1
|
Ma Y, Wang X, Li X, Chen X, Teng Z, Wang X, Yang J, Liu G. COP-22 Alleviates D-Galactose-Induced Brain Aging by Attenuating Oxidative Stress, Inflammation, and Apoptosis in Mice. Mol Neurobiol 2024; 61:6708-6720. [PMID: 38347285 PMCID: PMC11339142 DOI: 10.1007/s12035-024-03976-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/18/2024] [Indexed: 08/22/2024]
Abstract
Aging is a natural and inevitable process of organisms. With the intensification of population aging, research on aging has become a hot topic of global attention. The most obvious manifestation of human aging is the aging of brain function, which has been linked to the development of neurodegenerative diseases. In this study, COP-22, a mono-carbonyl curcumin derivative, was evaluated for its anti-aging ability, especially its ability to resist brain aging induced by D-galactose (D-gal) in mice. For brain protection, COP-22 could resist D-gal-induced oxidative stress by increasing the activity of antioxidative defense enzymes and enhancing antioxidant capacity in the brain tissue; COP-22 could improve the dysfunction of the cholinergic system by decreasing the increased activity of acetylcholinesterase and increasing the reduced content of acetylcholine induced by D-gal; and COP-22 could protect nerve cells of the brain. Further, western blot was used to determine related proteins of the brain. We found that COP-22 could effectively protect against brain injury (SIRT1, p53, p21, and p16) by inhibiting oxidative stress (Nrf2 and HO-1), inflammation (IL-6 and TNF-α), and apoptosis (Bax and caspase-3) in D-gal-induced aging mice. Additionally, COP-22 demonstrated the ability to reduce oxidative stress in serum and liver caused by D-gal, as well as relieve the damages in the liver and kidney induced by D-gal. These results indicated that COP-22 had potential anti-aging activity and could be used in the therapy of aging and aging-associated diseases like Alzheimer disease.
Collapse
Affiliation(s)
- Yazhong Ma
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, 252059, Shandong, China
| | - Xiaotong Wang
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, 252059, Shandong, China
| | - Xin Li
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, 252059, Shandong, China
| | - Xi Chen
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, 252059, Shandong, China
| | - Zhifeng Teng
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, 252059, Shandong, China
| | - Xuekun Wang
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, 252059, Shandong, China.
| | - Jie Yang
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, 252059, Shandong, China.
- Liaocheng Key Laboratory of Quality Control and Pharmacodynamic Evaluation of Ganoderma Lucidum, Liaocheng University, 1 Hunan Street, Liaocheng, 252059, Shandong, China.
| | - Guoyun Liu
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, 252059, Shandong, China.
- Liaocheng Key Laboratory of Quality Control and Pharmacodynamic Evaluation of Ganoderma Lucidum, Liaocheng University, 1 Hunan Street, Liaocheng, 252059, Shandong, China.
| |
Collapse
|
2
|
Wang XY, Gao Y, Liu HR, Wang T, Feng ML, Xue FR, Ding K, Yang Q, Jiang ZY, Sun D, Song CR, Zhang XJ, Liang CG. C-Phycocyanin improves the quality of goat oocytes after in vitro maturation and vitrification. Theriogenology 2024; 222:66-79. [PMID: 38626583 DOI: 10.1016/j.theriogenology.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/30/2024] [Accepted: 04/11/2024] [Indexed: 04/18/2024]
Abstract
In vitro maturation (IVM) and cryopreservation of goat oocytes are important for establishing a valuable genetic bank for domesticated female animals and improving livestock reproductive efficiency. C-Phycocyanin (PC) is a Spirulina extract with antioxidant, antiinflammatory, and radical scavenging properties. However, whether PC has positive effect on goat oocytes IVM or developmental competence after vitrification is still unknown. In this study, we found that first polar body extrusion (n = 293), cumulus expansion index (n = 269), and parthenogenetic blastocyst formation (n = 281) were facilitated by adding 30 μg/mL PC to the oocyte maturation medium when compared with the control groups and that supplemented with 3, 10, 100 or 300 μg/mL PC (P < 0.05). Although PC supplementation did not affect spindle formation or chromosome alignment (n = 115), it facilitated or improved cortical granules migration (n = 46, P < 0.05), mitochondria distribution (n = 39, P < 0.05), and mitochondrial membrane potential (n = 46, P < 10-4). Meanwhile, supplementation with 30 μg/mL PC in the maturation medium could significantly inhibit the reactive oxygen species accumulation (n = 65, P < 10-4), and cell apoptosis (n = 42, P < 0.05). In addition, PC increased the oocyte mRNA levels of GPX4 (P < 0.01), and decreased the mRNA and protein levels of BAX (P < 0.01). Next, we investigated the effect of PC supplementation in the vitrification solution on oocyte cryopreservation. When compared with the those equilibrate in the vitrification solution without PC, recovered oocytes in the 30 μg/mL PC group showed higher ratios of normal morphology (n = 85, P < 0.05), survival (n = 85, P < 0.05), first polar body extrusion (n = 62, P < 0.05), and parthenogenetic blastocyst formation (n = 107, P < 0.05). Meanwhile, PC supplementation of the vitrification solution increased oocyte mitochondrial membrane potential (n = 53, P < 0.05), decreased the reactive oxygen species accumulation (n = 73, P < 0.05), promoted mitochondria distribution (n = 58, P < 0.05), and inhibited apoptosis (n = 46, P < 10-3). Collectively, our findings suggest that PC improves goat oocyte IVM and vitrification by reducing oxidative stress and early apoptosis, which providing a novel strategy for livestock gamete preservation and utilization.
Collapse
Affiliation(s)
- Xing-Yue Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Yang Gao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Hao-Ran Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Teng Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Meng-Lei Feng
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Fang-Rui Xue
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Kang Ding
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Qi Yang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Zhao-Yu Jiang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Dui Sun
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Chun-Ru Song
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Xiao-Jie Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Cheng-Guang Liang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China.
| |
Collapse
|
3
|
Citi V, Torre S, Flori L, Usai L, Aktay N, Dunford NT, Lutzu GA, Nieri P. Nutraceutical Features of the Phycobiliprotein C-Phycocyanin: Evidence from Arthrospira platensis ( Spirulina). Nutrients 2024; 16:1752. [PMID: 38892686 PMCID: PMC11174898 DOI: 10.3390/nu16111752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Arthrospira platensis, commonly known as Spirulina, is a photosynthetic filamentous cyanobacterium (blue-green microalga) that has been utilized as a food source since ancient times. More recently, it has gained significant popularity as a dietary supplement due to its rich content of micro- and macro-nutrients. Of particular interest is a water soluble phycobiliprotein derived from Spirulina known as phycocyanin C (C-PC), which stands out as the most abundant protein in this cyanobacterium. C-PC is a fluorescent protein, with its chromophore represented by the tetrapyrrole molecule phycocyanobilin B (PCB-B). While C-PC is commonly employed in food for its coloring properties, it also serves as the molecular basis for numerous nutraceutical features associated with Spirulina. Indeed, the comprehensive C-PC, and to some extent, the isolated PCB-B, has been linked to various health-promoting effects. These benefits encompass conditions triggered by oxidative stress, inflammation, and other pathological conditions. The present review focuses on the bio-pharmacological properties of these molecules, positioning them as promising agents for potential new applications in the expanding nutraceutical market.
Collapse
Affiliation(s)
- Valentina Citi
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, PI, Italy; (S.T.); (L.F.)
| | - Serenella Torre
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, PI, Italy; (S.T.); (L.F.)
| | - Lorenzo Flori
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, PI, Italy; (S.T.); (L.F.)
| | - Luca Usai
- Teregroup Srl, Via David Livingstone 37, 41122 Modena, MO, Italy; (L.U.); (G.A.L.)
| | - Nazlim Aktay
- Department of Biosystems and Agricultural Engineering, Robert M. Kerr Food and Agricultural Products Center, Oklahoma State University, 103 FAPC, Stillwater, OK 74078, USA; (N.A.); (N.T.D.)
| | - Nurhan Turgut Dunford
- Department of Biosystems and Agricultural Engineering, Robert M. Kerr Food and Agricultural Products Center, Oklahoma State University, 103 FAPC, Stillwater, OK 74078, USA; (N.A.); (N.T.D.)
| | | | - Paola Nieri
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, PI, Italy; (S.T.); (L.F.)
| |
Collapse
|
4
|
Wang L, Liu HR, Wang T, Feng ML, Jiang ZY, Yang Q, Sun D, Song CR, Zhang XJ, Liang CG. C-phycocyanin improves the developmental potential of cryopreserved human oocytes by minimizing ROS production and cell apoptosis. PLoS One 2024; 19:e0300538. [PMID: 38558076 PMCID: PMC10984518 DOI: 10.1371/journal.pone.0300538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
PURPOSE The cryopreservation process damages oocytes and impairs development potential. As a potent antioxidant, C-phycocyanin (PC) regulates reproductive performance. However, its beneficial effects on vitrified human oocytes remain unknown. METHODS In this study, human GV-stage oocytes obtained from controlled ovarian hyperstimulation (COH) cycles were randomly allocated to three groups: fresh oocyte without freezing (F group), vitrification in medium supplemented with PC (P group), and vitrification in medium without PC as control group (C group). After warming, viable oocytes underwent in vitro maturation. RESULTS Our results showed that 3 μg/mL PC treatment increased the oocyte maturation rate after cryopreservation. We also found that PC treatment maintains the regular morphological features of oocytes. After PC treatment, confocal fluorescence staining showed a significant increase in the mitochondrial membrane potential of the vitrified oocytes, along with a notable decrease in intracellular reactive oxygen species and the early apoptosis rate. Finally, after in vitro maturation and parthenogenetic activation, vitrified oocytes had a higher potential for cleavage and blastocyst formation after PC treatment. CONCLUSION Our results suggest that PC improves the developmental potential of cryopreserved human GV-stage oocytes by attenuating oxidative stress and early apoptosis and increasing the mitochondrial membrane potential.
Collapse
Affiliation(s)
- Lu Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, People’s Republic of China
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Inner Mongolia Baogang Hospital, Baotou, Inner Mongolia, People’s Republic of China
| | - Hao-Ran Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Teng Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Meng-Lei Feng
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Zhao-Yu Jiang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Qi Yang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Dui Sun
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Chun-Ru Song
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Xiu-Juan Zhang
- Inner Mongolia Academy of Science and Technology, Hohhot, Inner Mongolia, People’s Republic of China
| | - Cheng-Guang Liang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, People’s Republic of China
| |
Collapse
|
5
|
Orhan C, Sahin E, Tuzcu M, Sahin N, Celik A, Ojalvo SP, Sylla S, Komorowski JR, Sahin K. Nicotinamide Riboside and Phycocyanin Oligopeptides Affect Stress Susceptibility in Chronic Corticosterone-Exposed Rats. Antioxidants (Basel) 2023; 12:1849. [PMID: 37891928 PMCID: PMC10604757 DOI: 10.3390/antiox12101849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Nicotinamide riboside (NR) is an NAD+ precursor capable of regulating mammalian cellular metabolism. Phycocyanin oligopeptide (PC), a phytonutrient found in blue-green algae, has antioxidant and anti-inflammatory properties. This study explored the effects of NR, PC, and their combination on the telomere length as well as inflammatory and antioxidant status of rats under chronic stress conditions (CS). Forty-nine rats were allocated into seven groups: control, chronic stress (CS), CS with NR (26.44 mg/kg), a low dose of 2.64 mg/kg of PC (PC-LD), or a high dose of 26.44 mg/kg PC (PC-HD), NR + PC-LD, and NR + PC-HF. The rats were given daily corticosterone injections (40 mg/kg) to induce stress conditions, or NR and PC were orally administered for 21 days. NR and PC supplementation, particularly NR plus PC, increased the serum antioxidant enzyme activities, hepatic nicotinamide adenine (NAD+) content, and telomere length (p < 0.001 for all) compared to the CS group. The levels of serum malondialdehyde (MDA), liver interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), IL-1β, and IL-8 were reduced under the CS condition (p < 0.001). In addition, CS decreased the levels of hepatic telomere-related proteins and sirtuins (SIRT1 and 3), whereas administration of NR and PC or their combination to CS-exposed rats increased the levels of telomere-related proteins (e.g., POT1b, TRF1 and TRF2), SIRT3 and NAMPT (p < 0.05). In conclusion, NR and PC, especially their combination, can alleviate metabolic abnormalities by enhancing hepatic cytokines, SIRT3, NAMPT, and NAD+ levels in CS-exposed rats. More research is needed to further elucidate the potential health effects of the combination of NR and PC in humans.
Collapse
Affiliation(s)
- Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey; (C.O.); (N.S.); (A.C.)
| | - Emre Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Bingol University, Bingol 12000, Turkey;
| | - Mehmet Tuzcu
- Department of Biology, Faculty of Science, Firat University, Elazig 23119, Turkey;
| | - Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey; (C.O.); (N.S.); (A.C.)
| | - Abdullah Celik
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey; (C.O.); (N.S.); (A.C.)
| | - Sara Perez Ojalvo
- Research and Development, Nutrition 21, Harrison, NY 10577, USA; (S.P.O.); (S.S.); (J.R.K.)
| | - Sarah Sylla
- Research and Development, Nutrition 21, Harrison, NY 10577, USA; (S.P.O.); (S.S.); (J.R.K.)
| | - James R. Komorowski
- Research and Development, Nutrition 21, Harrison, NY 10577, USA; (S.P.O.); (S.S.); (J.R.K.)
| | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey; (C.O.); (N.S.); (A.C.)
| |
Collapse
|
6
|
Silva BR, Silva JRV. Mechanisms of action of non-enzymatic antioxidants to control oxidative stress during in vitro follicle growth, oocyte maturation, and embryo development. Anim Reprod Sci 2023; 249:107186. [PMID: 36638648 DOI: 10.1016/j.anireprosci.2022.107186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 11/25/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023]
Abstract
In vitro follicle growth and oocyte maturation still has a series of limitations, since not all oocytes matured in vitro have the potential to develop in viable embryos. One of the factors associated with low oocyte quality is the generation of reactive oxygen species (ROS) during in vitro culture. Therefore, this review aims to discuss the role of non-enzymatic antioxidants in the control of oxidative stress during in vitro follicular growth, oocyte maturation and embryonic development. A wide variety of non-enzymatic antioxidants (melatonin, resveratrol, L-ascorbic acid, L-carnitine, N-acetyl-cysteine, cysteamine, quercetin, nobiletin, lycopene, acteoside, mogroside V, phycocyanin and laminarin) have been used to supplement culture media. Some of them, like N-acetyl-cysteine, cysteamine, nobiletin and quercetin act by increasing the levels of glutathione (GSH), while melatonin and resveratrol increase the expression of antioxidant enzymes and minimize oocyte oxidative stress. L-ascorbic acid reduces free radicals and reactive oxygen species. Lycopene positively regulates the expression of many antioxidant genes. Additionally, L-carnitine protects DNA against ROS-induced damage, while acteoside and laminarin reduces the expression of proapoptotic genes. Mogrosides increases mitochondrial function and reduces intracellular ROS levels, phycocyanin reduces lipid peroxidation, and lycopene neutralizes the adverse effects of ROS. Thus, it is very important to know their mechanisms of actions, because the combination of two or more antioxidants with different activities has great potential to improve in vitro culture systems.
Collapse
Affiliation(s)
- Bianca R Silva
- Laboratory of Physiology and Biotechnology of Reproduction, Federal University of Ceara, Sobral, CE, Brazil
| | - José R V Silva
- Laboratory of Physiology and Biotechnology of Reproduction, Federal University of Ceara, Sobral, CE, Brazil.
| |
Collapse
|
7
|
Liu G, Li X, Yang F, Qi J, Shang L, Zhang H, Li S, Xu F, Li L, Yu H, Li Y, Dong X, Song Q, Zhu F, Chen G, Cao C, Jiang L, Su J, Yang L, Xu X, Zhang Z, Zhao RC, Li B. C-Phycocyanin Ameliorates the Senescence of Mesenchymal Stem Cells through ZDHHC5-Mediated Autophagy via PI3K/AKT/mTOR Pathway. Aging Dis 2023:AD.2023.0121. [PMID: 37163424 PMCID: PMC10389819 DOI: 10.14336/ad.2023.0121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/15/2023] [Indexed: 05/12/2023] Open
Abstract
The senescence of mesenchymal stem cells (MSCs) impairs their regenerative capacity to maintain tissue homeostasis. Numerous studies are focusing on the interventions and mechanisms to attenuate the senescence of MSCs. C-phycocyanin (C-PC) is reported to have multiple functions such as antitumor, antioxidation, anti-inflammation and anti-aging roles, but there is little research about the effects of C-PC on the senescence of MSCs. Here we investigated the roles and mechanism of C-PC on MSCs senescence. In vitro results showed that C-PC could reduce senescence, enhance proliferation, promote the adipogenic and osteogenic differentiation in senescent MSCs induced by oxidative stress. In vivo D-Galactose (D-Gal) induced rats aging models showed C-PC also increased the viability and differentiation of intrinsic senescent bone marrow derived MSCs (BMSCs). Furthermore, C-PC also decreased the levels of oxidative stress markers ROS or MDA, elevated the SOD activity, and increased the anti-inflammatory factors. Proteomic chip analysis showed that C-PC interacted with ZDHHC5, and their interaction was verified by pull down assay. Overexpression of ZDHHC5 aggravated the senescence of MSCs and greatly lessened the beneficial effects of C-PC on senescence. In addition, we found ZDHHC5 regulated autophagy by altering LC3, Beclin1 and PI3K/AKT/mTOR pathway. In summary, our data indicated that C-PC ameliorates the senescence of MSCs through zinc finger Asp-His-His-Cys (DHHC) domain-containing protein 5 (ZDHHC5) mediated autophagy via PI3K/AKT/mTOR pathway. The present study uncovered the key role of autophagy in MSCs senescence and PI3K/AKT/mTOR pathway may be a potential target for anti-senescence studies of MSCs.
Collapse
Affiliation(s)
- Guoxiang Liu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaoxia Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Jingyu Qi
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Lipeng Shang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Huhu Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Shuang Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Fenghua Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Lingne Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Huaxin Yu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Yang Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Qinghang Song
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Feng Zhu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Guang Chen
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Can Cao
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Liangqian Jiang
- Department of Medical Genetics, Linyi People's Hospital, Linyi, China
| | - Junzhe Su
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaohui Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Zhe Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Robert Chunhua Zhao
- College of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University, Qingdao, China
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Rakha SI, Elmetwally MA, El-Sheikh Ali H, Balboula A, Mahmoud AM, Zaabel SM. Importance of Antioxidant Supplementation during In Vitro Maturation of Mammalian Oocytes. Vet Sci 2022; 9:vetsci9080439. [PMID: 36006354 PMCID: PMC9415395 DOI: 10.3390/vetsci9080439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
The in vitro embryo production (IVEP) technique is widely used in the field of reproductive biology. In vitro maturation (IVM) is the first and most critical step of IVEP, during which, the oocyte is matured in an artificial maturation medium under strict laboratory conditions. Despite all of the progress in the field of IVEP, the quality of in vitro matured oocytes remains inferior to that of those matured in vivo. The accumulation of substantial amounts of reactive oxygen species (ROS) within oocytes during IVM has been regarded as one of the main factors altering oocyte quality. One of the most promising approaches to overcome ROS accumulation within oocytes is the supplementation of oocyte IVM medium with antioxidants. In this article, we discuss recent advancements depicting the adverse effects of ROS on mammalian oocytes. We also discuss the potential use of antioxidants and their effect on both oocyte quality and IVM rate.
Collapse
Affiliation(s)
- Shimaa I. Rakha
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohammed A. Elmetwally
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Hossam El-Sheikh Ali
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed Balboula
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Animal Sciences Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Abdelmonem Montaser Mahmoud
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Samy M. Zaabel
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Correspondence:
| |
Collapse
|
9
|
Feng Y, Lu H, Hu J, Zheng B, Zhang Y. Anti-Aging Effects of R-Phycocyanin from Porphyra haitanensis on HUVEC Cells and Drosophila melanogaster. Mar Drugs 2022; 20:md20080468. [PMID: 35892936 PMCID: PMC9329955 DOI: 10.3390/md20080468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Aging has become a global public health challenge. Many studies have revealed that the excessive generation of ROS and oxidative stress could be the major causative factors contributing to aging. In this study, R-phycocyanin (R-PC) was isolated from Porphyra haitanensis, and its anti-aging ability was explored by natural aging Drosophila melanogaster and H2O2-induced HUVEC cells as the aging model. Results showed that R-PC α and β subunits expressed have antioxidant activity and can inhibit the generation of radicals, exhibiting a protective effect against H2O2-induced apoptotic HUVEC cells death. R-PC prevented the H2O2-induced HUVEC cell cycle phase arrest by regulating cell cycle-related protein. Furthermore, R-PC prevented the H2O2-induced HUVEC cell cycle phase arrest by regulating cell-cycle-related protein expression. In vivo study also indicated that R-PC significantly increased the survival time and alleviated the oxidative stress of Drosophila melanogaster. Moreover, R-PC notably decreased levels of ROS in natural aging flies and inhibited lipid peroxidation by enhancing the expressions of the endogenous stress marker genes (SOD1, SOD2, CAT of Drosophila melanogaster). Taken together, a study on the antioxidation extract from Porphyra haitanensis, such as R-PC, may open a new window for the prevention of anti-aging.
Collapse
Affiliation(s)
- Yanyu Feng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350000, China; (Y.F.); (H.L.); (J.H.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350000, China
| | - Hanjin Lu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350000, China; (Y.F.); (H.L.); (J.H.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350000, China
| | - Jiamiao Hu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350000, China; (Y.F.); (H.L.); (J.H.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350000, China
| | - Baodong Zheng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350000, China; (Y.F.); (H.L.); (J.H.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350000, China
- Correspondence: (B.Z.); (Y.Z.)
| | - Yi Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350000, China; (Y.F.); (H.L.); (J.H.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350000, China
- Correspondence: (B.Z.); (Y.Z.)
| |
Collapse
|
10
|
El-Maadawy WH, Hafiz E, Okasha H, Osman NA, Ali GH, Hussein RA. Phycocyanin stimulates ulcerative colitis healing via selective activation of cannabinoid receptor-2, intestinal mucosal healing, Treg accumulation, and p38MAPK/MK2 signaling inhibition. Life Sci 2022; 305:120741. [PMID: 35777583 DOI: 10.1016/j.lfs.2022.120741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 11/19/2022]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory condition that until this date, lacks curative treatments. Previously, synthetic selective CB2 receptor (CB2R) agonists demonstrated effective preclinical anti-inflammatory activities in UC. Phycocyanin (PC), photosynthetic assistant protein isolated from Microcystis aeruginosa Kützing blue green algae, has multiple pharmacological effects, however, it's effect against UC remains unexplored. Our study aimed at investigating the therapeutic effectiveness of PC against UC, and correlating its mechanisms with CB2R agonistic activities. In silico; PC showed structural similarity with endocannabinoid receptors' ligand "Δ9-tetrahydrocannabinol", target prediction studies suggested high affinity for G-coupled protein family-receptors, and molecular docking affirmed preferable affinity towards CB2R vs CB1R. In LPS-exposed-Caco-2 cell line; PC demonstrated comparable interaction with CB2R, and downregulation of CB2R, p38 and MK2 gene expressions with reference agonist "6d", and exhibited preferred selectivity towards CB2R over CB1R. In DSS-induced mice; PC-treatment ameliorated DSS-induced colon shortening, elevated disease activity index, and colonic pathological alterations. PC showed effective CB2R activation through potent anti-inflammatory activities, Treg-cell accumulation, suppression in p38MAPK/MK2 signaling, and tight junction barrier restoration as indicated by ultrastructural examinations, elevated ZO-1 and occludin protein expressions, and Ki67 immunohistochemical expression in colonic tissues. Additionally, PC alleviated intestinal dysbiosis via downregulating LPS/TLR4/NF-κB signaling and gut microbiota maintenance. Notably, PC-protective activities were abolished when co-administered with SR144528 (selective CB2 antagonist) except for gut microbiota maintenance, which was independent from CB2R activation. Our findings provide evidence of PC effectiveness against UC through acting as CB2R agonist, thus expanding its possible therapeutic application against other inflammatory diseases.
Collapse
Affiliation(s)
- Walaa H El-Maadawy
- Pharmacology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba (P.O. 30), Giza 12411, Egypt.
| | - Ehab Hafiz
- Electron Microscopy Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba (P.O. 30), Giza 12411, Egypt
| | - Hend Okasha
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba (P.O. 30), Giza 12411, Egypt
| | - Noha A Osman
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Gamila H Ali
- Water Pollution Department, National Research Centre, 33 El Buhouth St., Dokki, Giza, P.O.12622, Egypt
| | - Rehab Ali Hussein
- Pharmacognosy Department, National Research Centre, 33 El Buhouth St., Dokki, Giza, P.O.12622, Egypt.
| |
Collapse
|
11
|
Dong X, Yang F, Xu X, Zhu F, Liu G, Xu F, Chen G, Cao C, Teng L, Li X, Wang L, Li B. Protective effect of C-phycocyanin and apo-phycocyanin subunit on programmed necrosis of GC-1 spg cells induced by H 2 O 2. ENVIRONMENTAL TOXICOLOGY 2022; 37:1275-1287. [PMID: 35112789 DOI: 10.1002/tox.23482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/08/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
C-phycocyanin (C-PC) is an effective antioxidant and has an important value in medical research. Oxidative stress is considered to be one of the main underlying mechanisms of cell death, and reducing oxidative stress is one of the strategies to enhance germ cell viability. Herein, we investigated the protective effect and the mechanism of C-PC and apo-phycocyanin subunit on oxidative stress damage induced by H2 O2 in GC-1 spg cells. C-PC genes were cloned into the pGEX-4T-1 vectorand transformed into Escherichia coli BL21 to achieve the efficient expression of C-PC subunit. GC-1 spg cells were treated with 600 μM H2 O2 for 24 h to establish the oxidative stress damage model. Cell viability was detected by CCK-8. The degree of oxidative stress was detected by testing Superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities and glutathione (GSH) and Malondialdehyde (MDA) levels. Reactive oxygen species (ROS) was evaluated utilizingby 2', 7'-dichlorofluorescent-diacetate (DCFH-DA). Mitochondrial membrane potential was determined by JC-1. Cell necrosis rate was detected by Annexin V-FITC/PI. Expression of protein was detected by western blot. We found that C-PC and GST-CPC β significantly inhibited H2 O2 -induced oxidative damage of GC-1 spg cells, improved the ability of antioxidation, reduced ROS overproduction, and mitochondrial membrane potential loss, and inhibited the RIP-1/RIP-3/ p-MLKL signaling pathway to reduce the necrosis rate. The results demonstrated that C-PC played a protective role against H2 O2 -induced cell damage, especially its β subunit. This study provides a theoretical basis for C-PC as a potential protective agent of reproductive system.
Collapse
Affiliation(s)
- Xiaolei Dong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaohui Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Feng Zhu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Guoxiang Liu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Fenghua Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Guang Chen
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Can Cao
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Lei Teng
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaoxia Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Lin Wang
- Department of Reproduction, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
12
|
Montaño-González RI, Gutiérrez-Salmeán G, Mojica-Villegas MA, Cristóbal-Luna JM, Briseño-Bugarín J, Chamorro-Cevallos G. Phycobiliproteins extract from Spirulina protects against single-dose cadmium-induced reproductive toxicity in male mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:17441-17455. [PMID: 34664174 DOI: 10.1007/s11356-021-16668-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is known for its many toxic effects on male population such as hypogonadism and fertility difficulties, which are oftenly associated with oxidative stress. As beneficial food, Spirulina(Sp) has been proved efficient against the heavy metal toxicity. This capacity can be associated with its phycobiliproteins (PBP). In this study, the capability of PBP and Sp to treat Cd-induced oxidative damage on the testes and spermatozoa was considered. CD-1 strain mice were orally treated with either Sp or PBP for 10 days prior to single-dose Cd challenge. Sperm quality determinations and testicle histology analysis were performed. Testosterone on serum was measured using enzyme-linked immunosorbent assay (ELISA). Oxidative damage was determined. Antioxidant enzyme activity was analyzed by measuring the activity of super oxide dismutase (SOD), catalase (Cat), and glutathione peroxidase (GpX). The motility and viability of sperm decrease with Cd and improve with PBP and Sp, as the acrosomal reaction (AR) is diminished by PBPs. Testosterone levels decrease due to Cd, and only Sp maintains elevated levels. Cd increases the production of malondialdehyde in the spermatozoa, but not in testes; this production of malondialdehyde in the spermatozoa decreases in the presence of PBP. ROS only decreases with Cd, FBP, and Sp at high concentrations. Advanced oxidative protein products (AOPP) decrease with Cd and PBPs. Cat and GpX increase their activity with Cd and are altered by FBP. Cd produces vascular alterations testes. Within the seminiferous tubule, it produces areas of necrosis and apoptosis, which improve with PBPs and Sp. PBPs have a strong antioxidant activity as they show protective properties against Cd oxidative-induced toxicity on testes and sperm.
Collapse
Affiliation(s)
- Ricardo Iván Montaño-González
- Laboratorio de Toxicología de la Reproducción y fertilidad, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399. Colonia Adolfo López Mateos, Ciudad de México, 07738, México
| | - Gabriela Gutiérrez-Salmeán
- Centro de Investigación en Ciencias de la Salud, Universidad Anáhuac, Avenida Universidad Anáhuac 46, Lomas Anáhuac, Huixquilucan, Estado de México, 52786, México
| | - María Angélica Mojica-Villegas
- Laboratorio de Toxicología de la Reproducción y fertilidad, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399. Colonia Adolfo López Mateos, Ciudad de México, 07738, México
| | - José Melesio Cristóbal-Luna
- Laboratorio de Toxicología de la Reproducción y fertilidad, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399. Colonia Adolfo López Mateos, Ciudad de México, 07738, México
| | - Jorge Briseño-Bugarín
- Laboratorio de Toxicología de la Reproducción y fertilidad, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399. Colonia Adolfo López Mateos, Ciudad de México, 07738, México
| | - Germán Chamorro-Cevallos
- Laboratorio de Toxicología de la Reproducción y fertilidad, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399. Colonia Adolfo López Mateos, Ciudad de México, 07738, México.
| |
Collapse
|
13
|
Musson R, Gąsior Ł, Bisogno S, Ptak GE. DNA damage in preimplantation embryos and gametes: specification, clinical relevance and repair strategies. Hum Reprod Update 2022; 28:376-399. [PMID: 35021196 PMCID: PMC9071077 DOI: 10.1093/humupd/dmab046] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/13/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND DNA damage is a hazard that affects all cells of the body. DNA-damage repair (DDR) mechanisms are in place to repair damage and restore cellular function, as are other damage-induced processes such as apoptosis, autophagy and senescence. The resilience of germ cells and embryos in response to DNA damage is less well studied compared with other cell types. Given that recent studies have described links between embryonic handling techniques and an increased likelihood of disease in post-natal life, an update is needed to summarize the sources of DNA damage in embryos and their capacity to repair it. In addition, numerous recent publications have detailed novel techniques for detecting and repairing DNA damage in embryos. This information is of interest to medical or scientific personnel who wish to obtain undamaged embryos for use in offspring generation by ART. OBJECTIVE AND RATIONALE This review aims to thoroughly discuss sources of DNA damage in male and female gametes and preimplantation embryos. Special consideration is given to current knowledge and limits in DNA damage detection and screening strategies. Finally, obstacles and future perspectives in clinical diagnosis and treatment (repair) of DNA damaged embryos are discussed. SEARCH METHODS Using PubMed and Google Scholar until May 2021, a comprehensive search for peer-reviewed original English-language articles was carried out using keywords relevant to the topic with no limits placed on time. Keywords included ‘DNA damage repair’, ‘gametes’, ‘sperm’, ‘oocyte’, ‘zygote’, ‘blastocyst’ and ‘embryo’. References from retrieved articles were also used to obtain additional articles. Literature on the sources and consequences of DNA damage on germ cells and embryos was also searched. Additional papers cited by primary references were included. Results from our own studies were included where relevant. OUTCOMES DNA damage in gametes and embryos can differ greatly based on the source and severity. This damage affects the development of the embryo and can lead to long-term health effects on offspring. DDR mechanisms can repair damage to a certain extent, but the factors that play a role in this process are numerous and altogether not well characterized. In this review, we describe the multifactorial origin of DNA damage in male and female gametes and in the embryo, and suggest screening strategies for the selection of healthy gametes and embryos. Furthermore, possible therapeutic solutions to decrease the frequency of DNA damaged gametes and embryos and eventually to repair DNA and increase mitochondrial quality in embryos before their implantation is discussed. WIDER IMPLICATIONS Understanding DNA damage in gametes and embryos is essential for the improvement of techniques that could enhance embryo implantation and pregnancy success. While our knowledge about DNA damage factors and regulatory mechanisms in cells has advanced greatly, the number of feasible practical techniques to avoid or repair damaged embryos remains scarce. Our intention is therefore to focus on strategies to obtain embryos with as little DNA damage as possible, which will impact reproductive biology research with particular significance for reproductive clinicians and embryologists.
Collapse
Affiliation(s)
- Richard Musson
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Łukasz Gąsior
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Simona Bisogno
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Grażyna Ewa Ptak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
14
|
Coué M, Croyal M, Habib M, Castellano B, Aguesse A, Grit I, Gourdel M, Billard H, Lépine O, Michel C, Ouguerram K. Perinatal Administration of C-Phycocyanin Protects Against Atherosclerosis in apoE-Deficient Mice by Modulating Cholesterol and Trimethylamine-N-Oxide Metabolisms. Arterioscler Thromb Vasc Biol 2021; 41:e512-e523. [PMID: 34706557 DOI: 10.1161/atvbaha.121.316848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Gestational hypercholesterolemia concomitantly with a highly oxidative environment is associated with higher atherosclerosis in human and animal offspring. This work aimed to determine whether perinatal administration of a C-phycocyanin concentrate, a powerful antioxidant, can protect against atherosclerosis development in genetically hypercholesterolemic mice in adult life. Approach and Results: C-Phycocyanin was administered during gestation solely or gestation and lactation to apolipoprotein E-deficient mice. Male and female offspring were studied until 25 weeks old. Progenies born to supplemented mothers displayed significantly less atherosclerotic root lesions than control group in all groups excepted in male supplemented during gestation and lactation. Female born to supplemented mothers had a greater gallbladder total bile acid pool, lower secondary hydrophobic bile acid levels such as lithocholic acid, associated with less plasma trimethylamine N-oxide at 16 weeks old compared with control mice. Regarding male born to C-Phycocyanin administrated mothers, they expressed a higher high-density lipoprotein cholesterol level, more soluble bile acids such as β-muricholic acids, and a decreased plasma trimethylamine at 16 weeks old. Liver reduced-to-oxidized glutathione ratio were increased and liver gene expression of superoxide dismutase and glutathione peroxidase were significantly decreased in male born to gestational supplemented mothers. No difference in the composition of cecal microbiota was found between groups, regardless of sex. CONCLUSIONS Our findings suggest a protective effect of perinatal antioxidant administration on atherosclerosis development in apolipoprotein E-deficient mice involving sex-specific mechanisms.
Collapse
Affiliation(s)
- Marine Coué
- Université de Nantes, CHU Nantes, INRAE, UMR1280, Physiopathologie des Adaptations Nutritionnelles (PhAN), Institut des maladies de l'appareil digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH-O), F-44093 Nantes, France (M. Coué, M.H., B.C., I.G., H.B., C.M., K.O.)
| | - Mikael Croyal
- Université de Nantes, CNRS, INSERM, Institut du thorax, F-44000 Nantes, France (M. Croyal).,Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, F-44000 Nantes, France (M. Croyal).,CRNH-Ouest Mass Spectrometry Core Facility, F-44000 Nantes, France (M. Croyal, A.A., M.G.)
| | - Marina Habib
- Université de Nantes, CHU Nantes, INRAE, UMR1280, Physiopathologie des Adaptations Nutritionnelles (PhAN), Institut des maladies de l'appareil digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH-O), F-44093 Nantes, France (M. Coué, M.H., B.C., I.G., H.B., C.M., K.O.)
| | - Blandine Castellano
- Université de Nantes, CHU Nantes, INRAE, UMR1280, Physiopathologie des Adaptations Nutritionnelles (PhAN), Institut des maladies de l'appareil digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH-O), F-44093 Nantes, France (M. Coué, M.H., B.C., I.G., H.B., C.M., K.O.)
| | - Audrey Aguesse
- CRNH-Ouest Mass Spectrometry Core Facility, F-44000 Nantes, France (M. Croyal, A.A., M.G.)
| | - Isabelle Grit
- Université de Nantes, CHU Nantes, INRAE, UMR1280, Physiopathologie des Adaptations Nutritionnelles (PhAN), Institut des maladies de l'appareil digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH-O), F-44093 Nantes, France (M. Coué, M.H., B.C., I.G., H.B., C.M., K.O.)
| | - Mathilde Gourdel
- CRNH-Ouest Mass Spectrometry Core Facility, F-44000 Nantes, France (M. Croyal, A.A., M.G.)
| | - Hélène Billard
- Université de Nantes, CHU Nantes, INRAE, UMR1280, Physiopathologie des Adaptations Nutritionnelles (PhAN), Institut des maladies de l'appareil digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH-O), F-44093 Nantes, France (M. Coué, M.H., B.C., I.G., H.B., C.M., K.O.)
| | | | - Catherine Michel
- Université de Nantes, CHU Nantes, INRAE, UMR1280, Physiopathologie des Adaptations Nutritionnelles (PhAN), Institut des maladies de l'appareil digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH-O), F-44093 Nantes, France (M. Coué, M.H., B.C., I.G., H.B., C.M., K.O.)
| | - Khadija Ouguerram
- Université de Nantes, CHU Nantes, INRAE, UMR1280, Physiopathologie des Adaptations Nutritionnelles (PhAN), Institut des maladies de l'appareil digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH-O), F-44093 Nantes, France (M. Coué, M.H., B.C., I.G., H.B., C.M., K.O.)
| |
Collapse
|
15
|
Timóteo-Ferreira F, Abreu D, Mendes S, Matos L, Rodrigues A, Almeida H, Silva E. Redox imbalance in age-related ovarian dysfunction and perspectives for its prevention. Ageing Res Rev 2021; 68:101345. [PMID: 33894395 DOI: 10.1016/j.arr.2021.101345] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/07/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022]
Abstract
The age at which women have their first child is increasing. This change represents a major health problem to society because advanced maternal age is related with a decay in fertility and an increase in the incidence of a variety of pregnancy complications and offspring health issues. The ovary stands as the main contributor for female reproductive ageing because of the progressive age-related decrease in follicle number and oocyte quality. Loss of redox homeostasis and establishment of an ovarian oxidative microenvironment are seen as major underlying causes for such downfall and impairment of ovarian function. Thus, the use of antioxidants to preserve fertility became an important field of research. In this review, new insights on mechanisms underlying the establishment of oxidative stress and its repercussions on ovarian ageing are addressed, along with the current state of knowledge on antioxidant supplementation and its contribution for healthy ageing and extension of ovarian lifespan.
Collapse
|
16
|
Mullenix GJ, Greene ES, Emami NK, Tellez-Isaias G, Bottje WG, Erf GF, Kidd MT, Dridi S. Spirulina platensis Inclusion Reverses Circulating Pro-inflammatory (Chemo)cytokine Profiles in Broilers Fed Low-Protein Diets. Front Vet Sci 2021; 8:640968. [PMID: 34041289 PMCID: PMC8141556 DOI: 10.3389/fvets.2021.640968] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/06/2021] [Indexed: 12/12/2022] Open
Abstract
Proteins are considered the most expensive nutrients in commercial modern broiler production, and their dietary inclusion at low levels is pivotal to minimize feed costs and reduce nitrogen waste. The quest for an environmentally friendly source of proteins that favor the formulation of low protein diets without compromising broiler health, welfare, and growth performance has become a hotspot in nutrition research. Due to its high protein content, the naturally growing Spirulina microalgae is considered a promising nutrient source. The purpose of the present study was, therefore, to determine the effects of Spirulina supplementation on liver bacterial translocation, hematological profile, and circulating inflammatory and redox markers in broilers fed a low-protein diet. One-day-old Ross 708 male broilers (n = 180) were randomly assigned into one of three experimental treatments: standard diet as a control, low protein diet, and low protein diet supplemented with 100 g/kg of Spirulina. Target molecular markers were measured in the peripheral blood circulation using real-time quantitative PCR. Reducing dietary proteins increased bacterial translocation and systemic inflammation as indicated by proportions of basophils among blood leukocytes. The expression levels of circulating pro-inflammatory cytokines [interleukin (IL)-3, IL-6, IL-4, IL-18, and tumor necrosis factor-α], chemokines (CCL-20), and NOD-like receptor family pyrin domain containing 3 inflammasome were significantly upregulated in birds fed the low protein diet compared with the control. The inclusion of Spirulina reversed these effects, which indicates that Spirulina reduces systemic inflammation- and bacterial translocation-induced by a low protein diet and could be a promising alternative protein source in poultry diets.
Collapse
Affiliation(s)
- Garrett J Mullenix
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Elizabeth S Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Nima K Emami
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Guillermo Tellez-Isaias
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Walter G Bottje
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Gisela F Erf
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Michael T Kidd
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
17
|
Wang X, Zhang Z, Zhang S, Yang F, Yang M, Zhou J, Hu Z, Xu X, Mao G, Chen G, Xiang W, Sun X, Xu N. Antiaging compounds from marine organisms. Food Res Int 2021; 143:110313. [DOI: 10.1016/j.foodres.2021.110313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023]
|
18
|
Bilateral telomerase-associated impacts of Spirulina platensis extracts: Activation versus inhibition. Eur J Integr Med 2021. [DOI: 10.1016/j.eujim.2021.101303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Zhang Q, Yang C, Zhang M, Lu X, Cao W, Xie C, Li X, Wu J, Zhong C, Geng S. Protective effects of ginseng stem-leaf saponins on D-galactose-induced reproductive injury in male mice. Aging (Albany NY) 2021; 13:8916-8928. [PMID: 33714944 PMCID: PMC8034965 DOI: 10.18632/aging.202709] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/20/2021] [Indexed: 12/16/2022]
Abstract
Panax ginseng is a perennial plant in the Araliaceae family. In this study, we investigated the protective effects of ginseng stem-leaf saponins (GSLS) isolated from P. ginseng against D-galactose-induced reproductive function decline, oxidative stress, and inflammatory response. Reproductive injuries were induced in mice via the subcutaneous injection of D-galactose (300 mg/kg) for six weeks. The mice were then treated with GSLS by intragastric administration. GSLS inhibited markers of oxidative stress and inflammatory cytokines induced by D-galactose in serum, liver and kidney, whereas GSLS increased the activities of antioxidant enzymes. Compared to the mice treated only with D-galactose, GSLS treatment significantly increased the average path velocity, straight line velocity, curvilinear velocity, and amplitude of the lateral head displacement of mouse sperm. Meanwhile, GSLS significantly increased the testosterone level and reduced the cortisol, FSH, and LH levels. Histopathological examination revealed alterations in the number and the arrangement of spermatogenic cells in the seminiferous tubules of the mice in the GSLS group. GSLS treatment suppressed MAPKs pathway activation in testes. These results suggest that GSLS can attenuate D-galactose-induced oxidative stress and inflammatory response in serum, liver and kidney, and ameliorate reproductive damage by inhibiting MAPKs signaling pathway.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Chenying Yang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Min Zhang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Xiaomin Lu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Wanshuang Cao
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Xiaoting Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jieshu Wu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Shanshan Geng
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| |
Collapse
|
20
|
Stucker S, De Angelis J, Kusumbe AP. Heterogeneity and Dynamics of Vasculature in the Endocrine System During Aging and Disease. Front Physiol 2021; 12:624928. [PMID: 33767633 PMCID: PMC7987104 DOI: 10.3389/fphys.2021.624928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
The endocrine system consists of several highly vascularized glands that produce and secrete hormones to maintain body homeostasis and regulate a range of bodily functions and processes, including growth, metabolism and development. The dense and highly vascularized capillary network functions as the main transport system for hormones and regulatory factors to enable efficient endocrine function. The specialized capillary types provide the microenvironments to support stem and progenitor cells, by regulating their survival, maintenance and differentiation. Moreover, the vasculature interacts with endocrine cells supporting their endocrine function. However, the structure and niche function of vasculature in endocrine tissues remain poorly understood. Aging and endocrine disorders are associated with vascular perturbations. Understanding the cellular and molecular cues driving the disease, and age-related vascular perturbations hold potential to manage or even treat endocrine disorders and comorbidities associated with aging. This review aims to describe the structure and niche functions of the vasculature in various endocrine glands and define the vascular changes in aging and endocrine disorders.
Collapse
Affiliation(s)
| | | | - Anjali P. Kusumbe
- Tissue and Tumor Microenvironments Group, Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| |
Collapse
|
21
|
Oskouei Z, Mehri S, Kalalinia F, Hosseinzadeh H. Evaluation of the effect of thymoquinone in d-galactose-induced memory impairments in rats: Role of MAPK, oxidative stress, and neuroinflammation pathways and telomere length. Phytother Res 2020; 35:2252-2266. [PMID: 33325602 DOI: 10.1002/ptr.6982] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/08/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022]
Abstract
D-galactose (d-gal) induces aging and memory impairment via oxidative stress and neuroinflammation pathways. This study evaluated the neuroprotective activity of thymoquinone (TQ) against d-gal. d-gal (400 mg/kg, SC), d-gal plus TQ (2.5, 5, 10 mg/kg, i.p.), and TQ alone (2.5 and 10 mg/kg) for 8 weeks were administered to rats. The effect of TQ on learning and memory were studied using the Morris water maze test. Malondialdehyde (MDA) and glutathione (GSH) levels were determined in the hippocampus. The levels of MAPKs (p-ERK/ERK, p-P38/P38), cAMP response elements binding (p-CREB/CREB), advanced glycation end products (AGEs), inflammatory markers (TNFα, IL-1β), glial fibrillary acidic protein (GFAP), and brain-derived neurotrophic factor (BDNF) were analyzed by western blotting. Telomere length was evaluated using real-time PCR. Memory and learning impairment, MDA enhancement, GSH reduction, and neuroinflammation via increasing the TNFα, IL-1β, and GFAP contents were observed in d-gal group. TQ with d-gal, improved memory impairment, reduced oxidative stress, and alleviated neuroinflammation. The elevated level of AGEs decreased by TQ compared to d-gal. No changes were observed in the levels of p-ERK/ERK, p-CREB/CREB, p-P38/P38, BDNF, and telomere length following administration of d-gal or TQ plus d-gal. TQ improved memory deficits of d-gal through anti-oxidative and anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Zahra Oskouei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Kalalinia
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Wen X, Han Z, Liu SJ, Hao X, Zhang XJ, Wang XY, Zhou CJ, Ma YZ, Liang CG. Phycocyanin Improves Reproductive Ability in Obese Female Mice by Restoring Ovary and Oocyte Quality. Front Cell Dev Biol 2020; 8:595373. [PMID: 33282873 PMCID: PMC7691388 DOI: 10.3389/fcell.2020.595373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Reproductive dysfunction associated with obesity is increasing among women of childbearing age. Emerging evidence indicates that maternal obesity impairs embryo development and offspring health, and these defects are linked to oxidative stress in the ovary and in oocytes. Phycocyanin (PC) is a biliprotein from Spirulina platensis that possesses antioxidant, anti-inflammatory, and radical-scavenging properties. Our previous studies have shown that PC can reduce reactive oxygen species (ROS) accumulation in oocytes in D-gal-induced aging mice. Here, at the Institute of Cancer Research (ICR) mice fed a high-fat diet (HFD) to model obesity were used to test the effect of PC on reversing the fertility decline caused by obesity. We observed a significant increase in litter size and offspring survival rates after PC administration to obese mice. Further, we found that PC not only ameliorated the level of ovarian antioxidant enzymes, but also reduced the occurrence of follicular atresia in obese female mice. In addition, the abnormal morphology of the spindle-chromosome complex (SCC), and the abnormal mitochondrial distribution pattern in oocytes both recovered. The obesity-related accumulation of ROS, increased number of early apoptotic cells, and the abnormal expression of H3K9me3 in oocytes were all partially reversed after PC administration. In summary, this is the first demonstration that PC can improve fertility by partially increasing ovarian and oocyte quality in obese female mice and provides a new strategy for clinically treating obesity-related infertility in females.
Collapse
Affiliation(s)
- Xin Wen
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Zhe Han
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Shu-Jun Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xin Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xiao-Jie Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xing-Yue Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Cheng-Jie Zhou
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yu-Zhen Ma
- Inner Mongolia People's Hospital, Hohhot, China
| | - Cheng-Guang Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
23
|
Elimination of stress factors by continuous embryo culture and its influence on in vitro fertilization outcomes. Reprod Biol 2020; 20:512-519. [PMID: 32912714 DOI: 10.1016/j.repbio.2020.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/25/2020] [Accepted: 08/15/2020] [Indexed: 11/20/2022]
Abstract
Recently, infertility has become one of the most important endemic conditions, affecting approximately 15-20 % of couples worldwide. Among others, the careerist lifestyle, the increasing maternal age and the parallel increment in the aneuploidy rate of embryos play a crucial role in this phenomenon. In this study, embryological parameters and pregnancy outcomes were investigated in IVF cycles using either sequential embryo culture or a single step culture system. By sequential media, oocytes/embryos are needlessly exposed to the potentially negative effects of light exposure, temperature decrement and altered oxygen tension. In comparison with sequential media, single step media induced 1.28, 1.21 and 1.21-fold increments in implantation, biochemical pregnancy and clinical pregnancy rates, respectively. Pregnancy outcomes showed strong maternal age-dependency, so the difference between the two investigated culture systems was equalized by the increasing maternal ages (35-44 years) and the supposed incidence of embryo aneuploidy. Nevertheless, the significant enlargements in the outcomes of the younger ages (25-34) induced by the single step cultures suggest that, beside the resultant maternal aneuploidy, aneuploidy (reduced pregnancy rates) may evolve from exposure to the mentioned environmental stress factors.
Collapse
|
24
|
Alzokaky AAM, Abdelkader EM, El-Dessouki AM, Khaleel SA, Raslan NA. C-phycocyanin protects against ethanol-induced gastric ulcers in rats: Role of HMGB1/NLRP3/NF-κB pathway. Basic Clin Pharmacol Toxicol 2020; 127:265-277. [PMID: 32306544 DOI: 10.1111/bcpt.13415] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/27/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022]
Abstract
Gastric ulcer is a widespread inflammatory disease with high socio-economic burden. C-phycocyanin is one of the active constituents of Spirulina microalgae, and although it is well known for its antioxidant and anti-inflammatory properties, its protective effects against gastric ulcer have not yet been identified. High-mobility group box 1 (HMGB1) is a nuclear protein that, once secreted extracellularly, initiates several inflammatory reactions, and it is involved in the pathogenesis of gastric ulcer. The aim of the present study was to investigate the anti-inflammatory and anti-ulcerogenic effects of C-phycocyanin against ethanol-induced gastric ulcer targeting HMGB1/NLRP3/NF-κB pathway. Ulcer induction showed increase in HMGB1 expression through activation of nucleotide-binding domain and leucine-rich repeat-containing protein 3 (NLRP3) inflammasome and nuclear factor kappa p65 (NF-κB p65). Moreover, oxidative stress and inflammatory markers were elevated in the ulcer-treated group compared to the normal control group. However, pre-treatment with C-phycocyanin significantly reduced HMGB1 expression via suppression of NLRP3/NF-κB, oxidative markers, IL-1β, tumour necrosis factor-α (TNF-α) and ulcer index value. These results were consistent with histopathological and immunohistochemistry examination. Thus, C-phycocyanin is a potential therapeutic strategy with anti-inflammatory and anti-ulcerogenic effects against ethanol-induced gastric ulcer.
Collapse
Affiliation(s)
- Amany Abdel-Mageed Alzokaky
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University (Girls), Cairo, Egypt.,Pharmacology and biochemistry Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Eman M Abdelkader
- Department of Pharmacology & biochemistry, Faculty of Pharmacy, Delta University for Science &Technology, Mansoura, Egypt
| | - Ahmed M El-Dessouki
- Department of Pharmacology, Faculty of Pharmacy, Ahram Canadian University (ACU), Cairo, Egypt
| | - Sahar A Khaleel
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University (Girls), Cairo, Egypt.,Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Nahed A Raslan
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University (Girls), Cairo, Egypt.,Department of Emergency, AL-Ghad International College for applied medical Sciences, Jeddah, Saudi Arabia
| |
Collapse
|
25
|
Wu XC, Han Z, Hao X, Zhao YT, Zhou CJ, Wen X, Liang CG. Combined use of dbcAMP and IBMX minimizes the damage induced by a long-term artificial meiotic arrest in mouse germinal vesicle oocytes. Mol Reprod Dev 2020; 87:262-273. [PMID: 31943463 DOI: 10.1002/mrd.23315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/29/2019] [Indexed: 11/11/2022]
Abstract
Phosphodiesterase (PDE)-mediated reduction of cyclic adenosine monophosphate (cAMP) activity can initiate germinal vesicle (GV) breakdown in mammalian oocytes. It is crucial to maintain oocytes at the GV stage for a long period to analyze meiotic resumption in vitro. Meiotic resumption can be reversibly inhibited in isolated oocytes by cAMP modulator forskolin, cAMP analog dibutyryl cAMP (dbcAMP), or PDE inhibitors, milrinone (Mil), Cilostazol (CLZ), and 3-isobutyl-1-methylxanthine (IBMX). However, these chemicals negatively affect oocyte development and maturation when used independently. Here, we used ICR mice to develop a model that could maintain GV-stage arrest with minimal toxic effects on subsequent oocyte and embryonic development. We identified optimal concentrations of forskolin, dbcAMP, Mil, CLZ, IBMX, and their combinations for inhibiting oocyte meiotic resumption. Adverse effects were assessed according to subsequent development potential, including meiotic resumption after washout, first polar body extrusion, early apoptosis, double-strand DNA breaks, mitochondrial distribution, adenosine triphosphate levels, and embryonic development. Incubation with a combination of 50.0 μM dbcAMP and 10.0 μM IBMX efficiently inhibited meiotic resumption in GV-stage oocytes, with low toxicity on subsequent oocyte maturation and embryonic development. This work proposes a novel method with reduced toxicity to effectively arrest and maintain mouse oocytes at the GV stage.
Collapse
Affiliation(s)
- Xue-Chen Wu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Zhe Han
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Xin Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Yi-Tong Zhao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Cheng-Jie Zhou
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Xin Wen
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Cheng-Guang Liang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| |
Collapse
|
26
|
REBOREDA-HERNANDEZ OA, JUAREZ-SERRANO AL, GARCIA-LUNA I, RIVERO-RAMIREZ NL, ORTIZ-BUTRON R, NOGUEDA-TORRES B, GONZALEZ-RODRIGUEZ N. Arthrospira maxima Paradoxical Effect on Trypanosoma cruzi Infection. IRANIAN JOURNAL OF PARASITOLOGY 2020; 15:223-232. [PMID: 32595712 PMCID: PMC7311822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND There are only two anti-trypanocidal drugs available, both have a lot of side effects. This is the pioneer study designed to evaluate the Arthrospira maxima effect in Trypanosoma cruzi -infected mice and macrophages. METHODS A. maxima was administered in vivo, and in vitro (120μL/mL; 200 μL/mL; 500 μL/mL; 852 μL/mL) as prophylaxis, and treatment. In vitro, phagocytosis and viability were measured in macrophages cultures supplemented with A. maxima, and T. cruzi-infected. In vivo A. maxima was supplemented to T. cruzi-infected mice in order to obtain the parasitemia curves, parasite amount, and histopathologic changes. This assay was performed in Biological Sciences National School of National Polytechnic Institute, Mexico City, in 2019. RESULTS In vivo, A. maxima administration exacerbates the immune innate host's response, followed by mice early death. In vitro, A. maxima supplementation promote T. cruzi- macrophage phagocytosis, but also a sooner T. cruzi- infected macrophage death. CONCLUSION A. maxima administration overactive the immune system, decreasing the parasitemia, but causing a severe tissue damage. Then, this nutraceutical has a paradoxical effect on intracellular parasitic infections such as Chagas disease.
Collapse
Affiliation(s)
- Oscar A REBOREDA-HERNANDEZ
- Pathology Laboratory, Department of Morphology, Biological Sciences National School, National Polytechnic Institute, Mexico City, Mexico
| | - Adriana L. JUAREZ-SERRANO
- Neurobiology Laboratory, Department of Physiology, Biological Sciences National School, National Polytechnic Institute, Mexico City, Mexico
| | - Ivan GARCIA-LUNA
- Neurobiology Laboratory, Department of Physiology, Biological Sciences National School, National Polytechnic Institute, Mexico City, Mexico
| | - Nora L RIVERO-RAMIREZ
- Pathology Laboratory, Department of Morphology, Biological Sciences National School, National Polytechnic Institute, Mexico City, Mexico
| | - Rocio ORTIZ-BUTRON
- Neurobiology Laboratory, Department of Physiology, Biological Sciences National School, National Polytechnic Institute, Mexico City, Mexico
| | - Benjamín NOGUEDA-TORRES
- Helminthology Laboratory, Department of Pathology, Biological Sciences National School, National Polytechnic Institute, Mexico City, Mexico
| | - Nayeli GONZALEZ-RODRIGUEZ
- Pathology Laboratory, Department of Morphology, Biological Sciences National School, National Polytechnic Institute, Mexico City, Mexico,Correspondence
| |
Collapse
|
27
|
Omidi M, Ahangarpour A, Ali Mard S, Khorsandi L. The effects of myricitrin and vitamin E against reproductive changes induced by D-galactose as an aging model in female mice: An experimental study. Int J Reprod Biomed 2019; 17:789-798. [PMID: 31911961 PMCID: PMC6906854 DOI: 10.18502/ijrm.v17i10.5486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 06/11/2019] [Accepted: 07/10/2019] [Indexed: 12/16/2022] Open
Abstract
Background Aging is accompanied by decreasing general function in the cells and tissues. D-galactose (D-gal) induces aging and plays a role in the pathogenesis of it. Myricitrin is a plant-derived antioxidant. Objective The present study was performed to evaluate the effects of myricitrin on antioxidant defense, sex hormone levels, uterus, and ovarian histology in D-gal-induced aging female mouse model. Materials and Methods In this experimental study, 72 female adult NMRI mice, weighing 30-35 gr, 3-4 months old, were randomly divided into six groups (n = 12/each): (I) Control (vehicle; normal saline), (II) D-gal at 500 mg/kg/d for 45 days, (III-V) D-gal + myricitrin-treated groups (these groups received myricitrin at 5, 10, and 20 mg/kg/d, and (VI) D-gal + 100 mg/kg/d vitamin E orally for the last 28 days. The antioxidant indices were done on the basis of colorimetric method, and sex hormone levels were measured by using enzyme-linked immunosorbent assay kits. Histological assessment of the uterus and ovaries were also evaluated. Results D-gal impaired the estrous cycle, also degenerative changes occur in the ovarian follicles and damage to the uterus and ovarian tissue occurs. In D-gal group, the level of sex hormones (p = 0.03) and the total antioxidant capacity (p = 0.002) decreased, while the level of malondialdehyde and gonadotropins increased (p = 0.03). Myricitrin at lower doses and vitamin E ameliorated the D-gal effects. Conclusion These findings suggest that myricitrin at low doses can effectively prevent D-gal-induced oxidation and aging in mice. The effect of myricitrin was equivalent and sometimes better than vitamin E.
Collapse
Affiliation(s)
- Mina Omidi
- Department of Physiology, Faculty of Medicine, Student Research Committee, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Akram Ahangarpour
- Physiology Research Center, Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Ali Mard
- Physiology Research Center, Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Department of Anatomical Sciences, Faculty of Medicine, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
28
|
Sodium nitrite negatively affects reproductive ability and offspring survival in female mice. Toxicology 2019; 427:152284. [PMID: 31476334 DOI: 10.1016/j.tox.2019.152284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022]
Abstract
Sodium nitrite (NaNO2) is an industrial chemical that is frequently used as a food additive to prevent botulism and enhance glossiness, such as curing meat. In addition, in some regions, water source NaNO2 concentrations exceed standard regulatory levels. Whether the excessive intake of NaNO2 has toxic effects on female fertility and fetal development remain unknown. In this study, we administered ICR mice control saline, low-dose NaNO2 (60 mg/kg/day), or high-dose NaNO2 (120 mg/kg/day) by intragastric gavage for 21 days. We then assessed oocyte morphology, spindle-chromosome dynamics, mitochondrial distribution, ATP content, apoptotic cell numbers, DNA damage levels, histone modifications, reactive oxygen species (ROS) levels, and offspring survival. Results showed that NaNO2 treatment decreased oocyte number, impaired polar body extrusion, and increased zona pellucida thickness in oocytes. Furthermore, NaNO2 disrupted MII spindle integrity, caused abnormal mitochondrial distribution, decreased ATP content, and increased levels of ROS and H3K4me2. Moreover, the number of oocytes in early stages of apoptosis and with levels of DNA damage increased in NaNO2-treated mice along with decreased offspring numbers and survival rates. We demonstrated the negative effects of NaNO2 on female reproductive abilities in mice.
Collapse
|
29
|
Zhang X, Fan T, Li S, Guan F, Zhang J, Liu H. C-Phycocyanin elicited antitumor efficacy via cell-cycle arrest, apoptosis induction, and invasion inhibition in esophageal squamous cell carcinoma. J Recept Signal Transduct Res 2019; 39:114-121. [PMID: 31322033 DOI: 10.1080/10799893.2019.1638400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objectives: Mounting evidence has demonstrated that C-Phycocyanin (C-PC) exhibits marked antitumor activity in a wide type of tumors, such as pancreas cancer, breast carcinoma, lung cancer, and colon cancer. The current study aimed to confirm the antitumor efficacy of C-PC in esophageal squamous cell carcinoma (ESCC). Methods: The efficacy of C-PC was evaluated against the proliferation of ESCC cell lines EC9706 and EC1 by CCK-8 kit and in a mice model of ESCC EC9706. Cell cycle and apoptosis were investigated by flow cytometry, and cell invasion was determined via transwell chamber. Protein expression was examined by Western blots. Results: We found that C-PC exhibited anti-proliferation ability in a time-dependent manner and a dose-dependent manner in ESCC EC9706 and EC1 cells. Besides, C-PC markedly arrested cell cycle in the G0/G1 phase, induced cell apoptosis and suppressed cell invasion ability in both EC9706 and EC1 cells (p < .01). Notably, C-PC evoked the elevations of Bax, PARP, and cleaved-caspase-3 protein, but reduced cyclin D1, CDK4, Bcl-2, MMP-2, and MMP-9 expression levels. Further investigation from in vivo experiment revealed that C-PC displayed significant antitumor efficacy in the xenografted EC9706 model. Conclusions: Our data presented herein suggest C-PC exerts antitumor efficacy in ESCC.
Collapse
Affiliation(s)
- Xiaqing Zhang
- a College of Life Sciences of Zhengzhou University , Zhengzhou , China
| | - Tianli Fan
- b Department of Pharmacology, School of Basic Medicine, Zhengzhou University , Zhengzhou , China
| | - Shenglei Li
- c Department of Pathology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Fangxia Guan
- a College of Life Sciences of Zhengzhou University , Zhengzhou , China
| | - Jianying Zhang
- d Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University , Zhengzhou , China
| | - Hongtao Liu
- a College of Life Sciences of Zhengzhou University , Zhengzhou , China
| |
Collapse
|
30
|
Liu J, Chen D, Wang Z, Chen C, Ning D, Zhao S. Protective effect of walnut on d-galactose-induced aging mouse model. Food Sci Nutr 2019; 7:969-976. [PMID: 30918639 PMCID: PMC6418433 DOI: 10.1002/fsn3.907] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE S Accumulating evidence has suggested that oxidative stress and apoptosis are involved in the aging process. d-galactose (gal) has been reported to cause symptoms of aging in mice, accompanied by liver and brain injuries. Our present work was to study the potential antioxidative and anti-apoptotic effects of walnut and to explore how these effects act on mice in a d-gal-induced aging model. MATERIALS AND METHODS Aging mice were induced by subcutaneous injection of d-gal (200 mg kg-1 d-1 for 8 weeks). Walnut samples were simultaneously administered to the d-gal-induced aging mice once daily by intragastric gavage. Finally, body weight, organ index, cognitive function, levels of antioxidative enzymes, and liver function were monitored. RESULTS The kernel pellicles of walnut could not only improve the learning and memory ability, and the organ index, but also significantly decrease body weight and normalize the levels of activity of antioxidative enzymes in aging mice. Further, the walnut seed coat would protect damages of hippocampus and liver in aging mice. HIGHLIGHTS In the current study, we investigated the effects of walnut kernels and walnut seed coats (WSCs) on d-galactose-induced aging mice. WSC was firstly found to have beneficial effects on d-gal-treated mouse's brain with learning and memory impairment, which probably through the underlying mechanism reduces oxidative damage and limits neuroinflammation. In addition, WSC had a protective effect on liver damage in d-galactose sensing mice.
Collapse
Affiliation(s)
- Ji Liu
- School of Chinese Materia MedicaYunnan University of Traditional Chinese MedicineKunmingChina
| | - Dan Chen
- Yunnan Institute of Tobacco Quality Inspection and SupervisionKunmingChina
| | - Zukun Wang
- School of Chinese Materia MedicaYunnan University of Traditional Chinese MedicineKunmingChina
| | | | - Delu Ning
- Yunnan Academy of ForestryKunmingChina
| | - Shenglan Zhao
- School of Chinese Materia MedicaYunnan University of Traditional Chinese MedicineKunmingChina
| |
Collapse
|
31
|
Wang JL, Liu B, Zhang C, Wang XM, Zhen D, Huang XM, Chen W, Gao JM. Effects of icariin on ovarian function in d-galactose-induced aging mice. Theriogenology 2019; 125:157-167. [PMID: 30447495 DOI: 10.1016/j.theriogenology.2018.10.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 10/13/2018] [Accepted: 10/29/2018] [Indexed: 01/15/2023]
Abstract
In this study, effects of icariin (Ica) on were examined in a mouse model of d-galactose (D-gal)-induced ovarian aging. Kunming white mice were divided into three groups: aging group induced with D-gal, experiment group treated with Ica at low (50 mg/kg), middle (100 mg/kg) and high (200 mg/kg) concentrations, and control group with no treatment. Ovarian histomorphology, serum FSH, LH and E2 levels, and reproductive function were compared among the groups. Ovarian expression of Amh, Bax and Bcl-2 was examined by qPCR and western blotting. Our results showed that diameters of secondary and tertiary follicles were significantly reduced in the aging group when compared with control group (P < 0.01), and were restored to normal in Ica 100 and Ica 200 treatment groups. The diameter of atretic follicles was significantly smaller in the aging group compared with control group and Ica 200 treatment group (P < 0.05). The proportion of secondary and atretic follicles was higher in the aging group compared with control group, Ica 100 and 200 treatment groups, whereas the proportion of tertiary and mature follicles was reduced in the aging group versus control, Ica 100 and 200 groups. The aging group lacked mature follicles, whereas Ica treatment induced mature follicle development. Primary and secondary follicles exhibited similar theca cell numbers and theca interna and externa cell layers in all groups examined, whereas theca interna and externa cell layers were decreased and increased, respectively, in tertiary follicles of aging group compared with control and I 200 groups. In the aging group, FSH and LH levels were significantly higher than those in control and Ica 200 groups (P < 0.05), and the E2 level was significantly reduced compared with control (P < 0.01), Ica 200 (P < 0.01), and Ica 100 (P < 0.05) groups. Serum hormone levels were equivalent in the control, Ica 100 and Ica 200 groups. The pregnancy rate was reduced in the aging group compared with other groups. The average litter size per birth, birth litter weight, and weaning weight of litters were all significantly lower in the aging group compared with control, Ica 100 and 200 groups (P < 0.05). The ovarian expression of AMH and Bcl-2 mRNA was significantly reduced in the aging group compared with those in control and Ica-treated groups (P < 0.01). In contrast, Bax expression was significantly higher in the aging group compared with all other groups (P < 0.01), and the Bcl-2/Bax ratio was markedly reduced in aging group compared with control, Ica 100 and 200 groups (P < 0.01), and Ica 50 group (P < 0.05). Ovarian expression of AMH protein was elevated in the Ica 100 group compared with the aging, control and Ica 50 groups (P < 0.01) and Ica 200 group (P < 0.05). Ovarian Bcl-2 protein levels and the Bcl-2/Bax ratio were significantly higher in the Ica 100 group than those in the Ica 50, 200 and aging groups (P < 0.05), and were similar or reduced (P < 0.05), respectively, compared to those in control group. Ovarian Bax expression was similar in each group. These findings suggest that Ica can improve ovarian follicular development, inhibit follicular atresia, decrease FSH and LH levels and increase E2, upregulate ovarian AMH expression and increase the Bcl-2/Bax ratio in aging mice. Therefore, Ica can partially restore ovarian function of aging mice and enhance their fertility. Optimal reproductive effects were obtained with the Ica 100 group.
Collapse
Affiliation(s)
- Jun-Li Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Bing Liu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Chao Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xin-Mei Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Di Zhen
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Xiao-Meng Huang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Wu Chen
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China.
| | - Jian-Ming Gao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China.
| |
Collapse
|
32
|
Sasaki H, Hamatani T, Kamijo S, Iwai M, Kobanawa M, Ogawa S, Miyado K, Tanaka M. Impact of Oxidative Stress on Age-Associated Decline in Oocyte Developmental Competence. Front Endocrinol (Lausanne) 2019; 10:811. [PMID: 31824426 PMCID: PMC6882737 DOI: 10.3389/fendo.2019.00811] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 11/06/2019] [Indexed: 12/20/2022] Open
Abstract
Reproductive capacity in women starts to decline beyond their mid-30s and pregnancies in older women result in higher rates of miscarriage with aneuploidy. Age-related decline in fertility is strongly attributed to ovarian aging, diminished ovarian reserves, and decreased developmental competence of oocytes. In this review, we discuss the underlying mechanisms of age-related decline in oocyte quality, focusing on oxidative stress (OS) in oocytes. The primary cause is the accumulation of spontaneous damage to the mitochondria arising from increased reactive oxygen species (ROS) in oocytes, generated by the mitochondria themselves during daily biological metabolism. Mitochondrial dysfunction reduces ATP synthesis and influences the meiotic spindle assembly responsible for chromosomal segregation. Moreover, reproductively aged oocytes produce a decline in the fidelity of the protective mechanisms against ROS, namely the ROS-scavenging metabolism, repair of ROS-damaged DNA, and the proteasome and autophagy system for ROS-damaged proteins. Accordingly, increased ROS and increased vulnerability of oocytes to ROS lead to spindle instability, chromosomal abnormalities, telomere shortening, and reduced developmental competence of aged oocytes.
Collapse
Affiliation(s)
- Hiroyuki Sasaki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Toshio Hamatani
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
- *Correspondence: Toshio Hamatani
| | - Shintaro Kamijo
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Maki Iwai
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Masato Kobanawa
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Seiji Ogawa
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Miyado
- National Center for Child Health and Development (NCCHD), Tokyo, Japan
| | - Mamoru Tanaka
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
33
|
Beneficial effects of phycobiliproteins from Spirulina maxima in a preeclampsia model. Life Sci 2018; 211:17-24. [DOI: 10.1016/j.lfs.2018.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 02/04/2023]
|
34
|
Chen J, Wei Y, Chen X, Jiao J, Zhang Y. Polyunsaturated fatty acids ameliorate aging via redox-telomere-antioncogene axis. Oncotarget 2018; 8:7301-7314. [PMID: 28038469 PMCID: PMC5352322 DOI: 10.18632/oncotarget.14236] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/20/2016] [Indexed: 12/02/2022] Open
Abstract
Polyunsaturated fatty acids (PUFA), a group of nourishing and health-promoting nutrients, ameliorate age-related chronic diseases. However, how PUFA especially n-3 PUFA exert anti-aging functions remains poorly understood. Here we link fish oil, docosahexaenoic acid (DHA) and arachidonic acid (AA) to the aging etiology via a redox-telomere-antioncogene axis based on D-galactose-induced aging mice. Both fish oil and PUFA enhanced hepatic superoxide dismutase (SOD) and catalase activities and cardiac SOD activities within the range of 18%-46%, 26%-65% and 19%-58%, respectively, whereas reduced cerebral monoamine oxidase activity, plasma F2-isoprostane level and cerebral lipid peroxidation level by 56%-90%, 20%-79% and 16%-54%, respectively. Thus, PUFA improve the in vivo redox and oxidative stress induced aging process, which however does not exhibit a dose-dependent manner. Notably, both PUFA and fish oil effectively inactivated testicular telomerase and inhibited c-Myc-mediated telomerase reverse transcriptase expression, whereas n-3 PUFA rather than n-6 PUFA protected liver and testes against telomere shortening within the range of 13%-25% and 25%-27%, respectively. Therefore, n-3 PUFA may be better at inhibiting the DNA damage induced aging process. Surprisingly, only DHA significantly suppressed cellular senescence pathway evidenced by testicular antioncogene p16 and p53 expression. This work provides evident support for the crosstalk between PUFA especially n-3 PUFA and the aging process via maintaining the in vivo redox homeostasis, rescuing age-related telomere attrition and down-regulating the antioncogene expression.
Collapse
Affiliation(s)
- Jingnan Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Wei
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinyu Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yu Zhang
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
35
|
Antioxidative, anti-inflammatory and anti-apoptotic effects of ellagic acid in liver and brain of rats treated by D-galactose. Sci Rep 2018; 8:1465. [PMID: 29362375 PMCID: PMC5780521 DOI: 10.1038/s41598-018-19732-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 01/08/2018] [Indexed: 01/24/2023] Open
Abstract
Accumulating evidence has suggested that oxidative stress and apoptosis are involved in the ageing process. D-galactose (gal) has been reported to cause symptoms of ageing in rats, accompanied by liver and brain injuries. Our study aimed to investigate the potential antioxidative, anti-inflammatory and anti-apoptotic effects of ellagic acid and to explore how these effects act on rats in a D-gal-induced ageing model. Ageing was induced by subcutaneous injection of D-gal (100 mg/kg/d for 8 weeks). Ellagic acid was simultaneously administered to the D-gal-induced ageing rats once daily by intragastric gavage. Finally, the mental condition, body weight, organ index, levels of inflammatory cytokines, antioxidative enzymes, and liver function, as well as the expression of pro- and anti-apoptotic proteins, were monitored. Our results showed that ellagic acid could improve the mental condition, body weight, organ index and significantly decrease the levels of inflammatory cytokines, normalize the activities of antioxidative enzymes, and modulate the expression of apoptotic protein in ageing rats. In conclusion, the results of this study illustrate that ellagic acid was suitable for the treatment of some ageing-associated problems, such as oxidative stress, and had beneficial effects for age-associated diseases.
Collapse
|
36
|
Máté G, Bernstein LR, Török AL. Endometriosis Is a Cause of Infertility. Does Reactive Oxygen Damage to Gametes and Embryos Play a Key Role in the Pathogenesis of Infertility Caused by Endometriosis? Front Endocrinol (Lausanne) 2018; 9:725. [PMID: 30555421 PMCID: PMC6281964 DOI: 10.3389/fendo.2018.00725] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022] Open
Abstract
Approximately, 10-15% of women of reproductive age are affected by endometriosis, which often leads to infertility. Endometriosis often has an inherited component, and several causative predisposing factors are hypothesized to underlie the pathogenesis of endometriosis. One working hypothesis is the theory of retrograde menstruation. According to the theory of retrograde menstruation, components of refluxed blood, including apoptotic endometrial tissue, desquamated menstrual cells, lysed erythrocytes, and released iron, induce inflammation in the peritoneal cavity. This in turn activates macrophage release of reactive oxygen species (ROS), leading to oxidative stress via the respiratory burst. Refluxed blood promotes the Fenton reaction, terminating in the production of hydroxyl radical, the most potently destructive ROS. In this article, we review the papers that demonstrate decreased quantity and quality of oocytes and embryos retrieved from IVF/ICSI patients with endometriosis. We discuss literature data demonstrating that ROS are generated in endometriotic tissues that have physical proximity to gametes and embryos, and demonstrating adverse impacts on oocyte, sperm and embryo microtubule apparatus, chromosomes, and DNA. Data that addresses the notions that endometriosis causes oocyte and fetal aneuploidy and that these events are mediated by ROS species are also discussed. Literature data are also discussed that employ use of anti-oxidant molecules to evaluate the importance of ROS-mediated oxidative damage in the pathogenesis of endometriosis. Studies are discussed that have employed anti-oxidants compounds as therapeutics to improve oocyte and embryo quality in infertile subjects, and improve fertility in patients with endometriosis.
Collapse
Affiliation(s)
- Gábor Máté
- Pannon Reproduction Institute, Tapolca, Hungary
| | - Lori R. Bernstein
- Pregmama, LLC, Gaithersburg, MD, United States
- Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, MD, United States
- Department of Veterinary Integrative Biosciences, Texas A&M College of Veterinary Medicine, College Station, TX, United States
| | - Attila L. Török
- Pannon Reproduction Institute, Tapolca, Hungary
- *Correspondence: Attila L. Török
| |
Collapse
|
37
|
C-Phycocyanin supplementation during in vitro maturation enhances pre-implantation developmental competence of parthenogenetic and cloned embryos in pigs. Theriogenology 2018; 106:69-78. [DOI: 10.1016/j.theriogenology.2017.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 02/07/2023]
|
38
|
Photodynamic effect and mechanism study of selenium-enriched phycocyanin from Spirulina platensis against liver tumours. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 180:89-97. [PMID: 29413706 DOI: 10.1016/j.jphotobiol.2017.12.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/21/2022]
Abstract
Selenium-containing phycocyanin (Se-PC) has been proved to have many biological effects, including anti-inflammatory and antioxidant. In this study, we investigated the photodynamic therapy (PDT) effects of Se-PC against liver tumour in vitro and in vivo experiment. Our results demonstrated that the half lethal dose of Se-PC PDT on HepG2 cells was 100μg/ml PC containing 20% selenium. Se-PC location migration from lysosomes to mitochondria was time dependent. In in vivo experiments, the tumour inhibition rate was 75.4% in the Se-PC PDT group, compared to 52.6% in PC PDT group. Histological observations revealed that the tumour cells outside the tissue showed cellular necrosis, and those inside the tissue exhibited apoptotic nuclei and digested vacuoles in the cytoplasm after Se-PC PDT treatment. Antioxidant enzyme analysis indicated that GSH-Px activity was linked to the selenium content of Se-PC, and SOD activity was affected by PC PDT. Therefore, Se-PC PDT could induce cell death through free radical production of PDT in tumours and enhance the activity of antioxidant enzymes with selenium in vivo. The mechanism of Se-PC PDT against liver tumour involves hematocyte damage and mitochondria-mediated apoptosis accompanied with autophagy inhibition during early stage of tumour development, which displayed new prospect and offered relatively safe way for cancer therapy.
Collapse
|
39
|
C-Phycocyanin protects against mitochondrial dysfunction and oxidative stress in parthenogenetic porcine embryos. Sci Rep 2017; 7:16992. [PMID: 29208995 PMCID: PMC5717099 DOI: 10.1038/s41598-017-17287-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/10/2017] [Indexed: 12/17/2022] Open
Abstract
C-Phycocyanin (CP) is a biliprotein enriched in blue-green algae that is known to possess antioxidant, anti-apoptosis, anti-inflammatory, and radical-scavenging properties in somatic cells. However, the protective effect of CP on porcine embryo developmental competence in vitro remains unclear. In the present study, we investigated the effect of CP on the development of early porcine embryos as well as its underlying mechanisms. Different concentrations of CP (2, 5, 8, 10 μg/mL) were added to porcine zygote medium 5 during in vitro culture. The results showed that 5 μg/mL CP significantly increased blastocyst formation and hatching rate. Blastocyst formation and quality were significantly increased in the 50 μM H2O2 treatment group following 5 μg/mL CP addition. CP prevented the H2O2-induced compromise of mitochondrial membrane potential, release of cytochrome c from the mitochondria, and reactive oxygen species generation. Furthermore, apoptosis, DNA damage level, and autophagy in the blastocysts were attenuated by supplementation of CP in the H2O2-induced oxidative injury group compared to in controls. These results suggest that CP has beneficial effects on the development of porcine parthenotes by attenuating mitochondrial dysfunction and oxidative stress.
Collapse
|
40
|
Molecular Mechanisms Responsible for Increased Vulnerability of the Ageing Oocyte to Oxidative Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4015874. [PMID: 29312475 PMCID: PMC5664291 DOI: 10.1155/2017/4015874] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/03/2017] [Indexed: 12/23/2022]
Abstract
In their midthirties, women experience a decline in fertility, coupled to a pronounced increase in the risk of aneuploidy, miscarriage, and birth defects. Although the aetiology of such pathologies are complex, a causative relationship between the age-related decline in oocyte quality and oxidative stress (OS) is now well established. What remains less certain are the molecular mechanisms governing the increased vulnerability of the aged oocyte to oxidative damage. In this review, we explore the reduced capacity of the ageing oocyte to mitigate macromolecular damage arising from oxidative insults and highlight the dramatic consequences for oocyte quality and female fertility. Indeed, while oocytes are typically endowed with a comprehensive suite of molecular mechanisms to moderate oxidative damage and thus ensure the fidelity of the germline, there is increasing recognition that the efficacy of such protective mechanisms undergoes an age-related decline. For instance, impaired reactive oxygen species metabolism, decreased DNA repair, reduced sensitivity of the spindle assembly checkpoint, and decreased capacity for protein repair and degradation collectively render the aged oocyte acutely vulnerable to OS and limits their capacity to recover from exposure to such insults. We also highlight the inadequacies of our current armoury of assisted reproductive technologies to combat age-related female infertility, emphasising the need for further research into mechanisms underpinning the functional deterioration of the ageing oocyte.
Collapse
|
41
|
Sayed AEDH, El-Sayed YS, El-Far AH. Hepatoprotective efficacy of Spirulina platensis against lead-induced oxidative stress and genotoxicity in catfish; Clarias gariepinus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 143:344-350. [PMID: 28554489 DOI: 10.1016/j.ecoenv.2017.05.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/01/2017] [Accepted: 05/08/2017] [Indexed: 02/07/2023]
Abstract
Lead (Pb) is a toxic environmental pollutant that induces a broad range of biochemical and physiological hazards in living organisms. We investigated the possible hepatoprotective effects of Spirulina platensis (SP) in counteracting the Pb-induced oxidative damage. Ninety-six adult African catfish were allocated into four equal groups. The 1st group (control) fed basal diet while the 2nd group (Pb-treated) fed on basal diet and exposed to 1mg Pb(NO3)2/L. The 3rd and 4th groups fed SP-supplemented basal diets at levels of 0.25% and 0.5%, respectively and exposed to Pb. Serum samples were used to analyze hepatic function biomarkers, electrolytes, and oxidant and antioxidant status. Lipid peroxidation and DNA fragmentation were determined in the liver tissues. Pb exposure induced hepatic dysfunction, electrolytes (Na+, K+, Ca+2, and Cl-) imbalance, as well a significant decrease in GSH content, and LDH, AChE, SOD, CAT and GST enzymes activity. SP supplementation reverted these biochemical and genetic alterations close to control levels. This amelioration was higher with 0.5% SP and at the 4th week of exposure, showing concentration- and time-dependency. Thus, the current study suggests that SP could protect the catfish liver against lead-induced injury by scavenging ROS, sustaining the antioxidant status and diminishing DNA oxidative damage. The dietary inclusion of SP can be used as a promising protective agent to counteract oxidative stress-mediated diseases and toxicities.
Collapse
Affiliation(s)
- Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut 71516, Egypt.
| | - Yasser S El-Sayed
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| |
Collapse
|
42
|
The lipid peroxidation product 4-hydroxynonenal contributes to oxidative stress-mediated deterioration of the ageing oocyte. Sci Rep 2017; 7:6247. [PMID: 28740075 PMCID: PMC5524799 DOI: 10.1038/s41598-017-06372-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/12/2017] [Indexed: 12/22/2022] Open
Abstract
An increase in intraovarian reactive oxygen species (ROS) has long been implicated in the decline in oocyte quality associated with maternal ageing. Oxidative stress (OS)-induced lipid peroxidation and the consequent generation of highly electrophilic aldehydes, such as 4-hydroxynonenal (4-HNE), represents a potential mechanism by which ROS can inflict damage in the ageing oocyte. In this study, we have established that aged oocytes are vulnerable to damage by 4-HNE resulting from increased cytosolic ROS production within the oocyte itself. Further, we demonstrated that the age-related induction of OS can be recapitulated by exposure of germinal vesicle (GV) oocytes to exogenous H2O2. Such treatments stimulated an increase in 4-HNE generation, which remained elevated during in vitro oocyte maturation to metaphase II. Additionally, exposure of GV oocytes to either H2O2 or 4-HNE resulted in decreased meiotic completion, increased spindle abnormalities, chromosome misalignments and aneuploidy. In seeking to account for these data, we revealed that proteins essential for oocyte health and meiotic development, namely α-, β-, and γ-tubulin are vulnerable to adduction via 4-HNE. Importantly, 4-HNE-tubulin adduction, as well as increased aneuploidy rates, were resolved by co-treatment with the antioxidant penicillamine, demonstrating a possible therapeutic mechanism to improve oocyte quality in older females.
Collapse
|
43
|
Li C, Yu Y, Li W, Liu B, Jiao X, Song X, Lv C, Qin S. Phycocyanin attenuates pulmonary fibrosis via the TLR2-MyD88-NF-κB signaling pathway. Sci Rep 2017; 7:5843. [PMID: 28725012 PMCID: PMC5517415 DOI: 10.1038/s41598-017-06021-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 06/07/2017] [Indexed: 12/21/2022] Open
Abstract
Our aim was to investigate the effects of phycocyanin (PC) on bleomycin (BLM)-induced pulmonary fibrosis (PF). In this study, C57 BL/6 wild-type (WT) mice and toll-like receptor (TLR) 2 deficient mice were treated with PC for 28 days following BLM exposure. Serum and lung tissues were collected on days 3, 7 and 28. Data shows PC significantly decreased the levels of hydroxyproline (HYP), vimentin, surfactant-associated protein C (SP-C), fibroblast specific protein-1 (S100A4) and α-smooth muscle actin (α-SMA) but dramatically increased E-cadherin and podoplanin (PDPN) expression on day 28. Moreover, PC greatly decreased the levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and myeloperoxidase (MPO) at the earlier time. Reduced expression of key genes in the TLR2 pathway was also detected. Compared with WT mice, TLR2-deficient mice exhibited less injury, and the protective effect of PC was partly diminished in this background. These data indicate the anti-fibrotic effects of PC may be mediated by reducing W/D ratio, MPO, IL-6, TNF-α, protecting type I alveolar epithelial cells, inhibiting fibroblast proliferation, attenuating epithelial-mesenchymal transitions (EMT) and reducing oxidative stress. The TLR2-MyD88-NF-κB pathway plays an important role in PC-mediated reduction in pulmonary fibrosis.
Collapse
Affiliation(s)
- Chengcheng Li
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, China
| | - Yan Yu
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Bo Liu
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, China
| | - Xudong Jiao
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Xinyu Song
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, China
| | - Changjun Lv
- Department of Respiratory Medicine, Affiliated Hospital of Binzhou Medical University, Binzhou, China.
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.
| |
Collapse
|