this hostile tumor microenvironment, autophagy of tumor cells can promote tumor growth and metastasis. As autophagy is a double-edged sword in tumors, treatment of cancer via regulation of autophagy is extremely complicated. Therefore, understanding the relationship between tumor autophagy and the tumor microenvironment is extremely important. As the immune milieu plays an important role in tumor development, immunotherapy has become a promising form of cancer therapy. A multi-pronged treatment approach using immunotherapy and molecular targets may become the major direction for future cancer treatments. This article reviews existing knowledge regarding the immune factors in the tumor microenvironment and the status of tumor autophagy research.
Collapse
Affiliation(s)
- Chia-Jung Li
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
| | - Wan-Ting Liao
- Chinese Medicine Department, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
| | - Meng-Yu Wu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan.
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan.
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| |
Collapse
|
41
|
Sun QZ, Lin GF, Li LL, Jin XT, Huang LY, Zhang G, Yang W, Chen K, Xiang R, Chen C, Wei YQ, Lu GW, Yang SY. Discovery of Potent and Selective Inhibitors of Cdc2-Like Kinase 1 (CLK1) as a New Class of Autophagy Inducers. J Med Chem 2017; 60:6337-6352. [PMID: 28692292 DOI: 10.1021/acs.jmedchem.7b00665] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Autophagy inducers represent new promising agents for the treatment of a wide range of medical illnesses. However, safe autophagy inducers for clinical applications are lacking. Inhibition of cdc2-like kinase 1 (CLK1) was recently found to efficiently induce autophagy. Unfortunately, most of the known CLK1 inhibitors have unsatisfactory selectivity. Herein, we report the discovery of a series of new CLK1 inhibitors containing the 1H-[1,2,3]triazolo[4,5-c]quinoline scaffold. Among them, compound 25 was the most potent and selective, with an IC50 value of 2 nM against CLK1. The crystal structure of CLK1 complexed with compound 25 was solved, and the potency and kinase selectivity of compound 25 were interpreted. Compound 25 was able to induce autophagy in in vitro assays and displayed significant hepatoprotective effects in the acetaminophen (APAP)-induced liver injury mouse model. Collectively, due to its potency and selectivity, compound 25 could be used as a chemical probe or agent in future mechanism-of-action or autophagy-related disease therapy studies.
Collapse
Affiliation(s)
- Qi-Zheng Sun
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu 610041, P.R. China
| | - Gui-Feng Lin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu 610041, P.R. China
| | - Lin-Li Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University , Sichuan 610041, P.R. China
| | - Xi-Ting Jin
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University , Sichuan 610041, P.R. China
| | - Lu-Yi Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu 610041, P.R. China.,School of Chemical Engineering, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu 610041, P.R. China
| | - Guo Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University , Sichuan 610041, P.R. China
| | - Wei Yang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University , Sichuan 610041, P.R. China
| | - Kai Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu 610041, P.R. China
| | - Rong Xiang
- Department of Clinical Medicine, School of Medicine, Nankai University , Tianjin 300071, P.R. China
| | - Chong Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu 610041, P.R. China
| | - Yu-Quan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu 610041, P.R. China
| | - Guang-Wen Lu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu 610041, P.R. China
| | - Sheng-Yong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu 610041, P.R. China.,School of Chemical Engineering, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu 610041, P.R. China
| |
Collapse
|
42
|
Roman-Gonzalez A, Jimenez C. Malignant pheochromocytoma-paraganglioma: pathogenesis, TNM staging, and current clinical trials. Curr Opin Endocrinol Diabetes Obes 2017; 24:174-183. [PMID: 28234804 DOI: 10.1097/med.0000000000000330] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Pheochromocytomas and paragangliomas (PPGs) are rare neuroendocrine tumors. Over the last 15 years, substantial progress has been made toward understanding the clinical aspects and molecular origins of this disease. Nevertheless, predicting and managing malignancy remains the biggest challenge in clinical practice. The natural history of patients with malignant PPGs has not yet been described, and their prognosis varies. Currently, the diagnosis of malignant PPGs relies on the presence of metastases, by which time the disease is usually advanced. Better understanding of the clinical and molecular characteristics of patients with malignant PPGs has spurred several prospective clinical trials. RECENT FINDINGS Several molecular targeted therapies, a novel radiopharmaceutical medication that targets the catecholamine transporter, and immunotherapy are under evaluation for the treatment of patients with malignant PPGs. Furthermore, the identification of clinical predictors of malignancy and survival has led to the first TNM staging classification for PPGs. SUMMARY Prospective clinical trials are providing patients with therapeutic options beyond systemic chemotherapy. The knowledge derived from these trials and from the evaluation of the TNM staging in clinical practice will help to clarify how to most effectively treat malignant PPGs.
Collapse
Affiliation(s)
- Alejandro Roman-Gonzalez
- aDepartment of Endocrinology, Hospital Universitario San Vicente Fundacion-Universidad de Antioquia, Medellín, Colombia bDepartment of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
43
|
Joffre C, Djavaheri-Mergny M, Pattingre S, Giuriato S. L’autophagie : le yin et le yang des cancers. Med Sci (Paris) 2017; 33:328-334. [DOI: 10.1051/medsci/20173303021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
44
|
Hua F, Shang S, Hu ZW. Seeking new anti-cancer agents from autophagy-regulating natural products. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2017; 19:305-313. [PMID: 28347180 DOI: 10.1080/10286020.2017.1304385] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
Natural products are an important original source of many widely used drugs, including anti-cancer drugs. Early research efforts for seeking anti-cancer therapy from the natural products are mainly focused on the compounds with cytotoxicity capability. The good examples include vinblastine, vincristine, the camptothecin derivatives; topotecan, irinotecan, epipodophyllotoxin derivatives and paclitaxel. In a recent decade, the fundamental progression has been made in the understanding of molecular and cellular mechanisms regarding tumor initiation, metastasis, therapeutic resistance, immune escape, and relapse, which provide a great opportunity for the development of new mechanism-based anticancer drugs, especially drugs against new molecular and cellular targets. Autophagy, a critical cell homeostasis mechanism and promising drug target involved in a verity of human diseases including cancer, can be modulated by many compounds derived from natural products. In this review, we'll give a short introduction of autophagy and discuss the roles of autophagy in the tumorigenesis and progression. And then, we summarize the accumulated evidences to show the anti-tumor effects of several compounds derived from natural products through modulation of autophagy activity.
Collapse
Affiliation(s)
- Fang Hua
- a Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
| | - Shuang Shang
- a Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
| | - Zhuo-Wei Hu
- a Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
| |
Collapse
|
45
|
Zhang X, Fan J, Wang S, Li Y, Wang Y, Li S, Luan J, Wang Z, Song P, Chen Q, Tian W, Ju D. Targeting CD47 and Autophagy Elicited Enhanced Antitumor Effects in Non–Small Cell Lung Cancer. Cancer Immunol Res 2017; 5:363-375. [DOI: 10.1158/2326-6066.cir-16-0398] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/10/2017] [Accepted: 03/24/2017] [Indexed: 11/16/2022]
|
46
|
Henson E, Chen Y, Gibson S. EGFR Family Members' Regulation of Autophagy Is at a Crossroads of Cell Survival and Death in Cancer. Cancers (Basel) 2017; 9:cancers9040027. [PMID: 28338617 PMCID: PMC5406702 DOI: 10.3390/cancers9040027] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 03/15/2017] [Accepted: 03/21/2017] [Indexed: 12/14/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) signaling pathways are altered in many cancers contributing to increased cell survival. These alterations are caused mainly through increased expression or mutation of EGFR family members EGFR, ErbB2, ErbB3, and ErbB4. These receptors have been successfully targeted for cancer therapy. Specifically, a monoclonal antibody against ErbB2, trastuzumab, and a tyrosine kinase inhibitor against EGFR, gefitinib, have improved the survival of breast and lung cancer patients. Unfortunately, cancer patients frequently become resistant to these inhibitors. This has led to investigating how EGFR can contribute to cell survival and how cancer cells can overcome inhibition of its signaling. Indeed, it is coming into focus that EGFR signaling goes beyond a single signal triggering cell proliferation and survival and is a sensor that regulates the cell’s response to microenvironmental stresses such as hypoxia. It acts as a switch that modulates the ability of cancer cells to survive. Autophagy is a process of self-digestion that is inhibited by EGFR allowing cancer cells to survive under stresses that would normally cause death and become resistant to chemotherapy. Inhibiting EGFR signaling allows autophagy to contribute to cell death. This gives new opportunities to develop novel therapeutic strategies to treat cancers that rely on EGFR signaling networks and autophagy. In this review, we summarize the current understanding of EGFR family member regulation of autophagy in cancer cells and how new therapeutic strategies could be developed to overcome drug resistance.
Collapse
Affiliation(s)
- Elizabeth Henson
- Research Institute in Oncology and Hematology, CancerCare Manitoba, 675 McDermot Ave., Winnipeg, MB R3E 0V9, Canada.
| | - Yongqiang Chen
- Research Institute in Oncology and Hematology, CancerCare Manitoba, 675 McDermot Ave., Winnipeg, MB R3E 0V9, Canada.
| | - Spencer Gibson
- Research Institute in Oncology and Hematology, CancerCare Manitoba, 675 McDermot Ave., Winnipeg, MB R3E 0V9, Canada.
- Department of Biochemistry and Medical Genetics, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0V9, Canada.
| |
Collapse
|
47
|
Ravegnini G, Sammarini G, Nannini M, Pantaleo MA, Biasco G, Hrelia P, Angelini S. Gastrointestinal stromal tumors (GIST): Facing cell death between autophagy and apoptosis. Autophagy 2017; 13:452-463. [PMID: 28055310 DOI: 10.1080/15548627.2016.1256522] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Autophagy and apoptosis are 2 fundamental biological mechanisms that may cooperate or be antagonistic, although both are involved in deciding the fate of cells in physiological or pathological conditions. These 2 mechanisms coexist simultaneously in cells and share common upstream signals and stimuli. Autophagy and apoptosis play pivotal roles in cancer development. Autophagy plays a key function in maintaining tumor cell survival by providing energy during unfavorable metabolic conditions through its recycling mechanism, and supporting the high energy requirement for metabolism and growth. This review focuses on gastrointestinal stromal tumors and cell death through autophagy and apoptosis, taking into account the involvement of both of these processes in tumor development and growth and as mechanisms of drug resistance. We also focus on the crosstalk between autophagy and apoptosis as an emerging field with major implications for the development of novel therapeutic options.
Collapse
Affiliation(s)
- Gloria Ravegnini
- a Department of Pharmacy and Biotechnology , University of Bologna , Bologna Italy
| | - Giulia Sammarini
- a Department of Pharmacy and Biotechnology , University of Bologna , Bologna Italy
| | - Margherita Nannini
- b Department of Specialized , Experimental and Diagnostic Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna , Bologna , Italy
| | - Maria A Pantaleo
- b Department of Specialized , Experimental and Diagnostic Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna , Bologna , Italy.,c "Giorgio Prodi" Cancer Research Center, University of Bologna , Bologna , Italy
| | - Guido Biasco
- b Department of Specialized , Experimental and Diagnostic Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna , Bologna , Italy.,c "Giorgio Prodi" Cancer Research Center, University of Bologna , Bologna , Italy
| | - Patrizia Hrelia
- a Department of Pharmacy and Biotechnology , University of Bologna , Bologna Italy
| | - Sabrina Angelini
- a Department of Pharmacy and Biotechnology , University of Bologna , Bologna Italy
| |
Collapse
|
48
|
Viry E, Noman MZ, Arakelian T, Lequeux A, Chouaib S, Berchem G, Moussay E, Paggetti J, Janji B. Hijacker of the Antitumor Immune Response: Autophagy Is Showing Its Worst Facet. Front Oncol 2016; 6:246. [PMID: 27917371 PMCID: PMC5114287 DOI: 10.3389/fonc.2016.00246] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/04/2016] [Indexed: 12/19/2022] Open
Abstract
Macroautophagy (hereafter referred to as autophagy) is a housekeeping process constitutively executed at basal level in all cells to promote cellular homeostasis by regulating organelle and protein turnover. However, autophagy deregulation caused by several stress factors, such as hypoxia, is prevalent in many cancers. It is now well established that autophagy can act as tumor suppressor or tumor promoter depending on tumor type, stage, and genetic context. In developed tumors, autophagy promotes the survival of cancer cells and therefore operates as a cell resistance mechanism. Emerging evidence point to the prominent role of autophagy in disabling the antitumor immune response by multiple overlapping mechanisms leading to tumor escape from immune cell attack mediated by both natural killer cells and cytotoxic T-lymphocytes. Such a role has inspired significant interest in applying anti-autophagy therapies as an entirely new approach to overcome tumor escape from immune surveillance, which constitutes so far a major challenge in developing more effective cancer immunotherapies. In this review, we will summarize recent reports describing how tumor cells, by activating autophagy, manage to hijack the immune system. In particular, we will focus on the emerging role of hypoxia-induced autophagy in shaping the antitumor immune response and in allowing tumor cells to outmaneuver an effective immune response and escape immunosurveillance. In keeping with this, we strongly believe that autophagy represents an attractive future therapeutic target to develop innovative and effective cancer immunotherapeutic approaches.
Collapse
Affiliation(s)
- Elodie Viry
- Laboratory of Experimental Cancer Research, Department of Oncology, Luxembourg Institute of Health , Luxembourg City , Luxembourg
| | - Muhammad Zaeem Noman
- Laboratory of Experimental Cancer Research, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg; INSERM U1186, Gustave Roussy Cancer Center, Villejuif, France
| | - Tsolère Arakelian
- Laboratory of Experimental Cancer Research, Department of Oncology, Luxembourg Institute of Health , Luxembourg City , Luxembourg
| | - Audrey Lequeux
- Laboratory of Experimental Cancer Research, Department of Oncology, Luxembourg Institute of Health , Luxembourg City , Luxembourg
| | - Salem Chouaib
- INSERM U1186, Gustave Roussy Cancer Center , Villejuif , France
| | - Guy Berchem
- Laboratory of Experimental Cancer Research, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg; Department of Hemato-Oncology, Centre Hospitalier du Luxembourg, Luxembourg City, Luxembourg
| | - Etienne Moussay
- Laboratory of Experimental Cancer Research, Department of Oncology, Luxembourg Institute of Health , Luxembourg City , Luxembourg
| | - Jérôme Paggetti
- Laboratory of Experimental Cancer Research, Department of Oncology, Luxembourg Institute of Health , Luxembourg City , Luxembourg
| | - Bassam Janji
- Laboratory of Experimental Cancer Research, Department of Oncology, Luxembourg Institute of Health , Luxembourg City , Luxembourg
| |
Collapse
|
49
|
Patel S, Hurez V, Nawrocki ST, Goros M, Michalek J, Sarantopoulos J, Curiel T, Mahalingam D. Vorinostat and hydroxychloroquine improve immunity and inhibit autophagy in metastatic colorectal cancer. Oncotarget 2016; 7:59087-59097. [PMID: 27463016 PMCID: PMC5312297 DOI: 10.18632/oncotarget.10824] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/30/2016] [Indexed: 12/20/2022] Open
Abstract
Hydroxychloroquine (HCQ) enhances the anti-cancer activity of the histone deacetylase inhibitor, vorinostat (VOR), in pre-clinical models and early phase clinical studies of metastatic colorectal cancer (mCRC). Mechanisms could include autophagy inhibition, accumulation of ubiquitinated proteins, and subsequent tumor cell apoptosis. There is growing evidence that autophagy inhibition could lead to improved anti-cancer immunity. To date, effects of autophagy on immunity have not been reported in cancer patients. To address this, we expanded an ongoing clinical study to include patients with advanced, refractory mCRC to evaluate further the clinical efficacy and immune effects of VOR plus HCQ. Refractory mCRC patients received VOR 400 milligrams orally with HCQ 600 milligrams orally daily, in a 3-week cycle. The primary endpoint was median progression-free survival (mPFS). Secondary endpoints include median overall survival (mOS), adverse events (AE), pharmacodynamic of inhibition of autophagy in primary tumors, immune cell analyses, and cytokine levels. Twenty patients were enrolled (19 evaluable for survival) with a mPFS of 2.8 months and mOS of 6.7 months. Treatment-related grade 3-4 AEs occurred in 8 patients (40%), with fatigue, nausea/vomiting, and anemia being the most common. Treatment significantly reduced CD4+CD25hiFoxp3+ regulatory and PD-1+ (exhausted) CD4+ and CD8+ T cells and decreased CD45RO-CD62L+ (naive) T cells, consistent with improved anti-tumor immunity. On-study tumor biopsies showed increases in lysosomal protease cathepsin D and p62 accumulation, consistent with autophagy inhibition. Taken together, VOR plus HCQ is active, safe and well tolerated in refractory CRC patients, resulting in potentially improved anti-tumor immunity and inhibition of autophagy.
Collapse
Affiliation(s)
- Sukeshi Patel
- Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Vincent Hurez
- Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Steffan T. Nawrocki
- Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Martin Goros
- Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Joel Michalek
- Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - John Sarantopoulos
- Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Tyler Curiel
- Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Devalingam Mahalingam
- Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|