1
|
Kim HY, Park JS, Jeon BH, Choi HS, Kim CS, Ma SK, Kim SW, Bae EH. Role of APE1/Ref-1 in hydrogen peroxide-induced apoptosis in human renal HK-2 cells. Kidney Res Clin Pract 2024; 43:186-201. [PMID: 37448293 PMCID: PMC11016666 DOI: 10.23876/j.krcp.22.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a multipotent protein that plays essential roles in cellular responses to oxidative stress. METHODS To examine the role of APE1/Ref-1 in ischemia-reperfusion (I/R) injuries and hydrogen peroxide (H2O2)-induced renal tubular apoptosis, we studied male C57BL6 mice and human proximal tubular epithelial (HK-2) cells treated with H2O2 at different concentrations. The colocalization of APE1/Ref-1 in the proximal tubule, distal tubule, thick ascending limb, and collecting duct was observed with confocal microscopy. The overexpression of APE1/Ref-1 with knockdown cell lines using an APE1/Ref-1-specific DNA or small interfering RNA (siRNA) was used for the apoptosis assay. The promotor activity of nuclear factor kappa B (NF-κB) was assessed and electrophoretic mobility shift assay was conducted. RESULTS APE1/Ref-1 was predominantly localized to the renal tubule nucleus. In renal I/R injuries, the levels of APE1/Ref-1 protein were increased compared with those in kidneys subjected to sham operations. The overexpression of APE1/Ref-1 in HK-2 cells enhanced the Bax/Bcl-2 ratio as a marker of apoptosis. Conversely, the suppression of APE1/Ref-1 expression by siRNA in 1-mM H2O2-treated HK-2 cells decreased the Bax/Bcl-2 ratio, the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38, c-Jun N-terminal kinase (JNK) 1/2, and NF-κB. In HK-2 cells, the promoter activity of NF-κB increased following H2O2 exposure, and this effect was further enhanced by APE1/Ref-1 transfection. CONCLUSION The inhibition of APE1/Ref-1 with siRNA attenuated H2O2-induced apoptosis through the modulation of mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 and the nuclear activation of NF-κB and proapoptotic factors.
Collapse
Affiliation(s)
- Ha Yeon Kim
- Department of Internal Medicine, Gwangju Veterans Hospital, Gwangju, Republic of Korea
| | - Jung Sun Park
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Byeong Hwa Jeon
- Research Institute of Medical Sciences and Department of Physiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Hong Sang Choi
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Chang Seong Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
2
|
Lu H, Cao LL, Ballout F, Belkhiri A, Peng D, Chen L, Chen Z, Soutto M, Wang TC, Que J, Giordano S, Washington MK, Chen S, McDonald OG, Zaika A, El-Rifai W. Reflux conditions induce E-cadherin cleavage and EMT via APE1 redox function in oesophageal adenocarcinoma. Gut 2023; 73:47-62. [PMID: 37734913 PMCID: PMC10872865 DOI: 10.1136/gutjnl-2023-329455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023]
Abstract
OBJECTIVE Chronic gastro-oesophageal reflux disease, where acidic bile salts (ABS) reflux into the oesophagus, is the leading risk factor for oesophageal adenocarcinoma (EAC). We investigated the role of ABS in promoting epithelial-mesenchymal transition (EMT) in EAC. DESIGN RNA sequencing data and public databases were analysed for the EMT pathway enrichment and patients' relapse-free survival. Cell models, pL2-IL1β transgenic mice, deidentified EAC patients' derived xenografts (PDXs) and tissues were used to investigate EMT in EAC. RESULTS Analysis of public databases and RNA-sequencing data demonstrated significant enrichment and activation of EMT signalling in EAC. ABS induced multiple characteristics of the EMT process, such as downregulation of E-cadherin, upregulation of vimentin and activation of ß-catenin signalling and EMT-transcription factors. These were associated with morphological changes and enhancement of cell migration and invasion capabilities. Mechanistically, ABS induced E-cadherin cleavage via an MMP14-dependent proteolytic cascade. Apurinic/apyrimidinic endonuclease (APE1), also known as redox factor 1, is an essential multifunctional protein. APE1 silencing, or its redox-specific inhibitor (E3330), downregulated MMP14 and abrogated the ABS-induced EMT. APE1 and MMP14 coexpression levels were inversely correlated with E-cadherin expression in human EAC tissues and the squamocolumnar junctions of the L2-IL1ß transgenic mouse model of EAC. EAC patients with APE1high and EMThigh signatures had worse relapse-free survival than those with low levels. In addition, treatment of PDXs with E3330 restrained EMT characteristics and suppressed tumour invasion. CONCLUSION Reflux conditions promote EMT via APE1 redox-dependent E-cadherin cleavage. APE1-redox function inhibitors can have a therapeutic role in EAC.
Collapse
Affiliation(s)
- Heng Lu
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Long Long Cao
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Farah Ballout
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Abbes Belkhiri
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - DunFa Peng
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Lei Chen
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Zheng Chen
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Mohammed Soutto
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Veterans Affairs, VA Miami Healthcare System, Miami, FL, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, NY, USA
| | - Jianwen Que
- Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, NY, USA
| | - Silvia Giordano
- Department of Oncology, University of Torino and Candiolo Cancer Institute, Candiolo, Italy
| | - Mary Kay Washington
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Steven Chen
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Oliver Gene McDonald
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Alexander Zaika
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Veterans Affairs, VA Miami Healthcare System, Miami, FL, USA
| | - Wael El-Rifai
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Veterans Affairs, VA Miami Healthcare System, Miami, FL, USA
| |
Collapse
|
3
|
Malfatti MC, Bellina A, Antoniali G, Tell G. Revisiting Two Decades of Research Focused on Targeting APE1 for Cancer Therapy: The Pros and Cons. Cells 2023; 12:1895. [PMID: 37508559 PMCID: PMC10378182 DOI: 10.3390/cells12141895] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
APE1 is an essential endodeoxyribonuclease of the base excision repair pathway that maintains genome stability. It was identified as a pivotal factor favoring tumor progression and chemoresistance through the control of gene expression by a redox-based mechanism. APE1 is overexpressed and serum-secreted in different cancers, representing a prognostic and predictive factor and a promising non-invasive biomarker. Strategies directly targeting APE1 functions led to the identification of inhibitors showing potential therapeutic value, some of which are currently in clinical trials. Interestingly, evidence indicates novel roles of APE1 in RNA metabolism that are still not fully understood, including its activity in processing damaged RNA in chemoresistant phenotypes, regulating onco-miRNA maturation, and oxidized RNA decay. Recent data point out a control role for APE1 in the expression and sorting of onco-miRNAs within secreted extracellular vesicles. This review is focused on giving a portrait of the pros and cons of the last two decades of research aiming at the identification of inhibitors of the redox or DNA-repair functions of APE1 for the definition of novel targeted therapies for cancer. We will discuss the new perspectives in cancer therapy emerging from the unexpected finding of the APE1 role in miRNA processing for personalized therapy.
Collapse
Affiliation(s)
- Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Alessia Bellina
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, 33100 Udine, Italy
| |
Collapse
|
4
|
Bernard JN, Chinnaiyan V, Almeda J, Catala-Valentin A, Andl CD. Lactobacillus sp. Facilitate the Repair of DNA Damage Caused by Bile-Induced Reactive Oxygen Species in Experimental Models of Gastroesophageal Reflux Disease. Antioxidants (Basel) 2023; 12:1314. [PMID: 37507854 PMCID: PMC10376144 DOI: 10.3390/antiox12071314] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Gastroesophageal reflux disease (GERD) leads to the accumulation of bile-induced reactive oxygen species and oxidative stress in esophageal tissues, causing inflammation and DNA damage. The progression sequence from healthy esophagus to GERD and eventually cancer is associated with a microbiome shift. Lactobacillus species are commensal organisms known for their probiotic and antioxidant characteristics in the healthy esophagus. This prompted us to investigate how Lactobacilli survive in a bile-rich environment during GERD, and to identify their interaction with the bile-injured esophageal cells. To model human reflux conditions, we exposed three Lactobacillus species (L. acidophilus, L. plantarum, and L. fermentum) to bile. All species were tolerant to bile possibly enabling them to colonize the esophageal epithelium under GERD conditions. Next, we assessed the antioxidant potential of Lactobacilli and role in bile injury repair: we measured bile-induced DNA damage using the ROS marker 8-oxo guanine and COMET assay. Lactobacillus addition after bile injury accelerated repair of bile-induced DNA damage through recruitment of pH2AX/RAD51 and reduced NFκB-associated inflammation in esophageal cells. This study demonstrated anti-genotoxic and anti-inflammatory effects of Lactobacilli, making them of significant interest in the prevention of Barrett's esophagus and esophageal adenocarcinoma in patients with GERD.
Collapse
Affiliation(s)
- Joshua N Bernard
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Vikram Chinnaiyan
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Jasmine Almeda
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Alma Catala-Valentin
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Claudia D Andl
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
5
|
Chen L, Lu H, Peng D, Cao LL, Ballout F, Srirmajayam K, Chen Z, Bhat A, Wang TC, Capobianco A, Que J, McDonald OG, Zaika A, Zhang S, El-Rifai W. Activation of NOTCH signaling via DLL1 is mediated by APE1-redox-dependent NF-κB activation in oesophageal adenocarcinoma. Gut 2023; 72:421-432. [PMID: 35750470 PMCID: PMC9789198 DOI: 10.1136/gutjnl-2022-327076] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/03/2022] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Oesophageal adenocarcinoma (EAC) arises in the setting of Barrett's oesophagus, an intestinal metaplastic precursor lesion that can develop in patients with chronic GERD. Here, we investigated the role of acidic bile salts, the mimicry of reflux, in activation of NOTCH signaling in EAC. DESIGN This study used public databases, EAC cell line models, L2-IL1β transgenic mouse model and human EAC tissue samples to identify mechanisms of NOTCH activation under reflux conditions. RESULTS Analysis of public databases demonstrated significant upregulation of NOTCH signaling components in EAC. In vitro studies demonstrated nuclear accumulation of active NOTCH1 cleaved fragment (NOTCH intracellular domain) and upregulation of NOTCH targets in EAC cells in response to reflux conditions. Additional investigations identified DLL1 as the predominant ligand contributing to NOTCH1 activation under reflux conditions. We discovered a novel crosstalk between APE1 redox function, reflux-induced inflammation and DLL1 upregulation where NF-κB can directly bind to and induce the expression of DLL1. The APE1 redox function was crucial for activation of the APE1-NF-κB-NOTCH axis and promoting cancer cell stem-like properties in response to reflux conditions. Overexpression of APE1 and DLL1 was detected in gastro-oesophageal junctions of the L2-IL1ß transgenic mouse model and human EAC tissue microarrays. DLL1 high levels were associated with poor overall survival in patients with EAC. CONCLUSION These findings underscore a unique mechanism that links redox balance, inflammation and embryonic development (NOTCH) into a common pro-tumorigenic pathway that is intrinsic to EAC cells.
Collapse
Affiliation(s)
- Lei Chen
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Heng Lu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Dunfa Peng
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Long Long Cao
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fujian, China
| | - Farah Ballout
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Kannappan Srirmajayam
- Department of Molecular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Zheng Chen
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ajaz Bhat
- Sidra Medicine, Doha, Ad Dawhah, Qatar
| | - Timothy C Wang
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Anthony Capobianco
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jianwen Que
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Oliver Gene McDonald
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Alexander Zaika
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
6
|
Caspa Gokulan R, Paulrasu K, Azfar J, El-Rifai W, Que J, Boutaud OG, Ban Y, Gao Z, Buitrago MG, Dikalov SI, Zaika AI. Protein adduction causes non-mutational inhibition of p53 tumor suppressor. Cell Rep 2023; 42:112024. [PMID: 36848235 PMCID: PMC9989503 DOI: 10.1016/j.celrep.2023.112024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/04/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
p53 is a key tumor suppressor that is frequently mutated in human tumors. In this study, we investigated how p53 is regulated in precancerous lesions prior to mutations in the p53 gene. Analyzing esophageal cells in conditions of genotoxic stress that promotes development of esophageal adenocarcinoma, we find that p53 protein is adducted with reactive isolevuglandins (isoLGs), products of lipid peroxidation. Modification of p53 protein with isoLGs diminishes its acetylation and binding to the promoters of p53 target genes causing modulation of p53-dependent transcription. It also leads to accumulation of adducted p53 protein in intracellular amyloid-like aggregates that can be inhibited by isoLG scavenger 2-HOBA in vitro and in vivo. Taken together, our studies reveal a posttranslational modification of p53 protein that causes molecular aggregation of p53 protein and its non-mutational inactivation in conditions of DNA damage that may play an important role in human tumorigenesis.
Collapse
Affiliation(s)
| | | | - Jamal Azfar
- Department of Surgery, University of Miami, Miami, FL, USA
| | - Wael El-Rifai
- Department of Surgery, University of Miami, Miami, FL, USA
| | - Jianwen Que
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Olivier G Boutaud
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yuguang Ban
- Department of Public Health Sciences, University of Miami, Miami, FL, USA
| | - Zhen Gao
- Department of Public Health Sciences, University of Miami, Miami, FL, USA
| | | | - Sergey I Dikalov
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexander I Zaika
- Department of Surgery, University of Miami, Miami, FL, USA; Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL, USA.
| |
Collapse
|
7
|
Ballout F, Lu H, Chen L, Sriramajayam K, Que J, Meng Z, Wang TC, Giordano S, Zaika A, McDonald O, Peng D, El-Rifai W. APE1 redox function is required for activation of Yes-associated protein 1 under reflux conditions in Barrett's-associated esophageal adenocarcinomas. J Exp Clin Cancer Res 2022; 41:264. [PMID: 36045416 PMCID: PMC9434868 DOI: 10.1186/s13046-022-02472-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/22/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Esophageal adenocarcinoma (EAC) is characterized by poor prognosis and low survival rate. Chronic gastroesophageal reflux disease (GERD) is the main risk factor for the development of Barrett's esophagus (BE), a preneoplastic metaplastic condition, and its progression to EAC. Yes-associated protein 1 (YAP1) activation mediates stem-like properties under cellular stress. The role of acidic bile salts (ABS) in promoting YAP1 activation under reflux conditions remains unexplored. METHODS A combination of EAC cell lines, transgenic mice, and patient-derived xenografts were utilized in this study. mRNA expression and protein levels of APE1 and YAP1 were evaluated by qRT-PCR, western blot, and immunohistochemistry. YAP1 activation was confirmed by immunofluorescence staining and luciferase transcriptional activity reporter assay. The functional role and mechanism of regulation of YAP1 by APE1 was determined by sphere formation assay, siRNA mediated knockdown, redox-specific inhibition, and co-immunoprecipitation assays. RESULTS We showed that YAP1 signaling is activated in BE and EAC cells following exposure to ABS, the mimicry of reflux conditions in patients with GERD. This induction was consistent with APE1 upregulation in response to ABS. YAP1 activation was confirmed by its nuclear accumulation with corresponding up-regulation of YAP1 target genes. APE1 silencing inhibited YAP1 protein induction and reduced its nuclear expression and transcriptional activity, following ABS treatment. Further investigation revealed that APE1-redox-specific inhibition (E3330) or APE1 redox-deficient mutant (C65A) abrogated ABS-mediated YAP1 activation, indicating an APE1 redox-dependent mechanism. APE1 silencing or E3330 treatment reduced YAP1 protein levels and diminished the number and size of EAC spheroids. Mechanistically, we demonstrated that APE1 regulated YAP1 stability through interaction with β-TrCP ubiquitinase, whereas APE1-redox-specific inhibition induced YAP1 poly-ubiquitination promoting its degradation. CONCLUSION Our findings established a novel function of APE1 in EAC progression elucidating druggable molecular vulnerabilities via targeting APE1 or YAP1 for the treatment of EAC.
Collapse
Affiliation(s)
- Farah Ballout
- Department of Surgery, Miller School of Medicine, University of Miami, Rosenstiel Med Science Bldg., 1600 NW 10th Ave, Room 4007, Miami, FL, 33136-1015, USA
| | - Heng Lu
- Department of Surgery, Miller School of Medicine, University of Miami, Rosenstiel Med Science Bldg., 1600 NW 10th Ave, Room 4007, Miami, FL, 33136-1015, USA
| | - Lei Chen
- Department of Surgery, Miller School of Medicine, University of Miami, Rosenstiel Med Science Bldg., 1600 NW 10th Ave, Room 4007, Miami, FL, 33136-1015, USA
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Kannappan Sriramajayam
- Department of Surgery, Miller School of Medicine, University of Miami, Rosenstiel Med Science Bldg., 1600 NW 10th Ave, Room 4007, Miami, FL, 33136-1015, USA
| | - Jianwen Que
- Department of Medicine, Columbia University, New York, NY, 10027, USA
| | - Zhipeng Meng
- Department of Molecular and Cellular Pharmacology & Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Timothy C Wang
- Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Silvia Giordano
- Department of Oncology, University of Torino and Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, Italy
| | - Alexander Zaika
- Department of Surgery, Miller School of Medicine, University of Miami, Rosenstiel Med Science Bldg., 1600 NW 10th Ave, Room 4007, Miami, FL, 33136-1015, USA
- Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA
| | - Oliver McDonald
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Dunfa Peng
- Department of Surgery, Miller School of Medicine, University of Miami, Rosenstiel Med Science Bldg., 1600 NW 10th Ave, Room 4007, Miami, FL, 33136-1015, USA
| | - Wael El-Rifai
- Department of Surgery, Miller School of Medicine, University of Miami, Rosenstiel Med Science Bldg., 1600 NW 10th Ave, Room 4007, Miami, FL, 33136-1015, USA.
- Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA.
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
8
|
Han D, Zhang C. The Oxidative Damage and Inflammation Mechanisms in GERD-Induced Barrett's Esophagus. Front Cell Dev Biol 2022; 10:885537. [PMID: 35721515 PMCID: PMC9199966 DOI: 10.3389/fcell.2022.885537] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/13/2022] [Indexed: 12/16/2022] Open
Abstract
Barrett's esophagus is a major complication of gastro-esophageal reflux disease and an important precursor lesion for the development of Barrett's metaplasia and esophageal adenocarcinoma. However, the cellular and molecular mechanisms of Barrett's metaplasia remain unclear. Inflammation-associated oxidative DNA damage could contribute to Barrett's esophagus. It has been demonstrated that poly(ADP-ribose) polymerases (PARPs)-associated with ADP-ribosylation plays an important role in DNA damage and inflammatory response. A previous study indicated that there is inflammatory infiltration and oxidative DNA damage in the lower esophagus due to acid/bile reflux, and gastric acid could induce DNA damage in culture esophageal cells. This review will discuss the mechanisms of Barrett's metaplasia and adenocarcinoma underlying oxidative DNA damage in gastro-esophageal reflux disease patients based on recent clinical and basic findings.
Collapse
Affiliation(s)
- Deqiang Han
- Department of General Surgery, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, China.,Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Chao Zhang
- Department of General Surgery, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Sriramajayam K, Peng D, Lu H, Zhou S, Bhat N, McDonald OG, Que J, Zaika A, El-Rifai W. Activation of NRF2 by APE1/REF1 is redox-dependent in Barrett's related esophageal adenocarcinoma cells. Redox Biol 2021; 43:101970. [PMID: 33887608 PMCID: PMC8082268 DOI: 10.1016/j.redox.2021.101970] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Chronic gastroesophageal reflux disease (GERD) is a major risk factor for the development of metaplastic Barrett's esophagus (BE) and its progression to esophageal adenocarcinoma (EAC). Uncontrolled accumulation of reactive oxygen species (ROS) in response to acidic bile salts (ABS) in reflux conditions can be lethal to cells. In this study, we investigated the role of APE1/REF1 in regulating nuclear erythroid factor-like 2 (NRF2), the master antioxidant transcription factor, in response to reflux conditions. RESULTS We found that APE1 protein was critical for protecting against cellular ROS levels, oxidative DNA damage, double strand DNA breaks, and cell death in response to conditions that mimic reflux. Analysis of cell lines and de-identified tissues from patients with EAC demonstrated overexpression of both APE1 and NRF2 in EAC cells, as compared to non-neoplastic esophageal cells. Using reflux conditions, we detected concordant and prolonged increases of APE1 and NRF2 protein levels for several hours, following transient short exposure to ABS (20 min). NRF2 transcription activity, as measured by ARE luciferase reporter, and expression of its target genes (HO-1 and TRXND1) were similarly increased in response to ABS. Using genetic knockdown of APE1, we found that APE1 was required for the increase in NRF2 protein stability, nuclear localization, and transcription activation in EAC. Using knockdown of APE1 with reconstitution of wild-type and a redox-deficient mutant (C65A) of APE1, as well as pharmacologic APE1 redox inhibitor (E3330), we demonstrated that APE1 regulated NRF2 in a redox-dependent manner. Mechanistically, we found that APE1 is required for phosphorylation and inactivation of GSK-3β, an important player in the NRF2 degradation pathway. CONCLUSION APE1 redox function was required for ABS-induced activation of NRF2 by regulating phosphorylation and inactivation of GSK-3β. The APE1-NRF2 network played a critical role in protecting esophageal cells against ROS and promoting cell survival under oxidative reflux conditions.
Collapse
Affiliation(s)
- Kannappan Sriramajayam
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Dunfa Peng
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL-33136, USA
| | - Heng Lu
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Shoumin Zhou
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Nadeem Bhat
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Oliver G McDonald
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Jianwen Que
- Department of Medicine, Columbia University, New York, NY, 10027, USA
| | - Alexander Zaika
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL-33136, USA; Department of Veterans Affairs, Miami Healthcare System, Miami, FL, 33136, USA
| | - Wael El-Rifai
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL-33136, USA; Department of Veterans Affairs, Miami Healthcare System, Miami, FL, 33136, USA.
| |
Collapse
|
10
|
Peng D, Zaika A, Que J, El-Rifai W. The antioxidant response in Barrett's tumorigenesis: A double-edged sword. Redox Biol 2021; 41:101894. [PMID: 33621787 PMCID: PMC7907897 DOI: 10.1016/j.redox.2021.101894] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Esophageal adenocarcinoma (EAC) is the dominant form of esophageal malignancies in the United States and other industrialized countries. The incidence of EAC has been rising rapidly during the past four decades. Barrett's esophagus (BE) is the main precancerous condition for EAC, where a metaplastic columnar epithelium replaces normal squamous mucosa of the lower esophagus. The primary risk factor for BE and EAC are chronic gastroesophageal reflux disease (GERD), obesity and smoking. During the BE-dysplasia-EAC sequence, esophageal cells are under a tremendous burden of accumulating reactive oxygen species (ROS) and oxidative stress. While normal cells have intact antioxidant machinery to maintain a balanced anti-tumorigenic physiological response, the antioxidant capacity is compromised in neoplastic cells with a pro-tumorigenic development antioxidant response. The accumulation of ROS, during the neoplastic progression of the GERD-BE-EAC sequence, induces DNA damage, lipid peroxidation and protein oxidation. Neoplastic cells adapt to oxidative stress by developing a pro-tumorigenic antioxidant response that keeps oxidative damage below lethal levels while promoting tumorigenesis, progression, and resistance to therapy. In this review, we will summarize the recent findings on oxidative stress in tumorigenesis in the context of the GERD-BE-EAC process. We will discuss how EAC cells adapt to increased ROS. We will review APE1 and NRF2 signaling mechanisms in the context of EAC. Finally, we will discuss the potential clinical significance of applying antioxidants or NRF2 activators as chemoprevention and NRF2 inhibitors in treating EAC patients.
Collapse
Affiliation(s)
- Dunfa Peng
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Alexander Zaika
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA
| | - Jianwen Que
- Department of Medicine, Columbia University, New York, USA
| | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA.
| |
Collapse
|
11
|
Malfatti MC, Antoniali G, Codrich M, Burra S, Mangiapane G, Dalla E, Tell G. New perspectives in cancer biology from a study of canonical and non-canonical functions of base excision repair proteins with a focus on early steps. Mutagenesis 2021; 35:129-149. [PMID: 31858150 DOI: 10.1093/mutage/gez051] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022] Open
Abstract
Alterations of DNA repair enzymes and consequential triggering of aberrant DNA damage response (DDR) pathways are thought to play a pivotal role in genomic instabilities associated with cancer development, and are further thought to be important predictive biomarkers for therapy using the synthetic lethality paradigm. However, novel unpredicted perspectives are emerging from the identification of several non-canonical roles of DNA repair enzymes, particularly in gene expression regulation, by different molecular mechanisms, such as (i) non-coding RNA regulation of tumour suppressors, (ii) epigenetic and transcriptional regulation of genes involved in genotoxic responses and (iii) paracrine effects of secreted DNA repair enzymes triggering the cell senescence phenotype. The base excision repair (BER) pathway, canonically involved in the repair of non-distorting DNA lesions generated by oxidative stress, ionising radiation, alkylation damage and spontaneous or enzymatic deamination of nucleotide bases, represents a paradigm for the multifaceted roles of complex DDR in human cells. This review will focus on what is known about the canonical and non-canonical functions of BER enzymes related to cancer development, highlighting novel opportunities to understand the biology of cancer and representing future perspectives for designing new anticancer strategies. We will specifically focus on APE1 as an example of a pleiotropic and multifunctional BER protein.
Collapse
Affiliation(s)
- Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Marta Codrich
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Silvia Burra
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giovanna Mangiapane
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Emiliano Dalla
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| |
Collapse
|
12
|
Bhat AA, Nisar S, Maacha S, Carneiro-Lobo TC, Akhtar S, Siveen KS, Wani NA, Rizwan A, Bagga P, Singh M, Reddy R, Uddin S, Grivel JC, Chand G, Frenneaux MP, Siddiqi MA, Bedognetti D, El-Rifai W, Macha MA, Haris M. Cytokine-chemokine network driven metastasis in esophageal cancer; promising avenue for targeted therapy. Mol Cancer 2021; 20:2. [PMID: 33390169 PMCID: PMC7780621 DOI: 10.1186/s12943-020-01294-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/06/2020] [Indexed: 02/08/2023] Open
Abstract
Esophageal cancer (EC) is a disease often marked by aggressive growth and poor prognosis. Lack of targeted therapies, resistance to chemoradiation therapy, and distant metastases among patients with advanced disease account for the high mortality rate. The tumor microenvironment (TME) contains several cell types, including fibroblasts, immune cells, adipocytes, stromal proteins, and growth factors, which play a significant role in supporting the growth and aggressive behavior of cancer cells. The complex and dynamic interactions of the secreted cytokines, chemokines, growth factors, and their receptors mediate chronic inflammation and immunosuppressive TME favoring tumor progression, metastasis, and decreased response to therapy. The molecular changes in the TME are used as biological markers for diagnosis, prognosis, and response to treatment in patients. This review highlighted the novel insights into the understanding and functional impact of deregulated cytokines and chemokines in imparting aggressive EC, stressing the nature and therapeutic consequences of the cytokine-chemokine network. We also discuss cytokine-chemokine oncogenic potential by contributing to the Epithelial-Mesenchymal Transition (EMT), angiogenesis, immunosuppression, metastatic niche, and therapeutic resistance development. In addition, it discusses the wide range of changes and intracellular signaling pathways that occur in the TME. Overall, this is a relatively unexplored field that could provide crucial insights into tumor immunology and encourage the effective application of modulatory cytokine-chemokine therapy to EC.
Collapse
Affiliation(s)
- Ajaz A Bhat
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Selma Maacha
- Research Department, Sidra Medicine, Doha, Qatar
| | | | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Nissar A Wani
- Department of Biotechnology, Central University of Kashmir, Ganderbal, Jammu and Kashmir, India
| | - Arshi Rizwan
- Department of Nephrology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Puneet Bagga
- Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Mayank Singh
- Dr. B. R. Ambedkar Institute Rotary Cancer Hospital (BRAIRCH), AIIMS, New Delhi, India
| | - Ravinder Reddy
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Gyan Chand
- Department of Endocrine Surgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | | | - Mushtaq A Siddiqi
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India
| | - Davide Bedognetti
- Laboratory of Cancer Immunogenomics, Cancer Research Department, Sidra Medicine, Doha, Qatar
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India.
| | - Mohammad Haris
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar.
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
13
|
Fu M, Liang S, Wu J, Hua Y, Chen H, Zhang Z, Liu J, Li X, Zhang B, Zhao W, Wan C. An Escherichia coli Effector Protein EspF May Induce Host DNA Damage via Interaction With SMC1. Front Microbiol 2021; 12:682064. [PMID: 34122393 PMCID: PMC8188558 DOI: 10.3389/fmicb.2021.682064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/30/2021] [Indexed: 12/22/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157: H7 is an important foodborne pathogen that causes human diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome. EspF is one of the most important effector proteins injected by the Type III Secretion System. It can target mitochondria and nucleoli, stimulate host cells to produce ROS, and promote host cell apoptosis. However, the mechanism of the host-pathogen interaction leading to host oxidative stress and cell cytotoxic effects such as DNA damage remains to be elucidated. Here, we used Cell Counting Kit-8 (CCK-8) assays and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OHdG) ELISA to study cell viability and DNA oxidative damage level after exposure to EspF. Western blot and immunofluorescence were also used to determine the level of the DNA damage target protein p-H2AX and cell morphology changes after EspF infection. Moreover, we verified the toxicity in intestinal epithelial cells mediated by EspF infection in vivo. In addition, we screened the host proteins that interact with EspF using CoIP-MS. We found that EspF may more depend on its C-terminus to interact with SMC1, and EspF could activate SMC1 phosphorylation and migrate it to the cytoplasm. In summary, this study revealed that EspF might mediate host cell DNA damage and found a new interaction between EspF and the DNA damage repair protein SMC1. Thus, EspF may mediate DNA damage by regulating the subcellular localization and phosphorylation of SMC1.
Collapse
Affiliation(s)
- Muqing Fu
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Song Liang
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiali Wu
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ying Hua
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hanzong Chen
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhikai Zhang
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jinyue Liu
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaoxia Li
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Bao Zhang
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wei Zhao
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Chengsong Wan
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
- Key Laboratory of Tropical Disease Research of Guangdong Province, Guangzhou, China
- *Correspondence: Chengsong Wan,
| |
Collapse
|
14
|
Yang HW, Jung Y, Kim HD, Kim J. Ribosomal protein S3-derived repair domain peptides regulate UV-induced matrix metalloproteinase-1. Biochem Biophys Res Commun 2020; 530:149-154. [PMID: 32828277 DOI: 10.1016/j.bbrc.2020.06.094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 10/23/2022]
Abstract
Ultraviolet (UV) radiation is a major factor that causes wrinkle formation by affecting the collagen level in the skin. Here, we show that a short peptide (A8) derived from the repair domain of the ribosomal protein S3 (rpS3) reduces UV irradiation-induced increase in matrix metalloproteinase-1 (MMP-1) and prevents collagen degradation by reducing the activation of the mitogen-activated protein kinase (MAPK) signaling proteins (extracellular signal-regulated kinase [ERK], p38, and c-Jun N-terminal kinases [JNK]) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in cells. Furthermore, A8 also prevents the increase in the levels of inflammatory modulators such as tumor necrosis factor-alpha (TNF-α) or interleukin-6 (IL-6) in UV-irradiated cells. Collectively, our study suggests that the A8 peptide, derived from yeast or human, has anti-photoaging potential as it prevents UV-induced wrinkle formation.
Collapse
Affiliation(s)
- Hee Woong Yang
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Youjin Jung
- HAEL Lab, TechnoComplex Building, Korea University, Seoul, Republic of Korea
| | - Hag Dong Kim
- HAEL Lab, TechnoComplex Building, Korea University, Seoul, Republic of Korea
| | - Joon Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Republic of Korea; HAEL Lab, TechnoComplex Building, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Kompella P, Vasquez KM. Obesity and cancer: A mechanistic overview of metabolic changes in obesity that impact genetic instability. Mol Carcinog 2019; 58:1531-1550. [PMID: 31168912 PMCID: PMC6692207 DOI: 10.1002/mc.23048] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 12/16/2022]
Abstract
Obesity, defined as a state of positive energy balance with a body mass index exceeding 30 kg/m2 in adults and 95th percentile in children, is an increasing global concern. Approximately one-third of the world's population is overweight or obese, and in the United States alone, obesity affects one in six children. Meta-analysis studies suggest that obesity increases the likelihood of developing several types of cancer, and with poorer outcomes, especially in children. The contribution of obesity to cancer risk requires a better understanding of the association between obesity-induced metabolic changes and its impact on genomic instability, which is a major driving force of tumorigenesis. In this review, we discuss how molecular changes during adipose tissue dysregulation can result in oxidative stress and subsequent DNA damage. This represents one of the many critical steps connecting obesity and cancer since oxidative DNA lesions can result in cancer-associated genetic instability. In addition, the by-products of the oxidative degradation of lipids (e.g., malondialdehyde, 4-hydroxynonenal, and acrolein), and gut microbiota-mediated secondary bile acid metabolites (e.g., deoxycholic acid and lithocholic acid), can function as genotoxic agents and tumor promoters. We also discuss how obesity can impact DNA repair efficiency, potentially contributing to cancer initiation and progression. Finally, we outline obesity-related epigenetic changes and identify the gaps in knowledge to be addressed for the development of better therapeutic strategies for the prevention and treatment of obesity-related cancers.
Collapse
Affiliation(s)
- Pallavi Kompella
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX 78723, USA
| | - Karen M. Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX 78723, USA
| |
Collapse
|
16
|
Caspa Gokulan R, Garcia-Buitrago MT, Zaika AI. From genetics to signaling pathways: molecular pathogenesis of esophageal adenocarcinoma. Biochim Biophys Acta Rev Cancer 2019; 1872:37-48. [PMID: 31152823 PMCID: PMC6692203 DOI: 10.1016/j.bbcan.2019.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023]
Abstract
Esophageal adenocarcinoma (EAC) has one of the fastest rising incidence rates in the U.S. and many other Western countries. One of the unique risk factors for EAC is gastroesophageal reflux disease (GERD), a chronic digestive condition in which acidic contents from the stomach, frequently mixed with duodenal bile, enter the esophagus resulting in esophageal tissue injury. At the cellular level, progression to EAC is underlined by continuous DNA damage caused by reflux and chronic inflammatory factors that increase the mutation rate and promote genomic instability. Despite recent successes in cancer diagnostics and treatment, EAC remains a poorly treatable disease. Recent research has shed new light on molecular alterations underlying progression to EAC and revealed novel treatment options. This review focuses on the genetic and molecular studies of EAC. The molecular changes that occur during the transformation of normal Barrett's esophagus to esophageal adenocarcinoma are also discussed.
Collapse
Affiliation(s)
| | | | - Alexander I Zaika
- Department of Surgery, University of Miami, Miami, FL, United States of America; Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL, United States of America.
| |
Collapse
|
17
|
Lu H, Bhat AA, Peng D, Chen Z, Zhu S, Hong J, Maacha S, Yan J, Robbins DJ, Washington MK, Belkhiri A, El-Rifai W. APE1 Upregulates MMP-14 via Redox-Sensitive ARF6-Mediated Recycling to Promote Cell Invasion of Esophageal Adenocarcinoma. Cancer Res 2019; 79:4426-4438. [PMID: 31308045 DOI: 10.1158/0008-5472.can-19-0237] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/17/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022]
Abstract
Esophageal adenocarcinoma (EAC) is an aggressive malignancy with poor clinical outcome. The incidence of EAC has been rising rapidly in the past three decades. Here, we showed that apurinic/apyrimidinic endonuclease (APE1) is overexpressed in EAC cell lines, and patients' samples of dysplasia and EAC. Downregulation of APE1 or inhibition of its redox function significantly repressed invasion. Overexpression of a redox-defective mutant, C65A, abrogated the proinvasive phenotype of APE1. APE1 regulated invasion via upregulation of matrix metalloproteinase 14 (MMP-14), which subsequently activated MMP-2, leading to degradation of the extracellular matrix in a redox-dependent manner. Downregulation of APE1 or inhibition of its redox function decreased the rate of endocytosis and recycling of MMP-14 protein. APE1 interacted with ARF6, a key regulator of MMP-14 recycling, which maintained ARF6 activity in an APE1-redox-dependent manner, promoting its ability to regulate MMP-14 recycling to the cell surface. In summary, these findings identify a novel redox-sensitive APE1-ARF6-MMP-14 signaling axis that mediates cellular invasion in esophageal carcinogenesis. SIGNIFICANCE: This study demonstrates the association between oxidative stress and the development and metastatic behavior of esophageal adenocarcinoma.
Collapse
Affiliation(s)
- Heng Lu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Ajaz A Bhat
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Dunfa Peng
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Zheng Chen
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida.,Department of Veterans Affairs, Miami Healthcare System, Miami, Florida
| | - Shoumin Zhu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Jun Hong
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Selma Maacha
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Jin Yan
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangshu, China
| | - David J Robbins
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - M Kay Washington
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Abbes Belkhiri
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida. .,Department of Veterans Affairs, Miami Healthcare System, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
18
|
NRF2 antioxidant response protects against acidic bile salts-induced oxidative stress and DNA damage in esophageal cells. Cancer Lett 2019; 458:46-55. [PMID: 31132430 DOI: 10.1016/j.canlet.2019.05.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/09/2019] [Accepted: 05/22/2019] [Indexed: 12/30/2022]
Abstract
Gastroesophageal reflux disease (GERD) is the main risk factor for Barrett's tumorigenesis. In this study, we investigated the role of NRF2 in response to exposure to acidic bile salts (ABS), in conditions that mimic GERD, using Barrett's esophagus cell models. We detected an increase in NRF2 protein levels, following exposure to ABS. We found oxidization of cysteines (cysteines with oxidized thiol groups) in KEAP1 protein with a weaker interaction between NRF2 and KEAP1, following ABS exposure. Treatment with bile salts increased nuclear NRF2 levels, enhancing its transcription activity, as measured by an ARE (antioxidant response element) luciferase reporter assay. The mRNA expression levels of NRF2 target genes, HO-1 and GR, were increased in response to ABS exposure. Using genetic overexpression and knockdown of NRF2, we found that NRF2 has a critical role in suppressing ABS-induced ROS levels, oxidative DNA damage, DNA double strand breaks, and apoptosis. Collectively, our results suggest that transient induction of NRF2 in response to ABS plays a pivotal role in protecting esophageal cells by maintaining the levels of oxidative stress and DNA damage below lethal levels under GERD conditions.
Collapse
|
19
|
Zhou Z, Lu H, Zhu S, Gomaa A, Chen Z, Yan J, Washington K, El-Rifai W, Dang C, Peng D. Activation of EGFR-DNA-PKcs pathway by IGFBP2 protects esophageal adenocarcinoma cells from acidic bile salts-induced DNA damage. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:13. [PMID: 30626422 PMCID: PMC6327430 DOI: 10.1186/s13046-018-1021-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/26/2018] [Indexed: 12/26/2022]
Abstract
Background The incidence of esophageal adenocarcinoma (EAC) is rising rapidly in the US and Western countries. The development of Barrett’s esophagus (BE) and its progression to EAC have been linked to chronic gastroesophageal reflux disease (GERD). Exposure of BE and EAC cells to acidic bile salts (ABS) in GERD conditions induces high levels of oxidative stress and DNA damage. In this study, we investigated the role of insulin-like growth factor binding protein 2 (IGFBP2) in regulating ABS-induced DNA double-strand breaks. Methods Real-time RT-PCR, western blot, immunohistochemistry, immunofluorescence, co-immunoprecipitation, flow cytometry, and cycloheximide (CHX) chase assays were used in this study. To mimic GERD conditions, a cocktail of acidic bile salts (pH 4) was used in 2D and 3D organotypic culture models. Overexpression and knockdown of IGFBP2 in EAC cells were established to examine the functional and mechanistic roles of IGFBP2 in ABS-induced DNA damage. Results Our results demonstrated high levels of IGFBP2 mRNA and protein in EAC cell lines as compared to precancerous Barrett’s cell lines, and IGFBP2 is frequently overexpressed in EACs (31/57). Treatment of EAC cells with ABS, to mimic GERD conditions, induced high levels of IGFBP2 expression. Knocking down endogenous IGFBP2 in FLO1 cells (with constitutive high levels of IGFBP2) led to a significant increase in DNA double-strand breaks and apoptosis, following transient exposure to ABS. On the other hand, overexpression of exogenous IGFBP2 in OE33 cells (with low endogenous levels of IGFBP2) had a protective effect against ABS-induced double-strand breaks and apoptosis. We found that IGFBP2 is required for ABS-induced nuclear accumulation and phosphorylation of EGFR and DNA-PKcs, which are necessary for DNA damage repair activity. Using co-immunoprecipitation assay, we detected co-localization of IGFBP2 with EGFR and DNA-PKcs, following acidic bile salts treatment. We further demonstrated, using cycloheximide chase assay, that IGFBP2 promotes EGFR protein stability in response to ABS exposure. Conclusions IGFBP2 protects EAC cells against ABS-induced DNA damage and apoptosis through stabilization and activation of EGFR - DNA-PKcs signaling axis. Electronic supplementary material The online version of this article (10.1186/s13046-018-1021-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhangjian Zhou
- Department of Surgical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta W. Road, Xi'an, 710061, Shaanxi, China.,Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136-1015, USA
| | - Heng Lu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136-1015, USA
| | - Shoumin Zhu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136-1015, USA
| | - Ahmed Gomaa
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136-1015, USA
| | - Zheng Chen
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136-1015, USA
| | - Jin Yan
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136-1015, USA.,Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kay Washington
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136-1015, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136-1015, USA.,Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA
| | - Chengxue Dang
- Department of Surgical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta W. Road, Xi'an, 710061, Shaanxi, China.
| | - Dunfa Peng
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136-1015, USA. .,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136-1015, USA.
| |
Collapse
|
20
|
Bhat AA, Lu H, Soutto M, Capobianco A, Rai P, Zaika A, El-Rifai W. Exposure of Barrett's and esophageal adenocarcinoma cells to bile acids activates EGFR-STAT3 signaling axis via induction of APE1. Oncogene 2018; 37:6011-6024. [PMID: 29991802 PMCID: PMC6328352 DOI: 10.1038/s41388-018-0388-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 02/06/2023]
Abstract
The development of Barret’s esophagus (BE) and its progression to esophageal adenocarcinoma (EAC) is highly linked to exposure to acidic bile salts due to chronic gastroesophageal reflux disease (GERD). In this study, we investigated the role of Apurinic/apyrimidinic endonuclease 1 /redox effector factor-1 (APE-1/REF-1) in STAT3 activation in response to EAC. Our results indicate that APE1 is constitutively overexpressed in EAC whereas its expression is transiently induced in response to acidic bile salts in non-neoplastic BE. Using overexpression or shRNA knockdown of APE1, we found that APE1 is required for phosphorylation, nuclear localization, and transcription activation of STAT3. By using an APE1 redox-specific mutant (C65A) and APE1 redox inhibitor (E3330), we demonstrate that APE1 activates STAT3 in a redox-dependent manner. By using pharmacologic inhibitors and genetic knockdown systems, we found that EGFR is a required link between APE1 and STAT3. EGFR phosphorylation (Y1068) was directly associated with APE1 levels and redox function. Co-immunoprecipitation and proximity ligation assays indicated that APE-1 coexists and interacts with the EGFR-STAT3 protein complex. Consistent with these findings, we demonstrated a significant induction in mRNA expression levels of STAT3 target genes (IL-6, IL-17A, BCL-xL, Survivin and c-Myc) in BE and EAC cells, following acidic bile salts treatment. ChIP assays indicated that acidic bile salts treatment enhances binding of STAT3 to the promoter of its target genes, Survivin and BCL-xL. Inhibition of APE1/REF-1 redox activity using E3330 abrogated STAT3 DNA binding and transcriptional activity. The induction of APE-1 - STAT3 axis in acidic bile salts conditions provided a survival advantage and promoted cellular proliferation. In summary, our study provides multiple pieces of evidence supporting a critical role for APE1 induction in activating the EGFR-STAT3 signaling axis in response to acidic bile salts, the main risk factors for Barrett’s carcinogenesis.
Collapse
Affiliation(s)
- Ajaz A Bhat
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA.,Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Heng Lu
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Mohammed Soutto
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Anthony Capobianco
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Priyamvada Rai
- Department of Medicine, Division of Medical Oncology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Alexander Zaika
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA.,Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA
| | - Wael El-Rifai
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA. .,Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA.
| |
Collapse
|
21
|
Laczkó D, Wang F, Johnson FB, Jhala N, Rosztóczy A, Ginsberg GG, Falk GW, Rustgi AK, Lynch JP. Modeling Esophagitis Using Human Three-Dimensional Organotypic Culture System. THE AMERICAN JOURNAL OF PATHOLOGY 2017. [PMID: 28627413 DOI: 10.1016/j.ajpath.2017.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Esophagitis, whether caused by acid reflux, allergic responses, graft-versus-host disease, drugs, or infections, is a common condition of the gastrointestinal tract affecting nearly 20% of the US population. The instigating agent typically triggers an inflammatory response. The resulting inflammation is a risk factor for the development of esophageal strictures, Barrett esophagus, and esophageal adenocarcinoma. Research into the pathophysiology of these conditions has been limited by the availability of animal and human model systems. Three-dimensional organotypic tissue culture (OTC) is an innovative three-dimensional multicellular in vitro platform that recapitulates normal esophageal epithelial stratification and differentiation. We hypothesized that this platform can be used to model esophagitis to better understand the interactions between immune cells and the esophageal epithelium. We found that human immune cells remain viable and respond to cytokines when cultured under OTC conditions. The acute inflammatory environment induced in the OTC significantly affected the overlying epithelium, inducing a regenerative response marked by increased cell proliferation and epithelial hyperplasia. Moreover, oxidative stress from the acute inflammation induced DNA damage and strand breaks in epithelial cells, which could be reversed by antioxidant treatment. These findings support the importance of immune cell-mediated esophageal injury in esophagitis and confirms the utility of the OTC platform to characterize the underlying molecular events in esophagitis.
Collapse
Affiliation(s)
- Dorottya Laczkó
- Division of Gastroenterology, Department of Medicine and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Fang Wang
- Division of Gastroenterology, Department of Medicine and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - F Bradley Johnson
- Division of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nirag Jhala
- Department of Pathology, Temple University, Philadelphia, Pennsylvania
| | - András Rosztóczy
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Gregory G Ginsberg
- Division of Gastroenterology, Department of Medicine and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gary W Falk
- Division of Gastroenterology, Department of Medicine and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anil K Rustgi
- Division of Gastroenterology, Department of Medicine and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John P Lynch
- Division of Gastroenterology, Department of Medicine and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
22
|
Abstract
Reduction-oxidation factor 1-apurinic/apyrimidinic endonuclease (Ref-1/APE1) is a critical node in tumor cells, both as a redox regulator of transcription factor activation and as part of the DNA damage response. As a redox signaling protein, Ref-1/APE1 enhances the transcriptional activity of STAT3, HIF-1α, nuclear factor kappa B, and other transcription factors to promote growth, migration, and survival in tumor cells as well as inflammation and angiogenesis in the tumor microenvironment. Ref-1/APE1 is activated in a variety of cancers, including prostate, colon, pancreatic, ovarian, lung and leukemias, leading to increased aggressiveness. Transcription factors downstream of Ref-1/APE1 are key contributors to many cancers, and Ref-1/APE1 redox signaling inhibition slows growth and progression in a number of tumor types. Ref-1/APE1 inhibition is also highly effective when paired with other drugs, including standard-of-care therapies and therapies targeting pathways affected by Ref-1/APE1 redox signaling. Additionally, Ref-1/APE1 plays a role in a variety of other indications, such as retinopathy, inflammation, and neuropathy. In this review, we discuss the functional consequences of activation of the Ref-1/APE1 node in cancer and other diseases, as well as potential therapies targeting Ref-1/APE1 and related pathways in relevant diseases. APX3330, a novel oral anticancer agent and the first drug to target Ref-1/APE1 for cancer is entering clinical trials and will be explored in various cancers and other diseases bringing bench discoveries to the clinic.
Collapse
|
23
|
Palmini G, Marini F, Brandi ML. What Is New in the miRNA World Regarding Osteosarcoma and Chondrosarcoma? Molecules 2017; 22:E417. [PMID: 28272374 PMCID: PMC6155266 DOI: 10.3390/molecules22030417] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/03/2017] [Indexed: 02/06/2023] Open
Abstract
Despite the availability of multimodal and aggressive therapies, currently patients with skeletal sarcomas, including osteosarcoma and chondrosarcoma, often have a poor prognosis. In recent decades, advances in sequencing technology have revealed the presence of RNAs without coding potential known as non-coding RNAs (ncRNAs), which provides evidence that protein-coding genes account for only a small percentage of the entire genome. This has suggested the influence of ncRNAs during development, apoptosis and cell proliferation. The discovery of microRNAs (miRNAs) in 1993 underscored the importance of these molecules in pathological diseases such as cancer. Increasing interest in this field has allowed researchers to study the role of miRNAs in cancer progression. Regarding skeletal sarcomas, the research surrounding which miRNAs are involved in the tumourigenesis of osteosarcoma and chondrosarcoma has rapidly gained traction, including the identification of which miRNAs act as tumour suppressors and which act as oncogenes. In this review, we will summarize what is new regarding the roles of miRNAs in chondrosarcoma as well as the latest discoveries of identified miRNAs in osteosarcoma.
Collapse
Affiliation(s)
- Gaia Palmini
- Department of Surgery and Translational Medicine, University of Florence, Florence 50134, Italy.
| | - Francesca Marini
- Department of Surgery and Translational Medicine, University of Florence, Florence 50134, Italy.
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine, University of Florence, Florence 50134, Italy.
| |
Collapse
|
24
|
Pérez S, Taléns-Visconti R, Rius-Pérez S, Finamor I, Sastre J. Redox signaling in the gastrointestinal tract. Free Radic Biol Med 2017; 104:75-103. [PMID: 28062361 DOI: 10.1016/j.freeradbiomed.2016.12.048] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 12/20/2016] [Accepted: 12/31/2016] [Indexed: 12/16/2022]
Abstract
Redox signaling regulates physiological self-renewal, proliferation, migration and differentiation in gastrointestinal epithelium by modulating Wnt/β-catenin and Notch signaling pathways mainly through NADPH oxidases (NOXs). In the intestine, intracellular and extracellular thiol redox status modulates the proliferative potential of epithelial cells. Furthermore, commensal bacteria contribute to intestine epithelial homeostasis through NOX1- and dual oxidase 2-derived reactive oxygen species (ROS). The loss of redox homeostasis is involved in the pathogenesis and development of a wide diversity of gastrointestinal disorders, such as Barrett's esophagus, esophageal adenocarcinoma, peptic ulcer, gastric cancer, ischemic intestinal injury, celiac disease, inflammatory bowel disease and colorectal cancer. The overproduction of superoxide anion together with inactivation of superoxide dismutase are involved in the pathogenesis of Barrett's esophagus and its transformation to adenocarcinoma. In Helicobacter pylori-induced peptic ulcer, oxidative stress derived from the leukocyte infiltrate and NOX1 aggravates mucosal damage, especially in HspB+ strains that downregulate Nrf2. In celiac disease, oxidative stress mediates most of the cytotoxic effects induced by gluten peptides and increases transglutaminase levels, whereas nitrosative stress contributes to the impairment of tight junctions. Progression of inflammatory bowel disease relies on the balance between pro-inflammatory redox-sensitive pathways, such as NLRP3 inflammasome and NF-κB, and the adaptive up-regulation of Mn superoxide dismutase and glutathione peroxidase 2. In colorectal cancer, redox signaling exhibits two Janus faces: On the one hand, NOX1 up-regulation and derived hydrogen peroxide enhance Wnt/β-catenin and Notch proliferating pathways; on the other hand, ROS may disrupt tumor progression through different pro-apoptotic mechanisms. In conclusion, redox signaling plays a critical role in the physiology and pathophysiology of gastrointestinal tract.
Collapse
Affiliation(s)
- Salvador Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Raquel Taléns-Visconti
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Isabela Finamor
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain.
| |
Collapse
|
25
|
Dai N, Qing Y, Cun Y, Zhong Z, Li C, Zhang S, Shan J, Yang X, Dai X, Cheng Y, Xiao H, Xu C, Li M, Wang D. miR-513a-5p regulates radiosensitivity of osteosarcoma by targeting human apurinic/apyrimidinic endonuclease. Oncotarget 2016; 9:25414-25426. [PMID: 29875998 PMCID: PMC5986632 DOI: 10.18632/oncotarget.11003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/01/2016] [Indexed: 11/30/2022] Open
Abstract
Radiotherapy in osteosarcoma patients is problematic due to radioresistance; therefore, understanding the mechanism of radioresistance is integral to providing effective radiotherapeutic regimens for osteosarcoma. We now report the activity of an miRNA, miR-513a-5p, in stimulating radiosensitivity of osteosarcoma cells in vitro and in vivo. MiR-513a-5p expression is decreased in osteosarcoma tissue from patients and cultured osteosarcoma cell lines. However, exogenous re-expression of this miRNA in osteosarcoma cell lines, including HOS, U2OS and 9901, can induce sensitization to ionizing radiation. We also confirm that miR-513a-5p suppresses APE1 expression, and that both the redox and DNA repair activity of APE1 were decreased in miR-513a-5p expressing cell lines. By suppressing APE1, miR-513a-5p induces the DNA damage response which stimulates apoptosis after irradiation. Our report establishes miR-513a-5p as a radiosensitizing miRNA and identifies its activity in the suppression of APE1, which could directly lead to radiosensitization.
Collapse
Affiliation(s)
- Nan Dai
- Cancer Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, P.R. China
| | - Yi Qing
- Cancer Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, P.R. China
| | - Yanping Cun
- Cancer Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, P.R. China.,Department of Neurosurgery, Wuhan General Hospital of Guangzhou Military Command, Wuhan, 430070, P.R. China
| | - Zhaoyang Zhong
- Cancer Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, P.R. China
| | - Chongyi Li
- Cancer Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, P.R. China
| | - Shiheng Zhang
- Cancer Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, P.R. China
| | - Jinlu Shan
- Cancer Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, P.R. China
| | - Xiao Yang
- Cancer Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, P.R. China
| | - Xiaoyan Dai
- Cancer Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, P.R. China
| | - Yi Cheng
- Cancer Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, P.R. China
| | - He Xiao
- Cancer Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, P.R. China
| | - Chengxiong Xu
- Cancer Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, P.R. China
| | - Mengxia Li
- Cancer Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, P.R. China
| | - Dong Wang
- Cancer Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, P.R. China
| |
Collapse
|