1
|
Alves MD, Clark RA, Hernandez DA, Bucci MP, Chen D, Efron PA, Wallet SM, Keselowsky BG, Maile R. MULTIMODAL NUCLEAR FACTOR-ERYTHROID-2-RELATED FACTOR (NRF2) THERAPY IN THE CONTEXT OF MAMMALIAN TARGET OF RAPAMYCIN (MTOR) INHIBITION REPROGRAMS THE ACUTE SYSTEMIC AND PULMONARY IMMUNE RESPONSE AFTER COMBINED BURN AND INHALATION INJURY. Shock 2024; 62:772-782. [PMID: 39178221 PMCID: PMC11956839 DOI: 10.1097/shk.0000000000002466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
ABSTRACT Severe burn injuries induce acute and chronic susceptibility to infections, which is largely attributed to a hyper-proinflammatory response followed by a chronic anti-inflammatory response. Concurrent inhalation injury (B + I) causes airway inflammation. Pulmonary macrophages and neutrophils are "hyperactive" with increased reactive oxygen (ROS) and nitrogen species (RONS) activity, but are unable to clear infection, causing airway damage upon activation. Nuclear factor-erythroid-2-related factor (NRF2) is a critical immunomodulatory component that induces compensatory anti-inflammatory pathways when activated. On the other hand, inhibition of mammalian target of rapamycin (mTOR) reduces proinflammatory responses. The therapeutic use of these targets is limited, as known modulators of these pathways are insoluble in saline and require long-term administration. A biocompatible NRF2 agonist (CDDO) and rapamycin (RAPA) poly(lactic-co-glycolic acid) (PLGA) microparticles (MP) were created, which we hypothesized would reduce the acute hyper-inflammatory response in our murine model of B + I injury. BI-injured mice that received CDDO-MP or both CDDO-MP and RAPA-MP (Combo-MP) an hour after injury displayed significant changes in the activation patterns of pulmonary and systemic immune genes and their associated immune pathways 48 h after injury. For example, mice treated with Combo-MP showed a significant reduction in inflammatory gene expression compared to untreated or CDDO-MP-treated mice. We also hypothesized that Combo-MP therapy would acutely decrease bacterial susceptibility after injury. BI-injured mice that received Combo-MP an hour after injury, inoculated 48 h later with Pseudomonas aeruginosa (PAO1), and sacrificed 48 h after infection displayed significantly decreased bacterial counts in the lungs and liver versus untreated B + I mice. This reduction in infection was accompanied by significantly altered lung and plasma cytokine profiles and immune reprogramming of pulmonary and splenic cells. Our findings strongly suggest that multimodal MP-based therapy holds considerable promise for reprogramming the immune response after burn injuries, particularly by mitigating the hyper-inflammatory phase and preventing subsequent susceptibility to infection.
Collapse
Affiliation(s)
- Matthew D. Alves
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida, Gainesville, Florida
| | - Ryan A. Clark
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Denise A. Hernandez
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida, Gainesville, Florida
| | - Madelyn P. Bucci
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida
| | - Duo Chen
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida, Gainesville, Florida
| | - Philip A. Efron
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida, Gainesville, Florida
| | - Shannon M. Wallet
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida
| | - Ben G. Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Robert Maile
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida, Gainesville, Florida
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, Florida
| |
Collapse
|
2
|
Ali GF, Hassanein EHM, Mohamed WR. Molecular mechanisms underlying methotrexate-induced intestinal injury and protective strategies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8165-8188. [PMID: 38822868 PMCID: PMC11522073 DOI: 10.1007/s00210-024-03164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
Methotrexate (MTX) is a folic acid reductase inhibitor that manages various malignancies as well as immune-mediated inflammatory chronic diseases. Despite being frequently prescribed, MTX's severe multiple toxicities can occasionally limit its therapeutic potential. Intestinal toxicity is a severe adverse effect associated with the administration of MTX, and patients are significantly burdened by MTX-provoked intestinal mucositis. However, the mechanism of such intestinal toxicity is not entirely understood, mechanistic studies demonstrated oxidative stress and inflammatory reactions as key factors that lead to the development of MTX-induced intestinal injury. Besides, MTX causes intestinal cells to express pro-inflammatory cytokines like interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), which activate nuclear factor-kappa B (NF-κB). This is followed by the activation of the Janus kinase/signal transducer and activator of the transcription3 (JAK/STAT3) signaling pathway. Moreover, because of its dual anti-inflammatory and antioxidative properties, nuclear factor erythroid-2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) has been considered a critical signaling pathway that counteracts oxidative stress in MTX-induced intestinal injury. Several agents have potential protective effects in counteracting MTX-provoked intestinal injury such as omega-3 polyunsaturated fatty acids, taurine, umbelliferone, vinpocetine, perindopril, rutin, hesperidin, lycopene, quercetin, apocynin, lactobacillus, berberine, zinc, and nifuroxazide. This review aims to summarize the potential redox molecular mechanisms of MTX-induced intestinal injury and how they can be alleviated. In conclusion, studying these molecular pathways might open the way for early alleviation of the intestinal damage and the development of various agent plans to attenuate MTX-mediated intestinal injury.
Collapse
Affiliation(s)
- Gaber F Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62514, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Assiut Branch, Al-Azhar University, Assiut, 71524, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62514, Egypt.
| |
Collapse
|
3
|
JiZe XP, Fu YP, Li CY, Zhang CW, Zhao YZ, Kuang YC, Liu SQ, Huang C, Li LX, Tang HQ, Feng B, Chen XF, Zhao XH, Yin ZQ, Tian ML, Zou YF. Extraction, characterization and intestinal anti-inflammatory and anti-oxidative activities of polysaccharide from stems and leaves of Chuanminshen violaceum M. L. Sheh & R. H. Shan. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118357. [PMID: 38763374 DOI: 10.1016/j.jep.2024.118357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chuanminshen violaceum M. L. Sheh & R. H. Shan (CV) is used as a medicine with roots, which have the effects of benefiting the lungs, harmonizing the stomach, resolving phlegm and detoxifying. Polysaccharide is one of its main active components and has various pharmacological activities, but the structural characterization and pharmacological activities of polysaccharide from the stems and leaves parts of CV are still unclear. AIM OF THE STUDY The aim of this study was to investigate the optimal extraction conditions for ultrasound-assisted extraction of polysaccharide from CV stems and leaves, and to carry out preliminary structural analyses, anti-inflammatory and antioxidant effects of the obtained polysaccharide and to elucidate the underlying mechanisms. MATERIALS AND METHODS The ultrasonic-assisted extraction of CV stems and leaves polysaccharides was carried out, and the response surface methodology (RSM) was used to optimize the extraction process to obtain CV polysaccharides (CVP) under the optimal conditions. Subsequently, we isolated and purified CVP to obtain the homogeneous polysaccharide CVP-AP-I, and evaluated the composition, molecular weight, and structural features of CVP-AP-I using a variety of technical methods. Finally, we tested the pharmacological activity of CVP-AP-Ⅰ in an LPS-induced model of oxidative stress and inflammation in intestinal porcine epithelial cells (IPEC-J2) and explored its possible mechanism of action. RESULTS The crude polysaccharide was obtained under optimal extraction conditions and subsequently isolated and purified to obtain CVP-AP-Ⅰ (35.34 kDa), and the structural characterization indicated that CVP-AP-Ⅰ was mainly composed of galactose, galactose, rhamnose and glucose, which was a typical pectic polysaccharide. In addition, CVP-AP-Ⅰ attenuates LPS-induced inflammation and oxidative stress by inhibiting the expression of pro-inflammatory factor genes and proteins and up-regulating the expression of antioxidant enzyme-related genes and proteins in IPEC-J2, by a mechanism related to the activation of the Nrf2/Keap1 signaling pathway. CONCLUSION The results of this study suggest that the polysaccharide isolated from CV stems and leaves was a pectic polysaccharide with similar pharmacological activities as CV roots, exhibiting strong anti-inflammatory and antioxidant activities, suggesting that CV stems and leaves could possess the same traditional efficacy as CV roots, which is expected to be used in the treatment of intestinal diseases.
Collapse
Affiliation(s)
- Xiao-Ping JiZe
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yu-Ping Fu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Cen-Yu Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Chao-Wen Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yu-Zhe Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yu-Chao Kuang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Si-Qi Liu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
| | - Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Hua-Qiao Tang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xing-Fu Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xing-Hong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Zhong-Qiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Meng-Liang Tian
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yuan-Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China.
| |
Collapse
|
4
|
Rashwan AG, Assar DH, Salah AS, Liu X, Al-Hawary II, Abu-Alghayth MH, Salem SMR, Khalil K, Hanafy NAN, Abdelatty A, Sun L, Elbialy ZI. Dietary Chitosan Attenuates High-Fat Diet-Induced Oxidative Stress, Apoptosis, and Inflammation in Nile Tilapia ( Oreochromis niloticus) through Regulation of Nrf2/Kaep1 and Bcl-2/Bax Pathways. BIOLOGY 2024; 13:486. [PMID: 39056682 PMCID: PMC11273726 DOI: 10.3390/biology13070486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
Fatty liver injury is a prevalent condition in most farmed fish, yet the molecular mechanisms underpinning this pathology remain largely elusive. A comprehensive feeding trial spanning eight weeks was conducted to discern the potential of dietary chitosan in mitigating the deleterious effects of a high-fat diet (HFD) while concurrently exploring the underlying mechanism. Growth performance, haemato-biochemical capacity, antioxidant capacity, apoptotic/anti-apoptotic gene expression, inflammatory gene expression, and histopathological changes in the liver, kidney, and intestine were meticulously assessed in Nile tilapia. Six experimental diets were formulated with varying concentrations of chitosan. The first three groups were administered a diet comprising 6% fat with chitosan concentrations of 0%, 5%, and 10% and were designated as F6Ch0, F6Ch5, and F6Ch10, respectively. Conversely, the fourth, fifth, and sixth groups were fed a diet containing 12% fat with chitosan concentrations of 0%, 5%, and 10%, respectively, for 60 days and were termed F12Ch0, F12Ch5, and F12Ch10. The results showed that fish fed an HFD demonstrated enhanced growth rates and a significant accumulation of fat in the perivisceral tissue, accompanied by markedly elevated serum hepatic injury biomarkers and serum lipid levels, along with upregulation of pro-apoptotic and inflammatory markers. In stark contrast, the expression levels of nrf2, sod, gpx, and bcl-2 were notably decreased when compared with the control normal fat group. These observations were accompanied by marked diffuse hepatic steatosis, diffuse tubular damage, and shortened intestinal villi. Intriguingly, chitosan supplementation effectively mitigated the aforementioned findings and alleviated intestinal injury by upregulating the expression of tight junction-related genes. It could be concluded that dietary chitosan alleviates the adverse impacts of an HFD on the liver, kidney, and intestine by modulating the impaired antioxidant defense system, inflammation, and apoptosis through the variation in nrf2 and cox2 signaling pathways.
Collapse
Affiliation(s)
- Aya G. Rashwan
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (A.G.R.); (I.I.A.-H.)
| | - Doaa H. Assar
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Abdallah S. Salah
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Xiaolu Liu
- Single-Cell Center, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, CAS Key Laboratory of Biofuels, Chinese Academy of Sciences, Qingdao 266101, China;
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ibrahim I. Al-Hawary
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (A.G.R.); (I.I.A.-H.)
| | - Mohammed H. Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, P.O. Box 255, Bisha 67714, Saudi Arabia;
| | - Shimaa M. R. Salem
- Department of Animal Nutrition and Nutritional Deficiency Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 33516, Egypt;
| | - Karim Khalil
- Department of Veterinary Medicine, College of Applied & Health Sciences, A’Sharqiyah University, P.O. Box 42, Ibra 400, Oman;
| | - Nemany A. N. Hanafy
- Group of Molecular Cell Biology and Bionanotechnology, Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Alaa Abdelatty
- Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Luyang Sun
- Single-Cell Center, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, CAS Key Laboratory of Biofuels, Chinese Academy of Sciences, Qingdao 266101, China;
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zizy I. Elbialy
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (A.G.R.); (I.I.A.-H.)
| |
Collapse
|
5
|
Speciale A, Molonia MS, Muscarà C, Cristani M, Salamone FL, Saija A, Cimino F. An overview on the cellular mechanisms of anthocyanins in maintaining intestinal integrity and function. Fitoterapia 2024; 175:105953. [PMID: 38588905 DOI: 10.1016/j.fitote.2024.105953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024]
Abstract
Structural and functional changes of the intestinal barrier, as a consequence of a number of (epi)genetic and environmental causes, have a main role in penetrations of pathogens and toxic agents, and lead to the development of inflammation-related pathological conditions, not only at the level of the GI tract but also in other extra-digestive tissues and organs. Anthocyanins (ACNs), a subclass of polyphenols belonging to the flavonoid group, are well known for their health-promoting properties and are widely distributed in the human diet. There is large evidence about the correlation between the human intake of ACN-rich products and a reduction of intestinal inflammation and dysfunction. Our review describes the more recent advances in the knowledge of cellular and molecular mechanisms through which ACNs can modulate the main mechanisms involved in intestinal dysfunction and inflammation, in particular the inhibition of the NF-κB, JNK, MAPK, STAT3, and TLR4 proinflammatory pathways, the upregulation of the Nrf2 transcription factor and the expression of tight junction proteins and mucins.
Collapse
Affiliation(s)
- Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Maria Sofia Molonia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy; "Prof. Antonio Imbesi" Foundation, University of Messina, Messina 98100, Italy.
| | - Claudia Muscarà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Mariateresa Cristani
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Federica Lina Salamone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Antonella Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| |
Collapse
|
6
|
Mulder PPG, Hooijmans CR, Vlig M, Middelkoop E, Joosten I, Koenen HJPM, Boekema BKHL. Kinetics of Inflammatory Mediators in the Immune Response to Burn Injury: Systematic Review and Meta-Analysis of Animal Studies. J Invest Dermatol 2024; 144:669-696.e10. [PMID: 37806443 DOI: 10.1016/j.jid.2023.09.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
Burns are often accompanied by a dysfunctional immune response, which can lead to systemic inflammation, shock, and excessive scarring. The objective of this study was to provide insight into inflammatory pathways associated with burn-related complications. Because detailed information on the various inflammatory mediators is scattered over individual studies, we systematically reviewed animal experimental data for all reported inflammatory mediators. Meta-analyses of 352 studies revealed a strong increase in cytokines, chemokines, and growth factors, particularly 19 mediators in blood and 12 in burn tissue. Temporal kinetics showed long-lasting surges of proinflammatory cytokines in blood and burn tissue. Significant time-dependent effects were seen for IL-1β, IL-6, TGF-β1, and CCL2. The response of anti-inflammatory mediators was limited. Burn technique had a profound impact on systemic response levels. Large burn size and scalds further increased systemic, but not local inflammation. Animal characteristics greatly affected inflammation, for example, IL-1β, IL-6, and TNF-α levels were highest in young, male rats. Time-dependent effects and dissimilarities in response demonstrate the importance of appropriate study design. Collectively, this review presents a general overview of the burn-induced immune response exposing inflammatory pathways that could be targeted through immunotherapy for burn patients and provides guidance for experimental set-ups to advance burn research.
Collapse
Affiliation(s)
- Patrick P G Mulder
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Carlijn R Hooijmans
- Meta-Research Team, Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel Vlig
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands
| | - Esther Middelkoop
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Tissue Function and Regeneration, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Irma Joosten
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans J P M Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bouke K H L Boekema
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Fernández Miyakawa ME, Casanova NA, Kogut MH. How did antibiotic growth promoters increase growth and feed efficiency in poultry? Poult Sci 2024; 103:103278. [PMID: 38052127 PMCID: PMC10746532 DOI: 10.1016/j.psj.2023.103278] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/04/2023] [Accepted: 11/12/2023] [Indexed: 12/07/2023] Open
Abstract
It has been hypothesized that reducing the bioenergetic costs of gut inflammation as an explanation for the effect of antibiotic growth promoters (AGPs) on animal efficiency, framing some observations but not explaining the increase in growth rate or the prevention of infectious diseases. The host's ability to adapt to alterations in environmental conditions and to maintain health involves managing all physiological interactions that regulate homeostasis. Thus, metabolic pathways are vital in regulating physiological health as the energetic demands of the host guides most biological functions. Mitochondria are not only the metabolic heart of the cell because of their role in energy metabolism and oxidative phosphorylation, but also a central hub of signal transduction pathways that receive messages about the health and nutritional states of cells and tissues. In response, mitochondria direct cellular and tissue physiological alterations throughout the host. The endosymbiotic theory suggests that mitochondria evolved from prokaryotes, emphasizing the idea that these organelles can be affected by some antibiotics. Indeed, therapeutic levels of several antibiotics can be toxic to mitochondria, but subtherapeutic levels may improve mitochondrial function and defense mechanisms by inducing an adaptive response of the cell, resulting in mitokine production which coordinates an array of adaptive responses of the host to the stressor(s). This adaptive stress response is also observed in several bacteria species, suggesting that this protective mechanism has been preserved during evolution. Concordantly, gut microbiome modulation by subinhibitory concentration of AGPs could be the result of direct stimulation rather than inhibition of determined microbial species. In eukaryotes, these adaptive responses of the mitochondria to internal and external environmental conditions, can promote growth rate of the organism as an evolutionary strategy to overcome potential negative conditions. We hypothesize that direct and indirect subtherapeutic AGP regulation of mitochondria functional output can regulate homeostatic control mechanisms in a manner similar to those involved with disease tolerance.
Collapse
Affiliation(s)
- Mariano Enrique Fernández Miyakawa
- Institute of Pathobiology, National Institute of Agricultural Technology (INTA), Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina..
| | - Natalia Andrea Casanova
- Institute of Pathobiology, National Institute of Agricultural Technology (INTA), Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Michael H Kogut
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX, USA
| |
Collapse
|
8
|
Seim RF, Mac M, Sjeklocha LM, Kwiatkowski AJ, Keselowsky BG, Wallet SM, Cairns BA, Maile R. NUCLEAR FACTOR-ERYTHROID-2-RELATED FACTOR REGULATES SYSTEMIC AND PULMONARY BARRIER FUNCTION AND IMMUNE PROGRAMMING AFTER BURN AND INHALATION INJURY. Shock 2023; 59:300-310. [PMID: 36730842 PMCID: PMC9957943 DOI: 10.1097/shk.0000000000002022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
ABSTRACT Major burn injury is associated with systemic hyperinflammatory and oxidative stresses that encompass the wound, vascular, and pulmonary systems that contribute to complications and poor outcomes. These stresses are exacerbated if there is a combined burn and inhalation (B+I) injury, which leads to increases in morbidity and mortality. Nuclear factor-erythroid-2-related factor (NRF2) is a transcription factor that functions to maintain homeostasis during stress, in part by modulating inflammation and oxidative injury. We hypothesized that the NRF2-mediated homeostasis after burn alone and combined B-I injury is insufficient, but that pharmacological activation of the NRF2 pathway has the potential to reduce/reverse acute hyper inflammatory responses. We found that, after burn and B+I injury, Nrf2 -/- mice have higher mortality and exhibit greater pulmonary edema, vascular permeability, and exacerbated pulmonary and systemic proinflammatory responses compared with injured wild-type (WT) controls. Transcriptome analysis of lung tissue revealed specific Nrf2 -dependent dysregulated immune pathways after injury. In WT mice, we observed that B+I injury induces cytosolic, but not nuclear, accumulation of NRF2 protein in the lung microenvironment compared with sham-injured controls. Bardoxolone methyl (CDDO-Me)-containing microparticles (CDDO-MPs) were developed that allow for dilution in saline and stable release of CDDO-Me. When delivered intraperitoneally into mice 1 hour after B+I injury, CDDO-MPs significantly reduced mortality and cytokine dysfunction compared with untreated B-I animals. These data implicate the role of NRF2 regulation of pulmonary and systemic immune dysfunction after burn and B+I injury, and also a deficiency in controlling immune dysregulation. Selectively activating the NRF2 pathway may improve clinical outcomes in burn and B+I patients.
Collapse
Affiliation(s)
| | - Michelle Mac
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Lucas M Sjeklocha
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Alex J Kwiatkowski
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Ben G Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | | | | | | |
Collapse
|
9
|
Yahya MA, Alshammari GM, Osman MA, Al-Harbi LN, Yagoub AEA, AlSedairy SA. Isoliquiritigenin attenuates high-fat diet-induced intestinal damage by suppressing inflammation and oxidative stress and through activating Nrf2. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
10
|
Huang C, Peng X, Pang DJ, Li J, Paulsen BS, Rise F, Chen YL, Chen ZL, Jia RY, Li LX, Song X, Feng B, Yin ZQ, Zou YF. Pectic polysaccharide from Nelumbo nucifera leaves promotes intestinal antioxidant defense in vitro and in vivo. Food Funct 2021; 12:10828-10841. [PMID: 34617945 DOI: 10.1039/d1fo02354c] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this study, the Nelumbo nucifera leaf polysaccharide (NNLP) was isolated by hot water extraction and ethanol precipitation. DEAE anion exchange chromatography and gel filtration were further performed to obtained the purified fraction NNLP-I-I, the molecular weight of which was 16.4 kDa. The monosaccharide composition analysis and linkage units determination showed that the fraction NNLP-I-I was a pectic polysaccharide. In addition, the NMR spectra analysis revealed that NNLP-I-I mainly consisted of a homogalacturonan backbone and rhamnogalacturonan I, containing a long HG region and short RG-I region, with AG-II and 1-3 linked rhamnose as side chains. The biological studies demonstrated that NNLP-I-I displayed antioxidant properties through mediating the Nrf2-regulated intestinal cellular antioxidant defense, which could protect cultured intestinal cells from oxidative stress and improve the intestinal function of aged mice.
Collapse
Affiliation(s)
- Chao Huang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China.,Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Xi Peng
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - De-Jiang Pang
- Neuroscience & Metabolism Research, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Juan Li
- Institute of Animal Science; Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan Province, 611130, China
| | - Berit Smestad Paulsen
- Department of Pharmacy, Section Pharmaceutical Chemistry, Area Pharmacognosy, University of Oslo, P.O. Box 1068, Blindern, 0316 Oslo, Norway
| | - Frode Rise
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Yu-Long Chen
- Sichuan Academy of Forestry, Ecological Restoration and Conservation on Forest and Wetland Key Laboratory of Sichuan Province. Chengdu, Sichuan, 610081, China.
| | - Zheng-Li Chen
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Ren-Yong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Zhong-Qiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Yuan-Feng Zou
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, P.R. China
| |
Collapse
|
11
|
Wen JJ, Cummins CB, Szczesny B, Radhakrishnan RS. Cardiac Dysfunction after Burn Injury: Role of the AMPK-SIRT1-PGC1α-NFE2L2-ARE Pathway. J Am Coll Surg 2020; 230:562-571. [PMID: 32032722 DOI: 10.1016/j.jamcollsurg.2019.12.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Mitochondrial oxidative stress plays a prominent role in the development of burn-induced cardiac dysfunction. AMP-activated kinase (AMPK), an energy sensor, has a central role in the pathogenesis of heart failure. However, its role in cardiac dysfunction after burn injury is unclear. Our hypothesis is that burn injury acts through the AMPK-sirtuin 1-PGC1α-nuclear factor erythroid 2-related factor 2 (NFE2L2)-ARE signaling pathway, leading to cardiac mitochondrial impairment, resulting in cardiac dysfunction. STUDY DESIGN Male Sprague-Dawley rats underwent sham procedure or 60% total body surface area full-thickness burn. Echocardiograms were performed 24 hours post burn. Heart tissue was harvested at 24 hours post burn for biochemistry/molecular biologic analysis. AC16 cardiomyocytes were treated with either sham or burned rat serum (±AMPK inhibitor/AMPK activator/PGC1α activator) for evaluation of cardiomyocyte mitochondrial function by using seahorse in vitro. RESULTS Burn injury-induced cardiac dysfunction was measured by echocardiogram. Burn injury suppressed cardiac AMPK, sirtuin 1, and PGC1 expression, leading to acetylation of cardiomyocyte proteins. In addition, burn injury caused NFE2L2 and NFE2L2 regulated antioxidants (heme oxygenase 1, NADH quinone oxidoreductase 1, glutamatecysteine ligase catalytic subunit, manganese superoxide dismutase, and glutathione peroxidase) to decrease, resulting in cardiac oxidative stress. In vitro, AMPK1 activator and PGC1α agonist treatment improved Ac16 cell mitochondrial dysfunction, and AMPK1 inhibitor treatment worsened Ac16 cellular damage. CONCLUSIONS Burn-induced cardiac dysfunction and cardiac mitochondrial damage occur via the AMPK-sirtuin 1-PGC1α-NFE2L2-ARE signaling pathway. AMPK and PGC1α agonists might be promising therapeutic agents to reverse cardiac dysfunction after burn injury.
Collapse
Affiliation(s)
- Jake J Wen
- Department of Surgery, University of Texas Medical Branch, Galveston, TX
| | - Claire B Cummins
- Department of Surgery, University of Texas Medical Branch, Galveston, TX
| | - Bartosz Szczesny
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX
| | | |
Collapse
|
12
|
A Protective Role of the NRF2-Keap1 Pathway in Maintaining Intestinal Barrier Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1759149. [PMID: 31346356 PMCID: PMC6617875 DOI: 10.1155/2019/1759149] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/10/2019] [Accepted: 03/26/2019] [Indexed: 12/15/2022]
Abstract
Nrf2 (NF-E2-related factor 2) is a master regulator of cellular oxidative levels against environmental stresses. Nrf2 induces the expression of metabolic detoxification and antioxidant enzymes to eliminate reactive oxygen species (ROS). The gastrointestinal tract is a key source of ROS. Intestinal barrier is critical to maintain the healthy steady state of the human gastrointestinal tract. Nrf2 has been shown to play important roles in maintaining the integrity of intestinal mucosal barrier. Here, we made a systematic review on the roles of Nrf2 in maintaining intestinal barrier, including the following: (1) NRF2 reduced intestinal mucosal injury by suppressing oxidative stress; (2) NRF2 decreased intestinal inflammation by inhibiting the inflammatory pathway; (3) NRF2 affected intestinal tight junction proteins and apoptosis of cells to regulate intestinal permeability; (4) NRF2 affected T cell differentiation and functions; (5) the crossregulation between the KEAP1-NRF2 pathway and autophagy controlled intestinal oxidative stress.
Collapse
|
13
|
He S, Guo Y, Zhao J, Xu X, Song J, Wang N, Liu Q. Ferulic acid protects against heat stress-induced intestinal epithelial barrier dysfunction in IEC-6 cells via the PI3K/Akt-mediated Nrf2/HO-1 signaling pathway. Int J Hyperthermia 2018; 35:112-121. [PMID: 30010455 DOI: 10.1080/02656736.2018.1483534] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Intestinal epithelial barrier dysfunction is crucial in the pathogenesis of intestinal and systemic diseases. Ferulic acid (FA) possesses promising antioxidant activities. In a previous study, we demonstrated potentially protective effects of FA against heat stress-induced intestinal epithelial barrier dysfunction in IEC-6 cells. However, the underlying mechanisms are unclear. The present study aimed to elucidate whether FA protects IEC-6 cells from heat stress-induced intestinal epithelial barrier dysfunction via antioxidative mechanisms. MATERIALS AND METHODS IEC-6 cells were pretreated with FA prior to hyperthermia exposure at 42 °C for 6 h, and the levels of intracellular reactive oxygen species (ROS), malondialdehyde (MDA), nitrogen oxide (NO), and superoxide dismutase (SOD) activity were analyzed. The intestinal epithelial barrier function was determined by transepithelial electrical resistance (TER) values and 4-kDa fluorescein isothiocyanate-dextran (FD4) flux in IEC-6 cell monolayers. Expression of related proteins was detected by Western blotting. RESULTS FA suppressed heat stress-induced intestinal oxidative stress damage by reducing ROS, MDA and NO production, while enhancing SOD activity. Furthermore, FA treatment strengthened intestinal barrier function via increasing the phosphorylation levels of Akt, nuclear factor-erythroid 2-related factor 2 (Nrf2) and hemeoxygenase-1 (HO-1) protein expression, which was reversed by zinc protoporphyrin (an HO-1 inhibitor). Additionally, LY294002, a specific PI3K/Akt inhibitor, significantly suppressed FA-induced Nrf2 nuclear translocation and HO-1 protein expression and inhibited FA-induced occludin and ZO-1 protein expression. CONCLUSIONS FA protected against heat stress-induced intestinal epithelial barrier dysfunction via activating the PI3K/Akt-mediated Nrf2/HO-1 signaling pathway in IEC-6 cells.
Collapse
Affiliation(s)
- Shasha He
- a Beijing Hospital of Traditional Chinese Medicine, Affiliated with Capital Medical University , Beijing , P. R. China.,b Beijing Institute of Traditional Chinese Medicine , Beijing , P. R. China.,c Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases , Beijing , P. R. China
| | - Yuhong Guo
- a Beijing Hospital of Traditional Chinese Medicine, Affiliated with Capital Medical University , Beijing , P. R. China.,b Beijing Institute of Traditional Chinese Medicine , Beijing , P. R. China.,c Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases , Beijing , P. R. China
| | - Jingxia Zhao
- a Beijing Hospital of Traditional Chinese Medicine, Affiliated with Capital Medical University , Beijing , P. R. China.,b Beijing Institute of Traditional Chinese Medicine , Beijing , P. R. China.,c Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases , Beijing , P. R. China
| | - Xiaolong Xu
- a Beijing Hospital of Traditional Chinese Medicine, Affiliated with Capital Medical University , Beijing , P. R. China.,b Beijing Institute of Traditional Chinese Medicine , Beijing , P. R. China.,c Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases , Beijing , P. R. China
| | - Jin Song
- a Beijing Hospital of Traditional Chinese Medicine, Affiliated with Capital Medical University , Beijing , P. R. China.,b Beijing Institute of Traditional Chinese Medicine , Beijing , P. R. China
| | - Ning Wang
- a Beijing Hospital of Traditional Chinese Medicine, Affiliated with Capital Medical University , Beijing , P. R. China.,b Beijing Institute of Traditional Chinese Medicine , Beijing , P. R. China
| | - Qingquan Liu
- a Beijing Hospital of Traditional Chinese Medicine, Affiliated with Capital Medical University , Beijing , P. R. China.,b Beijing Institute of Traditional Chinese Medicine , Beijing , P. R. China.,c Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases , Beijing , P. R. China
| |
Collapse
|
14
|
Functions and Signaling Pathways of Amino Acids in Intestinal Inflammation. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9171905. [PMID: 29682569 PMCID: PMC5846438 DOI: 10.1155/2018/9171905] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/30/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022]
Abstract
Intestine is always exposed to external environment and intestinal microorganism; thus it is more sensitive to dysfunction and dysbiosis, leading to intestinal inflammation, such as inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), and diarrhea. An increasing number of studies indicate that dietary amino acids play significant roles in preventing and treating intestinal inflammation. The review aims to summarize the functions and signaling mechanisms of amino acids in intestinal inflammation. Amino acids, including essential amino acids (EAAs), conditionally essential amino acids (CEAAs), and nonessential amino acids (NEAAs), improve the functions of intestinal barrier and expressions of anti-inflammatory cytokines and tight junction proteins but decrease oxidative stress and the apoptosis of enterocytes as well as the expressions of proinflammatory cytokines in the intestinal inflammation. The functions of amino acids are associated with various signaling pathways, including mechanistic target of rapamycin (mTOR), inducible nitric oxide synthase (iNOS), calcium-sensing receptor (CaSR), nuclear factor-kappa-B (NF-κB), mitogen-activated protein kinase (MAPK), nuclear erythroid-related factor 2 (Nrf2), general controlled nonrepressed kinase 2 (GCN2), and angiotensin-converting enzyme 2 (ACE2).
Collapse
|
15
|
Wang XY, Wang ZY, Zhu YS, Zhu SM, Fan RF, Wang L. Alleviation of cadmium-induced oxidative stress by trehalose via inhibiting the Nrf2-Keap1 signaling pathway in primary rat proximal tubular cells. J Biochem Mol Toxicol 2017; 32. [DOI: 10.1002/jbt.22011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 10/17/2017] [Accepted: 10/27/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Xin-Yu Wang
- College of Animal Science and Veterinary Medicine; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
| | - Zhen-Yong Wang
- College of Animal Science and Veterinary Medicine; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
| | - Yi-Song Zhu
- College of Animal Science and Veterinary Medicine; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
| | - Si-Ming Zhu
- College of Animal Science and Veterinary Medicine; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
| | - Rui-Feng Fan
- College of Animal Science and Veterinary Medicine; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
| | - Lin Wang
- College of Animal Science and Veterinary Medicine; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention; Shandong Agricultural University; Tai'an City Shandong Province 271018 People's Republic of China
| |
Collapse
|
16
|
Berwin Singh SV, Park H, Khang G, Lee D. Hydrogen peroxide-responsive engineered polyoxalate nanoparticles for enhanced wound healing. Macromol Res 2017. [DOI: 10.1007/s13233-018-6003-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Xu J, Wu L, Zhang Y, Gu H, Huang Z, Zhou K, Yin X. Activation of AMPK by OSU53 protects spinal cord neurons from oxidative stress. Oncotarget 2017; 8:112477-112486. [PMID: 29348841 PMCID: PMC5762526 DOI: 10.18632/oncotarget.22055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/28/2017] [Indexed: 12/19/2022] Open
Abstract
The present study tested the potential effect of OSU53, a novel AMPK activator, against hydrogen peroxide (H2O2)-induced spinal cord neuron damages. Treatment with OSU53 attenuated H2O2-induced death and apoptosis of primary murine spinal cord neurons. OSU53 activated AMPK signaling, which is required for its actions in spinal cord neurons. The AMPK inhibitor Compound C or AMPKα1 siRNA almost abolished OSU53-mediated neuroprotection against H2O2. On the other hand, sustained-activation of AMPK by introducing the constitutive-active AMPKα1 mimicked OSU53's actions, and protected spinal cord neurons from oxidative stress. OSU53 significantly attenuated H2O2-induced reactive oxygen species production, lipid peroxidation and DNA damages in spinal cord neurons. Additionally, OSU53 increased NADPH content and heme oxygenase-1 mRNA expression in H2O2-treated spinal cord neurons. Together, we indicate that targeted-activation of AMPK by OSU53 protects spinal cord neurons from oxidative stress.
Collapse
Affiliation(s)
- Jun Xu
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, China
| | - Liang Wu
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, China
| | - Yiming Zhang
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, China
| | - Huijie Gu
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, China
| | - Zhongyue Huang
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, China
| | - Kaifeng Zhou
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, China
| | - Xiaofan Yin
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
18
|
MIND4-17 protects retinal pigment epithelium cells and retinal ganglion cells from UV. Oncotarget 2017; 8:89793-89801. [PMID: 29163788 PMCID: PMC5685709 DOI: 10.18632/oncotarget.21131] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/03/2017] [Indexed: 01/01/2023] Open
Abstract
Nrf2 activation would efficiently protect retinal cells from UV radiation (UVR). Recent studies have developed a Nrf2-targeting thiazole-containing compound MIND4-17, which activates Nrf2 through blocking its association with Keap1. In the current study, we demonstrated that pretreatment with MIND4-17 efficiently protected retinal pigment epithelium (RPE) cells (RPEs) and retinal ganglion cells (RGCs) from UVR. UVR-induced apoptosis in the retinal cells was also largely attenuated by MIND4-17 pretreatment. MIND4-17 presumably separated Nrf2 from Keap1, allowing its stabilization and accumulation in retinal cells, which then translocated to cell nuclei and promoted transcription of ARE-dependent anti-oxidant genes, including HO1, NQO1 and GCLM. Significantly, shRNA-mediated knockdown of Nrf2 almost completely abolished MIND4-17-induced cytoprotection against UVR. Further studies showed that MIND4-17 largely ameliorated UVR-induced ROS production, lipid peroxidation and DNA damages in RPEs and RGCs. Together, MIND4-17 protects retinal cells from UVR by activating Nrf2 signaling.
Collapse
|
19
|
Eitas TK, Stepp W, Sjeklocha L, Long C, Riley C, Callahan J, Sanchez Y, Gough P, Knowlin L, van Duin D, Ortiz-Pujols S, Jones S, Maile R, Hong Z, Berger S, Cairns B. Differential regulation of innate immune cytokine production through pharmacological activation of Nuclear Factor-Erythroid-2-Related Factor 2 (NRF2) in burn patient immune cells and monocytes. PLoS One 2017; 12:e0184164. [PMID: 28886135 PMCID: PMC5590883 DOI: 10.1371/journal.pone.0184164] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/19/2017] [Indexed: 11/21/2022] Open
Abstract
Burn patients suffer from immunological dysfunction for which there are currently no successful interventions. Similar to previous observations, we find that burn shock patients (≥15% Total Burn Surface Area (TBSA) injury) have elevated levels of the innate immune cytokines Interleukin-6 (IL-6) and Monocyte Chemoattractant Protein-1 (MCP-1)/CC-motif Chemokine Ligand 2(CCL2) early after hospital admission (0–48 Hours Post-hospital Admission (HPA). Functional immune assays with patient Peripheral Blood Mononuclear Cells (PBMCs) revealed that burn shock patients (≥15% TBSA) produced elevated levels of MCP-1/CCL2 after innate immune stimulation ex vivo relative to mild burn patients. Interestingly, treatment of patient PBMCs with the Nuclear Factor-Erythroid-2-Related Factor 2 (NRF2) agonist, CDDO-Me(bardoxolone methyl), reduced MCP-1 production but not IL-6 or Interleukin-10 (IL-10) secretion. In enriched monocytes from healthy donors, CDDO-Me(bardoxolone methyl) also reduced LPS-induced MCP1/CCL2 production but did not alter IL-6 or IL-10 secretion. Similar immunomodulatory effects were observed with Compound 7, which activates the NRF2 pathway through a different and non-covalent Mechanism Of Action (MOA). Hence, our findings with CDDO-Me(bardoxolone methyl) and Compound 7 are likely to reflect a generalizable aspect of NRF2 activation. These observed effects were not specific to LPS-induced immune responses, as NRF2 activation also reduced MCP-1/CCL2 production after stimulation with IL-6. Pharmacological NRF2 activation reduced Mcp-1/Ccl2 transcript accumulation without inhibiting either Il-6 or Il-10 transcript levels. Hence, we describe a novel aspect of NRF2 activation that may contribute to the beneficial effects of NRF2 agonists during disease. Our work also demonstrates that the NRF2 pathway is retained and can be modulated to regulate important immunomodulatory functions in burn patient immune cells.
Collapse
Affiliation(s)
- Timothy K. Eitas
- Host Defense Discovery Performance Unit, Infectious Diseases Therapy Area Unit, Glaxosmithkline Pharmaceuticals, Upper Providence, Pennsylvania, United States of America
| | - Wesley Stepp
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lucas Sjeklocha
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Clayton Long
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Caitlin Riley
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - James Callahan
- Stress and Repair Discovery Performance Unit, Respiratory Therapy Area Unit, Glaxosmithkline Pharmaceuticals, Upper Merion, Pennsylvania, United States of America
| | - Yolanda Sanchez
- Stress and Repair Discovery Performance Unit, Respiratory Therapy Area Unit, Glaxosmithkline Pharmaceuticals, Upper Merion, Pennsylvania, United States of America
| | - Peter Gough
- Host Defense Discovery Performance Unit, Infectious Diseases Therapy Area Unit, Glaxosmithkline Pharmaceuticals, Upper Providence, Pennsylvania, United States of America
| | - Laquanda Knowlin
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - David van Duin
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Shiara Ortiz-Pujols
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Samuel Jones
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robert Maile
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Zhi Hong
- Infectious Diseases Therapy Area Unit, Glaxosmithkline Pharmaceuticals, Research Triangle Park, Durham, North Carolina, United States of America
| | - Scott Berger
- Host Defense Discovery Performance Unit, Infectious Diseases Therapy Area Unit, Glaxosmithkline Pharmaceuticals, Upper Providence, Pennsylvania, United States of America
- * E-mail: (BAC); (SB)
| | - Bruce Cairns
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (BAC); (SB)
| |
Collapse
|
20
|
Wang B, Sun J, Shi Y, Le G. Salvianolic Acid B Inhibits High-Fat Diet-Induced Inflammation by Activating the Nrf2 Pathway. J Food Sci 2017; 82:1953-1960. [PMID: 28753232 DOI: 10.1111/1750-3841.13808] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 05/11/2017] [Accepted: 06/10/2017] [Indexed: 12/12/2022]
Abstract
Salvianolic acid B (Sal B) is a major water-soluble bioactive component of Salvia miltiorrhiza, which is a traditional Chinese medicine. We investigated the ways in which Sal B affects high-fat diet (HFD)-induced immunological function disorder remission using a C57BL/6 mouse model. We gave groups of C57BL/6 mice a normal diet (Control), a normal diet supplemented with Sal B (Control + Sal B), a high-fat diet (HF), and a high-fat diet supplemented with Sal B (HF + Sal B) for 10 wk. Sal B supplementation decreased the body weight and plasma lipids, increased the fecal excretion of lipids, prevented the accumulation of chronic oxidative stress, and reversed the disproportionality of CD3+ CD4+ and CD3+ CD8+ T lymphocytes compared to HFD. We found an increase in IL-6 and TNF-α, while IL-10 decreased in plasma after the HFD and Sal B reversed the deregulation of the Thl/Th2 ratio. In addition, HFD-induced inflammation was stopped by Sal B through the downregulation of nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2), and inducible NO synthesis (iNOS), and the upregulation of nuclear factor-erythroid 2-related factor 2 (Nrf2)-regulated genes. These findings demonstrated that Sal B could effectively attenuate inflammation by activating the Nrf2-mediated antioxidant defense system.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan Univ., Wuxi, Jiangsu, 214122, China
| | - Jin Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan Univ., Wuxi, Jiangsu, 214122, China
| | - Yonghui Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan Univ., Wuxi, Jiangsu, 214122, China
| | - Guowei Le
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan Univ., Wuxi, Jiangsu, 214122, China
| |
Collapse
|
21
|
Xu D, Zhu H, Wang C, Zhu X, Liu G, Chen C, Cui Z. microRNA-455 targets cullin 3 to activate Nrf2 signaling and protect human osteoblasts from hydrogen peroxide. Oncotarget 2017; 8:59225-59234. [PMID: 28938631 PMCID: PMC5601727 DOI: 10.18632/oncotarget.19486] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/19/2017] [Indexed: 12/16/2022] Open
Abstract
Over-production of hydrogen peroxide (H2O2) will lead to human osteoblast dysfunction and apoptosis, causing progression of osteoporosis and osteonecrosis. NF-E2-related factor 2 (Nrf2) is a well-characterized anti-oxidant signaling. Cullin 3 (Cul3) ubiquitin E3 ligase dictates Nrf2 degradation. We demonstrate that microRNA-455 ("miR-455") is a putative Cul3-targeting microRNA. Forced-expression of miR-455 in both hFOB1. 19 osteoblast cell line and primary human osteoblasts induced Cul3 degradation and Nrf2 protein stabilization, which led to subsequent transcription of ARE (anti-oxidant response element)-dependent genes (NQO1, HO1 and GCLC). Cul3 silencing, by expressing miR-455 or targeted-shRNA, protected human osteoblasts from H2O2. Reversely, miR-455 anti-sense caused Cul3 accumulation and Nrf2 degradation, which exacerbated H2O2 damages in hFOB1. 19 cells. Moreover, forced over-expression of Cul3 in hFOB1. 19 cells silenced Nrf2 and sensitized H2O2. Together, we propose that miR-455 activated Nrf2 signaling and protected human osteoblasts from oxidative stress possibly via targeting Cul3.
Collapse
Affiliation(s)
- Dawei Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Hao Zhu
- Department of Orthopaedics, The Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Chengniu Wang
- Basic Medical Research Centre, Medical College, Nantong University, Nantong, China
| | - Xinhui Zhu
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Genxiang Liu
- Department of Orthopaedics, The Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Chu Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Zhiming Cui
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
22
|
Xiao Y, Lu W, Li X, Zhao P, Yao Y, Wang X, Wang Y, Lin Z, Yu Y, Hua S, Wang L. An oligodeoxynucleotide with AAAG repeats significantly attenuates burn-induced systemic inflammatory responses via inhibiting interferon regulatory factor 5 pathway. Mol Med 2017; 23:166-176. [PMID: 28620671 DOI: 10.2119/molmed.2016.00243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 06/06/2017] [Indexed: 12/16/2022] Open
Abstract
Previously, we showed that an oligodeoxynucleotide with AAAG repeats (AAAG ODN) rescued mice from fatal acute lung injury (ALI) induced by influenza virus and inhibited production of tumor necrosis factor-α (TNF-α) in the injured lungs. However, the underlying mechanisms remain to be elucidated. Upon the bioinformatic analysis revealing that the AAAG ODN is consensus to interferon regulatory factor 5 (IRF5) binding site in the cis-regulatory elements of proinflammatory cytokines, we tried to explore whether the AAAG ODN could attenuate burn injury induced systemic inflammatory responses via inhibiting IRF5 pathway. Using the mouse model with sterile systemic inflammation induced by burn injury, we found that AAAG ODN prolonged the life span of the mice, decreased the expression of IRF5 at injured skin, reduced the production of TNF-α and IL-6 in blood and injured skin, and attenuated the ALI. Furthermore, AAAG ODN could bind IRF5 and inhibit the nuclear translocation of IRF5 in THP-1 cells. The data suggested that the AAAG ODN could act as a cytoplasmic decoy capable of interfering the function of IRF5, and be developed as a drug candidate for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Yue Xiao
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in First Hospital, Norman Bethune Health Science Center, Jilin University, Changchun, 130021, China
| | - Wenting Lu
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in First Hospital, Norman Bethune Health Science Center, Jilin University, Changchun, 130021, China
| | - Xin Li
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in First Hospital, Norman Bethune Health Science Center, Jilin University, Changchun, 130021, China
| | - Peiyan Zhao
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in First Hospital, Norman Bethune Health Science Center, Jilin University, Changchun, 130021, China
| | - Yun Yao
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in First Hospital, Norman Bethune Health Science Center, Jilin University, Changchun, 130021, China
| | - Xiaohong Wang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Norman Bethune Health Science Center, Jilin University, Changchun, 130021, China
| | - Ying Wang
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in First Hospital, Norman Bethune Health Science Center, Jilin University, Changchun, 130021, China
| | - Zhipeng Lin
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in First Hospital, Norman Bethune Health Science Center, Jilin University, Changchun, 130021, China
| | - Yongli Yu
- Department of Immunology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, 130021, China
| | - Shucheng Hua
- Department of Respiratory Medicine, The First Hospital of Jilin University, Norman Bethune Health Science Center, Jilin University, Changchun, 130021, China
| | - Liying Wang
- Department of Immunology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, 130021, China
| |
Collapse
|